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Dear Editor and reviewers, 1 
 2 
Please find below our responses to the general comments on the paper entitled “Estimating 3 
Parameters in a Sea Ice Model using an Ensemble Kalman Filter” by Yong-Fei Zhang et al. 4 
submitted to The Cryosphere. We would like to thank Editor Petra Hell for coordinating the 5 
review process and the reviewers for giving valuable comments and suggestions generously, 6 
especially in this difficult time. We have made revisions carefully according to your reviews. 7 
Please see detailed responses below. Questions and comments are copied and our responses are 8 
in bold, followed by the revised manuscript with track changes. 9 
 10 
Sincerely, 11 
Yong-Fei Zhang and co-authors 12 
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General comments: 47 
----------------- 48 
* 76-80: Pls expand on the choice of summer as target season. During this time the 49 
processes in driving sea-ice processes are more complex than during the early 50 
growth season. Pls provide additional reasoning and evidence for this choice. 51 
(Give outlook to 168-173.) Include your comments on the suitability of ice- 52 
thickness products for summer, as these are typically non-trivial to derive, 53 
but especially not for summer. 54 
Thanks for the suggestion. We provided additional reasoning in line 86 as follows. 55 
 56 
“Previous studies suggest that the ensemble spread of sea ice states is generally small in 57 
winter (e.g., Lisaeter et al., 2003; Fritzner et al., 2018; Zhang et al., 2018), which will lead to 58 
limited update on model state variables or parameters. Also, sea ice concentration (SIC) 59 
reaches 100% in most of regions in winter and hence does not leave enough room for 60 
improvements by DA. The ensemble spread in summer, however, is much larger.” 61 
 62 
We also added a paragraph starting in line 93 to comment on SIT DA. The text is also 63 
copied below.  64 
 65 
“Two types of observations are assimilated in our study, sea ice concentration and 66 
thickness (SIC and SIT, respectively). Satellite-retrieved SIC observations are widely 67 
utilized in the sea ice DA community, while the application of SIT observations is more 68 
challenging given its large uncertainty and lack of data in summer (Zygmuntowska et al., 69 
2014). Previous studies on Arctic sea ice predictability emphasized the importance of 70 
summer SIT observations (e.g., Day et al., 2014; Dirkson et al., 2017). We explore the 71 
benefits of SIT observations (in addition to SIC) on sea ice parameter estimation and 72 
advocate the needs of extending the data coverage of SIT observations into late spring and 73 
summer, which is actually possible in ICESat-2 (Kwok et al., 2020).  ” 74 
 75 
* 101: Section 2. 76 
Suggest to expand this with focus on DART. For example, what is implied with 77 
"extend" (line 106)? 78 
Provide details on "(if needed)". 79 
Provide more detail across all of section 2. 80 
Thanks for the suggestion. We’ve included more details in section 2. The following text was 81 
added in line 108. 82 
 83 
“The default DART/CICE framework is only used for state estimation, we extend 84 
DART/CICE to include parameter estimation in this study.” 85 
 86 
The following text wad added in line 115. 87 
 88 
“The post-process step is necessary when the updated variable goes beyond its physical 89 
boundaries, for example, when SIC is negative or larger than 100%.” 90 
 91 
* 116: The movitation for choosing R_snw is not clearly demonstrated. 92 
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The following sentence is added in line 124: 93 
 94 
“We picked Rsnw because it is one of the parameters that the model predictions are 95 
sensitive to (Urrego-Blanco et al., 2016) and is also one of the parameters perturbed to 96 
generate ensemble spread in Zhang et al. (2018).” 97 
 98 
* 125-126: Would you want to include further discussion on this, including an 99 
outlook on guidance to acquire observational data? 100 
Thanks for the suggestion. We believe more comprehensive observations of snow and ice 101 
properties, for example, the vertical profile of snow, would benefit more reliable 102 
representations of parameters in the model. The following text is added in line 160. 103 
 104 
“More comprehensive observations at large scale will presumably benefit a better 105 
representation of snow and ice properties in sea ice models.” 106 
 107 
* 132: Of major concern here, is the availability of sea-ice thickness information. 108 
See above. This needs to be explored in the framework of which reliable and low 109 
uncertainty data are available. 110 
Thanks for the comment. We’ve added comments on the SIT DA. Please see our response 111 
above.  112 
 113 
* 434: "Figure S1": Missing from submitted manuscript. 114 
--> Include in submission of revised ms. 115 
Thanks for the reminder. The Figure S1 is included in the revised manuscript.  116 
 117 
Specific comments: 118 
------------------ 119 
39: Need to define "DA" at first use. 120 
Thanks, we’ve spelled it out.  121 
 122 
59: Define "SST" upon first use. - As only used once, suggest to replace "SST" 123 
with "sea-surface temperature". 124 
Thanks for the comment. It has been modified accordingly.  125 
 126 
63: Replace "growing" with "being investigated/developed" and rewrite the 127 
remainder of this sentence to improve your argument. 128 
We’ve modified the sentence in the text as follows. 129 
 130 
“Hence studies applying data assimilation (DA) techniques to fuse observations with model 131 
simulations are actively investigated (e.g., Lisæter et al., 2003; Chen et al., 2017; Massonnet 132 
et al., 2015), most of which are focused on improving model states only, not the parameters 133 
in sea ice parameterization schemes.” 134 
 135 
66: Capitalize "earth", all through manuscript. 136 
Thanks for comment. We’ve capitalized “earth” throughout the manuscript.  137 
 138 
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68: Rewrite "numerous uncertain parameters". 139 
We’ve changed it to “hundreds of uncertain parameters” 140 
 141 
70: Replace "point-scale" with "point". 142 
Done. Thanks. 143 
 144 
97-99: Suggest to remove this section. 145 
We’ve removed this section.  146 
 147 
109: Explain "augmented" for the given context. 148 
We’ve modified the text in line 117 as follows. 149 
 150 
“During the DA step, the selected sea ice variables are placed into a “DART state vector” 151 
that is to be passed to the filter. The DART state vector is augmented by adding selected 152 
sea ice parameters, so that the parameters and state variables are both updated by the 153 
filter in the same way.” 154 
 155 
118: Need to define "R_snw" at first use. 156 
Thanks for the comment. We rewrote the sentence as follows. 157 
 158 
“The parameter we selected, Rsnw, represents the standard deviation of dry snow grain 159 
radius that controls the optical properties of snow and is one of the key parameters that 160 
determine snow albedo in the Delta-Eddington solar radiation parameterization treatment 161 
(Briegleb and Light, 2007).” 162 
 163 
168: Change "unchanged" to "held constant". 164 
We’ve changed the text as suggested.  165 
 166 
168: Rewrite "We chose not to utilize DA". 167 
We changed the phrase to “We do not perform DA”. 168 
 169 
185: Correct "RAB" to "ABD". 170 
We’ve removed the incorrect sentence. Thanks for the comment.  171 
 172 
233: Poor English: "we didn't do spatial averaging at the end of each DA cycle,". 173 
Suggest to change. 174 
The sentence has been modified in line 263 as follows. 175 
 176 
“In DAsicPEvar and DAsitPEvar, we let the spatially varying 2D analysis field of Rsnw be 177 
the Rsnw field in the next run, so the spatial feature was carried along the simulation.” 178 
 179 
289: OSSE already defined above: Replace "observing system simulation experiments 180 
(OSSEs)" with OSSEs. 181 
Thanks for the  182 
 183 
347-348: Provide proper reference for the CICE documentation. 184 



