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Key points:
e  Parameter estimation using an ensemble filter is done in a sea-ice model.
e  Parameters are improved during the data assimilation period.

e Large improvements in model states are seen in the forecast period.



30 Abstract

31 Uncertain or inaccurate parameters in sea ice models influence seasonal predictions and
32  climate change projections in terms of both mean and trend. We explore the feasibility and benefits
33  of applying an Ensemble Kalman filter (EnKF) to estimate parameters in the Los Alamos sea ice
34  model (CICE). Parameter estimation (PE) is applied to the highly influential dry snow grain radius
35 and combined with state estimation in a series of perfect model observing system simulation
36  experiments (OSSEs). Allowing the parameter to vary in space improves performance along the
37  seaice edge but degrades in the central Arctic compared to requiring the parameter to be uniform
38 everywhere, suggesting that spatially varying parameters will likely improve PE performance at
39  local scales and should be considered with caution. We compare experiments with both PE and
40  state estimation to experiments with only the latter and found that the benefits of PE mostly occur
41  after the data assimilation period, when no observations are available to assimilate (i.e., the forecast
42  period), which suggests PE’s relevance for improving seasonal predictions of Arctic sea ice.
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1. Introduction
Arctic sea ice has undergone rapid decline in recent decades in all seasons (e.g., Stroeve et al.,

2012 ; Serreze and Stroeve, 2015). The frequent large deviations of Arctic sea ice cover from its

climatology and the impact of sea ice cover on the overlying atmosphere and on ocean-atmosphere
fluxes motivates including an active sea ice component in seasonal to sub-seasonal (S2S) weather
forecasts (Vitart et al., 2015). The persistence and reemergence of sea ice thickness (SIT) and sea
surface temperature anomalies are major sources of predictability for Arctic sea ice extent
(Blanchard-Wrigglesworth et al., 2011). Previous studies have demonstrated the importance of
accurate initial conditions, especially SIT, in predicting Arctic sea ice extent (Day et al., 2014).
Hence studies applying data assimilation (DA) techniques to fuse observations with model
simulations are actively investigated (e.g., Lisceter et al., 2003; Chen et al., 2017; Massonnet et al.,
2015), most of which are focused on improving model states only, not the parameters in sea ice
parameterization schemes.

Sea ice models, like other components of Earth system models, can suffer large uncertainties
originating from uncertain parameters. The widely used Los Alamos sea ice model version 5
(CICE)), given its various complex schemes, has hundreds of uncertain parameters, such as in the
delta-Eddington shortwave radiation scheme (Briegleb and Light, 2007). The default values of
these parameters are usually chosen based on point measurements that are taken on multi-year sea
ice (Light et al, 2008). Urrego-Blanco et al. (2015) conducted an uncertainty quantification study
of CICES and ranked the parameters based on the sensitivities of model predictions to a list of
parameters. This work provides guidance on which parameters could be estimated using an
objective method and during which seasons. Their findings suggest that the estimates of the Arctic

sea ice area and extent are especially sensitive to certain parameters (e.g., snow conductivity and
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snow grain size) in summer. However, they also discussed that their sensitivities could be low as
a consequence of prescribing atmospheric forcing in their model setup, so parametric uncertainties
are expected to be larger year round (particularly in winter) in a fully-coupled model. Previous
studies suggest that the ensemble spread of sea ice states is generally small in winter (e.g., Lisaeter
et al., 2003; Fritzner et al., 2018; Zhang et al., 2018), which will lead to limited update on model
state variables or parameters. Also, sea ice concentration (SIC) reaches 100% in most of regions
in winter and hence does not leave enough room for improvements by DA. The ensemble spread
in summer, however, is much larger. Since we run stand-alone CICES given that our aim is to
demonstrate the utility of parameter estimation (PE) for sea ice, we conduct DA experiments with
PE in summer.

