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• Large improvements in model states are seen in the forecast period. 26 
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Abstract 30 

       Uncertain or inaccurate parameters in sea ice models influence seasonal predictions and 31 

climate change projections in terms of both mean and trend. We explore the feasibility and benefits 32 

of applying an Ensemble Kalman filter (EnKF) to estimate parameters in the Los Alamos sea ice 33 

model (CICE). Parameter estimation (PE) is applied to the highly influential dry snow grain radius 34 

and combined with state estimation in a series of perfect model observing system simulation 35 

experiments (OSSEs). Allowing the parameter to vary in space improves performance along the 36 

sea ice edge but degrades in the central Arctic compared to requiring the parameter to be uniform 37 

everywhere, suggesting that spatially varying parameters will likely improve PE performance at 38 

local scales and should be considered with caution. We compare experiments with both PE and 39 

state estimation to experiments with only the latter and found that the benefits of PE mostly occur 40 

after the data assimilation period, when no observations are available to assimilate (i.e., the forecast 41 

period), which suggests PE’s relevance for improving seasonal predictions of Arctic sea ice.  42 
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1. Introduction 53 

Arctic sea ice has undergone rapid decline in recent decades in all seasons (e.g., Stroeve et al., 54 

2012； Serreze and Stroeve, 2015). The frequent large deviations of Arctic sea ice cover from its 55 

climatology and the impact of sea ice cover on the overlying atmosphere and on ocean-atmosphere 56 

fluxes motivates including an active sea ice component in seasonal to sub-seasonal (S2S) weather 57 

forecasts (Vitart et al., 2015). The persistence and reemergence of sea ice thickness (SIT) and sea 58 

surface temperature anomalies are major sources of predictability for Arctic sea ice extent 59 

(Blanchard-Wrigglesworth et al., 2011). Previous studies have demonstrated the importance of 60 

accurate initial conditions, especially SIT, in predicting Arctic sea ice extent (Day et al., 2014). 61 

Hence studies applying data assimilation (DA) techniques to fuse observations with model 62 

simulations are actively investigated (e.g., Lisæter et al., 2003; Chen et al., 2017; Massonnet et al., 63 

2015), most of which are focused on improving model states only, not the parameters in sea ice 64 

parameterization schemes.  65 

Sea ice models, like other components of Earth system models, can suffer large uncertainties 66 

originating from uncertain parameters. The widely used Los Alamos sea ice model version 5 67 

(CICE5), given its various complex schemes, has hundreds of uncertain parameters, such as in the 68 

delta-Eddington shortwave radiation scheme (Briegleb and Light, 2007). The default values of 69 

these parameters are usually chosen based on point measurements that are taken on multi-year sea 70 

ice (Light et al, 2008). Urrego-Blanco et al. (2015) conducted an uncertainty quantification study 71 

of CICE5 and ranked the parameters based on the sensitivities of model predictions to a list of 72 

parameters. This work provides guidance on which parameters could be estimated using an 73 

objective method and during which seasons. Their findings suggest that the estimates of the Arctic 74 

sea ice area and extent are especially sensitive to certain parameters (e.g., snow conductivity and 75 



 4 

snow grain size) in summer. However, they also discussed that their sensitivities could be low as 76 

a consequence of prescribing atmospheric forcing in their model setup, so parametric uncertainties 77 

are expected to be larger year round (particularly in winter) in a fully-coupled model. Previous 78 

studies suggest that the ensemble spread of sea ice states is generally small in winter (e.g., Lisaeter 79 

et al., 2003; Fritzner et al., 2018; Zhang et al., 2018), which will lead to limited update on model 80 

state variables or parameters. Also, sea ice concentration (SIC) reaches 100% in most of regions 81 

in winter and hence does not leave enough room for improvements by DA. The ensemble spread 82 

in summer, however, is much larger. Since we run stand-alone CICE5 given that our aim is to 83 

demonstrate the utility of parameter estimation (PE) for sea ice, we conduct DA experiments with 84 