 5 

Thanks for the comment. The reference has been corrected as follows. 185 
 186 
Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, S. Elliott (2015), CICE: The Los 187 
Alamos Sea ice model documentation and software user’s manual version 5, Los Alamos 188 
National Laboratory, Los Alamos, NM, USA, 116pp. 189 

 190 

 191 

 192 
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 200 

 201 

 202 
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 205 

 206 

 207 
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Key points: 230 

• Parameter estimation using an ensemble filter is done in a sea-ice model. 231 

• Parameters are improved during the data assimilation period. 232 

• Large improvements in model states are seen in the forecast period. 233 
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Abstract 237 

       Uncertain or inaccurate parameters in sea ice models influence seasonal predictions and 238 

climate change projections in terms of both mean and trend. We explore the feasibility and benefits 239 

of applying an Ensemble Kalman filter (EnKF) to estimate parameters in the Los Alamos sea ice 240 

model (CICE). Parameter estimation (PE) is applied to the highly influential dry snow grain radius 241 

and combined with state estimation in a series of perfect model observing system simulation 242 

experiments (OSSEs). Allowing the parameter to vary in space improves performance along the 243 

sea ice edge but degrades in the central Arctic compared to requiring the parameter to be uniform 244 

everywhere, suggesting that spatially varying parameters will likely improve PE performance at 245 

local scales and should be considered with caution. We compare experiments with both PE and 246 

state estimation to experiments with only the latter and found that the benefits of PE mostly occur 247 

after the data assimilation period, when no observations are available to assimilate (i.e., the forecast 248 

period), which suggests PE’s relevance for improving seasonal predictions of Arctic sea ice.  249 

 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

Deleted: DA260 



 8 

1. Introduction 261 

Arctic sea ice has undergone rapid decline in recent decades in all seasons (e.g., Stroeve et al., 262 

2012； Serreze and Stroeve, 2015). The frequent large deviations of Arctic sea ice cover from its 263 

climatology and the impact of sea ice cover on the overlying atmosphere and on ocean-atmosphere 264 

fluxes motivates including an active sea ice component in seasonal to sub-seasonal (S2S) weather 265 

forecasts (Vitart et al., 2015). The persistence and reemergence of sea ice thickness (SIT) and sea 266 

surface temperature anomalies are major sources of predictability for Arctic sea ice extent 267 

