
Author’s response to Benjamin Smith’s Editor Decision of 06 September 2020

Editor comment
Comments to the Author:
The manuscript looks good. I have a small list of edits that I saw during a quick read-through, and 
more may be caught during typesetting. Please make these corrections and we can get the 
manuscript off to the next stage!

Overall: I don’t think ‘firn’ needs to be in italics.
Author’s response
We followed the Editor’s suggestion and removed italics from the word “firn” throughout the 
manuscript.

Editor comments
Line (in the change-tracked manuscript) – comment
18: detect -> identify
23: retreating -> retreat (or ‘rates of retreat’)
30: delete ‘the’
Author’s response
We agree with the suggestions. In line 23, we prefer “rates of retreat”.

Editor comment
33 “light-absorbing impurities” -> “light-absorbing particles”
Author’s response
We agree. We fixed the same mistake in two other paragraphs (lines 83 and 87).

Editor comments
44 “PM” should be treated as singular (e.g. “PM reflects”)
45 relevant -> significant
345: have shown -> have been shown
346: “in a similar way as in” -> “similar to the effect of debris in “
Author’s response
We agree with the suggestions. 

Editor comment
372: “One of the samples described under microscope” : Not clear what this means.
Author’s response
We rephrased the sentence.
Manuscript changes:
In One of the samples described under microscope, corresponds to a sub-surface sample from site Abl3-2017, which 
was interpreted as winter snow from 2014, previous to 2015 Cal eruption, and we found that approximately 75 % of the 
observed particles correspond to fine-grained colourless pumiceous ash.

Editor comments
467: “would allow to study” -> “would allow us to study”
481: “such kind of “ -> such
485 that-> those
501 “has shown” -> “has been shown” 
Author’s response
We agree with the suggestions. 





Author’s response to Benjamin Smith’s Editor Decision

Editor comment
Editor Decision: Publish subject to minor revisions (review by editor) (07 Aug 2020) by Benjamin 
Smith 
Comments to the Author: 
There is some sort of a problem with the TC system, and I am not able to see the authors' revised 
manuscript today. As I'll be out of town next week, I wanted to provide some feedback based on 
what I can see in the responses to the referees. 
Author’s response
We thank the Editor’s decision to publish the revised manuscript. We answer the specific comments 
and suggestions below.

Editor comment
It looks to me like the authors have done a good job of responding to the referees' comments, and I 
think the major scientific disagreements have been dealt with well. At the same time, based on the 
samples of the revised text that are available in the response documents, I suspect that the final 
manuscript will need some revisions for English and grammar. In particular: 
--the response to lines 228-234 has a description of methods in present tense, while all methods 
should be in past tense 
Author’s response
We thank the Editor’s grammar suggestion. We changed all verbs in the mentioned paragraph to the
past tense.

Editor comments
--In the abstract, "microscopical" should be "microscopic" 
--Lines 29-33: temperature increase -> temperature increases 
--Lines 37-44 : "snow grains growth" -> "snow grains' growth" or "growth of snow grains" 
--Lines 50-52: should be "online coupling...has" 
In the block of supplement text starting with line 34: "placed" should be "located" 
... and so on. 
Author’s response
We appreciate the Editor’s grammar suggestions. We accepted them all, with exception of the 
second one. The word “increase” is not used here as a verb but as a noun.

Editor comment
I'm afraid I don't have time for a thorough proof-read of the manuscript, but I'd ask that the authors 
look carefully at their text with all revisions applied and check the grammar throughout before 
submitting a final draft. The manuscript is very close! 
Author’s response
We thank the Editor’s suggestion. We made several additional grammar or spelling corrections, 
which are included in the marked-up version of the manuscript at the end of this file. We also 
improved some of the figure captions to follow more closely the journal guidelines.

Following this response, we include the responses to both reviewers (already posted as Author 
Comments in the interactive discussion) and a marked-up version of the manuscript.





Author’s response to Marius Schaefer’s review

Referee comment
General Comments:
The manuscript presents punctual albedo measurements over snow surfaces on different parts of a 
small glacier in the Northern Patagonian Andes in two consecutive years, together with 
measurements of physical parameters which could mostly explain the measured albedo variations 
(like grain size and form and particulate matter content). Then the authors try to reproduce the 
measured albedos, using a model, which is improved to account for partly cloudy conditions (which
were present at least at one of the field days). In a last step the possible influence of the ash content,
caused by eruptions of nearby volcanoes, on the total glacier surface mass balance is estimated 
using a simplified energy balance/mass balance model.
To my point of view the study is original and novel and fits well into the scope of the journal. I 
think that the significance of the study could be significantly increased by adding some additional 
data and analysis, which should not be too difficult to obtain and which would allow to better 
interpret the presented field data and model results:
Author’s response
We appreciate the referee’s thorough and useful comments to improve the manuscript. Although the 
suggested additions would increase the significance of the article, some of them are outside the 
focus of this manuscript. The manuscript already deals with field measurements and models. 
Including the use of remote sensing data would make it excessively long. We discuss the suggested 
additions point by point next.

Referee comment
1) Measured surface mass data at stakes: I think that the surface mass balance data measured at 
stakes were somehow used to interpret the sample obtained form the snow pits (section 3.1, Figure 
2) but the detailed data are not indicated. Also in section 2.4 it is stated: “The model was calibrated 
by surface mass balance measurements performed on a seasonal to annual basis through the year 
2016 over Alerce glacier”. I would like to know more details about this calibration process. How 
well could the model reproduce the observed melt and accumulation of snow? Which alpha_firn 
values fitted best to the observations? The time series of measured surface mass balance could also 
be helpful for quantifying the impact of the volcanic eruptions on the glacier’s surface mass 
balance.
Author’s response
A comprehensive evaluation of the mass balance of Alerce glacier is beyond the scope of this work 
and it is core of an ongoing manuscript by one of the members of the author team (Lucas Ruiz). We 
included in Fig. 1 the location of ablation stakes, and in the Supplement (Fig. S4) the location of 
snow thickness measurements. Detail regarding the process of calibration of the surface mass 
balance model (SMB model) was added in Sect. 2.4 together with two new figures in the Supplement
(Fig S5 and S6) which shows the agreement between modeled and measurements used to calibrate 
the SMB model and the fitting of the model for two of the ablation stakes close to the albedo 
sampling locations. 
For the hydrological years 2015 and 2016 (during and after the Calbuco eruption) best agreement 
between measurements and model was achieved using minimum snow albedo values of 0.42-0.38. 
The range express the difficulty to achieve a straightforward calibration of the different parameters 
used in enhanced degree-day models. Some parameters counteract each other and minimum RMSEs
could be achieved with a variety of parameter combination. Thus, it is also necessary considering 
surface characteristics at the stakes locations and their distribution across the glaciers, like 
transient snow lines or extra mass balance measurements through the year.
Manuscript Changes
Lines 228-234:
After calibration of the model, c0 = −50 W m−2 and c1 =12 W m−2 ºC−1. Potential direct solar radiation for all grid cells 
and days was calculated following Hock (1999). The local surface albedo α(x,y,t) was taken to be constant for bare-ice 



surfaces (αice = 0.34), using most commonly applied literature value (Oerlemans and Knap, 1998; Cuffey and Paterson, 
2010), for snow surfaces, αsnow was calculated based on the snow aging function proposed by Oerlemans and Knap 
(1998) with a maximum snow albedo (αmax) of 0.8 and a variable minimum snow albedo (αmin) adjusted during the 
calibration procedure. (αfirn, table 2). 
The model was calibrated in two steps using surface mass balance measurements of year 2016 in Alerce glacier 
(Supplement, Fig. S4). First, the model is run over the winter period with an initial set of constants (c0 and c1) and a 
guess for the precipitation correction factor Cpre. As melt is of minor importance in winter, this run is used to calibrate 
Cpre, that scales Ds for every snow fall event. After a good agreement of measured and calculated winter accumulation is 
obtained, the model is run over the entire year and the remaining constants are calibrated so that the root-mean-square 
error between modelled and observed point annual balances is minimized and the average misfit is close to zero 
(Supplement, Fig. S5 and S6). A random set of snow accumulation and ablation stakes measurements performed 
through the year and not used to calibrate the model are left apart to validate the results of the surface mass balance 
model.
We studied Gglacier-wide mass balance changes forbetween different values of αmin αfirn (Table 2), which are indicative 
of the sensitivity of glacier mass balance to a change in albedo that might occur in response to the darkening of the 
glacier surface.
Supplement, Fig. S4, S5 and S6 (see at the end of this file).

Referee comment
2) I am surprised by the big influence of alpha_firn on the modeled surface mass balance of the 
glacier. In a “normal” year I would expect to have no firn in the ablation area and the firn of the 
accumulation area being buried by snow most of the year. How did you initialize the model 
(regarding presence of snow, firn, ice). Was 2016 a typical year? Probably not since autumn 2016 
was exceptionally dry in the region. I would propose to run the model with a few years of “typical” 
meteorologic data (mean value of several years) and standard firn albedo for model initialization 
and then start to study the influence of different firn albedos. I think it should be much lower on 
average.
Author’s response
We acknowledge that the use of αfirn as a synonymous of minimum snow albedo was not a good 
choice and give place to confusions. As we stated in Section 2.4, αfirn is the minimum albedo that 
snow could reach using the snow aging function of Oerlemans and Knap (1998). We replaced  αfirn  
for αmin to avoid any confusion. We agree that if we had only changed the albedo of the firn (the 
snow accumulated after more than year, for instances), the effect on the surface mass balance would
have been much lower. 
The model is initiated with a guess snow and firn lines and run for a few days before the evaluated 
period, which is observational period. to stabilize the surface mass balance to the input data. We 
have tested different initiation scenarios, to check the sensitivity of the model to initial conditions, 
and under realistic scenarios, the sensitivity is rather low.
Finally, we agree with the reviewer, 2016 was the driest year since we start the monitoring of the 
Alerce glacier in 2013.
Manuscript Changes
We replaced αfirn  for αmin throughout the manuscript.

Referee comment
3) Since the albedo measurements are very punctual in time and space, and, as your repeating in the
text several times that particulate matter concentration is very variable in time and space, it would 
be great to get an idea about the significance of your punctual albedo measurements by analyzing 
for example optical reflectance in satellite images. Images obtained at dates near to your field 
campaigns could be used for calibration. By this means you could also easily go back until the 2011
Cordon Caulle eruption. Would be great to see how the reflectance of the glacier changed from 
summer 2011 to 2012. Or from summer 2015 to 2016.
Author’s response
Satellite observations are relevant, and we have already look at MODIS products and other remote 
data for a following article. Although satellite snow reflectance data could be used to evaluate the 
significance of our punctual surface measurements (albedo measurements, particles content and 



snow grain size), Landsat and Sentinel images close to the timing of our measurements are totally 
or partially cloud covered for Monte Tronador. As we stated in the manuscript cloudiness conditions
were challenging and we needed to update SNICAR model to deal with it. Regarding the use of 
MODIS, although the time resolution allows us to have more images without excessive cloud cover, 
it spatial resolutions challenges the evaluation against punctual surface measurements. 
Nevertheless, our preliminary evaluation of MODIS albedo time series of Monte Tronador, shown a 
decrease in late summer albedo after the Cordon Caulle and Calbuco eruption, with a minimum 
during the late summer of 2017 (both a combination of the ashes and less snow fallen over the 
glacier). Nevertheless, as we mention above, these additional analysis would require a considerable
amount of space, hence we decided to keep them for another manuscript where we can deal 
properly with it.

Referee comment
Technical Comments:
Your abstract is 350 words which is too long (instructions form the journal’s web page copied 
below). Try to reduce! For example you have three introducing sentences. One should be enough!
Research articles report substantial and original scientific results within the journal's scope. 
Generally, these are expected to be within 12 journal pages, have appropriate figures and/or tables, a
maximum of 80 references, and an abstract of 150–250 words.
Author’s response
We thank the referee for the suggestion. We have already reduced the length of the abstract 
following a suggestion of the Anonymous Referee #1. We present here a further effort of making the 
abstract more concise.
Manuscript Changes
Abstract
The impact of volcanic ash on seasonal snow and glacier mass balance has been much less studied than that of 
carbonaceous particles and mineral dust. We present here the first field measurements on Argentinian Andes, combined 
with snow albedo and glacier mass balance modeling. Measured impurities content (1.1 mg kg−1 to 30 000 mg kg−1) 
varied abruptly in snow pits and snow/firn cores, due to high surface enrichment during the ablation season and possibly
local/regional wind driven resuspension and redeposition of dust and volcanic ash. In addition, we observed a high 
spatial heterogeneity, due to glacier topography and prevailing wind direction. Microscopical characterization showed 
that the major component was ash from recent Calbuco (2015) and Cordón Caulle (2011) volcanic eruption, with a 
minor presence of mineral dust and Black Carbon. We also found a wide range of measured snow albedo (0.26 to 0.81), 
which reflected mainly the impurities content and the snow/firn grain size (due to aging). We updated the SNICAR 
snow albedo model to account for the effect of cloudiness on incident radiation spectra, improving the match of 
modeled and measured values. We also ran sensitivity studies considering the uncertainty of the main measured 
parameters (impurities content and composition, snow grain size, layer thickness, etc) to detect the field measurements 
that should be improved to facilitate the validation of the snow albedo model. Finally, we studied the impact of these 
albedo reductions in Alerce glacier using a spatially distributed surface mass-balance model. We found a large impact of
albedo changes in glacier mass balance, and we estimated that the effect of observed ash concentrations can be as high 
as a 1.25 meter water equivalent decrease in the glacier-wide annual mass balance (due to a 34 % of increase in the melt
during the ablation season).