PE in summer.  85 

Two types of observations are assimilated in our study, sea ice concentration and thickness 86 

(SIC and SIT, respectively). Satellite-retrieved SIC observations are widely utilized in the sea ice 87 

DA community, while the application of SIT observations is more challenging given its large 88 

uncertainty and lack of data in summer (Zygmuntowska et al., 2014). Previous studies on Arctic 89 

sea ice predictability emphasized the importance of summer SIT observations (e.g., Day et al., 90 

2014; Dirkson et al., 2017). We explore the benefits of SIT observations (in addition to SIC) on 91 

sea ice parameter estimation and advocate the needs of extending the data coverage of SIT 92 

observations into late spring and summer, which is actually possible in ICESat-2 (Kwok et al., 93 

2020).   94 

Despite the importance of sea ice model parameters, few studies have tried to estimate or 95 

reduce the parametric uncertainties, partly due to the large effort and computational cost if 96 

parameter calibration is done in a trial-and-error fashion. A more systematic way is through DA. 97 

Anderson (2001) demonstrated the feasibility of updating parameters using an ensemble filter in a 98 
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low-order model. Annan et al. (2005) was among the first to apply an ensemble filter to estimate 99 

parameters in a complex Earth system model. Massonnet et al. (2014) employed the ensemble 100 

Kalman filter (EnKF) in a sea ice model to estimate three parameters that control sea ice dynamics. 101 

In addition to achieving their goal of improving the sea ice drift, they also realized slight 102 

improvements in the SIT distribution and extent as well as in the sea ice export through the Fram 103 

Strait.  104 

Our purpose is to expand upon previous studies to explore the feasibility of optimizing sea ice 105 

parameters by asking how different observations (concentration and thickness in this study) would 106 

constrain the parameters differently, whether we need to allow parameters to vary spatially, and 107 

what are the benefits of the updated parameters both when observations are available for 108 

assimilation (the DA period) and when observations are not available (the forecast period).  109 

 110 

2. The sea ice data assimilation framework 111 

We use CICE5 linked to the data assimilation research testbed (DART) (Anderson et al., 2009) 112 

within the framework of the Community Earth System Model version 2 (CESM2) 113 

(http://www.cesm.ucar.edu/models/cesm2). The ocean is modeled as a slab ocean and the 114 

atmospheric forcing is prescribed from a DART/CAM ensemble reanalysis (Raeder et al., 2010). 115 

Details of this framework can be found in Zhang et al. (2018). The default DART/CICE 116 

framework is only used for state estimation, we extend DART/CICE to include parameter 117 

estimation in this study. During the assimilation, DART and CICE5 cycle between a DA step 118 

with DART and a one-day forecast step with CICE5. During the DA step, the selected sea ice 119 

variables are placed into a “DART state vector” that is to be passed to the filter. The DART state 120 

vector is augmented by adding selected sea ice parameters, so that the parameters and state 121 
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variables are both updated by the filter in the same way. The updated state variables are then post-122 

processed (if needed) and sent with the updated parameters back to CICE5 for the next one-day 123 

forecast step. The post-process step is necessary when the updated variable goes beyond its 124 

physical boundaries, for example, when SIC is negative or larger than 100%. Unlike state 125 

variables, the parameters are not modified during CICE5 forecast steps.  126 

 127 

3. Experiment design and evaluation methods 128 

The parameter we selected, Rsnw, represents the standard deviation of dry snow grain radius 129 

that controls the optical properties of snow and is one of the key parameters that determine snow 130 

albedo in the Delta-Eddington solar radiation parameterization treatment (Briegleb and Light, 131 

2007). We picked Rsnw because it is one of the parameters that the model predictions are sensitive 132 

to (Urrego-Blanco et al., 2016) and is also one of the parameters perturbed to generate ensemble 133 

spread in Zhang et al. (2018). Instead of directly tuning snow albedo that could result in 134 

inconsistencies with the rest of the parameterization scheme, tuning Rsnw changes the inherent 135 

optical properties of snow in a self-consistent fashion (Briegleb and Light, 2007). Increasing Rsnw 136 

leads to smaller dry snow grain radius and larger snow albedo (Hunke et al., 2015). The default 137 

value of Rsnw is 1.5, which corresponds to a fresh snow grain radius of 125µm (Holland et al., 138 