(Blanchard-Wrigglesworth et al., 2011). Previous studies have demonstrated the importance of 268 

accurate initial conditions, especially SIT, in predicting Arctic sea ice extent (Day et al., 2014). 269 

Hence studies applying data assimilation (DA) techniques to fuse observations with model 270 

simulations are actively investigated (e.g., Lisæter et al., 2003; Chen et al., 2017; Massonnet et al., 271 

2015), most of which are focused on improving model states only, not the parameters in sea ice 272 

parameterization schemes.  273 

Sea ice models, like other components of Earth system models, can suffer large uncertainties 274 

originating from uncertain parameters. The widely used Los Alamos sea ice model version 5 275 

(CICE5), given its various complex schemes, has hundreds of uncertain parameters, such as in the 276 

delta-Eddington shortwave radiation scheme (Briegleb and Light, 2007). The default values of 277 

these parameters are usually chosen based on point measurements that are taken on multi-year sea 278 

ice (Light et al, 2008). Urrego-Blanco et al. (2015) conducted an uncertainty quantification study 279 

of CICE5 and ranked the parameters based on the sensitivities of model predictions to a list of 280 

parameters. This work provides guidance on which parameters could be estimated using an 281 

objective method and during which seasons. Their findings suggest that the estimates of the Arctic 282 

sea ice area and extent are especially sensitive to certain parameters (e.g., snow conductivity and 283 
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snow grain size) in summer. However, they also discussed that their sensitivities could be low as 291 

a consequence of prescribing atmospheric forcing in their model setup, so parametric uncertainties 292 

are expected to be larger year round (particularly in winter) in a fully-coupled model. Previous 293 

studies suggest that the ensemble spread of sea ice states is generally small in winter (e.g., Lisaeter 294 

et al., 2003; Fritzner et al., 2018; Zhang et al., 2018), which will lead to limited update on model 295 

state variables or parameters. Also, sea ice concentration (SIC) reaches 100% in most of regions 296 

in winter and hence does not leave enough room for improvements by DA. The ensemble spread 297 

in summer, however, is much larger. Since we run stand-alone CICE5 given that our aim is to 298 

demonstrate the utility of parameter estimation (PE) for sea ice, we conduct DA experiments with 299 

PE in summer.  300 

Two types of observations are assimilated in our study, sea ice concentration and thickness 301 

(SIC and SIT, respectively). Satellite-retrieved SIC observations are widely utilized in the sea ice 302 

DA community, while the application of SIT observations is more challenging given its large 303 

uncertainty and lack of data in summer (Zygmuntowska et al., 2014). Previous studies on Arctic 304 

sea ice predictability emphasized the importance of summer SIT observations (e.g., Day et al., 305 

2014; Dirkson et al., 2017). We explore the benefits of SIT observations (in addition to SIC) on 306 

sea ice parameter estimation and advocate the needs of extending the data coverage of SIT 307 

observations into late spring and summer, which is actually possible in ICESat-2 (Kwok et al., 308 

2020).   309 

Despite the importance of sea ice model parameters, few studies have tried to estimate or 310 

reduce the parametric uncertainties, partly due to the large effort and computational cost if 311 

parameter calibration is done in a trial-and-error fashion. A more systematic way is through DA. 312 

Anderson (2001) demonstrated the feasibility of updating parameters using an ensemble filter in a 313 

Deleted: also 314 

Deleted: target the summer season315 

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic



 10 

low-order model. Annan et al. (2005) was among the first to apply an ensemble filter to estimate 316 

parameters in a complex Earth system model. Massonnet et al. (2014) employed the ensemble 317 

Kalman filter (EnKF) in a sea ice model to estimate three parameters that control sea ice dynamics. 318 

In addition to achieving their goal of improving the sea ice drift, they also realized slight 319 

improvements in the SIT distribution and extent as well as in the sea ice export through the Fram 320 

Strait.  321 

Our purpose is to expand upon previous studies to explore the feasibility of optimizing sea ice 322 

parameters by asking how different observations (concentration and thickness in this study) would 323 

constrain the parameters differently, whether we need to allow parameters to vary spatially, and 324 

what are the benefits of the updated parameters both when observations are available for 325 

assimilation (the DA period) and when observations are not available (the forecast period).  326 

 327 

2. The sea ice data assimilation framework 328 

We use CICE5 linked to the data assimilation research testbed (DART) (Anderson et al., 2009) 329 

within the framework of the Community Earth System Model version 2 (CESM2) 330 

(http://www.cesm.ucar.edu/models/cesm2). The ocean is modeled as a slab ocean and the 331 

atmospheric forcing is prescribed from a DART/CAM ensemble reanalysis (Raeder et al., 2010). 332 

Details of this framework can be found in Zhang et al. (2018). The default DART/CICE 333 

framework is only used for state estimation, we extend DART/CICE to include parameter 334 

estimation in this study. During the assimilation, DART and CICE5 cycle between a DA step 335 

with DART and a one-day forecast step with CICE5. During the DA step, the selected sea ice 336 

variables are placed into a “DART state vector” that is to be passed to the filter. The DART state 337 

vector is augmented by adding selected sea ice parameters, so that the parameters and state 338 