Referee comment
Detailed Comments:
Page2
Line 26: Patagonian Andes or Wet Andes instead of Southern Andes ? ( to be more precise).
Author’s response
We agree with the referee that the suggested terms are more precise, we rephrased.
Manuscript Changes
Lines 25-26:
Along the SouthernWet Andes (below 35º S latitude), melt is driven by shortwave radiation and sensible turbulent flux 
(Schaefer et al., 2019). 

Referee comment
Line 27: you mean net shortwave ? Albedo is not influencing the oncoming shortwave radiation. I



would say summer, since in spring glaciers are mostly snow covered and exhibit high albedos
Author’s response
We thank the referee for the comments. Regarding the first comment, we rephrased the sentence in 
order to make sure the meaning of the sentence is transparent.  Regarding the second comment, we 
agree that the exposure of low albedo layers is much more significant in summer. 
Manuscript Changes
Lines 25-29:
The effect of incoming shortwave radiation absorption increases significantly is enhanced during spring and summer, 
due to the exposure of low albedo areas in their ablation zones, which causes strong, positive feedback that enhances 
surface melt significantly and shapes the spatial ablation pattern (Brock et al., 2000). 

Referee comment
Line 29 – until Page3 Line72: in this section you discuss the influence of light-absorbing 
impurities on snow albedo. You mention particulate matter, mineral dust, volcanic ash and black 
carbon). Are all particulate matter light-absorbing impurities? Are mineral dust, volcanic ash and 
black carbon both particulate matter and light-absorbing impurities? Perhaps order these definitions 
in an introducing sentence and avoid synonyms ( particulate matter = light-absorbing impurities?)
Author’s response
We agree with the referee that the original manuscript was not clear enough regarding these 
definitions, as was also pointed out by Anonymous Referee #1.
Manuscript Changes
We introduced several changes that are detailed in the Author’s Response to Anonymous Referee 
#1, pages 2-4.

Referee comment
Line 31: produced → producing
Author’s response
We thank the referee for the useful phrasing suggestion.
Manuscript Changes
Lines 29-31:
Furthermore, deposition of light-absorbing impurities (LAP; mineral dust, volcanic ash, and black carbon) have a 
fundamental impact on the melting of glacier and snow-covered areas by increasing the absorption of solar radiation 
and producinges a regional land-atmosphere feedback 

Referee comment
Line 32: “the growth of snow grains is accelerated” explain when and why.
Author’s response
We accept the referee’s suggestion to further explain this effect. We rephrased two sentences to 
better explain the direct and indirect effects of LAP on snow.
Manuscript Changes
Lines 29-33:
Furthermore, deposition of light-absorbing impurities (LAP; mineral dust, volcanic ash, and black carbon)
have a fundamental impact on the melting of glacier and snow-covered areas by increasing the absorption of solar 
radiation and produces a regional land-atmosphere feedback (Warren and Wiscombe, 1980; Bond et al., 2013; Molina et
al., 2015). LAP decrease snow albedo, increasing solar radiation absorption and thus producing a direct effect on snow 
melting. But, in addition, the snowpack temperature increase due to the direct effect  Along with the enhanced melting 
due to the darkening of the snow or ice surface,accelerates the growth of snow grains is accelerated, which further 
reinforces snowmelt rates due toproduces a further albedo decrease (and thus an additional, indirect impact on snow 
melting) (Bond et al., 2013; Flanner et al., 2007). 

Referee comment
Line 38: “as well as several positive feedbacks” which one?
Author’s response



The thorough review by Bond et al. (2013) describes in detail the multiple rapid changes in snow 
due to LAP deposition (see Fig. 29 of the reference). We added in the text two of the more important 
feedback processes and refer the reader to the reference. 
Manuscript Changes
Lines 37-40:
Different snow albedo models have been developed to include the direct effect of Black Carbon (BC) and other LAP 
atmospheric particulate matter (PM) as well as several positive feedbacks (Flanner et al., 2007; Koch et al., 2009; 
Krinner et al., 2006), such as the increase in surface concentration of impurities due to enhanced snow melting, or the 
albedo reduction due to snow grains growth by accelerated snow aging (Bond et al., 2013). More recently, models have 
included the effects of non-spherical snow grains (Libois et al., 2013; He et al., 2017), and external/internal mixing of 
impurities with snow grains (He et al., 2018). 

Referee comment
Line 42: do not understand the sentence. What is a particle metric distribution?
Author’s response
We agree with the referee that sentence needs rephrasing. We hope that this new phrasing gives a 
better, concise description of the main results of the references, and help the reader to find further 
details therein. 
Manuscript Changes
Lines 42-43:
More than just one particle metric distribution is necessary to reproduce the spectral snow albedo at all optical 
wavelengths, especially wWhen the snow has been undergoing heavy metamorphosis processes, a single snow grain 
size distribution is not enough to reproduce the snow spectral albedo, due to the fact that the largest particles and the 
thinnest protrusions of the irregular crystals have contributions to the snow reflectance that depend on the wavelength 
(Carmagnola et al., 2013; Pirazzini et al., 2015)

Referee comment
Line 45: explain broadband albedo
Author’s response
We thank the referee’s question. We rephrased the sentence to explain more clearly the results in 
Zhang et al., 2018.
Manuscript Changes
Notably, there has been found that taking into account the amount of LAPI in the snow reduces the difference between 
simulated and measured broadband albedos, specially in the visible range (Zhang et al., 2018).

Referee comment
Line 50: what is “online coupling”?
Author’s response
We agree with the referee that the phrase might not be clear for some readers. We use the term 
“online coupling” to imply that the two models (snow albedo model and atmospheric chemistry 
model) are run simultaneously and allowing two-way feedback. Other studies use offline coupling, 
where one of the models (usually, the atmospheric chemistry model) is run first, and the results are 
used as input for the other model (snowpack model or glacier mass balance model).
Manuscript Changes
Lines 50-52:
“Online” coupling of snow albedo models in global or regional atmospheric chemistry models (where both models are 
run simultaneously allowing two-way feedback) have been applied to study snow and glaciers interaction with the 
climate around the globe (Hansen et al., 2005; Flanner, 2013; Ménégoz et al., 2014).

Referee comment
Page3
Lines 67-68: do not understand the sentence starting with “For example ...” Reformulate!
Author’s response
We rephrased the sentence.
Manuscript Changes
Lines 67-68:



For example, the albedo reduction for spherical snow grains radii of 100 µm due to BC alone in the north was estimated
to beis only about 43 % of that for all light-absorbing impurities (assuming spherical 100 µm radii snow grains).

Referee comment
Page4
Line 94: I think the mass balance model is not mentioned in Ruiz et al 2017
Author’s response
We thank the referee for noticing the mistake, we corrected the position of the references regarding 
the Alerce glacier monitoring and we added a new one regarding the mass balance model.
Manuscript Changes 
Lines 91-94:
Since 2013 it has been the focus of a glacier mass balance monitoring program by the IANIGLA (Instituto Argentino de
Nivología, Glaciología y Ciencias Ambientales; Ruiz et al., 2015, 2017). Seasonal mass balance has been studied every 
year using the traditional glaciological method of stakes, and snow pits. An enhanced temperature index mass balance 
model has been developed (Huss et al., 2008; Huss, 2010)(Ruiz et al., 2015, 2017) to study the surface mass balance of 
the glacier. 

Referee comment
Page 5:
Line 124: … “with a” … → … with one ...
Author’s response
We thank the referee for the useful suggestion.
Manuscript Changes
Upwelling (reflected) and downwelling (direct + diffuse) radiation were measured with aone CM5 Kipp & Zonen 
pyranometer (wavelength range 0.3 µm to 2.8 µm), using two different in-house developed supports in 2016 and 2017 
campaigns, logged with a handheld voltmeter.

Referee comment
Line 126: How much W/m² is 0.1mv?
Author’s response
For reference, 0.1 mV represents approximately 9.5 W/m2 for our pyranometer. We did not find 
relevant to include the conversion factor in the article since we do not report solar irradiances, but 
only measured albedos (the conversion factor is not relevant for the radiation ratios).

Referee comment
Page 6
Line 166: “High-resolution pictures” … Would be great if you could show them in the 
supplementary material
Author’s response
We added a figure in the Supplement (Fig. S3). 
Manuscript Changes
Lines 166-167:
High-resolution pictures (Fig. S3, Supplement) where analyzed later with ImageJ software (Schneider et al., 2012).
Supplement, Fig. S3 (see at the end of this file)

Referee comment
Page 7
Line 173/174 “are decribed in detail in section 3.2” → (Section 3.2)
Line 180: for → of
Author’s response
We thank the referee for the useful suggestion.
Manuscript Changes
We adopted the suggested changes.

Referee comment



Page 8
Line 221&228 I could not open the links indicated for the weather stations! Please indicate distance
from glacier and elevation for both stations!
Author’s response
We thank the referee for noticing the mistake, we corrected the links and added the altitude of the 
stations.
Manuscript Changes
Line 221:
P(t) was the daily precipitation at Tepual weather station (90 m altitude, ID = 857990; 
http://www7.ncdc.noaa.gov/https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day)
Lines 277-228:
T(t) was taken from the air surface temperature at Bariloche airport weather station (846 m altitude, ID = 877650; http://
www7.ncdc.noaa.gov/https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day).

Referee comment
Page 9
Line 251/252: on the base of what is this interpretation?
Author’s response
The interpretation of the snow/firn layers is based on the observed stratigraphy of the snow column.
Snow pits walls and cores were described following common glaciological practices, in terms of 
layering, grain size and shape, content of PM, density and hardness. Dating of layers or attribution 
of time windows for each layer was based on the stratigraphic relations between layers and its 
characteristics. In this case, the layer (242 cm to247 cm) had a high PM concentration, was below 
a thick, relative low PM content, soft snow layer (interpreted as the snow accumulated during the 
accumulation season of the hydrological year 2015-2016) and above a harder, coarser grained firn 
layer (interpreted as the snow of the accumulation season of 2014-2015). 
Manuscript Changes
The deepest (242 cm to 247 cm deep) thin, high PM concentration layer ((1970 ± 200) mg kg−1) was interpreted as the 
surface at end of the ablation season of the hydrological year 2014-15, based on the abrupt change of the density, 
hardness and grain size of the snow above this layer and the firn found below.

Referee comment
Page 10
Line 262: Abl2-2016 → Abl1-2016?
Author’s response
We thank the referee for noticing the mistake
Manuscript Changes
We corrected the mistake in the sampling site name.