2012). Many parameters in CICE5, like Rsnw, have default values based on limited field 139 

observations. As sea ice models increase in complexity, empirical parameters will increasingly 140 

need to be calibrated objectively. More comprehensive observations at large scale will presumably 141 

benefit a better representation of snow and ice properties in sea ice models.  142 

The configurations of conducted experiments are listed in Table 1. We begin with a free run 143 

of CICE5 without DA (hereafter FREE) with 30 ensemble members. Each ensemble member has 144 
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a unique value of Rsnw, which is constant in time and space. The ensemble of Rsnw values were 145 

random draws from a uniform distribution spanning -2 and 2. One of the ensemble members was 146 

designated as the truth with the true value of Rsnw. Following Zhang et al. (2018), synthetic 147 

observations were created by adding random noise to SIC and SIT taken from the truth ensemble 148 

member. The noise follows a normal distribution with zero mean and a standard deviation of 15% 149 

for SIC and 40 cm for SIT. FREE experiment does not assimilate any observations, and the Rsnw 150 

values stay the same throughout the experimental period.  151 

We then conducted two pairs of experiments to test the feasibility of estimating parameters 152 

using the Ensemble adjustment Kalman filter (EAKF) (Anderson, 2002), which is a deterministic 153 

ensemble square root filter. Each experiment assimilates daily SIC or SIT synthetic observations. 154 

The first pair is referred to as DAsicPEcst and DAsitPEcst, with the former assimilates SIC 155 

observations and the latter SIT observations. In the first pair, each ensemble member has a unique 156 

spatially-uniform Rsnw. The second pair is refered to as DAsicPEvar and DAsitPEvar, which has a 157 

separate value of Rsnw at each horizontal grid point. The augmented state has the single parameter 158 

for Rsnw in the first pair or the two-dimensional grid of Rsnw parameters in the second pair.  159 

All variables in the sea ice state vector are two-dimensional in space. The parameter Rsnw and 160 

the state variables were updated based on their correlations with neighboring observations. The 161 

posterior ensemble generated by DART is always spatially varying. For the first pair of 162 

experiments, we take an area-weighted average of the two-dimensional posterior to get a spatially 163 

invariant Rsnw to send back to CICE5. For the second pair of experiments, the spatially varying 164 

posterior Rsnw was sent to CICE5. In all experiments, the sea ice component was run for a day to 165 

produce a new state that was augmented with the previous times posterior Rsnw (which is not 166 

prognostic in CICE5) for the next DA cycle. To increase the prior ensemble spread of Rsnw, a 167 
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spatially and temporally adaptive inflation was applied to the priors of both the model states and 168 

Rsnw before they were sent to the filter (Anderson, 2007). The initial value, standard deviation, and 169 

inflation damping value of the adaptive inflation are 1.0, 0.6, and 0.9.  The localization half-width 170 

is 0.01 radians (about 64 km) as discussed in Zhang et al. (2018). We also reject observations that 171 

are three standard deviations of the expected difference away from the ensemble mean of the 172 

forecast. 173 

A third pair of experiments was conducted with only state DA (no parameter estimation), 174 

known as DAsic and DAsit, that assimilate daily SIC and SIT synthetic observations, respectively. 175 

DAsic and DAsit have the same ensemble set of Rsnw, which is also the initial set of Rsnw in the 176 

above PE experiments. The ensemble of Rsnw remains fixed throughout the experiment period.  177 