Two types of observations are assimilated in our study, sea ice concentration and thickness
(SIC and SIT, respectively). Satellite-retrieved SIC observations are widely utilized in the sea ice
DA community, while the application of SIT observations is more challenging given its large
uncertainty and lack of data in summer (Zygmuntowska et al., 2014). Previous studies on Arctic
sea ice predictability emphasized the importance of summer SIT observations (e.g., Day et al.,
2014; Dirkson et al., 2017). We explore the benefits of SIT observations (in addition to SIC) on
sea ice parameter estimation and advocate the needs of extending the data coverage of SIT
observations into late spring and summer, which is actually possible in ICESat-2 (Kwok et al.,
2020).

Despite the importance of sea ice model parameters, few studies have tried to estimate or
reduce the parametric uncertainties, partly due to the large effort and computational cost if
parameter calibration is done in a trial-and-error fashion. A more systematic way is through DA.

Anderson (2001) demonstrated the feasibility of updating parameters using an ensemble filter in a
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low-order model. Annan et al. (2005) was among the first to apply an ensemble filter to estimate
parameters in a complex Earth system model. Massonnet et al. (2014) employed the ensemble
Kalman filter (EnKF) in a sea ice model to estimate three parameters that control sea ice dynamics.
In addition to achieving their goal of improving the sea ice drift, they also realized slight
improvements in the SIT distribution and extent as well as in the sea ice export through the Fram
Strait.

Our purpose is to expand upon previous studies to explore the feasibility of optimizing sea ice
parameters by asking how different observations (concentration and thickness in this study) would
constrain the parameters differently, whether we need to allow parameters to vary spatially, and
what are the benefits of the updated parameters both when observations are available for

assimilation (the DA period) and when observations are not available (the forecast period).

2. The sea ice data assimilation framework
We use CICES linked to the data assimilation research testbed (DART) (Anderson et al., 2009)
within the framework of the Community Earth System Model version 2 (CESM2)
(http://www.cesm.ucar.edu/models/cesm2). The ocean is modeled as a slab ocean and the
atmospheric forcing is prescribed from a DART/CAM ensemble reanalysis (Raeder et al., 2010).
Details of this framework can be found in Zhang et al. (2018). The default DART/CICE
framework is only used for state estimation, we extend DART/CICE to include parameter
estimation in this study. During the assimilation, DART and CICES cycle between a DA step
with DART and a one-day forecast step with CICES. During the DA step, the selected sea ice
variables are placed into a “DART state vector” that is to be passed to the filter. The DART state

vector is augmented by adding selected sea ice parameters, so that the parameters and state
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variables are both updated by the filter in the same way. The updated state variables are then post-
processed (if needed) and sent with the updated parameters back to CICES for the next one-day
forecast step. The post-process step is necessary when the updated variable goes beyond its
physical boundaries, for example, when SIC is negative or larger than 100%. Unlike state

variables, the parameters are not modified during CICES forecast steps.

3. Experiment design and evaluation methods

The parameter we selected, Rsnw, represents the standard deviation of dry snow grain radius
that controls the optical properties of snow and is one of the key parameters that determine snow
albedo in the Delta-Eddington solar radiation parameterization treatment (Briegleb and Light,
2007). We picked Rquw because it is one of the parameters that the model predictions are sensitive
to (Urrego-Blanco et al., 2016) and is also one of the parameters perturbed to generate ensemble
spread in Zhang et al. (2018). Instead of directly tuning snow albedo that could result in
inconsistencies with the rest of the parameterization scheme, tuning Rgnw changes the inherent
optical properties of snow in a self-consistent fashion (Briegleb and Light, 2007). Increasing Rsnw
leads to smaller dry snow grain radius and larger snow albedo (Hunke et al., 2015). The default
value of Rsw is 1.5, which corresponds to a fresh snow grain radius of 125um (Holland et al.,
2012). Many parameters in CICES, like Rsnw, have default values based on limited field
observations. As sea ice models increase in complexity, empirical parameters will increasingly
need to be calibrated objectively. More comprehensive observations at large scale will presumably
benefit a better representation of snow and ice properties in sea ice models.