Referee comment
Line 264: “These sites ...” which one? Abl3 and Abl4 ? In Abl2 and Abl5 PM content also seems to 
be quite high!
Author’s response
The sentence refers to the sites Abl3-2017 and Abl4-2017, mentioned in the previous sentence, but 
we changed the sentence to avoid any misunderstanding. The PM content on the surface layer of 
those sites, (30000 ± 5000) mg kg−1 and (12000 ± 2000) mg kg−1 respectively, is much higher than 
that of any other site, due to the reasons explained in the manuscript and in the new section S2 of 
the Supplement (see response to the next comment). Sites Abl2-2016 and Abl5-2017 had a surface 
layer of recent snow. Below the surface layer, the PM content of the summer surface layer of site 
Abl2-2016 was (4400 ± 800) mg kg−1. Site Abl5-2017 presented glacier ice below the surface layer 
(which was not sampled).
Manuscript Changes
Lines 264-265:



These sSites Abl3-2017 and Abl4-2017 had a negative net balance during hydrological year 2016-17, consequently the 
surface layer presented the highest PM content observed in both campaigns

Referee comment
Line 268: “ firn layer from 2015 winter” – how do you know?
Author’s response
The layers from sites Abl3-2017 and Abl4-2017 (placed close to each other in the same 
accumulation pocket, see new Fig. S2 at the end of this file) were identified based on stratigraphic 
relationships. The dark surface at site Abl4-2017 was the topmost layer of the pocket, but based on 
the grain size (738 ± 167 μm), density and hardness, we interpreted that all accumulation from 2016
winter had melted. The high PM concentration (12000 ± 2000) mg kg−1 was also consistent with the
surface enrichment due to melting of snow deposited in more than one hydrological year. The firn 
below this layer was then identified as the accumulation layer from 2015 winter. In site Abl3-2017, 
towards the border of the accumulation pocket, the topmost layers described for site Abl4-2017 had 
also disappeared. Hence, we interpreted that all accumulation from 2015 winter had also melted in 
this site, and this darkest, surface layer contained most of PM deposited in 2016 and 2015. The firn 
layer below was interpreted as the accumulation layer from 2014 winter. 
Manuscript Changes
Lines 267-270:
In-situ stratigraphy revealed that in Abl4-2017 site, the high concentration layer was on top of relatively low 
concentration, firn layer from 2015 winter, which means that, during the 2016-2017 ablation season, all the snow 
accumulated during 2016 winter was melted. Site Abl3-2017 presented an even lower net balance, revealing older firn 
(winter 2014) below the surface high concentration layer. See Sect. S2 in Supplement for additional details on the 
attribution of layers in sites Abl3-2017 and Abl4-2017.
Supplement, line 34:
S2 Dating of snow/firn layers
Most snow/firn layers sampled during both field campaigns were easily dated, considering that the topmost layer 
contains the most recent snow and attributing layers below based on PM content, density, hardness and grain size. 
Topmost layers were identified as: 
(1) fresh snow from a recent deposition events, on the accumulation zone, (sites Acc1-2016, Acc2-2016, Acc4-2017, 
Acc5-2017, Acc6-2017 and Acc7-2017, Fig S2(a)), on an accumulation pocket (site Abl1-2016), or on top of ablation 
ice (sites Abl2-2016 and Abl5-2017),
(2) end-of-ablation season surface, with high enrichment of PM content (Acc3-2016, Fig. S2 (b)), or
(3) ablation ice (site Abl6-2017).
The only exception were sites Abl3-2017 and Abl4-2017, placed in an accumulation pocket in the ablation zone of the 
glacier. As can be seen in Fig. S2 (c), site Abl4-2017 corresponded to the topmost layer of the pocket (which 
disappeared toward the borders of the pocket, site Abl3-2017). However, based on the hardness, density, coarse grain 
size (738 ± 167 μm) and high surface enrichment (PM content as high as (12000 ± 2000) mg kg−1  ), we interpreted that 
this was a firn layer due to negative net accumulation during 2016-2017 hydrological year. The sub-surface firn layer of
site Abl4-2017, with a low PM content, was attributed to firn accumulated during 2015 winter. Since those two layers 
have disappeared in site Abl3-2017, this area was identified as an area with even lower specific mass balance, where all 
accumulation from 2015-2016 hydrological year had also melted. The PM content, (30000 ± 5000) mg kg−1  ,     is 
consistent with the expected higher surface enrichment. The sub-surface firn layer was then attributed to accumulation 
during 2014 winter.
Supplement, Fig. S2 (see at the end of this file)

Referee comment
Line 290/291: “low seasonal humidity” – do you mean variations?
Author’s response
We thank the referee for suggesting to clarify this sentence. During summer, snow melting exposes 
volcanic ash (and mineral dust) deposited in previous years in Monte Tronador and surrounding 
mountains. During the summer, when humidity is particularly low (such as in 2016 summer), 
mobility of ash and soil is higher, producing more relevant resuspension events. 
Manuscript Changes
Lines 290-294:
The magnitude of resuspension events in Andean Patagonia, a region with strong, persistent westerlies and a dry season 
with low seasonal relative humidity, is well known. These aeolian remobilization events may produce huge ash clouds 



that may be even confused with true volcanic plumes, they can remobilize ash tenths of kilometers away (Toyos et al., 
2017). In particular, the deposits of volcanic ash that are covered by snow during the winter in the high mountain 
usually become exposed to remobilization during the summer, travelling through the atmosphere and redepositing over 
different surfaces due to decrease of wind competence or by adherence of particles on humid surfaces, even at 
considerably high altitudes.

Referee comment
Page 11
Line 328: “it was dated as winter snow from 2014” – how?
Author’s response
The interpretation was based in stratigraphic relationships as discussed for Line 268 comment 
(above).
Manuscript Changes
One of the samples described under microscope, corresponds to a sub-surface sample from site Abl3-2017, it which was
dated interpreted as winter snow from 2014, previous to 2015 Calbuco eruption, and approximately 75 % of the 
observed particles correspond to fine-grained colourless pumiceous ash.

Referee comment
Page 12:
Line 349: “a single measurement” - what does that mean? One voltage reading? How stable is the
voltage in time?
Author’s response
The sentence means that in 2016 campaign the pyranometer was placed once towards incoming 
solar radiation and once towards radiation reflected by the snowpack. The voltage was stable 
during reading (up to the 0.1 mV resolution of the voltmeter), and hence we used the voltmeter 
resolution as the instrumental uncertainty. In 2017, the higher resolution voltmeter allowed to see 
changes in voltage readings. As we explain in the manuscript, we believe that this was due both to 
the higher resolution of the voltmeter and to faster changes in cloudiness.
Manuscript Changes
Lines 349-350:
For the 2016 campaign, the reported measured albedo is a single measurement (registered after voltage reached a stable 
value) and is informed together with its instrumental uncertainty.

Referee comment
Line 259: SNOW RADIUS!!!
Author’s response
We thank the referee for the suggestion.
Manuscript Changes
Lines 359-361:
In fresh snow samples from the accumulation zone (sites Acc5-2017 and Acc6-2017) we found an average snow grain 
radius of (151 ± 41) µm, whereas in samples 360 of older firn in the ablation zone (or sub-surface snow/firn in the 
accumulation zone) we measured values usually around (1000 ± 200) µm. 

Referee comment
Table1:
Why are there two values for the measured albedo in Abl4?
Why do you present the measured albedo in different lines? Should be always next to the modelled
W.Aver?
Author’s response
We thank the referee for the comments. For site Abl4-2017, we decided to register two sets of 
measurements, instead of one single set, due to the observed rapid movements of clouds. The 
irradiance values were significantly different in both sets, and so were the average albedo values. 
The second value is similar to the one measured in site Abl3-2017, and both are similar to the 
modeled value. The coincidence with the modeled value suggests that the sky pictures (taken after 
both sets of measurements) and cloud cover estimate represent better the sky conditions of the 



second set of measurements. Regarding the second comment, we do agree that the measured albedo 
should be always placed next to the weighted average modeled albedo. 
Manuscript Changes
See modified Table 1 at the end of this file
Lines 376-379:
For overcast conditions (Acc3-2016, Abl3-2017 and Abl4-2017), the pure diffuse albedo from both models is also 
similar, and weighted average albedo from SNICARv2.1 is coincident with the pure diffuse albedo. For both models, 
the diffuse radiation spectrum for overcast conditions is coincident with global solar radiation spectrum (see Fig. 4), 
which explains the similar results. It must be noticed that for site Abl4-2017, we observed rapid cloud movements, and 
we decided to register two sets of albedo measurements, The average albedo of the second set is similar to the modeled  
weighted average albedo and to the measurement for site Abl3-2017. We suggest that this coincidence means that the 
pictures of the sky above the site (taken after the two sets of measurements) and the estimate of cloud cover based on 
those pictures represent more accurately the sky conditions during the second set of measurements.

Referee comment
Last column:
could you describe in the methods how you obtain these sensitivities? Are they really always
symmetric? I do not understand the uncertainty associated to the concentration of BC? Why is is
sometimes 100micrograns/kg and sometimes 20mg/kg.
These numbers have many zeros! Could you better indicate the percentual sensitivity and mark the
most important contributor?
Author’s response
We thank the referee for the comment. The sensitivity studies were performed modifying one 
parameter at a time in SINCARv2.1 calculations: for parameter “A”, we calculated the albedo 
values α(A+ΔA), α(A) and α(A-ΔA) (where ΔA stands for the parameter uncertainty reported in the 
Table 1), keeping all other parameters unchanged. The sensitivities calculated in this way are not 
always symmetric: we expressed them as single range to make the table easier to read, but we 
accept the referee suggestion to show that asymmetry. However, we prefer to keep the expression of 
the observed albedo change (instead of percentage change) to better appreciate which significant 
figures of the modeled albedo are affected by each estimated sensitivity.
Regarding BC, we were not able to measure (yet) the carbon content of the samples, due to 
difficulties of equipment availability. We introduced a sensitivity study on BC content since one of 
the possible limitations of our simulations is the uncertainty regarding other LAP present in the 
samples aside from volcanic ash. The example value of 100 μg/kg was chosen since is compatible 
with BC concentrations usually found on glacier surfaces (e.g., Ginot et al. 2014). For sites with 
higher LAP concentration, 100 μg/kg of BC did not modify the modeled albedo, hence we decided to
also calculate the impact of a higher amount of BC (20 mg/kg) to show how high it would need to 
be to have a similar impact in the albedo.
Manuscript Changes
Table 1:
We corrected the expression of the sensitivities in the last column to show that they are not symmetrical with respect to 
the parameters uncertainties. We highlighted the most important contributors for each site.  See modified Table 1 at the 
end of this file.
Lines 407-410:
The last column in Table 1 reports the results of sensitivity studies to evaluate the impact on the calculated albedo of the
uncertainty in key input parameters. We define the sensitivities as the modeled albedo changes increasing or decreasing 
one parameter in the same magnitude of its reported uncertainty (identified in Table 1 with a “+” or a “–“ sign, 
respectively), while keeping all other parameters unchanged. The parameters have been modified in ranges allowed by 
the uncertainty of the input parameters. For each site, we studied PM content and grain size impact, together with other 
parameters that could be relevant at each site. We highlighted (with bold characters) the higher sensitivities for each 
site.

Referee comment
Page14.
Line 399: non-additive → non-linear?
Author’s response



We thank the referee for the suggestion. We believe that in this context both phrases express almost 
the same meaning, but we prefer the expression “non-additive” since it remarks the fact that we are
talking about the effect on albedo of two separate fractions of LAP. 
Manuscript Changes
No changes were introduced.

Referee comment
Page 15
Line414/415: revise sentence starting with: “Volcanic ash ...”
Author’s response
We thank the referee for the suggestion.
Manuscript Changes
Lines 414-415:
The uncertainty of Vvolcanic ash content uncertainty does not have a relevant impact for any of the sites, although it is 
larger for site Abl4-2017.

Referee comment
Line 419: what is a thin layer? Give number!
Author’s response
We thank the referee for the suggestion. We added a reference to specific samples/sites and their 
thicknesses to clarify the affirmation. 
Manuscript Changes
Lines 419-421:
The impact is maximum for very thin layers, especially when the underlying layer has a significantly different
albedo (i.e., PM content)site Abl4-2017, 0.1 cm thick), and its minimum for the thicker layers (sites Acc5-2017 or Acc6-
2017, 9 cm thick), or for intermediate thicknesses with high PM content (i.e., low penetration of incident light, site 
Abl3-2017, 0.3 cm thick).

Referee comments
Page 16
Line 442 Albedo and glacier mass balance model: up to now only modeled mass balance is 
analyzed
Line 443 “… glacier wide modeled annual and winter …”
Author’s response
We thank the referee for the suggestions. For the section title, we suggest a different phrasing that 
we find represents better the content of the section.
Manuscript Changes
Lines 442-444:
3.4 Albedo and modeled impact on glacier mass balance
Table 2 shows the glacier-wide modeled annual and winter mass balance, Equilibrium Line Altitude (ELA) and 
Accumulation Area Ratio (AAR) for different values of old snow albedo (αf irn). 

Referee comments
Page 18
Line 510: delete “PM over”
Line 519: delete “major”
Author’s response
We thank the referee for the suggestions. Regarding the first comment, we do not agree: our 
manuscript focus on the impact of PM or LAP on albedo. Hence, we prefer not to delete the phrase. 
Regarding the second comment, we suggest an additional change that reflects better the intended 
meaning: the fact that volcanic ash are not only present, but that they represent the major fraction 
of the collected PM.
Manuscript Changes
Lines 519-521:



The major presence offact that volcanic ash represents the largest fraction of the collected PM in all studied samples 
indicates that the effect of nearby volcanic eruptions are expected not only immediately after direct deposition, but also 
many years later, due to surface enrichment and wind resuspension and redeposition. 