All experiments begin on 1 April 2005 and run for 18 months. Synthetic observations are 178 

assimilated only during the first 6 months (the DA period), and the next 12 months are a pure 179 

forecast period to mimic the real-world situation when making a forecast. The values of Rsnw hold 180 

constant once DA ceases. We do not perform DA beyond October 2005 for two reasons. First, sea 181 

ice states have small ensemble spread in winter, as illustrated in Figure 1a, so DA updates tend to 182 

be small. In contrast, the relatively larger spread from April to October ensures that assimilating 183 

observations can have more impact in updating model state variables and parameters. Second, the 184 

snow albedo feedback only influences the sea ice state when sunlight is present.  185 

Several commonly used error indices were calculated to evaluate the performance of the 186 

experiments. The root-mean-square error (RMSE) of Arctic sea ice extent (SIE) and the area 187 

weighted spatial averaged root-mean-square error (RMSEt) are defined as follows: 188 

𝑅𝑀𝑆𝐸 = 	'∑ (#!"$$$$$%##
$)%&

#'(
'

;  𝑅𝑀𝑆𝐸( =	'
∑ (#)"$$$$$%#*

$)%+
*'(

)
 189 
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where i and j are the indices in time and space, 𝑥 refers to Arctic SIE in RMSE and may refer to 190 

parameters or model states in RMSEt, N is the number of days and M is the number of grid cells. 191 

The superscripts m and t refer to model and truth, respectively. The overbar indicates the mean of 192 

the model ensemble. 193 

Model bias is defined as the mean of the 30 member ensemble of the experiments minus the 194 

truth. Absolute bias difference (ABD) between two experiments is defined as follows: 195 

𝐴𝐵𝐷 =	 ,𝑥*+,-./-------- − 𝑥0(, − ,𝑥*+,-.1-------- − 𝑥0(, 196 

where 𝑥 may refer to parameters or model states, the superscripts t refers to the truth, and case1 197 

and case2 refer to the two experiments to compare. The overbar indicates the mean of the model 198 

ensemble.  199 

 200 

4. Results and Discussion 201 

4.1 Temporally and spatially invariant parameters 202 

The ensemble mean of FREE underestimates SIC throughout the year (Figure 1a) partly 203 

because our arbitrary ensemble member selected as the truth has an above average Rsnw (Figure 204 

1c). As such, we would intuitively expect Rsnw to have a positive increment as a result of 205 

assimilating SIC observations. Figure 1c confirms that Rsnw increments are positive, with the 206 

posterior ensemble mean gradually approaching the true value during the DA period in the 207 

spatially-constant PE experiments (DAsicPEcst and DAsitPEcst). The posterior Rsnw has smaller 208 

ensemble spread than the prior Rsnw (also see Figure S1d, e, and f), which is consistent with the 209 

EAKF theory. In Figure 1c DAsitPEcst outperforms DAsicPEcst starting in June, indicating that 210 

SIT provides more information than SIC for Rsnw. Similarly, with state-only DA, Zhang et al. 211 

(2018) found that SIT is more efficient than SIC observations at constraining state variables. There 212 
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could be several reasons why the rate at which Rsnw approaches the true value decreases with time. 213 

First, the ensemble spread of Rsnw may be insufficient because no uncertainty is introduced into 214 

Rsnw in CICE5 during the forecast step. It is an open question how much additional uncertainty 215 

should be introduced into the parameters. To help avoid filter divergence, we apply the prior 216 

adaptive inflation to the parameters (as well as to the model states), which may still be not enough.   217 

Second, the correlation between Rsnw and the observations may be too weak. Solar radiation 218 

becomes very low by the end of September and hence Rsnw has little impact on sea ice, which 219 

explains the weak correlation between Rsnw and the observations (further discussed below).  Either 220 

reason could result in a negligible update to Rsnw.  221 

The correlations between Rsnw and the observations have unique spatial patterns and evolve 222 

with time. On May 1st, the correlation between Rsnw and SIC is generally positive (Figure 2a). The 223 

positive correlations are significant especially where SIC is under ~100%. Larger Rsnw corresponds 224 

to higher snow albedo and more reflected sunlight, which in turn delays the melting of sea ice. The 225 

correlations are still significant along the ice edges in August (Figure 2c) and become noisier and 226 

have less significant values by the end of the melt season (Figure 2e). The correlation between 227 