The configurations of conducted experiments are listed in Table 1. We begin with a free run

of CICES without DA (hereafter FREE) with 30 ensemble members. Each ensemble member has
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a unique value of Rsw, which is constant in time and space. The ensemble of Rs.w values were
random draws from a uniform distribution spanning -2 and 2. One of the ensemble members was
designated as the truth with the true value of Rsww. Following Zhang et al. (2018), synthetic
observations were created by adding random noise to SIC and SIT taken from the truth ensemble
member. The noise follows a normal distribution with zero mean and a standard deviation of 15%
for SIC and 40 cm for SIT. FREE experiment does not assimilate any observations, and the Rsnw
values stay the same throughout the experimental period.

We then conducted two pairs of experiments to test the feasibility of estimating parameters
using the Ensemble adjustment Kalman filter (EAKF) (Anderson, 2002), which is a deterministic
ensemble square root filter. Each experiment assimilates daily SIC or SIT synthetic observations.
The first pair is referred to as DAsicPEcst and DAsitPEcst, with the former assimilates SIC
observations and the latter SIT observations. In the first pair, each ensemble member has a unique
spatially-uniform Rgnw. The second pair is refered to as DAsicPEvar and DAsitPEvar, which has a
separate value of Rsw at each horizontal grid point. The augmented state has the single parameter
for Rsaw in the first pair or the two-dimensional grid of Rsnw parameters in the second pair.

All variables in the sea ice state vector are two-dimensional in space. The parameter Rsnw and
the state variables were updated based on their correlations with neighboring observations. The
posterior ensemble generated by DART is always spatially varying. For the first pair of
experiments, we take an area-weighted average of the two-dimensional posterior to get a spatially
invariant Rshw to send back to CICES. For the second pair of experiments, the spatially varying
posterior Rsnw was sent to CICES. In all experiments, the sea ice component was run for a day to
produce a new state that was augmented with the previous times posterior Rsw (which is not

prognostic in CICES) for the next DA cycle. To increase the prior ensemble spread of R, a
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spatially and temporally adaptive inflation was applied to the priors of both the model states and
Rsnw before they were sent to the filter (Anderson, 2007). The initial value, standard deviation, and
inflation damping value of the adaptive inflation are 1.0, 0.6, and 0.9. The localization half-width
is 0.01 radians (about 64 km) as discussed in Zhang et al. (2018). We also reject observations that
are three standard deviations of the expected difference away from the ensemble mean of the
forecast.

A third pair of experiments was conducted with only state DA (no parameter estimation),
known as DAsic and DAsit, that assimilate daily SIC and SIT synthetic observations, respectively.
DAsic and DAsit have the same ensemble set of Rsnw, Which is also the initial set of Rgw in the
above PE experiments. The ensemble of Rsny remains fixed throughout the experiment period.

All experiments begin on 1 April 2005 and run for 18 months. Synthetic observations are
assimilated only during the first 6 months (the DA period), and the next 12 months are a pure
forecast period to mimic the real-world situation when making a forecast. The values of Rsaw hold
constant once DA ceases. We do not perform DA beyond October 2005 for two reasons. First, sea
ice states have small ensemble spread in winter, as illustrated in Figure 1a, so DA updates tend to
be small. In contrast, the relatively larger spread from April to October ensures that assimilating
observations can have more impact in updating model state variables and parameters. Second, the
snow albedo feedback only influences the sea ice state when sunlight is present.

Several commonly used error indices were calculated to evaluate the performance of the
experiments. The root-mean-square error (RMSE) of Arctic sea ice extent (SIE) and the area

weighted spatial averaged root-mean-square error (RMSE) are defined as follows:

N (M_yty2 M (T -xh)2
RMSE = [H=CU20% pysE, = /—1—1("1& )
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where i and j are the indices in time and space, x refers to Arctic SIE in RMSE and may refer to
parameters or model states in RMSE;, N is the number of days and M is the number of grid cells.
The superscripts m and ¢ refer to model and truth, respectively. The overbar indicates the mean of
the model ensemble.

Model bias is defined as the mean of the 30 member ensemble of the experiments minus the
truth. Absolute bias difference (ABD) between two experiments is defined as follows:

ABD = 77T — x| — [xF — x|

where x may refer to parameters or model states, the superscripts ¢ refers to the truth, and casel
and case? refer to the two experiments to compare. The overbar indicates the mean of the model

ensemble.