Referee comment
Line 523/524: please propose how to take account for that
Author’s response
We thank the referee for the suggestion. While we do propose how to take account for the spatial 
heterogeneity of PM distribution at the end of the previous section, we agree that is appropriate to 
summarize that in the Conclusions as well.
Manuscript Changes
Lines 522-523:
These facts need to be accounted for when studying the effect of snow albedo on glacier mass balance. While the albedo
parametrization used in the mass balance model partially accounts for the spatial heterogeneity of PM surface 
concentration (implicitly), we suggest that in the future it would be useful to couple our mass balance model with an 
atmospheric model which provides prognosis of PM content and a snow albedo model that includes LAP effect 
explicitly.

Referee comment
Page 19
Line 525: “We found that rapid changes ...” this is only a problem for your specific set-up. If you
are able to measure upwelling and downwelling radiation simultaneously, this is not a problem.
Author’s response
We thank the referee for noticing the phrasing mistake. Indeed, we are not describing an inherent 
problem of albedo measurements but a limitation of our set-up. Using two pyranometers has other 
instrumental limitations that need to be aknowledged (specially, the need to account for the different
sensitivities of the upward and downward sensor; Pirazzini, R., J.Geophys.Res., 109, D20118, 
2004).
Manuscript Changes
Lines 525-526:
We found that for our set-up (where the pyranometer must be inverted sequentially to measure upwelling and 
downwelling radiation) rapid changes in cloudiness hinder the repeatability of albedo measurements and may degrade 
the comparison with modeled albedo. 

Referee comment
Line 530: “… suggesting strategies ...“ which strategies are you suggesting? Which were the most
important uncertainty?
Author’s response
We thank the referee for the suggestion.
Manuscript Changes
Lines 530-533:
The effect of uncertainties of field measurements of snow properties was evaluated for different types of samples (lower
or higher LAPPM content, grain size, layer thickness, snow density, etc.), suggesting strategies to reduce uncertainty in 
snow albedo modeling or retrieval of snow properties from measured albedo. We found that snow grain size must be 
measured more carefully in samples with low volcanic ash content and that the accuracy of layer thickness can be 
relevant not only for very thin layers (0.1 cm) but also for thicker layers (6 cm) with low ash content. The accuracy of 
ash content was found to be good enough for reproducing our albedo measurements. However, it was remarked that the 
presence of small amounts of BC can affect the albedo significantly in samples with low ash content.

Referee comment
Line 534/535: glacier-wide albedo change sensitivity : explain this sensitivities with words or 
indicate where it was defined.
Author’s response
The glacier mass balance sensitivity to albedo change is defined at lines 445-447.

Referee comment



Line 536: how high concentration of volcanic ash do you need for this reduction in SMB?
Author’s response
We thank the referee for the question. The mentioned impact on the glacier mass balance was 
estimated with the minimum snow albedo value of 0.4 (see lines 459-468), which was based on the 
modeled daily average for site Abl4-2017, with an estimated volcanic ash content of (12000 ± 2000)
mg kg−1. However, we have calculated that the modeled albedo for site Acc3-2016 varies only 3.8% 
for ash contents between 4500 mg kg−1 and 10500  mg kg−1. Hence, the 0.4 albedo value can 
represent a range of sites with high volcanic ash content.
Manuscript Changes
Finally, we suggest that the effect of volcanic ashes in Alerce glacier can be as high as a 1.25 mwe decrease in the 
glacier annual mass balance or a 34 % of increase in the melt during the ablation season, considering a surface volcanic 
ash content compatible with that measured in sites Acc3-2016, Abl3-2017 and Abl4-2017.

Referee comment
Figure 1:
could you please show the outline of Alerce glacier in the map and contour of terrain elevation? 
Would also be nice to have another more zoom-out map to better see the glaciolocial context of 
Alerce Glacier.
Author’s response
We thank the referee for the suggestion. We modified Fig. 1 to include the glacier outline and an 
inset with a zoom-out.
Manuscript Changes
See modified Fig. 1 at the end of this file.

Referee comment
Figure 2:
what meaning has a white column color?
What do you think: why did you not find the dark layer at 45cm in Acc4 in Acc5?
Author’s response
Regarding the first question, white color was not used in the concentration gray-scale, hence white 
color appears only at the depth where sampling ends (for instance, below 10 cm for site Acc6-
2017). 
Regarding the second question, we regret that weather conditions did not allow us to continue the 
snow spit in site Acc5-2017. We believe that the dark layer corresponding to the 2016 summer 
surface layer was not too far below. This area of the accumulation zone of the glacier has a high 
specific accumulation variation in very short surface distances. 

Referee comment
Figure 4:
what are the units of the Y-Axis?
Diffuse radiation should be less intense than the direct one!
Author’s response
We thank the referee for the comment. The spectra shown here are normalized to highlight the 
difference in their wavelength dependence, hence the Y-Axis has arbitrary units. We have corrected 
the caption of Fig. 4 as a response to a similar question by Anonymous Referee #1.
Manuscript Changes
We corrected the caption of Fig. 4, see Author’s Response to Anonymous Referee #1, pages 6-7.





Figure 1. Alerce Glacier (green line represents the outline of the glacier). Labels of contour lines of terrain 
elevation are expressed in meters above sea level. Sampling points are represented as blue rhombuses. Red 
circles represent ablation stakes used for mass balance model calibration (model output for labeled ablation 
stakes is shown at Figure S6). Otto Meiling mountain hut and inset of the location of Monte Tronador in the 
context of Southern SouthAmerica are represented for reference. Background image: false-color pan-
sharpened Pléiades satellite image, 7 March 2012, PGO, CNES-Airbus D & S (Ruiz and others, 2015). 



Figure S2. Field pictures of sampling sites. (a) General view of the area of the accumulation zone that 
includes sites Acc1-2016, Acc2-2016, Acc3-2016, Acc4-2017, Acc5-2017, Acc6-2017 and Acc7-2017. 
(b) Close view of surface of site Acc3-2016 (darkest layer, bottom of the picture), next to recent fresh snow 
(top of the picture). (c) Accumulation pocket in the ablation area of sites Abl3-2017 and Abl4-2017.



Figure S3. High resolution macro pictures of snow/firn grains, Alerce glacier, 2017. (a) Surface fresh snow 
sample, April 2017, site Acc5-2017. (b) Surface snow/firn sample, attributed approximately to April 2016 
(due to negative specific mass balance), site Abl4-2017. (c) Sub-surface firn sample, attributed to winter 
2015, site Abl4-2017. (d) Sub-surface firn sample, attributed to winter 2014, site Abl3-2017. In all pictures 
the green bar width represents 1 mm.



Figure S4. Snow thickness and ablation stakes used for calibration and validation of the mass balance 
model. Blue rhombuses are albedo and PM sampling points (same as in Fig. 1 of the main article). 
Background image: false-color pan-sharpened Pléiades satellite image, 7 March 2012, PGO,CNES-Airbus D 
& S (Ruiz and others, 2015).



Figure S5. Calibration of the mass balance model with 2016 measurements. (a) First step of the calibration, 
with winter thickness measurements. (b) Second step of the calibration, with summer specific mass balance 
measurements (ablation stakes).

Figure S6. Mass balance model fitting with 2016 measurements for two specific ablation stakes. The 
residuals between measurements and model it is shown for comparison. Location of (a) stake A VI and (b) 
stake A are represented in Fig. 1 of the main article.





Author’s response to Anonymous Referee #1

Referee comment
This paper gives a thorough account of April (2016 and 2017) field measurements conducted on the 
Alerce Glacier in the Northern Patagonian Andes. Combined with an updated Snow, Ice, and 
Aerosol Radiative (SNICAR) model that accounts for partly cloudy conditions, the measurements 
are used to estimate the glacier’s April 2016 – April 2017 surface mass balance. Representing the 
first particulate matter concentration, albedo, and grain size measurements conducted on the Alerce 
Glacier, these results are a valuable contribution to the community and therefore warrant 
consideration for publication in The Cryosphere. Before acceptance, however, there are specific 
concerns, provided below, followed by a list of technical corrections that I recommend the authors 
consider in a minor revision.
Author’s response
We deeply appreciate the referee for the thorough and useful comments to improve the manuscript.

Referee comment
Throughout the manuscript, the authors refer to an average snow grain radius value that they claim 
(in Sect. 2.2) to be precise. Average radii values were obtained using two methods: from visual 
inspection against a crystal grid, which is outdated, and from ImageJ software, which, to my 
knowledge, is not a standard method for obtaining snow grain radius. Although these methods 
provide one estimate of snow grain size (e.g., the length of maximum dimension), they will not 
yield a precise optically equivalent snow grain radius (nor specific surface area) that is the relevant 
quantity in two-stream snow radiative transfer algorithms like the SNICAR model. To reduce a 
potential source of error regarding the SNICAR modeling results, I suggest placing a greater 
emphasis on the other measured quantities used as inputs into the SNICAR model, especially the 
light absorbing particle (LAP) concentrations.
Author’s response
We appreciate the referee’s comment. Regarding the method in the first field campaign, we do agree 
is outdated, but it was the only method available for the first, exploratory campaign. Regarding the 
improved method we used in the second field campaign, which averages the maximum and 
minimum axes of equivalent ellipses that fit the snow grains in the pictures, we believe that it gives 
a reasonable estimate of the particles dimensions. We want to clarify that we do not claim that it is 
“precise”, but only “more precise” than the previous method. The main evidence in support of our 
grain size results is that the differences among measured albedo values for fine and coarse snow 
can be explained using these grain size values in SNICARv2.1 model. 
Nevertheless, we do agree that the snow grain size measurement method could be further improved. 
Pirazzini et al. (2015, cited in the manuscript) also use 2D photos, but with a different metric. They 
suggest that their metric is a proxy for “half the width of the shortest particle dimension”, which 
they claim is a better approximation of the optically equivalent snow grain radius. If that is the 
case, our results would overestimate the optically equivalent snow grain radius. Pirazzini et al. 
determined 11% uncertainty in the 2D photos metrics (due to the subjectivity of the software 
operators). Although we did not determine such kind of uncertainty in our measurements, we report 
the estimated effect of the dispersion of the grain size for each sample, through sensitivity studies on
SNICARv2.1 model. Even though the dispersions are large (probably larger than the uncertainty of 
the method), the effect on the modeled albedo are lower than 4.5% (for clean snow) or lower than 
0.8% (for dirty snow). We believe that this explains the fact that we can reproduce the measured 
albedo using the estimated grain size together with other snow properties (especially LAP content), 
even though our grain size estimate might not be as accurate as that obtained by other methods.
Spectral albedo (not available in our field campaigns) would be a complementary approach to 
validate separately the effect of snow grain size and LAP content on our albedo results. For 
instances, Carmagnola et al. (2013, cited in the manuscript) measured snow SSA (indirectly, 