Deleted: e339 
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variables are both updated by the filter in the same way. The updated state variables are then post-348 

processed (if needed) and sent with the updated parameters back to CICE5 for the next one-day 349 

forecast step. The post-process step is necessary when the updated variable goes beyond its 350 

physical boundaries, for example, when SIC is negative or larger than 100%. Unlike state 351 

variables, the parameters are not modified during CICE5 forecast steps.  352 

 353 

3. Experiment design and evaluation methods 354 

The parameter we selected, Rsnw, represents the standard deviation of dry snow grain radius 355 

that controls the optical properties of snow and is one of the key parameters that determine snow 356 

albedo in the Delta-Eddington solar radiation parameterization treatment (Briegleb and Light, 357 

2007). We picked Rsnw because it is one of the parameters that the model predictions are sensitive 358 

to (Urrego-Blanco et al., 2016) and is also one of the parameters perturbed to generate ensemble 359 

spread in Zhang et al. (2018). Instead of directly tuning snow albedo that could result in 360 

inconsistencies with the rest of the parameterization scheme, tuning Rsnw changes the inherent 361 

optical properties of snow in a self-consistent fashion (Briegleb and Light, 2007). Increasing Rsnw 362 

leads to smaller dry snow grain radius and larger snow albedo (Hunke et al., 2015). The default 363 

value of Rsnw is 1.5, which corresponds to a fresh snow grain radius of 125µm (Holland et al., 364 

2012). Many parameters in CICE5, like Rsnw, have default values based on limited field 365 

observations. As sea ice models increase in complexity, empirical parameters will increasingly 366 

need to be calibrated objectively. More comprehensive observations at large scale will presumably 367 

benefit a better representation of snow and ice properties in sea ice models.  368 

The configurations of conducted experiments are listed in Table 1. We begin with a free run 369 

of CICE5 without DA (hereafter FREE) with 30 ensemble members. Each ensemble member has 370 
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a unique value of Rsnw, which is constant in time and space. The ensemble of Rsnw values were 376 

random draws from a uniform distribution spanning -2 and 2. One of the ensemble members was 377 

designated as the truth with the true value of Rsnw. Following Zhang et al. (2018), synthetic 378 

observations were created by adding random noise to SIC and SIT taken from the truth ensemble 379 

member. The noise follows a normal distribution with zero mean and a standard deviation of 15% 380 

for SIC and 40 cm for SIT. FREE experiment does not assimilate any observations, and the Rsnw 381 

values stay the same throughout the experimental period.  382 

We then conducted two pairs of experiments to test the feasibility of estimating parameters 383 

using the Ensemble adjustment Kalman filter (EAKF) (Anderson, 2002), which is a deterministic 384 

ensemble square root filter. Each experiment assimilates daily SIC or SIT synthetic observations. 385 

The first pair is referred to as DAsicPEcst and DAsitPEcst, with the former assimilates SIC 386 

observations and the latter SIT observations. In the first pair, each ensemble member has a unique 387 

spatially-uniform Rsnw. The second pair is refered to as DAsicPEvar and DAsitPEvar, which has a 388 

separate value of Rsnw at each horizontal grid point. The augmented state has the single parameter 389 

for Rsnw in the first pair or the two-dimensional grid of Rsnw parameters in the second pair.  390 

All variables in the sea ice state vector are two-dimensional in space. The parameter Rsnw and 391 

the state variables were updated based on their correlations with neighboring observations. The 392 

posterior ensemble generated by DART is always spatially varying. For the first pair of 393 

experiments, we take an area-weighted average of the two-dimensional posterior to get a spatially 394 

invariant Rsnw to send back to CICE5. For the second pair of experiments, the spatially varying 395 

posterior Rsnw was sent to CICE5. In all experiments, the sea ice component was run for a day to 396 

produce a new state that was augmented with the previous times posterior Rsnw (which is not 397 

prognostic in CICE5) for the next DA cycle. To increase the prior ensemble spread of Rsnw, a 398 
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spatially and temporally adaptive inflation was applied to the priors of both the model states and 405 

Rsnw before they were sent to the filter (Anderson, 2007). The initial value, standard deviation, and 406 

inflation damping value of the adaptive inflation are 1.0, 0.6, and 0.9.  The localization half-width 407 

is 0.01 radians (about 64 km) as discussed in Zhang et al. (2018). We also reject observations that 408 

are three standard deviations of the expected difference away from the ensemble mean of the 409 

forecast. 410 

A third pair of experiments was conducted with only state DA (no parameter estimation), 411 

known as DAsic and DAsit, that assimilate daily SIC and SIT synthetic observations, respectively. 412 

DAsic and DAsit have the same ensemble set of Rsnw, which is also the initial set of Rsnw in the 413 

above PE experiments. The ensemble of Rsnw remains fixed throughout the experiment period.  414 