Rsnw and SIT has different spatial patterns (Figures S2b, S2d, and S2f). Negative correlations 228 

between Rsnw and SIT on May 1st can be seen in the Chukchi Sea, Beaufort Sea, and East Siberian 229 

Sea, where Rsnw and SIC have positive correlations. This suggests that where SIC increases with 230 

Rsnw in spring, it is possible that SIT actually decreases, which might be due to elevated 231 

concentration raising the compressive strength and reducing sea ice deformation. While a brighter 232 

surface is able to reduce thickness over large regions in spring, the effect is mostly gone by the 233 

end of summer when positive correlation prevails.  234 

 235 
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4.2 Spatially varying Rsnw 236 

We discussed in section 4.1 that processes relating Rsnw and observed quantities have complex 237 

spatial features. The spatial map of the posterior Rsnw and the reduction in the ensemble spread of 238 

Rsnw after EAKF in the first pair of experiments (Figure S1) also suggest that the updates are 239 

concentrated on the ice marginal zones. It may be too crude to use a single value of Rsnw for the 240 

whole Arctic. We let Rsnw be a spatially varying parameter in the second pair of PE experiments, 241 

even though the true Rsnw is spatially invariant. The spatial features of Rsnw will purely depend on 242 

how Rsnw correlates with the observations. As in DAsicPEcst and DAsitPEcst, the analysis field of 243 

Rsnw is spatially varying, and we did a spatial averaging to get a single number for the next run. 244 

Rsnw along the sea ice edges get updated more, while Rsnw in the center is less influenced. But the 245 

averaging smoothed out this spatial feature. In DAsicPEvar and DAsitPEvar, we let the spatially 246 

varying 2D analysis field of Rsnw be the Rsnw field in the next run, so the spatial feature was carried 247 

along the simulation. 248 

Figure 3 depicts the ABD of Rsnw (defined in section 2) between different pairs of experiments 249 

at the end of the DA period.  Figures 3a and 3d confirm that DAsicPEcst and DAsitPEcst improve 250 

the Rsnw comparing to FREE. Figures 3b and 3e show the spatial feature of improvements or 251 

degradations in Rsnw for the two spatially varying PE experiments. They both show the contrast 252 

between the ice marginal zones and the central Arctic. Improvements are mostly seen along the 253 

ice edges. Spotty improvements in the inner Arctic can be found in DAsitPEvar (Figure 3e), while 254 

degradations are prevailing in the inner Arctic in DAsicPEvar (Figure 3b). Figures 3c and 3f 255 

highlight the improvements or degradations from allowing Rsnw to vary spatially. The general 256 

features are that DAsicPEvar and DAsitPEvar have reduced Rsnw biases more along the ice edges 257 

compared with DAsicPEcst and DAsitPEcst. However, degradations (Figure 3c) or negligible 258 
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improvements (Figure 3f) are found in the central Arctic. This suggests that spatially invariant PE 259 

generally works better for the whole pan-Arctic regions, while spatially varying PE can work well 260 

in the ice marginal zones but not in the central Arctic, especially when SIC is the only observed 261 

quantity.  SIC has little variability in the central Arctic and hence assimilating the SIC observations 262 

will not add much information for parameters or model states. Besides the improvements along 263 

the sea ice edges, the SIT DA also has benefit in the inner ice pack (Figure 3e), which is consistent 264 

with the results of the first pair of experiments that SIT in general provides more information than 265 

the SIC observations, especially in the regions where SIC has little variability. However, spatially 266 

varying Rsnw has small advantages over spatially invariant Rsnw in the ice marginal regions but 267 

degradations in the central Arctic too (Figure 3f). The degradations in Rsnw but improvements in 268 

SIC (Figures 5a and 5c; discussed in section 4.3) in the central Arctic suggest that Rsnw is likely 269 

over adjusted to cancel out other errors (e.g., noise from atmospheric forcing fields).  270 