through an IR optical method) independently of LAP content, which mostly affects UV-vis albedo 
(lines 33-35 of the manuscript). 
We modified the manuscript to include the limitations of our snow grain size measurement method, 
and we also modified the discussion of the results to remark that snow grain size results might not 
be as accurate as that from other measurements.
Manuscript Changes
Sect. 2.2, lines 165-168
In the 2017 campaign, a similar in-house developed grid was used (with two scales: 1 mm and 0.5 mm) in combination 
with a macro lens and a mobile phone digital camera. High-resolution pictures where analyzed later with ImageJ 
software (Schneider et al., 2012). Snow grains were manually fitted with ellipses; the metric choice was the average of 
the minor and major axes of the ellipse. The new equipment and methodology introduced in the 2017 campaign allows 
a more detailed description of the snow samples and a more precise average radius value.
Sect. 3.3, lines 358-361
Regarding snow grain sizes, it is relevant to notice the range of observed average radius. In fresh snow samples from 
the accumulation zone (sites Acc5-2017 and Acc6-2017) we found an average radius of (151 ± 41) µm, whereas in 
samples of older firn in the ablation zone (or sub-surface snow/firn in the accumulation zone) we measured values 
usually around (1000 ± 200) µm. Pirazzini et al. (2015) also used 2D photos, but with a different metric. They suggest 
that SSK (shortest skeleton branch) is a proxy for “half the width of the shortest particle dimension”, which they claim 
is a better approximation of the optically equivalent snow grain radius. Our metric (see Sect. 2.2) would probably give 
higher results than SSK, and hence we might have overestimated the optically equivalent snow grain radius. 
Nevertheless, as we show below in this section, our grain size measurements seem to be good enough to reproduce the 
measured albedo for fine and coarse snow in SNICARv2.1 snow albedo model. 
Sect. 3.3, lines 403-406
In the other hand, comparison between sites with low PM content shows that snow grain size has a remarkable effect, as
previously reported (Wiscombe and Warren, 1980; Hadley and Kirchstetter, 2012). Fresh snow with small grain size 
presents αmeas ≈ 0.8 (sites Acc5-2017 and Acc6-2017), but snow with similar PM content that has aged a few days 
presents αmeas ≈ 0.6 (site Acc2-2016). Spectral albedo measurements (not available in our field campaigns) would allow 
to study separately the effect of grain size and LAP content  (see for instances measurements of snow specific surface 
area, SSA, in Carmagnola et al., 2013), to confirm that our grain size measurements are a good estimate of the optically 
equivalent grain radius.
Sect. 3.3, lines 411-414
Concerning grain size uncertainty (the standard deviation of snow grain radii in each sample), it is clear that the impact 
on albedo is much larger when PM content is low (sites Acc2-2016, Acc5-2017 and Acc6-2017). For low PM content 
sites, the effect is comparable to experimental uncertainty, and is relevant both for sites with finer and coarser grain 
sizes snow. For sites with high content of PM the uncertainty of grain size do not have an appreciable effect. Pirazzini et
al. (2015) determined 11% uncertainty in the grain size measurements from 2D photos (due to the subjectivity of the 
software operators). Although we did not determine such kind of uncertainty in our measurements, we suggest that the 
reported standard deviation (between 16% and 26% of the average value) is probably larger than the uncertainty of the 
method. The sensitivity studies showed that the effect on the modeled albedo is lower than 4.5% for clean snow and 
lower than 0.8% for dirty snow. We believe that this explains the fact that we can reproduce the measured albedo using 
the estimated grain size together with other snow properties (especially LAP content), even though our grain size 
estimate might not be as accurate as that obtained by other methods.

Referee comment
Regarding the use of terminology, a reader would benefit from a brief description of the distinction, 
if any, between LAPs and particulate matter (PM). The abstract begins by stating the relevance of 
light absorbing impurities in snow studies, however, the results and discussion most frequently refer
to PM. Because “LAP” is a well known acronym, I suggest either maintaining the convention used 
in the literature, or defining PM while also elucidating the reason for the use of “PM” to describe 
these particular measurements.
Author’s response
We agree with the referee that we should stress the difference between both expressions. The 
gravimetric measurements presented on this manuscript must be attributed to PM deposited on the 
glacier, because we don’t know precisely the fraction of LAP among total PM. Qualitative 
observations also reported here (field stratigraphies and microscopy observations) suggest that 
most of collected PM can be attributed to volcanic ash. Quantifying the fraction of ash in collected 
PM (and/or measure the contributions from 2011 Cordon-Caulle and 2015 Calbuco eruptions) was 
not amenable. Routine stereo microscope inspection, even at high magnification (up to 80x), did not



allow quantification; only estimates of percentage of dark components was possible due to the fine- 
grained components. Na2O, K2O and SiO2 content (SEM-EDS) from individual particles helped to 
distinguish volcanic ash from both eruptions, as exemplified in the manuscript (Fig. 8). In addition, 
CaO and FeO contents also proved useful to distinguish Cordón Caulle volcanic ash from ash 
derived from the 2015 Calbuco eruption (not included in the manuscript), but measuring a 
representative number of particles through SEM is not feasible. Hence, at this moment we can only 
suggest that most of PM on these samples correspond to volcanic ash, and that is the reason why we
used SNICAR’s built-in volcanic ash optical properties without further tuning. We know this is not 
exact, since optical microscopy and SEM microscopy have shown evidence of a minor fraction of 
mineral dust and black carbon, but we believe our results show that this assumption is a good first 
order approach to understand snow albedo on the glacier surface. A follow up article will include 
further chemical characterization of these samples, which has been delayed due to several reasons.
We modified the manuscript to introduce a clear distinction between PM and LAP (LAI in our 
previous version of the manuscript), and we checked that those terms were used consistently 
through the manuscript.
Manuscript Changes
- We replaced the acronym “LAI” by “LAP” throughout the text.
- We replaced the acronym “PM” by “LAP” in some paragraphs, to clarify that we refer to the 

effect of particles that absorb light:
Sect. 1, lines 73-82:
Here we present the results from two field campaigns developed in the Alerce glacier during April 2016 and April 2017 
to assess the bounds of PM deposition impact in the Alerce glacier mass balance. We show in situ albedo measurements 
and PM concentration values measured on surface and sub-surface snow and firn samples in accumulation and ablation 
zones of the glacier. Albedo in situ measurements are compared with results from SNICAR snow albedo model (Flanner
et al., 2007; He et al., 2018), using measured snow properties and LAP PM content as input data. We present here an 
improvement of SNICAR’s incident radiation spectra (presented as SNICARv2.1), to take into account changes in 
direct and diffuse solar radiation for partly cloudy skies. We study the effect of nearby volcanic events that occurred in 
recent years (Puyehue-Cordón Caulle and Calbuco). Finally, the influence of LAP PM on snow/ice albedo on the annual
surface mass balance of Alerce glacier is assessed using an enhanced temperature index melt model (Oerlemans, 2001). 
This study is not only the first field study of the impact of LAP PM in Argentinian glaciers, but also one of the few 
studies of the long-term impact of volcanic ash on snow albedo.
Sect. 2, lines 93-95:
An enhanced temperature index mass balance model has been developed (Ruiz et al., 2015, 2017) to study the surface 
mass balance of the glacier. This model is used here to analyze the influence of LAP PM, through glacier albedo 
changes, over the mass balance of Alerce glacier.
Section 2.3, lines 171-173:
Snow density and layer thicknesses were taken as parameters from in-situ stratigraphies. Average snow grain size and 
shape were obtained from in-situ measurements. LAP PM content was obtained from filters gravimetry.
-      We added two paragraphs to emphasize the difference between PM and LAP, and to further 
explain the approximation of assuming that all PM is volcanic ash (already mentioned in the 
original version of the manuscript in Sect. 2.3):
Sect. 1, line 37: 
Atmospheric particulate matter (PM) is diverse in size, chemical composition and optical properties; while most PM 
reflect a large fraction of the incoming radiation and thus have a cooling effect on the atmosphere, other particles absorb
a relevant fraction of the visible radiation (depending on the ratio of their absorption and scattering coefficients) and 
have a heating effect (Bond et al., 2013). In snow, the term LAP is used to refer to black carbon (BC), mineral dust, 
volcanic ash and all other particles that totally or partially absorb incident light and hence increase the snow energy 
absorption. Different snow albedo models have been developed to include the direct effect of Black Carbon (BC) and 
other LAP atmospheric particulate matter (PM) as well as several positive feedbacks (Flanner et al., 2007; Koch et al., 
2009; Krinner et al., 2006), the effects of non-spherical snow grains (Libois et al., 2013; He et al., 2017), and 
external/internal mixing of impurities with snow grains (He et al., 2018). 
Section 3.2, lines 339-342:
The predominance of volcanic glass in the collected PM indicates the need to take into account the effect of volcanic 
ash in the albedo of seasonal snow and glaciers of the region, which can be frequently affected by volcanic eruptions. It 
must be emphasized that ash from CC and Cal eruptions was observed in most of the samples, not only in layers dated 
immediately after the eruptions, but also many years after direct deposition.
Field stratigraphy together with these microscopy results suggest that we can study the effect of LAP on snow albedo 
considering that all PM content can be attributed to LAP (and more specifically, to volcanic ash). Further chemical 



studies will be performed on the PM samples to refine the representation of LAP in the snow albedo model, since 
optical properties can be very different for BC, mineral dust, volcanic ash, etc. (the ratio of light absorption to light 
scattering at different wavelengths depends on particle size, shape, and chemical composition).

Referee comment
Although I found Sect. 3 to be well written, I recommend the following technical corrections 
regarding mostly the other sections and figures:
1. Abstract (lines 1–4): Background could be refined, perhaps by moving one or two of the 
sentences into Sect. 1, to quickly introduce the present work.
Manuscript Changes
Abstract, lines 1-4: 
The relevance of light absorbing impurities in snow albedo (and its effects in seasonal snow or glacier mass balance) 
have been under study for several decades. However, tThe effect of volcanic ash in snow albedo (and its impact in 
seasonal snow and glacier mass balance) has been much less studied than that of other light absorbing impurities such 
as carbonaceous particles and mineral dust. , and most articles studied only the effect of thick layers after direct 
deposition. There is also a knowledge gap in field measurements of seasonal snow and glaciers of the southern Andes, 
that only recently has started to be filled. We present here the first field measurements on Argentinian Andes, combined 
with albedo and mass balance modeling activities. 

Referee comment
2. Abstract (line 6): “during ablation” → “during the ablation”
3. Abstract (line 9): “from recent...eruption, with minor” → “from the recent...eruptions, with a 
minor”
4. Abstract (lines 11–12): “SNICAR model has been updated to model snow albedo taking into 
account” → “We updated the SNICAR model to account for”
Author’s response
We thank the referee for the useful grammar/phrasing suggestions.
Manuscript Changes
We adopt all changes suggested by the referee.

Referee comment
5. Abstract (line 14): This part seems like an important component of this study, yet, it took me two 
or three times to understand the meaning of this sentence. Perhaps “which field measurements 
precision” can be rephrased to improve the readability.
Author’s response
We agree with the referee regarding the readability of the sentence, we rephrased it.
Manuscript Changes
Abstract, line 14: 
We also ran sensitivity studies consideringon the uncertainty of the main measured parameters (impurities content and 
composition, snow grain size, layer thickness, etc) to detect the field measurements that should be improved to facilitate
the validation of the snow albedo model.to assess which field measurements precision can improve the uncertainty of 
albedo modeling.

Referee comment
6. Abstract (line 17): “m we” → “m snow water equivalent (SWE)”
Author’s response
We thank the referee’s suggestion, but we believe that both abbreviations for the snow water 
equivalence are widely used. We do agree that it needs to be defined in the abstract, and also in the 
main text.
Manuscript Changes
Abstract, line 17
1.25 meter water equivalentm we decrease
Sect. 3.4, line 447
−0.6 meter water equivalent per year (m w.e./yr )



Referee comment
7. Sect. 1 (line 20): I like this opening, but the first sentence needs to begin with “Since” or
“Because.”
Author’s response
We agree with the referee’s suggestion.
Manuscript Changes
Abstract, line 20
Since Gglaciers are highly sensitive to climate fluctuations, their unprecedented retreating rates observed during the last
decades represent one of the most unambiguous signals of climate change

Referee comments
8. Sect. 1 (line 29): It’s probably better to use the term “light-absorbing particles (LAP)” (Skiles et 
al., 2018).
9. Sect. 1 (line 38): What is the distinction between LAP and atmospheric particulate matter?
Author’s response
See response and changes in the discussion regarding PM and LAP above in this file.
Referee comments
10. Sect. 1 (line 44): “there has been found” → “it has been shown”
11. Sect. 2 (lines 88-89): “the hydrological year is defined from the 1-April to the 31-March
of the next year. The accumulation season last from 1-April to 31-October and the ablation
season from 31-October to the 31-March of the next year.” → “the hydrological year begins
on April 1st with the accumulation season. The accumulation season lasts until October 31st,
which marks the beginning of the ablation season.”
Author’s response
We thank the referee for the useful grammar/phrasing suggestions.
Manuscript Changes
We adopt all changes suggested by the referee.

Referee comments
12. Fig. 1 (caption): It might be good practice to include the term “true color” in the description to 
indicate that the image is intended to reproduce a natural color rendition.
13. Fig. 2 (caption): It might be good practice to indicate that the grayscale used is logarithmic.
Author’s response
We thank the referee for the useful suggestions.
Manuscript Changes
Fig. 1 caption:
Figure 1. True color Ssatellite image of Alerce Glacier. Sampling points are represented as blue markers (2017 
campaign) and red markers (2016 campaign). Green marker represents Otto Meiling mountain hut. Copyright: © 
Google Earth, 2020, CNES/Airbus
Fig. 2 caption:
Figure 2. PM concentration (grayscale) as a function of pit depth for different sampling sites. Notice that the grayscale 
is logarithmic. Top panel: accumulation zone. Bottom panel: ablation zone. α symbol is used to highlight sites with 
concurrent albedo measurements. In sample Abl2-2016, the top rectangle corresponds to the average PM content of the 
first two layers (fresh snow and end-of-summer dark layer).