All experiments begin on 1 April 2005 and run for 18 months. Synthetic observations are 415 

assimilated only during the first 6 months (the DA period), and the next 12 months are a pure 416 

forecast period to mimic the real-world situation when making a forecast. The values of Rsnw hold 417 

constant once DA ceases. We do not perform DA beyond October 2005 for two reasons. First, sea 418 

ice states have small ensemble spread in winter, as illustrated in Figure 1a, so DA updates tend to 419 

be small. In contrast, the relatively larger spread from April to October ensures that assimilating 420 

observations can have more impact in updating model state variables and parameters. Second, the 421 

snow albedo feedback only influences the sea ice state when sunlight is present.  422 

Several commonly used error indices were calculated to evaluate the performance of the 423 

experiments. The root-mean-square error (RMSE) of Arctic sea ice extent (SIE) and the area 424 

weighted spatial averaged root-mean-square error (RMSEt) are defined as follows: 425 
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where i and j are the indices in time and space, 𝑥 refers to Arctic SIE in RMSE and may refer to 431 

parameters or model states in RMSEt, N is the number of days and M is the number of grid cells. 432 

The superscripts m and t refer to model and truth, respectively. The overbar indicates the mean of 433 

the model ensemble. 434 

Model bias is defined as the mean of the 30 member ensemble of the experiments minus the 435 

truth. Absolute bias difference (ABD) between two experiments is defined as follows: 436 

𝐴𝐵𝐷 =	 ,𝑥*+,-./-------- − 𝑥0(, − ,𝑥*+,-.1-------- − 𝑥0(, 437 

where 𝑥 may refer to parameters or model states, the superscripts t refers to the truth, and case1 438 

and case2 refer to the two experiments to compare. The overbar indicates the mean of the model 439 

ensemble.  440 

 441 

4. Results and Discussion 442 

4.1 Temporally and spatially invariant parameters 443 

The ensemble mean of FREE underestimates SIC throughout the year (Figure 1a) partly 444 

because our arbitrary ensemble member selected as the truth has an above average Rsnw (Figure 445 

1c). As such, we would intuitively expect Rsnw to have a positive increment as a result of 446 

assimilating SIC observations. Figure 1c confirms that Rsnw increments are positive, with the 447 

posterior ensemble mean gradually approaching the true value during the DA period in the 448 

spatially-constant PE experiments (DAsicPEcst and DAsitPEcst). The posterior Rsnw has smaller 449 

ensemble spread than the prior Rsnw (also see Figure S1d, e, and f), which is consistent with the 450 

EAKF theory. In Figure 1c DAsitPEcst outperforms DAsicPEcst starting in June, indicating that 451 

SIT provides more information than SIC for Rsnw. Similarly, with state-only DA, Zhang et al. 452 

(2018) found that SIT is more efficient than SIC observations at constraining state variables. There 453 
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could be several reasons why the rate at which Rsnw approaches the true value decreases with time. 457 

First, the ensemble spread of Rsnw may be insufficient because no uncertainty is introduced into 458 

Rsnw in CICE5 during the forecast step. It is an open question how much additional uncertainty 459 

should be introduced into the parameters. To help avoid filter divergence, we apply the prior 460 

adaptive inflation to the parameters (as well as to the model states), which may still be not enough.   461 

Second, the correlation between Rsnw and the observations may be too weak. Solar radiation 462 

becomes very low by the end of September and hence Rsnw has little impact on sea ice, which 463 

explains the weak correlation between Rsnw and the observations (further discussed below).  Either 464 

reason could result in a negligible update to Rsnw.  465 

The correlations between Rsnw and the observations have unique spatial patterns and evolve 466 

with time. On May 1st, the correlation between Rsnw and SIC is generally positive (Figure 2a). The 467 

positive correlations are significant especially where SIC is under ~100%. Larger Rsnw corresponds 468 

to higher snow albedo and more reflected sunlight, which in turn delays the melting of sea ice. The 469 

correlations are still significant along the ice edges in August (Figure 2c) and become noisier and 470 

have less significant values by the end of the melt season (Figure 2e). The correlation between 471 

Rsnw and SIT has different spatial patterns (Figures S2b, S2d, and S2f). Negative correlations 472 

between Rsnw and SIT on May 1st can be seen in the Chukchi Sea, Beaufort Sea, and East Siberian 473 

Sea, where Rsnw and SIC have positive correlations. This suggests that where SIC increases with 474 

Rsnw in spring, it is possible that SIT actually decreases, which might be due to elevated 475 

concentration raising the compressive strength and reducing sea ice deformation. While a brighter 476 

surface is able to reduce thickness over large regions in spring, the effect is mostly gone by the 477 

end of summer when positive correlation prevails.  478 

 479 
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4.2 Spatially varying Rsnw 480 

We discussed in section 4.1 that processes relating Rsnw and observed quantities have complex 481 

spatial features. The spatial map of the posterior Rsnw and the reduction in the ensemble spread of 482 