4. Results and Discussion
4.1 Temporally and spatially invariant parameters

The ensemble mean of FREE underestimates SIC throughout the year (Figure la) partly
because our arbitrary ensemble member selected as the truth has an above average Rsnw (Figure
Ic). As such, we would intuitively expect Rsw to have a positive increment as a result of
assimilating SIC observations. Figure lc confirms that Ry increments are positive, with the
posterior ensemble mean gradually approaching the true value during the DA period in the
spatially-constant PE experiments (DAsicPEcst and DAsitPEcst). The posterior Rsw has smaller
ensemble spread than the prior Rew (also see Figure S1d, e, and f), which is consistent with the
EAKEF theory. In Figure 1c DAsitPEcst outperforms DAsicPEcst starting in June, indicating that
SIT provides more information than SIC for Rgnw. Similarly, with state-only DA, Zhang et al.

(2018) found that SIT is more efficient than SIC observations at constraining state variables. There
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could be several reasons why the rate at which Rsnw approaches the true value decreases with time.
First, the ensemble spread of Rsw may be insufficient because no uncertainty is introduced into
Rsnw in CICES during the forecast step. It is an open question how much additional uncertainty
should be introduced into the parameters. To help avoid filter divergence, we apply the prior
adaptive inflation to the parameters (as well as to the model states), which may still be not enough.
Second, the correlation between Rsnw and the observations may be too weak. Solar radiation
becomes very low by the end of September and hence Rquw has little impact on sea ice, which
explains the weak correlation between Rqyw and the observations (further discussed below). Either
reason could result in a negligible update to Rnw.

The correlations between Rgnw and the observations have unique spatial patterns and evolve
with time. On May 1%, the correlation between Rsnw and SIC is generally positive (Figure 2a). The
positive correlations are significant especially where SIC is under ~100%. Larger Rsnw corresponds
to higher snow albedo and more reflected sunlight, which in turn delays the melting of sea ice. The
correlations are still significant along the ice edges in August (Figure 2¢) and become noisier and
have less significant values by the end of the melt season (Figure 2¢). The correlation between
Rsnw and SIT has different spatial patterns (Figures S2b, S2d, and S2f). Negative correlations
between Renw and SIT on May 1% can be seen in the Chukchi Sea, Beaufort Sea, and East Siberian
Sea, where Rsnw and SIC have positive correlations. This suggests that where SIC increases with
Rsnw in spring, it is possible that SIT actually decreases, which might be due to elevated
concentration raising the compressive strength and reducing sea ice deformation. While a brighter
surface is able to reduce thickness over large regions in spring, the effect is mostly gone by the

end of summer when positive correlation prevails.
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4.2 Spatially varying Rgnw

We discussed in section 4.1 that processes relating Rsnw and observed quantities have complex
spatial features. The spatial map of the posterior Rsnw and the reduction in the ensemble spread of
Rsnw after EAKF in the first pair of experiments (Figure S1) also suggest that the updates are
concentrated on the ice marginal zones. It may be too crude to use a single value of Rgny for the
whole Arctic. We let Raw be a spatially varying parameter in the second pair of PE experiments,
even though the true Rsnw is spatially invariant. The spatial features of Rsnw will purely depend on
how Rsnw correlates with the observations. As in DAsicPEcst and DAsitPEcst, the analysis field of
Rsnw 1s spatially varying, and we did a spatial averaging to get a single number for the next run.
Rsnw along the sea ice edges get updated more, while Rqnw in the center is less influenced. But the
averaging smoothed out this spatial feature. In DAsicPEvar and DAsitPEvar, we let the spatially
varying 2D analysis field of Rsaw be the Rsnw field in the next run, so the spatial feature was carried
along the simulation.