Referee comment
14. Sect. 2.2 (line 125): Please provide additional details of the “in-house developed supports” in 
order to improve the reproducibility of results.
Author’s response
We added a Figure at the Supplement to provide additional construction details on the supports.
Manuscript Changes
Sect 2.2, line 150
Additional details on the supports are given in Fig. S1 in Supplement.
Supplement, Fig. S1



Figure S1. Details of the pyranometer supports in Fig. 3 of the main text.  (a) Side view and (b) top view of the support 
used in 2016 field campaign. (c) Side view of the support used in 2017 field campaign.

Referee comments
15. Sect. 2.2 (line 127): “In the 2017 a” → “In the 2017 campaign, a”
16. Sect. 2.2 (subsection headings): Are these subsection headings supposed to be numbered (i.e., 
2.2.1, 2.2.2, and 2.2.3)?
Author’s response
We agree with the referee’s suggestions.
Manuscript Changes
We adopt the referee’s suggestions.

Referee comment
17. Sect. 2.2 (line 153): Equation (S1) has now been referred to twice. Should it be included in the 
main text?
Author’s response
We believe that the details of the albedo measurements corrections (including Eq. S1) are not 
needed in the main text.
Manuscript Changes
We did not find the need to introduce any changes.

Referee comment
18. Sect. 2.3 (line 189): Is Iglob = Idir + Idiff, or something else? Perhaps this can be more clearly 
described in Sect. 2.2.
Author’s response
Yes, Iglob = Idir + Idiff, as usually defined, but we accept the suggestion to remark that in the 
manuscript.
Manuscript Changes
Sect. 2.3 (line 189)
Idir, Idiff , and Iglob are clear-sky  direct, diffuse and global solar irradiance (where Iglob = Idir + Idiff,), as calculated 
from SMARTS model.

Referee comment
19. Fig. 4: If the vertical axis represents a normalized, dimensionless quantity, please indicate so. 
Otherwise, please provide the meaning of the vertical dimension. Also, the right-most part of the 
figure (horizontal axis) appears clipped.
Author’s response
We thank the referee for the comment. The plotted distributions are indeed normalized, we modified 
the caption to make that clear. We corrected the clipping of the image to show the last horizontal 
axis label correctly. 



Manuscript Changes
- We corrected the clipping of the image.
- Fig. 4 caption:
Figure 4. Different normalized spectral distributions of sun radiation for SNICAR snow albedo model. SNICARv2 
included two spectra for mid-latitude locations: one for overcast conditions (light green line), and one for clear sky 
conditions (dark green line). SMARTS diffuse (light red line) and direct (dark red line) clear sky spectra for one of our 
sampling sites are represented for comparison. Dotted lines represent spectra for partly cloudy conditions 
(SNICARv2.1).

Referee comment
20. Fig. 5: The box-and-whisker plot demonstrates the distribution of measurements nicely when N 
>2. Does this mean that boxes represent standard deviations even when N = 2? If this is the case, 
perhaps a bar chart displaying the minimum and maximum values would be a more consistent 
portrayal of seasonal ranges, since standard deviations are better for estimating the variance of a 
distribution with a larger number of samples.
Author’s response
We thank the referee for drawing the attention on this plot. We agree that standard deviation is more
relevant for N >> 2, but even so we believe in this case box-and-whiskers plot gives more 
information than a bar chart. For cases with N > 2 (four of the plotted seasonal ranges) the plot 
allows showing the range where most data fall, together with the extreme values (which in some 
cases are far away form standard deviation, e.g. Acc. season 2015). For N=2 (the three remaining 
seasonal ranges), the standard deviation is equal to half the separation between the minimum and 
maximum value, and hence the plot shows the minimum and maximum values. We modified the 
figure's caption to stress this fact, so the plot can be easily interpreted.
Manuscript Changes
- Fig. 5 caption:
Figure 5. Seasonal range of PM concentration found on snow/firn samples. For accumulation season, the values 
represent the mean PM concentration in thick, low PM layers of snow/firn. For ablation season the values represents the
surface PM concentration at the end of the season. The box encompasses one standard deviation of data, and whiskers 
represent minimum and maximum values (when N >2). Notice that for seasonal layers with only two measurements, the
box represents those two values (coincident with the definition of standard deviation for N = 2). The plot includes data 
from both field campaigns, and excludes ablation ice samples, which cannot be assigned to a specific year/season. Fresh
snow represent snow fallen a few days before field campaigns of 2016 or 2017. 

Referee comment
21. Sect. 3.3 (line 368): Although Cuffey and Paterson (2010) have written a standard textbook for 
glaciology, it would be nice to include a more accessible, primary reference that demonstrates this 
phenomenon.
Author’s response
We took the referee suggestion and found a different reference regarding the phenomenon.
Manuscript Changes
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Academic Press, 4th editio edn., https://doi.org/10.1016, 
2010.
Flanner, M. G., and Zender, C. S.: Linking snowpack microphysics and albedo evolution, Journal of Geophysical 
Research, 111, D12208. https://doi.org/10.1029/2005JD006834, 2006

Referee comment
22. Sect. 3.3 (line 403): “In the other hand” → “On the other hand”
Author’s response
We thank the referee for the useful grammar suggestion.
Manuscript Changes
We adopt the change suggested by the referee.



Referee comment
23. Sect. 3.4 (AAR): Definition of accumulation area ratio? If it is the accumulation area to ablation 
area ratio, why are the values in m?
Author’s response
We thank the referee for noticing the mistake in the units of the Accumulation Area Ratio (the ratio 
of the glacier’s accumulation area to its total area). The numbers are correct but they are a 
percentage.
Manuscript Changes
Table 2 header

 αice αfirn αmax Wint. MB
(m w.e.)

Annu. MB
(m w.e.)

ELA
(m)

AAR
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Referee comments
24. Fig. 9: The prefix “glacier-wide” is technically redundant, as “surface mass balance” is 
considered a surface area-integrated quantity. When referring to it as a local quantity, however, it 
can be stated as “specific surface mass balance.” Also, the units on the axes labels should be in 
parentheses.
25. Sect. 4 (line 510) “observation and modeling activities to analysis” → “measurements and 
modeling to analyze”
26. Sect. 4 (line 512): No need for a paragraph break here.
27. Sect. 4 (line 526): “may difficult” → “may degrade”
28. Sect. 4 (line 529): Remove the comma.
29. Sect. 4 (line 534): “glacier-wide” → “surface” (see comment 24)
Author’s response
We thank the referee for the useful grammar/phrasing suggestions.
Manuscript Changes
We adopt the changes suggested by the referee.
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Abstract. The relevance of light absorbing impurities in snow albedo (and its effects in seasonal snow or
:::::
impact

::
of

::::::::
volcanic

:::
ash

::
on

::::::::
seasonal

::::
snow

::::
and glacier mass balance ) have been under study for several decades. However, the effect of volcanic

ash has been much less studied , and most articles studied only the effect of thick layers after direct deposition. There is also

a knowledge gap in field measurements of seasonal snow and glaciers of the southern Andes, that only recently has started

to be filled
:::
than

::::
that

::
of

::::::::::::
carbonaceous

:::::::
particles

:::
and

:::::::
mineral

::::
dust. We present here the first field measurements on Argentinian5

Andes, combined with albedo and
::::
snow

::::::
albedo

::::
and

::::::
glacier

:
mass balance modelingactivities. Measured impurities content

(1.1 mgkg−1 to 30000 mgkg−1) varied abruptly in snow pits and snow/firn cores, due to high surface enrichment during
:::
the

ablation season and possibly local/regional wind driven resuspension and redeposition of dust and volcanic ash. In addition,

we observed a high spatial hetereogeneity
:::::::::::
heterogeneity, due to seasonality, glacier topography and prevailing wind direction.

Microscopical
::::::::::
Microscopic characterization showed that the major component was ash from recent Calbuco (2015) and Cordón10

::::::
Cordón Caulle (2011) volcanic eruption, with

::::::::
eruptions,

::::
with

:
a minor presence of mineral dust and Black Carbon

::::
black

::::::
carbon.

We also found a wide range of measured snow albedo (0.26 to 0.81), which reflected mainly the impurities content and the

snow/firn grain size (due to aging). SNICAR model has been updated to model snow albedo taking into account
:::
We

:::::::
updated

::
the

::::::::
SNICAR

:::::
snow

::::::
albedo

::::::
model

::
to

:::::::
account

:::
for

:
the effect of cloudiness on incident radiation spectra, improving the match

of modeled and measured values. We also ran sensitivity studies on the
:::::::::
considering

:::
the

::::::::::
uncertainty

::
of

::::
the main measured15

parameters (impurities content and composition, snow grain size, layer thickness, etc) to assess which field measurements

precision can improve the uncertainty of albedo modeling
::::::
identify

:::
the

::::
field

::::::::::::
measurements

::::
that

::::::
should

::
be

::::::::
improved

::
to

::::::::
facilitate

::
the

:::::::::
validation

::
of

:::
the

:::::
snow

::::::
albedo

::::::
model. Finally, we studied the impact of these albedo reductions in Alerce glacier using a

spatially distributed surface mass-balance model. We found a large impact of albedo changes in glacier mass balance, and we

estimated that the effect of observed ash concentrations can be as high as a 1.25 mwe
::::
1.25

:::::
meter

:::::
water

::::::::
equivalent

:
decrease in20

the glacier-wide annual
::::::
annual

::::::
surface mass balance (due to a 34 % of increase in the melt during the ablation season).

1



1 Introduction

Glaciers
:::::
Since

::::::
glaciers

:
are highly sensitive to climate fluctuations, their unprecedented retreating rates

:::
rates

:::
of

:::::
retreat

:
observed

during the last decades represent one of the most unambiguous signals of climate change (Zemp et al., 2015; IPCC, 2019).

Along the Southern Andes
:::
Wet

::::::
Andes

::::::
(below

:::
35°

::
S

:::::::
latitude), both precipitation decrease and air surface temperature increase25

have been pointed out as the drivers of the shrinkage of glaciers in the last decades (Dussaillant et al., 2019). Although some

processes, like sublimation at the high and cold Dry Andes (37°
:
S to 20° S) or the calving at the outlet glaciers of the Patagonian

Ice fields (south of 45°
:
S), could contribute, or be even more critical than melt for the shrinkage of glaciers in some particular

cases, ablation is mainly ruled by melt. Along the Southern Andes, melt is driven by shortwave radiation and sensible turbulent

flux (Schaefer et al., 2020). The effect of incoming shortwave radiation is enhanced during spring and
:::::::::
Shortwave

::::::::
radiation30

::::::::
absorption

::::::::
increases

:::::::::::
significantly

:::::
during

:
summer, due to the exposure of low albedo areas in their ablation zones, which causes

strong, positive feedback that enhances surface melt significantly and shapes the spatial ablation pattern (Brock et al., 2000).

Furthermore, deposition of light-absorbing impurities (LAI;
:::::::
particles

:::::
(LAP:

:
mineral dust, volcanic ash, and black carbon) have

a fundamental impact on the melting of glacier and snow-covered areas by increasing the absorption of solar radiation and

produces a regional land-atmosphere feedback (Warren and Wiscombe, 1980; Bond et al., 2013; Molina et al., 2015). Along35

with the enhanced melting
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Warren and Wiscombe, 1980; Bond et al., 2013; Molina et al., 2015)

:
.
::::
LAP

::::::::
decrease

::::
snow

:::::::
albedo,

::::::::
increasing

:::::
solar

::::::::
radiation

:::::::::
absorption

::::
and

::::
thus

:::::::::
producing

:
a
::::::

direct
:::::
effect

:::
on

:::::
snow

:::::::
melting.

:::::
But,

::
in

::::::::
addition,

:::
the

:::::::::
snowpack

::::::::::
temperature

:::::::
increase due to the darkening of the snow or ice surface, the

:::::
direct

:::::
effect

:::::::::
accelerates

:::
the growth of snow grainsis

accelerated, which further reinforces snowmelt rates due to further albedo decrease ,
::::::
which

:::::::
produces

::
a

::::::
further

:::::
albedo

::::::::
decrease

::::
(and

:::
thus

:::
an

:::::::::
additional,

::::::
indirect

::::::
impact

:::
on

::::
snow

::::::::
melting) (Bond et al., 2013; Flanner et al., 2007). While LAI

::::
LAP control the40

snow albedo mainly in the visible wavelengths (since ice is relatively transparent in the visible band), the snow grain size affects

the albedo in the near-infrared (e.g., Hadley and Kirchstetter, 2012; Pirazzini et al., 2015; He and Flanner, 2020). Recently it

has been highlighted that the growth of glacier algae could also decrease the albedo (Williamson et al., 2019).