Rsnw after EAKF in the first pair of experiments (Figure S1) also suggest that the updates are 483 

concentrated on the ice marginal zones. It may be too crude to use a single value of Rsnw for the 484 

whole Arctic. We let Rsnw be a spatially varying parameter in the second pair of PE experiments, 485 

even though the true Rsnw is spatially invariant. The spatial features of Rsnw will purely depend on 486 

how Rsnw correlates with the observations. As in DAsicPEcst and DAsitPEcst, the analysis field of 487 

Rsnw is spatially varying, and we did a spatial averaging to get a single number for the next run. 488 

Rsnw along the sea ice edges get updated more, while Rsnw in the center is less influenced. But the 489 

averaging smoothed out this spatial feature. In DAsicPEvar and DAsitPEvar, we let the spatially 490 

varying 2D analysis field of Rsnw be the Rsnw field in the next run, so the spatial feature was carried 491 

along the simulation. 492 

Figure 3 depicts the ABD of Rsnw (defined in section 2) between different pairs of experiments 493 

at the end of the DA period.  Figures 3a and 3d confirm that DAsicPEcst and DAsitPEcst improve 494 

the Rsnw comparing to FREE. Figures 3b and 3e show the spatial feature of improvements or 495 

degradations in Rsnw for the two spatially varying PE experiments. They both show the contrast 496 

between the ice marginal zones and the central Arctic. Improvements are mostly seen along the 497 

ice edges. Spotty improvements in the inner Arctic can be found in DAsitPEvar (Figure 3e), while 498 

degradations are prevailing in the inner Arctic in DAsicPEvar (Figure 3b). Figures 3c and 3f 499 

highlight the improvements or degradations from allowing Rsnw to vary spatially. The general 500 

features are that DAsicPEvar and DAsitPEvar have reduced Rsnw biases more along the ice edges 501 

compared with DAsicPEcst and DAsitPEcst. However, degradations (Figure 3c) or negligible 502 
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improvements (Figure 3f) are found in the central Arctic. This suggests that spatially invariant PE 512 

generally works better for the whole pan-Arctic regions, while spatially varying PE can work well 513 

in the ice marginal zones but not in the central Arctic, especially when SIC is the only observed 514 

quantity.  SIC has little variability in the central Arctic and hence assimilating the SIC observations 515 

will not add much information for parameters or model states. Besides the improvements along 516 

the sea ice edges, the SIT DA also has benefit in the inner ice pack (Figure 3e), which is consistent 517 

with the results of the first pair of experiments that SIT in general provides more information than 518 

the SIC observations, especially in the regions where SIC has little variability. However, spatially 519 

varying Rsnw has small advantages over spatially invariant Rsnw in the ice marginal regions but 520 

degradations in the central Arctic too (Figure 3f). The degradations in Rsnw but improvements in 521 

SIC (Figures 5a and 5c; discussed in section 4.3) in the central Arctic suggest that Rsnw is likely 522 

over adjusted to cancel out other errors (e.g., noise from atmospheric forcing fields).  523 

 524 

4.3 Additional improvements in model states 525 

We demonstrated that Rsnw approaches the true value by assimilating SIC or SIT (at different 526 

rates) in the previous sections. We now investigate whether PE also improves the simulation of 527 

model states, beginning with timeseries of the pan-Arctic sea ice area and volume in all of our 528 

experiments (see Figure 4).   529 

In our preceding work, we showed that assimilating SIC and SIT could improve model states 530 

(Zhang et al., 2018), which can also be confirmed in Figure 4.  During the DA period, DAsic can 531 

efficiently reduce biases in area, but DAsic has limited influence on volume. Within about a month 532 

into the forecast period, DAsic improves neither area nor volume. In contrast, DAsit is highly 533 

Deleted:  slight534 



 18 

beneficial at reducing both area and volume during the DA period, with at least some improvement 535 

to volume persisting through the whole 1-year forecast period.  536 

We find that updating Rsnw has a relatively large impact on volume beginning in spring of the 537 

forecast period (Figure 4b). Either treating Rsnw as a spatially varying or constant parameter has 538 

about the same effect until late summer of the forecast period. In fact, all of the PE experiments 539 

outperform the state-only DA experiments in the forecast period. As shown in Table 1, SIT DA 540 

with PE always performs the best, reducing the bias in area by up to 63% and reducing the bias in 541 

volume by up to 73%. SIC DA with PE is second best in terms of simulating the area, reducing 542 

the bias by up to 37%.  SIC DA with PE is comparable to DAsit in simulating volume, reducing 543 

the bias by around 30%.  544 

Finally, we compare the spatial patterns of bias reduction in SIC and SIT from PE experiments 545 

by comparing RMSEt of SIT in DAsicPEcst and DAsitPEcst to their state-only DA counterparts, 546 

DAsic and DAsit (see Figure 5). The comparisons are made in two periods: the DA period (April 547 

to October 2005) and the forecast period (April to September 2006).  Zhang et al. (2018) showed 548 

that the DAsic could only improve SIT along the sea ice edges. Figure 5a demonstrates that 549 