Figure 3 depicts the ABD of Rqny (defined in section 2) between different pairs of experiments
at the end of the DA period. Figures 3a and 3d confirm that DAsicPEcst and DAsitPEcst improve
the Rsnw comparing to FREE. Figures 3b and 3e show the spatial feature of improvements or
degradations in Rsaw for the two spatially varying PE experiments. They both show the contrast
between the ice marginal zones and the central Arctic. Improvements are mostly seen along the
ice edges. Spotty improvements in the inner Arctic can be found in DAsitPEvar (Figure 3¢), while
degradations are prevailing in the inner Arctic in DAsicPEvar (Figure 3b). Figures 3¢ and 3f
highlight the improvements or degradations from allowing Rgnw to vary spatially. The general
features are that DAsicPEvar and DAsitPEvar have reduced Rgnw biases more along the ice edges

compared with DAsicPEcst and DAsitPEcst. However, degradations (Figure 3c) or negligible
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improvements (Figure 3f) are found in the central Arctic. This suggests that spatially invariant PE
generally works better for the whole pan-Arctic regions, while spatially varying PE can work well
in the ice marginal zones but not in the central Arctic, especially when SIC is the only observed
quantity. SIC has little variability in the central Arctic and hence assimilating the SIC observations
will not add much information for parameters or model states. Besides the improvements along
the sea ice edges, the SIT DA also has benefit in the inner ice pack (Figure 3e), which is consistent
with the results of the first pair of experiments that SIT in general provides more information than
the SIC observations, especially in the regions where SIC has little variability. However, spatially
varying Rsnw has small advantages over spatially invariant R in the ice marginal regions but
degradations in the central Arctic too (Figure 3f). The degradations in Rgny but improvements in
SIC (Figures 5a and 5c; discussed in section 4.3) in the central Arctic suggest that Rew is likely

over adjusted to cancel out other errors (e.g., noise from atmospheric forcing fields).

4.3 Additional improvements in model states

We demonstrated that Rgnw approaches the true value by assimilating SIC or SIT (at different
rates) in the previous sections. We now investigate whether PE also improves the simulation of
model states, beginning with timeseries of the pan-Arctic sea ice area and volume in all of our
experiments (see Figure 4).

In our preceding work, we showed that assimilating SIC and SIT could improve model states
(Zhang et al., 2018), which can also be confirmed in Figure 4. During the DA period, DAsic can
efficiently reduce biases in area, but DAsic has limited influence on volume. Within about a month

into the forecast period, DAsic improves neither area nor volume. In contrast, DAsit is highly
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beneficial at reducing both area and volume during the DA period, with at least some improvement
to volume persisting through the whole 1-year forecast period.

We find that updating Rsnw has a relatively large impact on volume beginning in spring of the
forecast period (Figure 4b). Either treating R as a spatially varying or constant parameter has
about the same effect until late summer of the forecast period. In fact, all of the PE experiments
outperform the state-only DA experiments in the forecast period. As shown in Table 1, SIT DA
with PE always performs the best, reducing the bias in area by up to 63% and reducing the bias in
volume by up to 73%. SIC DA with PE is second best in terms of simulating the area, reducing
the bias by up to 37%. SIC DA with PE is comparable to DAsit in simulating volume, reducing
the bias by around 30%.

Finally, we compare the spatial patterns of bias reduction in SIC and SIT from PE experiments
by comparing RMSE; of SIT in DAsicPEcst and DAsitPEcst to their state-only DA counterparts,
DAsic and DAsit (see Figure 5). The comparisons are made in two periods: the DA period (April
to October 2005) and the forecast period (April to September 2006). Zhang et al. (2018) showed
that the DAsic could only improve SIT along the sea ice edges. Figure 5a demonstrates that
DAsicPEcst offers some improvements in the central Arctic as well. Improvements resulted from
a more accurate Rqnw in the forecast period are more prominent (Figure 5b). For DAsitPEcst, SIT
is improved almost everywhere in the Arctic, with slight degradations along the ice edges (Figure

5¢). The improvements persist throughout the forecast period (Figure 5d).