 271 

4.3 Additional improvements in model states 272 

We demonstrated that Rsnw approaches the true value by assimilating SIC or SIT (at different 273 

rates) in the previous sections. We now investigate whether PE also improves the simulation of 274 

model states, beginning with timeseries of the pan-Arctic sea ice area and volume in all of our 275 

experiments (see Figure 4).   276 

In our preceding work, we showed that assimilating SIC and SIT could improve model states 277 

(Zhang et al., 2018), which can also be confirmed in Figure 4.  During the DA period, DAsic can 278 

efficiently reduce biases in area, but DAsic has limited influence on volume. Within about a month 279 

into the forecast period, DAsic improves neither area nor volume. In contrast, DAsit is highly 280 
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beneficial at reducing both area and volume during the DA period, with at least some improvement 281 

to volume persisting through the whole 1-year forecast period.  282 

We find that updating Rsnw has a relatively large impact on volume beginning in spring of the 283 

forecast period (Figure 4b). Either treating Rsnw as a spatially varying or constant parameter has 284 

about the same effect until late summer of the forecast period. In fact, all of the PE experiments 285 

outperform the state-only DA experiments in the forecast period. As shown in Table 1, SIT DA 286 

with PE always performs the best, reducing the bias in area by up to 63% and reducing the bias in 287 

volume by up to 73%. SIC DA with PE is second best in terms of simulating the area, reducing 288 

the bias by up to 37%.  SIC DA with PE is comparable to DAsit in simulating volume, reducing 289 

the bias by around 30%.  290 

Finally, we compare the spatial patterns of bias reduction in SIC and SIT from PE experiments 291 

by comparing RMSEt of SIT in DAsicPEcst and DAsitPEcst to their state-only DA counterparts, 292 

DAsic and DAsit (see Figure 5). The comparisons are made in two periods: the DA period (April 293 

to October 2005) and the forecast period (April to September 2006).  Zhang et al. (2018) showed 294 

that the DAsic could only improve SIT along the sea ice edges. Figure 5a demonstrates that 295 

DAsicPEcst offers some improvements in the central Arctic as well. Improvements resulted from 296 

a more accurate Rsnw in the forecast period are more prominent (Figure 5b). For DAsitPEcst, SIT 297 

is improved almost everywhere in the Arctic, with slight degradations along the ice edges (Figure 298 

5c). The improvements persist throughout the forecast period (Figure 5d).  299 

 300 

5. Conclusions  301 

We extend the functionality of DART/CICE to do parameter estimation (PE) through the 302 

EAKF as well as updating the model states. One of the key parameters determining sea ice surface 303 
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albedo, Rsnw, is estimated as an example in this study. Rsnw is updated using the filter. We designed 304 

a series of perfect model observing system simulation experiments (OSSEs) to demonstrate the 305 

feasibility of PE in CICE5. Results show that Rsnw gradually approaches the true value during the 306 

data assimilation (DA) period (from April to October 2005). Updating parameters with PE could 307 

further improve the model state estimation but not prominently in the DA period. During the 308 

forecast period, with a better representation of the parameter, the PE experiments show significant 309 

superiority over the state-only DA experiments, both in SIC and SIT.  The results in the forecast 310 

period indicate that by updating parameters as well as state variables, assimilating SIC 311 

observations only is comparable to assimilating SIT observations. We concluded that SIT is the 312 

most important variable to be observed in Zhang et al. (2018), but satellite observations of SIT 313 

have large uncertainties and only cover a short time period. We could alternatively improve model 314 

parameters by assimilating SIC observations with the ultimate goal of improving SIT. Results from 315 

the subset of experiments treating Rsnw as a spatially varying parameter suggest that the Rsnw biases 316 

are mostly reduced along the sea ice edges but not as much in the central Arctic. We suggest that 317 

varying Rsnw spatially is not effective when conducting DA for the whole Arctic, but worth 318 

exploring when it comes to regional studies, such as in the seasonal sea ice zones.  319 
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Table 1. List of experiments with different configurations and RMSE of the total Arctic sea ice 432 

area and volume calculated over two experiment periods: DA (April to October, 2005) and 433 

forecast (April to September, 2006) for the seven experiments. All the experiments use the same   434 

localization half-width and prior inflation algorithm as stated in section 3.  435 