DAsicPEcst offers some improvements in the central Arctic as well. Improvements resulted from 550 

a more accurate Rsnw in the forecast period are more prominent (Figure 5b). For DAsitPEcst, SIT 551 

is improved almost everywhere in the Arctic, with slight degradations along the ice edges (Figure 552 

5c). The improvements persist throughout the forecast period (Figure 5d).  553 

 554 

5. Conclusions  555 

We extend the functionality of DART/CICE to do parameter estimation (PE) through the 556 

EAKF as well as updating the model states. One of the key parameters determining sea ice surface 557 
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albedo, Rsnw, is estimated as an example in this study. Rsnw is updated using the filter. We designed 558 

a series of perfect model observing system simulation experiments (OSSEs) to demonstrate the 559 

feasibility of PE in CICE5. Results show that Rsnw gradually approaches the true value during the 560 

data assimilation (DA) period (from April to October 2005). Updating parameters with PE could 561 

further improve the model state estimation but not prominently in the DA period. During the 562 

forecast period, with a better representation of the parameter, the PE experiments show significant 563 

superiority over the state-only DA experiments, both in SIC and SIT.  The results in the forecast 564 

period indicate that by updating parameters as well as state variables, assimilating SIC 565 

observations only is comparable to assimilating SIT observations. We concluded that SIT is the 566 

most important variable to be observed in Zhang et al. (2018), but satellite observations of SIT 567 

have large uncertainties and only cover a short time period. We could alternatively improve model 568 

parameters by assimilating SIC observations with the ultimate goal of improving SIT. Results from 569 

the subset of experiments treating Rsnw as a spatially varying parameter suggest that the Rsnw biases 570 

are mostly reduced along the sea ice edges but not as much in the central Arctic. We suggest that 571 

varying Rsnw spatially is not effective when conducting DA for the whole Arctic, but worth 572 

exploring when it comes to regional studies, such as in the seasonal sea ice zones.  573 
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Table 1. List of experiments with different configurations and RMSE of the total Arctic sea ice 675 

area and volume calculated over two experiment periods: DA (April to October, 2005) and 676 

forecast (April to September, 2006) for the seven experiments. All the experiments use the same   677 

localization half-width and prior inflation algorithm as stated in section 3.  678 

 679 

 680 

 681 

 682 

 683 

Figure captions 684 

 
 
Experiments Observations 

 assimilated 
Parameter 
estimate 

RMSE of 
Arctic sea ice area 

(102𝑘𝑚1) 

RMSE of  
Arctic sea ice volume 

(103𝑘𝑚3) 
DA Forecast DA Forecast 

FREE None None 0.250 0.343 0.711 1.302 

DAsic SIC None 0.120 (-52%) 0.345 (4%) 0.583 (-18%) 1.285 (-1%) 

DAsicPEcst SIC Spatially 
constant 0.114 (-55%) 0.217 (-37%) 0.520 (-27%) 0.887 (-32%) 

DAsicPEvar SIC Spatially 
varying 0.123(-51%) 0.240(-30%) 0.601 (-16%) 1.130 (-13%) 

DAsit SIT None 0.113(-55%) 0.327(-5%) 0.247 (-65%) 0.868 (-33%) 

DAsitPEcst SIT Spatially 
constant 0.103 (-59%) 0.141 (-59%) 0.210 (-70%) 0.349 (-73%) 

DAsitPEvar SIT Spatially 
varying 0.103 (-59%) 0.129 (-63%) 0.222 (-69%) 0.376 (-71%) 
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Figure 1. Time series of (a) the Arctic sea ice area and (b) sea ice volume from a CICE5 free 685 

run. Each gray line represents one ensemble member, black line the ensemble mean, and red line 686 

the truth. Time series of (c) the parameter Rsnw for two DA experiments. Blue line represents 687 

DAsicPEcst that assimilates SIC observations and magenta represents DAsitPEcst that 688 

assimilates SIT. The red reference line indicates the true value of Rsnw. Each error bar 689 

represents two standard deviations of the 30 ensemble members of Rsnw. Error bar is shown for 690 

every five days. 691 

 692 

Figure 2. Correlations between (a) Rsnw and SIC and (b) Rsnw and SIT for 2005-05-01, (c) Rsnw 693 

and SIC and (d) Rsnw and SIT for 2005-08-01, and (e) Rsnw and SIC and (f) Rsnw and SIT for 694 

2005-10-01. At each point, we calculate the correlation of Rsnw and the observed quantities 695 

across the 30 ensemble members on the selected dates. The posterior states outputted from the 696 

experiments DAsicPEcst and DAsitPEcst are used for calculation.  697 

 698 

Figure 3. The differences of absolute mean bias (ABD, see Eq 2) of Rsnw between the DA 699 

experiments: (a) DAsicPEcst, (b) DAsicPEvar, (d) DAsitPEcst, and (e) DAsitPEvar and the 700 

control experiment FREE, and between the spatially-varying PE experiments and the spatially-701 

constant PE experiments: (c) DAsicPEvar and DAsicPEcst, and (f) DAsitPEvar and DAsitPEcst.   702 