::::::::::
Atmospheric

:::::::::
particulate

::::::
matter

::::
(PM)

::
is
::::::
diverse

::
in
:::::
size,

:::::::
chemical

:::::::::::
composition

:::
and

::::::
optical

:::::::::
properties;

:::::
while

::::
most

:::
PM

:::::::
reflects

:
a
::::
large

:::::::
fraction

::
of

:::
the

::::::::
incoming

::::::::
radiation

:::
and

::::
thus

::::
have

::
a

::::::
cooling

:::::
effect

:::
on

:::
the

::::::::::
atmosphere,

::::
other

::::::::
particles

::::::
absorb

:
a
:::::::::
significant45

::::::
fraction

::
of

:::
the

::::::
visible

::::::::
radiation

:::::::::
(depending

:::
on

::
the

:::::
ratio

::
of

::::
their

:::::::::
absorption

:::
and

::::::::
scattering

:::::::::::
coefficients)

:::
and

::::
have

:
a
:::::::
heating

:::::
effect

:::::::::::::::
(Bond et al., 2013)

:
.
::
In

:::::
snow,

:::
the

:::::
term

::::
LAP

::
is
:::::

used
::
to

:::::
refer

::
to

:::::
black

::::::
carbon

:::::
(BC),

:::::::
mineral

:::::
dust,

:::::::
volcanic

::::
ash

:::
and

:::
all

:::::
other

:::::::
particles

:::
that

::::::
totally

::
or

::::::::
partially

::::::
absorb

:::::::
incident

::::
light

:::
and

::::::
hence

:::::::
increase

:::
the

:::::
snow

::::::
energy

:::::::::
absorption.

:
Different snow albedo

models have been developed to include the direct effect of Black Carbon (BC ) and other atmospheric particulate matter (PM)

:::
BC

:::
and

:::::
other

::::
LAP as well as several positive feedbacks (Flanner et al., 2007; Koch et al., 2009; Krinner et al., 2006), the

::::
such50

::
as

:::
the

:::::::
increase

::
in

::::::
surface

:::::::::::
concentration

::
of
:::::::::
impurities

:::
due

::
to
:::::::::
enhanced

::::
snow

:::::::
melting,

::
or

:::
the

::::::
albedo

::::::::
reduction

::::
due

::
to

:::
the

::::::
growth

::
of

::::
snow

::::::
grains

::
by

:::::::::
accelerated

:::::
snow

:::::
aging

:::::::::::::::
(Bond et al., 2013)

:
.
:::::
More

:::::::
recently,

::::::
models

::::
have

::::::::
included

:::
the effects of non-spherical

snow grains (Libois et al., 2013; He et al., 2017), and external/internal mixing of impurities with snow grains (He et al., 2018).

Although some snow albedo models have been successfully validated for laboratory conditions (Brandt et al., 2011; Hadley and

Kirchstetter, 2012), the prediction of snow spectral albedo in environmental conditions is still challenging. More than just one55
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particle metric distribution is necessary
:::::
When

:::
the

:::::
snow

:::
has

:::::
been

:::::::::
undergoing

::::::
heavy

::::::::::::
metamorphosis

:::::::::
processes,

::
a

:::::
single

:::::
snow

::::
grain

::::
size

:::::::::
distribution

::
is

:::
not

::::::
enough

:
to reproduce the spectral snow albedo at all optical wavelengths, especially when the snow

has been undergoing heavy metamorphosis processes
:::::::
spectral

::::::
albedo

:::
due

::
to

:::
the

::::
fact

:::
that

:::
the

::::::
largest

:::::::
particles

::::
and

:::
the

:::::::
thinnest

:::::::::
protrusions

::
of

:::
the

::::::::
irregular

:::::::
crystals

::::
have

:::::::::::
contributions

:::
to

:::
the

:::::
snow

:::::::::
reflectance

::::
that

::::::
depend

:::
on

:::
the

::::::::::
wavelength (Carmagnola

et al., 2013; Pirazzini et al., 2015). Notably, there has been found
:
it
:::
has

:::::
been

:::::
shown

:
that taking into account the amount of LAI60

::::
LAP in the snow reduces the difference between simulated and measured broadband albedos

::::::
albedo,

:::::::::
especially

::
in

:::
the

::::::
visible

::::
range

:
(Zhang et al., 2018).

Different studies have considered the effect of LAI
::::
LAP

:
in snow and ice albedo and its impact on glaciers mass balance

or seasonal snow cover, and estimated its radiative forcing (Qian et al., 2015; Skiles et al., 2018). Some studies used point

measurements of LAI
::::
LAP content (ice cores) together with a snow albedo model to estimate potential melting, using a65

radiative transfer model to calculate the additional absorbed energy by BC and mineral dust (Ginot et al., 2014; Zhang et al.,

2018) or perturbing a glacier mass balance model to include BC forcing (Painter et al., 2013). Online
::::::::
“Online” coupling of snow

albedo models in global or regional atmospheric chemistry models have
::::::
(where

::::
both

::::::
models

:::
are

::::
run

::::::::::::
simultaneously

::::::::
allowing

:::::::
two-way

::::::::
feedback)

::::
has been applied to study snow and glaciers interaction with the climate around the globe (Hansen et al.,

2005; Flanner, 2013; Ménégoz et al., 2014). Although these global or regional atmospheric studies are beneficial to identify70

LAI
::::
LAP sources and dispersion patterns and to compare snow-atmosphere feedback in different regions, the spatial resolution

can be inadequate to obtain accurate results in mountain regions (Ménégoz et al., 2014; Qian et al., 2015).

Even though most studies focus on the effect of BC, some include the effect of mineral dust (e.g., Ginot et al., 2014; Skiles

and Painter, 2017; Zhang et al., 2018) or even concentrate on mineral dust due to local/regional relevance (e.g., Krinner et al.,

2006; Painter et al., 2012; Wittmann et al., 2017). Studies on the effect of volcanic ash concentration on snow albedo are scarcer75

(e.g., Conway et al., 1996; Brock et al., 2007; Young et al., 2014).

In recent years there has been an increase of measurement and modeling of albedo along the Southern Andes (Rowe et al.,

2019). A three-year study (Schmitt et al., 2015) showed that glaciers closer to population centers in the Cordillera Blanca,

Peru, have higher surface content of equivalent black carbon (EBC, BC plus other LAI
:::
LAP, especially dust in this case), up

to 70 ngg−1 EBC, as compared with remote glaciers (with surface content as low as 2.0 ngg−1 EBC). A one-week study80

successfully connected the decreases in snow broadband albedo with heavy traffic days in the nearby road that connects

Argentina and Chile (Cereceda-Balic et al., 2018). A more recent study along the Southern Andes of Chile found a mean

albedo reduction due to light-absorbing impurities
:::::::
particles

:
in the snow, with its corresponding mean radiative forcing increase

(Rowe et al., 2019). They conclude that in the north (dusty, vegetation-sparse Atacama Desert), BC plays a smaller role than

non-BC, whereas near Santiago and in the south (vegetation-rich), the BC contribution is higher. For example, the albedo85

reduction for spherical snow grains radii of 100 µm due to BC alone in the north is
:::
was

::::::::
estimated

:::
to

::
be

:
only about 43

:
%

of that for all light-absorbing impurities
:::::::
particles

::::::::
(assuming

::::::::
spherical

:::::::
100 µm

::::
radii

::::
snow

:::::::
grains). By comparison, these albedo

reductions are 53 % and 82
:
% near Santiago and in southern Chile, where a greater share of light absorption is due to BC. In the

Southern Andes of Argentina, the only available information on snow albedo is due to remote sensing (Malmros et al., 2018),
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and up to now, the impact of volcanic ash and other LAI
::::
LAP on Argentinian glaciers mass balance has not been evaluated90

either.

Here we present the results from two field campaigns developed in the Alerce glacier during April 2016 and April 2017

to assess the bounds of PM deposition impact in the Alerce glacier mass balance. We show in situ albedo measurements and

PM concentration values measured on surface and sub-surface snow and firn samples in accumulation and ablation zones of

the glacier. Albedo in situ measurements are compared with results from SNICAR snow albedo model (Flanner et al., 2007;95

He et al., 2018), using measured snow properties and PM
::::
LAP

:
content as input data. We present here an improvement of

SNICAR’s incident radiation spectra (presented as SNICARv2.1), to take into account changes in direct and diffuse solar

radiation for partly cloudy skies. We study the effect of nearby volcanic events that occurred in recent years (Puyehue-Cordón

Caulle and Calbuco
:
in

:::::
2011

:::
and

:::::::
Calbuco

::
in
:::::
2015). Finally, the influence of PM

::::
LAP

:
on snow/ice albedo on the annual surface

mass balance of Alerce glacier is assessed using an enhanced temperature index melt model (Oerlemans, 2001). This study is100

not only the first field study of the impact of PM
::::
LAP

:
in Argentinian glaciers, but also one of the few studies of the long-term

impact of volcanic ash on snow albedo.

2 Site Description and Experimental Methods

Alerce is a small (2.2 km2), debris-free, mountain glacier located at Monte Tronador (41.15° S, 71.88°
:
W), in the Northern

Patagonian Andes. The climate on this region is primarily modulated by the weather disturbance embedded in the mid-latitude105

westerlies (Garreaud et al., 2009). Weather disturbances and prevailing winds coming from the Pacific Ocean are more frequent

and stronger in winter. However, associated frontal precipitation system move over the Patagonian Andes all year round. In

this region, the hydrological year is defined from the 1-April to the 31-March of the next year
:::::
begins

:::
on

:::::
April 1st

::::
with

:::
the

:::::::::::
accumulation

::::::
season. The accumulation season last from 1-April to 31-October and the ablation season from 31-October to

the 31-March of the next year
:::
lasts

:::::
until

::::::
October

:
31st,

::::::
which

:::::
marks

:::
the

:::::::::
beginning

::
of

:::
the

:::::::
ablation

::::::
season.110

Alerce glacier has an elevation range between 1650 m to 2400 m a.s.l. (above sea level), a gentle slope (mean of 10°), and

is exposed to the southeast. Since 2013 it has been the focus of a glacier mass balance monitoring program by the IANIGLA

(Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Ruiz et al., 2015, 2017)

. Seasonal mass balance has been studied every year using the traditional glaciological method of stakes , and snow pits. An

enhanced temperature index mass balance model has been developed (Ruiz et al., 2015, 2017)
::::::::::::::::::::::::::
(Huss et al., 2008; Huss, 2010)115

to study the surface mass balance of the glacier. This model is used here to analyze the influence of PM
:::
LAP, through glacier

albedo changes, over the mass balance of Alerce glacier.

In recent years Monte Tronador glaciers have been reached by volcanic ash derived from two volcanic events: (i) Puyehue-

Cordón Caulle volcanic complex, which had a long eruption between June 2011 and January 2012 and (ii) Volcán Calbuco,

which commenced on April 23rd 2015.120
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2.1 Fieldwork

In April 2016 and April 2017, besides mass balance measuring, we took snow and firn samples and we measured surface albedo

at Alerce glacier. Figure 1 shown
:::::
shows the sampling sites at Alerce glacier. We sampled both accumulation and ablation zones

, and we
:::
and

:
looked for similar sampling sites in both campaigns. Otto Meiling mountain hut served both as a base camp for

field trips and as a field laboratory for initial processing of the snow samples. April 2016 served as a exploratory campaign.125

Albedo measurements were improved for the 2017 campaign. We lowered instrumental uncertainty and we used an improved

support
:::::::
mounting

:::::
stand for the pyranometer, which allowed us to evaluate the variability/uncertainty of albedo measurements

by repeatedly measuring in the same site. We also improved the measurement of snow grain size distribution. More details

are given below. However, the second campaign duration and number of sampling sites were shortened due to poor weather

conditions. Nevertheless, relevant results of PM concentration and albedo measurements are presented for the first time for130

Monte Tronador glaciers.

2.1.1 Snow samples. Filters treatment

Before collecting snow/firn/ice samples, we performed a
::
an

::
in

::::
situ stratigraphy at each site to identify and date layers. Many

of the sampling sites corresponded to the accumulation zone of Alerce glacier or accumulation pockets in the ablation zone. In

those sites, we dated seasonal layers of snow/firn. The main elements to attribute layers were PM content and hardness of the135

layers. Figure 2 shows the results of the stratigraphy and PM gravimetry, which are described in detail in Section
::::
Sect. 3.1. In

sampling sites located on the ablation zone, we distinguish glacier ice from recent snow covering the glacier ice.