 436 

 437 

 438 

 439 

 440 

 441 

 
 
Experiments Observations 

 assimilated 
Parameter 
estimate 

RMSE of 
Arctic sea ice area 

(102𝑘𝑚1) 

RMSE of  
Arctic sea ice volume 

(103𝑘𝑚3) 
DA Forecast DA Forecast 

FREE None None 0.250 0.343 0.711 1.302 

DAsic SIC None 0.120 (-52%) 0.345 (4%) 0.583 (-18%) 1.285 (-1%) 

DAsicPEcst SIC Spatially 
constant 0.114 (-55%) 0.217 (-37%) 0.520 (-27%) 0.887 (-32%) 

DAsicPEvar SIC Spatially 
varying 0.123(-51%) 0.240(-30%) 0.601 (-16%) 1.130 (-13%) 

DAsit SIT None 0.113(-55%) 0.327(-5%) 0.247 (-65%) 0.868 (-33%) 

DAsitPEcst SIT Spatially 
constant 0.103 (-59%) 0.141 (-59%) 0.210 (-70%) 0.349 (-73%) 

DAsitPEvar SIT Spatially 
varying 0.103 (-59%) 0.129 (-63%) 0.222 (-69%) 0.376 (-71%) 
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Figure captions 442 

Figure 1. Time series of (a) the Arctic sea ice area and (b) sea ice volume from a free CICE5 443 

run. Each gray line represents one ensemble member, black line the ensemble mean, and red line 444 

the truth. Time series of (c) the parameter Rsnw for two DA experiments. Blue line represents 445 

DAsicPEcst that assimilates SIC observations and magenta represents DAsitPEcst that 446 

assimilates SIT. The red reference line indicates the true value of Rsnw. Each error bar 447 

represents two standard deviations of the 30 ensemble members of Rsnw. Error bar is shown for 448 

every five days. 449 

 450 

Figure 2. Correlations between (a) Rsnw and SIC and (b) Rsnw and SIT for 2005-05-01, (c) Rsnw 451 

and SIC and (d) Rsnw and SIT for 2005-08-01, and (e) Rsnw and SIC and (f) Rsnw and SIT for 452 

2005-10-01. At each point, we calculate the correlation of Rsnw and the observed quantities 453 

across the 30 ensemble members on the selected dates. The posterior states outputted from the 454 

experiments DAsicPEcst and DAsitPEcst are used for calculation.  455 

 456 

Figure 3. The differences of absolute mean bias (ABD, see Eq 2) of Rsnw between the DA 457 

experiments: (a) DAsicPEcst, (b) DAsicPEvar, (d) DAsitPEcst, and (e) DAsitPEvar and the 458 

control experiment FREE, and between the spatially-varying PE experiments and the spatially-459 

constant PE experiments: (c) DAsicPEvar and DAsicPEcst, and (f) DAsitPEvar and DAsitPEcst.   460 

 461 

Figure 4. Daily biases of (a) the total Arctic sea ice area and (b) the total Arctic sea ice volume 462 

for FREE (black), DAsic (blue), DAsicPEcst (green), DAsicPEvar (purple), DAsit (orange), 463 

DAsitPEcst (pink), and DAsitPEvar(red). Gray dash line in each plot represents the zero 464 
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reference line. The blue line in (a) is overlapped by the purple and green lines in the first half of 465 

time. The black line in (a) is overlapped by the orange and blue lines in the second half of time. 466 

The black line in (b) is overlapped by the blue line from February to July. 467 

 468 
Figure 5. The relative differences of RMSEt of SIT between DAsicPEcst and DAsic for the (a) 469 

DA experiment period and (b) forecast period, and between DAsitPEcst and DAsit for the (c) 470 