5. Conclusions

We extend the functionality of DART/CICE to do parameter estimation (PE) through the

EAKEF as well as updating the model states. One of the key parameters determining sea ice surface
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albedo, Rsnw, is estimated as an example in this study. Rew is updated using the filter. We designed
a series of perfect model observing system simulation experiments (OSSEs) to demonstrate the
feasibility of PE in CICES. Results show that Rquw gradually approaches the true value during the
data assimilation (DA) period (from April to October 2005). Updating parameters with PE could
further improve the model state estimation but not prominently in the DA period. During the
forecast period, with a better representation of the parameter, the PE experiments show significant
superiority over the state-only DA experiments, both in SIC and SIT. The results in the forecast
period indicate that by updating parameters as well as state variables, assimilating SIC
observations only is comparable to assimilating SIT observations. We concluded that SIT is the
most important variable to be observed in Zhang et al. (2018), but satellite observations of SIT
have large uncertainties and only cover a short time period. We could alternatively improve model
parameters by assimilating SIC observations with the ultimate goal of improving SIT. Results from
the subset of experiments treating Rsnw as a spatially varying parameter suggest that the Rsnw biases
are mostly reduced along the sea ice edges but not as much in the central Arctic. We suggest that
varying Rsnw spatially is not effective when conducting DA for the whole Arctic, but worth

exploring when it comes to regional studies, such as in the seasonal sea ice zones.
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Table 1. List of experiments with different configurations and RMSE of the total Arctic sea ice

area and volume calculated over two experiment periods: DA (April to October, 2005) and

forecast (April to September, 2006) for the seven experiments. All the experiments use the same

localization half-width and prior inflation algorithm as stated in section 3.

RMSE of RMSE of
Arctic sea ice area Arctic sea ice volume
Experiments | Observations | Parameter (10%km?) (103km?)
imilated timat
asstmiiate estimate DA Forecast DA Forecast
FREE None None 0.250 0.343 0.711 1.302
DAsic SIC None 0.120 (-52%) | 0.345 (4%) | 0.583 (-18%) | 1.285 (-1%)
DAsicPEcst SIC Spatially | 114 5506) | 0217 (:37%) | 0.520 (-27%) | 0.887 (-32%)
constant
DAsicPEvar SIC szar;‘fﬂlgy 0.123(-51%) | 0.240(-30%) | 0.601 (-16%) | 1.130 (-13%)
DAsit SIT None 0.113(-55%) | 0.327(-5%) | 0.247 (-65%) | 0.868 (-33%)
DAsitPEcst SIT Spatially | 5 163 (_5906) | 0.141 (-59%) | 0.210 (-70%) | 0.349 (-73%)
constant
DAsitPEvar SIT szar;‘fﬂlgy 0.103 (-59%) | 0.129 (-63%) | 0.222 (-69%) | 0.376 (-71%)
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Figure captions

Figure 1. Time series of (a) the Arctic sea ice area and (b) sea ice volume from a free CICES
run. Each gray line represents one ensemble member, black line the ensemble mean, and red line
the truth. Time series of (c) the parameter Rsnw for two DA experiments. Blue line represents
DAsicPEcst that assimilates SIC observations and magenta represents DAsitPEcst that
assimilates SIT. The red reference line indicates the true value of Rsnw. Each error bar
represents two standard deviations of the 30 ensemble members of Rsnw. Error bar is shown for

every five days.

Figure 2. Correlations between (a) Rsnw and SIC and (b) Renw and SIT for 2005-05-01, (¢) Renw
and SIC and (d) Rsnw and SIT for 2005-08-01, and (¢) Rsnw and SIC and (f) Rsnw and SIT for
2005-10-01. At each point, we calculate the correlation of Rsnw and the observed quantities
across the 30 ensemble members on the selected dates. The posterior states outputted from the

experiments DAsicPEcst and DAsitPEcst are used for calculation.

Figure 3. The differences of absolute mean bias (ABD, see Eq 2) of Rsnw between the DA
experiments: (a) DAsicPEcst, (b) DAsicPEvar, (d) DAsitPEcst, and (¢) DAsitPEvar and the
control experiment FREE, and between the spatially-varying PE experiments and the spatially-

constant PE experiments: (¢) DAsicPEvar and DAsicPEcst, and (f) DAsitPEvar and DAsitPEcst.