 703 

Figure 4. Daily biases of (a) the total Arctic sea ice area and (b) the total Arctic sea ice volume 704 

for FREE (black), DAsic (blue), DAsicPEcst (green), DAsicPEvar (purple), DAsit (orange), 705 

DAsitPEcst (pink), and DAsitPEvar(red). Gray dash line in each plot represents the zero 706 

reference line. The blue line in (a) is overlapped by the purple and green lines in the first half of 707 
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time. The black line in (a) is overlapped by the orange and blue lines in the second half of time. 710 

The black line in (b) is overlapped by the blue line from February to July. 711 

 712 
Figure 5. The relative differences of RMSEt of SIT between DAsicPEcst and DAsic for the (a) 713 

DA experiment period and (b) forecast period, and between DAsitPEcst and DAsit for the (c) 714 

DA experiment period and (d) forecast period. The differences of RMSEt are divided by the 715 

RMSEt of DAsic and DAsit, respectively, to get the relative differences. 716 

 717 

Figure S1. The posterior values of Rsnw for the experiment DAsitPEcst on (a) 2005-06-01, (b) 718 

2005-08-01, and (c) 2005-10-01, and the differences between the ensemble spread of posterior 719 

Rsnw and that of prior Rsnw (the posterior minus prior) for the experiment DAsitPEcst on (d) 720 

2005-06-01, (e) 2005-08-01, and (f) 2005-10-01. 721 
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 732 

Figure 1. Time series of (a) the Arctic sea ice area and (b) sea ice volume from a CICE5 free 733 

run. Each gray line represents one ensemble member, black line the ensemble mean, and red 734 

line the truth. Time series of (c) the parameter Rsnw for two DA experiments. Blue line 735 

represents DAsicPEcst that assimilates SIC observations and magenta represents DAsitPEcst 736 

that assimilates SIT. The red reference line indicates the true value of Rsnw. Each error bar 737 

represents two standard deviations of the 30 ensemble members of Rsnw. Error bar is shown 738 

for every five days.  739 

Deleted: , 740 

Deleted: ,  and green line the experiment DA_PAR_CST741 



 28 

742 

 743 

 744 
Figure 2. Correlations between (a) Rsnw and SIC and (b) Rsnw and SIT for 2005-05-01, (c) Rsnw 745 

and SIC and (d) Rsnw and SIT for 2005-08-01, and (e) Rsnw and SIC and (f) Rsnw and SIT for 746 

2005-10-01. At each point, we calculate the correlation of Rsnw and the observed quantities 747 

across the 30 ensemble members on the selected dates. The posterior states outputted from the 748 

experiments DAsicPEcst and DAsitPEcst are used for calculation.  749 
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 751 
 752 
 753 
 754 
 755 
Figure 3. The differences of absolute mean bias (ABD, see Eq 2) of Rsnw between the DA 756 

experiments: (a) DAsicPEcst, (b) DAsicPEvar, (d) DAsitPEcst, and (e) DAsitPEvar and the 757 

control experiment FREE, and between the spatially-varying PE experiments and the spatially-758 

constant PE experiments: (c) DAsicPEvar and DAsicPEcst, and (f) DAsitPEvar and DAsitPEcst.   759 
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 764 

Figure 4. Daily biases of (a) the total Arctic sea ice area and (b) the total Arctic sea ice volume 765 

for FREE (black), DAsic (blue), DAsicPEcst (green), DAsicPEvar (purple), DAsit (orange), 766 

DAsitPEcst (pink), and DAsitPEvar(red). Gray dash line in each plot represents the zero 767 

reference line. The blue line in (a) is overlapped by the purple and green lines in the first half of 768 

time. The black line in (a) is overlapped by the orange and blue lines in the second half of time. 769 

The black line in (b) is overlapped by the blue line from February to July. 770 
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 774 

 775 
 776 
Figure 5. The relative differences of RMSEt of SIT between DAsicPEcst and DAsic for the (a) 777 

DA experiment period and (b) forecast period, and between DAsitPEcst and DAsit for the (c) 778 

DA experiment period and (d) forecast period. The differences of RMSEt are divided by the 779 

RMSEt of DAsic and DAsit, respectively, to get the relative differences.  780 
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Supplemental figures 782 
 783 

 784 
 785 

 786 
 787 
Figure S1. The posterior values of Rsnw for the experiment DAsitPEcst on (a) 2005-06-01, (b) 788 

2005-08-01, and (c) 2005-10-01, and the differences between the ensemble spread of posterior 789 

Rsnw and that of prior Rsnw (the posterior minus prior) for the experiment DAsitPEcst on (d) 2005-790 

06-01, (e) 2005-08-01, and (f) 2005-10-01.  791 
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