DA experiment period and (d) forecast period. The differences of RMSEt are divided by the 471 

RMSEt of DAsic and DAsit, respectively, to get the relative differences. 472 

 473 

Figure S1. The posterior values of Rsnw for the experiment DAsitPEcst on (a) 2005-06-01, (b) 474 

2005-08-01, and (c) 2005-10-01, and the differences between the ensemble spread of posterior 475 

Rsnw and that of prior Rsnw (the posterior minus prior) for the experiment DAsitPEcst on (d) 476 

2005-06-01, (e) 2005-08-01, and (f) 2005-10-01. 477 

 478 

 479 

 480 

 481 
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 484 

 485 
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 486 

Figure 1. Time series of (a) the Arctic sea ice area and (b) sea ice volume from a free CICE5 487 

run. Each gray line represents one ensemble member, black line the ensemble mean, and red 488 

line the truth. Time series of (c) the parameter Rsnw for two DA experiments. Blue line 489 

represents DAsicPEcst that assimilates SIC observations and magenta represents DAsitPEcst 490 

that assimilates SIT. The red reference line indicates the true value of Rsnw. Each error bar 491 

represents two standard deviations of the 30 ensemble members of Rsnw. Error bar is shown 492 

for every five days.  493 
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494 

 495 

 496 
Figure 2. Correlations between (a) Rsnw and SIC and (b) Rsnw and SIT for 2005-05-01, (c) Rsnw 497 

and SIC and (d) Rsnw and SIT for 2005-08-01, and (e) Rsnw and SIC and (f) Rsnw and SIT for 498 

2005-10-01. At each point, we calculate the correlation of Rsnw and the observed quantities 499 

across the 30 ensemble members on the selected dates. The posterior states outputted from the 500 

experiments DAsicPEcst and DAsitPEcst are used for calculation.  501 

 502 

Rsnw and SIC Rsnw and SIT 
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 503 
 504 
 505 
 506 
 507 
Figure 3. The differences of absolute mean bias (ABD, see Eq 2) of Rsnw between the DA 508 

experiments: (a) DAsicPEcst, (b) DAsicPEvar, (d) DAsitPEcst, and (e) DAsitPEvar and the 509 

control experiment FREE, and between the spatially-varying PE experiments and the spatially-510 

constant PE experiments: (c) DAsicPEvar and DAsicPEcst, and (f) DAsitPEvar and DAsitPEcst.   511 

 512 
 513 
 514 
 515 
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 516 

Figure 4. Daily biases of (a) the total Arctic sea ice area and (b) the total Arctic sea ice volume 517 

for FREE (black), DAsic (blue), DAsicPEcst (green), DAsicPEvar (purple), DAsit (orange), 518 

DAsitPEcst (pink), and DAsitPEvar(red). Gray dash line in each plot represents the zero 519 

reference line. The blue line in (a) is overlapped by the purple and green lines in the first half of 520 

time. The black line in (a) is overlapped by the orange and blue lines in the second half of time. 521 

The black line in (b) is overlapped by the blue line from February to July. 522 

 523 
 524 
 525 
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 526 

 527 
 528 
Figure 5. The relative differences of RMSEt of SIT between DAsicPEcst and DAsic for the (a) 529 

DA experiment period and (b) forecast period, and between DAsitPEcst and DAsit for the (c) 530 

DA experiment period and (d) forecast period. The differences of RMSEt are divided by the 531 

RMSEt of DAsic and DAsit, respectively, to get the relative differences.  532 

 533 
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Supplemental figures 534 
 535 

 536 
 537 

 538 
 539 
Figure S1. The posterior values of Rsnw for the experiment DAsitPEcst on (a) 2005-06-01, (b) 540 

2005-08-01, and (c) 2005-10-01, and the differences between the ensemble spread of posterior 541 

Rsnw and that of prior Rsnw (the posterior minus prior) for the experiment DAsitPEcst on (d) 2005-542 

06-01, (e) 2005-08-01, and (f) 2005-10-01.  543 

 544 

 545 
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