Figure 4. Daily biases of (a) the total Arctic sea ice area and (b) the total Arctic sea ice volume

for FREE (black), DAsic (blue), DAsicPEcst (green), DAsicPEvar (purple), DAsit (orange),

DAsitPEcst (pink), and DAsitPEvar(red). Gray dash line in each plot represents the zero
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485

reference line. The blue line in (a) is overlapped by the purple and green lines in the first half of
time. The black line in (a) is overlapped by the orange and blue lines in the second half of time.

The black line in (b) is overlapped by the blue line from February to July.

Figure 5. The relative differences of RMSE; of SIT between DAsicPEcst and DAsic for the (a)
DA experiment period and (b) forecast period, and between DAsitPEcst and DAsit for the (c)
DA experiment period and (d) forecast period. The differences of RMSE; are divided by the

RMSE:; of DAsic and DAsit, respectively, to get the relative differences.

Figure S1. The posterior values of Rsnw for the experiment DAsitPEcst on (a) 2005-06-01, (b)
2005-08-01, and (c) 2005-10-01, and the differences between the ensemble spread of posterior
Rsnw and that of prior Rsnw (the posterior minus prior) for the experiment DAsitPEcst on (d)

2005-06-01, (e) 2005-08-01, and (f) 2005-10-01.
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Figure 1. Time series of (a) the Arctic sea ice area and (b) sea ice volume from a free CICES
run. Each gray line represents one ensemble member, black line the ensemble mean, and red
line the truth. Time series of (c) the parameter Rsnw for two DA experiments. Blue line
represents DAsicPEcst that assimilates SIC observations and magenta represents DAsitPEcst
that assimilates SIT. The red reference line indicates the true value of Rsnw. Each error bar
represents two standard deviations of the 30 ensemble members of Rsaw. Error bar is shown

for every five days.
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Figure 2. Correlations between (a) Rsnw and SIC and (b) Rsnw and SIT for 2005-05-01, (¢) Renw
and SIC and (d) Reuw and SIT for 2005-08-01, and (e) Rsw and SIC and (f) Rsnw and SIT for
2005-10-01. At each point, we calculate the correlation of Rsnw and the observed quantities
across the 30 ensemble members on the selected dates. The posterior states outputted from the

experiments DAsicPEcst and DAsitPEcst are used for calculation.
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Figure 3. The differences of absolute mean bias (ABD, see Eq 2) of Rsw between the DA
experiments: (a) DAsicPEcst, (b) DAsicPEvar, (d) DAsitPEcst, and (e) DAsitPEvar and the
control experiment FREE, and between the spatially-varying PE experiments and the spatially-

constant PE experiments: (¢) DAsicPEvar and DAsicPEcst, and (f) DAsitPEvar and DAsitPEcst.
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Figure 4. Daily biases of (a) the total Arctic sea ice area and (b) the total Arctic sea ice volume
for FREE (black), DAsic (blue), DAsicPEcst (green), DAsicPEvar (purple), DAsit (orange),
DAsitPEcst (pink), and DAsitPEvar(red). Gray dash line in each plot represents the zero
reference line. The blue line in (a) is overlapped by the purple and green lines in the first half of
time. The black line in (a) is overlapped by the orange and blue lines in the second half of time.

The black line in (b) is overlapped by the blue line from February to July.
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Figure 5. The relative differences of RMSE; of SIT between DAsicPEcst and DAsic for the (a)
DA experiment period and (b) forecast period, and between DAsitPEcst and DAsit for the (c)
DA experiment period and (d) forecast period. The differences of RMSE; are divided by the

RMSE; of DAsic and DAsit, respectively, to get the relative differences.
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Figure S1. The posterior values of Rgny for the experiment DAsitPEcst on (a) 2005-06-01, (b)
2005-08-01, and (c) 2005-10-01, and the differences between the ensemble spread of posterior
Rsnw and that of prior Rgnw (the posterior minus prior) for the experiment DAsitPEcst on (d) 2005-

06-01, (e) 2005-08-01, and (f) 2005-10-01.
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