Most of the samples were taken from snow/firn pits. In the 2016 campaign we also used a snow/firn hand auger to sample a

2.5 m snow/firn core (site Acc2-2016, Fig. 2). Samples were melted and filtered in the base camp, and filters were taken to the

laboratory for gravimetric determination of PM content and further analysis. Further details are given in Section
::::
Sect.

:
S1.1 of140

::
in

:::
the

:
Supplement.

PM in the filters was described and photographed using a Leica S8APO stereo microscope equipped with a DFC 295 camera.

Some samples were also studied by Scanning Electron Microscopy (FEI Quanta 200, equipped with an Edax accessory for

energy dispersive X-ray analysis).

2.2 Albedo: measurements and corrections145

We performed in-situ
::
in

:::
situ

:
albedo measurements in some of the snow sampling sites in both field campaigns. Upwelling

(reflected) and downwelling (direct + diffuse) radiation were measured with a
:::
one CM5 Kipp & Zonen pyranometer (wave-

length range 0.3 µm to 2.8 µm), using two different in-house developed supports
::::::::
mounting

:::::
stands

:
in 2016 and 2017 campaigns,

logged with a handheld voltmeter. The voltmeter used in the 2016 had a reduced precision (resolution of 0.1 mV) that lim-

ited the overall accuracy of the albedo measurement (first two rows of Table 1). In the 2017
::::::::
campaign,

:
a new, more accurate150

voltmeter was used (resolution of 0.001 mV, accuracy of 0.010 mV), reducing significantly instrumental uncertainty. Further

details are given in Section
::::
Sect. 3.3.
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Figure 1. Satellite image
:::::
Outline

:
of Alerce Glacier. Sampling points are represented as blue markers (2017 campaign) ,

:::::::
showing

:::
the

::::::
location

::
of

:::::::
sampling

::::
sites

:
and red markers

::::::
ablation

:::::
stakes

::::
used

:::
for

::::
mass

:::::::
balance

:::::
model

::::::::
calibration

:
(2016 campaign

:::::
model

:::::
output

:::
for

:::::
labeled

:::::::
ablation

:::::
stakes

:
is
::::::
shown

::
in

:::
Fig.

::
S6). Green marker represents

::::
Labels

::
of
:::::::

contour
::::
lines

::
of

:::::
terrain

:::::::
elevation

:::
are

:::::::
expressed

::
in
::::::

meters

::::
above

:::
sea

:::::
level. Otto Meiling mountain hut

:::
and

::::
inset

::
of

:::
the

::::::
location

::
of
::::::

Monte
:::::::
Tronador

::
in

:::
the

::::::
context

::
of

:::::::
Southern

:::::
South

:::::::
America

:::
are

::::::::
represented

:::
for

:::::::
reference. Copyright

:::::::::
Background

:::::
image: Google Earth

::::::::
false-color

::::::::::
pansharpened

:::::::
Pléiades

::::::
satellite

:::::
image, 2020

:
7
:::::
March

::::
2012,

CNES/Airbus
::::
PGO,

:::::::::::
CNES-Airbus

:
D
::
&

::
S

:::::::::::::
(Ruiz et al., 2015)

:
.

Raw albedo values were corrected to account for the diffuse or reflected light blocked by the operator or the support
::::::::
mounting

::::
stand

:
and, for upwelling radiation, the effect of shadows of the sensor and the support

::::
stand

:
in the snow surface (Wright et al.,

2014; Carmagnola et al., 2013). Further details are given in Section
::::
Sect.

:
S1.2 of

::
in

:::
the Supplement.155

Pyranometer supports and cloudiness effect

2.2.1
:::::::::::
Pyranometer

:::::::::
mounting

::::::
stands

::::
and

:::::::::
cloudiness

:::::
effect

In the 2016 campaign, we used a fixed support
:::::::
mounting

:::::
stand

:
with three stainless steel legs (Fig. 3 (a)). It was designed to

provide a stable irradiation measurement, with a precise tilt angle (parallel to the snow surface), and to minimize the blocking

of incident light. When measuring clear-sky downwelling radiation, this support
::::
stand

:
does not block light at all (operators160

stand 4 m away from the sensor, blocking less than 0.1
:
% of incoming diffuse radiation). For clear-sky upwelling radiation, the
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percentage of blocked light is below 0.8
:
%, and shadows from the equipment represent another 0.4

:
%. Hence, total correction

for upwelling radiation sum up around 1.2 %, affecting around 1
:
% measured albedo. For cloudy or overcast conditions, due to

the sharp changes in cloud cover, incoming radiation varies more quickly than the time needed for assembling/disassembling

the pyranometer support
::::
stand. To proceed faster under these conditions, the measurements were made differently: the sensor165

was held by two operators, each 0.45 m away from the sensor, without using the support
::::
stand

:
legs. Under these conditions

12
:
% of diffuse downwelling and 9

:
% of upwelling radiation is blocked by the operators, resulting in an albedo correction of

3.5 %, significantly higher than those obtained for clear-sky conditions.

To overcome the difficulties due to cloudiness, for the 2017 campaign a new support
::::::::
mounting

:::::
stand

:
was designed. The

new lighter design has only one arm and one leg and is carried by one operator, located 1.25 m away from the sensor, and170

leveled manually with the help of a bubble level (Fig. 3 (b)). This design allows fast and easy alternate downwelling/upwelling

radiation measurements, making it possible to assess the variability of albedo under the same sky conditions. For downwelling

radiation the operator blocks around 1.1 % of diffuse light. For upwelling radiation, the operator blocks around 1.9 % of light,

which, together with shadows of the equipment, brings corrections to a maximum of 2.4 %. Overall albedo corrections vary

between 0.8 % and 2.0%.
:::
%.

:::::::::
Additional

:::::
details

:::
on

:::
the

::::::::
mounting

:::::
stands

:::
are

:::::
given

::
in

::::
Fig.

:::
S1

::
in

:::
the

::::::::::
Supplement.

:
175

Diffuse and direct radiation fraction

2.2.2
::::::
Diffuse

::::
and

:::::
direct

:::::::::
radiation

:::::::
fraction

For albedo calculation, the upwelling radiation measurement is used directly from measurements. But for downwelling radia-

tion, direct and diffuse fraction must be distinguished (see Eq. (S1) in
:::
the Supplement).

The calculation of the diffuse fraction of downwelling radiation requires to add another measurement with the pyranometer180

(total downwelling, diffuse downwelling, and total upwelling radiation), and the operation of the accessory to block direct

radiation. Fast changes in cloudiness during measurements made it very difficult to assure that all three measurements were

performed under the same sky conditions. Therefore, we decided to prioritize that measurements required for albedo calculation

(total downwelling and total upwelling radiation) were performed under the same conditions, and thus we dropped the diffuse

downwelling radiation measurement. Hence, the diffuse to global radiation ratio Idiff↓/Iglob↓ (needed for albedo measure-185

ments corrections and comparison with modeled albedo) had to be estimated differently. We used in-situ
::
in

:::
situ

:
observations

of cloudiness (or pictures of the sky taken before and after albedo measurements) together with the relations found by Kasten

and Czeplak (1980)[eq. 4] to estimate the diffuse radiation ratios, which are presented in Table 1.

Snow/firn grain size

2.2.3
::::::::
Snow/firn

:::::
grain

::::
size190

In the 2016 campaign, snow was placed in a crystal grid (with three different scales: 2 mm, 1.2 mm, and 0.6 mm) and average

size was determined with a magnifying lens. In the 2017 campaign, a similar in-house developed grid was used (with two
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scales: 1 mm and 0.5 mm) in combination with a macro lens and a mobile phone digital camera. High-resolution pictures

where
:::
(Fig.

:::
S3

:::
in

:::
the

:::::::::::
Supplement)

:::::
were analyzed later with ImageJ software (Schneider et al., 2012).

::::
Snow

::::::
grains

:::::
were

:::::::
manually

:::::
fitted

::::
with

:::::::
ellipses;

:::
the

::::::
metric

:::::
choice

::::
was

:::
the

::::::
average

:::
of

::
the

::::::
minor

:::
and

:::::
major

::::
axes

::
of

:::
the

::::::
ellipse.

:
The new equipment195

and methodology introduced in the 2017 campaign allows a more detailed description of the snow samples and a more precise

average radius value.

2.3 Albedo: modeling

To analyze the different factors affecting measured albedo at each sampling site, we modeled albedo for the same conditions

using SNICAR (Flanner et al., 2007; He et al., 2017, 2018). Snow density and layer thicknesses were taken as parameters200

from in-situ
::
in

:::
situ

:
stratigraphies. Average snow grain size and shape were obtained from in-situ measurements. PM

:
in

::::
situ

::::::::::::
measurements.

::::
LAP

:
content was obtained from filters gravimetry. Based on in-situ

:
in

:::
situ

:
observations and the analysis of mi-

croscopy images , are described in detail in Section 3.2
:::::
(Sect.

:::
3.2), we assigned all recollected PM mass to volcanic ashes (in a

similar way as previously done in sites where mineral dust represents most of LAI (Krinner et al., 2006; Painter et al., 2012; Wittmann et al., 2017)

)
::
ash

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(in a similar way as previously done in sites where mineral dust represents most of LAP; Krinner et al., 2006; Painter et al., 2012; Wittmann et al., 2017)205

. Albedo of the underlying layers was calculated explicitly within the same model, using the properties of those layers.

SNICARv2 (He et al., 2017, 2018) supported only four incident solar spectra: two clear-sky direct solar spectra (one for

Summit, Greenland, and one for mid-latitude), and two overcast diffuse spectra (for the same locations). These spectra are

used to calculate direct radiation albedo and diffuse radiation albedo, respectively. These are good approximations for clear-

sky albedo (where most for the incident radiation is direct, clear-sky solar radiation) or for overcast sky albedo (where most of210

the radiation is diffuse). In this updated version of SNICAR (referred as SNICARv2.1 throughout the article) we provided an

alternative for these spectra for cases when latitude, longitude or altitude differ significantly from those of the provided spectra,

or where the sky is partly cloudy.

First, we calculated the clear-sky spectra for the site location and time using SMARTS model (Gueymard, 2001). Then, we

calculated the direct and diffuse spectra for overcast or partly cloudy sky following Gueymard (1986, 1987) and Ernst et al.215

(2016):

Fdir,norm(λ) =
Fdir,S(λ)

Idir,S
(1)

Fdiff,norm(λ) = [1−Npt]
Fdiff,S(λ)

Idiff,S
+Npt

Fdir,S(λ) +Fdiff,S(λ)

Iglob,S
(2)

Idir, Idiff , and Iglob are clear-sky direct, diffuse and global solar irradiance
:::::
(where

::::::::::::::::::
Iglob = Idir + Idiff ), as calculated from

SMARTS model. Fdir,S(λ) and Fdiff,S(λ) are the spectral distributions of clear sky direct and diffuse solar irradiance, also220
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from SMARTS model. Fdir,norm(λ) and Fdiff,norm(λ) are the normalized spectral distributions of direct and diffuse solar

irradiance thus calculated for our sites. The cloud opacity factor Npt is calculated following Ernst et al.
:::::::::::::::
Ernst et al. (2016):

Npt =
ρ− ρS
1− ρS

(3)

where ρ and ρS are the diffuse to global irradiance ratio for the site and from SMARTS model, respectively.

The clear-sky direct radiation spectra available in SNICARv2 matches reasonably well SMARTS clear sky direct radiation225

spectra. In
:::
On the other hand, SMARTS clear sky diffuse radiation spectra is very different from diffuse radiation spectra

available in SNICARv2 (Fig. 4). The spectral distribution obtained for 95
:
% cloud fraction for SNICARv2.1 closely matches

the diffuse radiation spectra available in SNICARv2, which confirms that the latter was prepared to represent an overcast sky

condition. In
:::
On the other hand, the spectral distribution obtained for a 50

:
% cloud fraction differs significantly from both

spectra available in SNICARv2, showing a larger contribution from clear sky diffuse radiation (Fig. 4).230

Hence, we expect to find a larger impact of our improved incident sun spectra for intermediate cloud cover fractions. For clear

sky conditions, direct radiation spectra were already well represented. Even though diffuse radiation spectra were not accounted

for, this fact has little impact on the calculated albedo, due to the low diffuse radiation fraction for clear sky conditions.

Conversely, for overcast conditions, diffuse radiation spectra were already well represented and neglecting direct radiation

fraction has a low impact on albedo calculations.235

Using different incident radiation spectral distributions, we obtained the pure direct and diffuse albedo with SNICARv2 and

SNICARv2.1 (αdir and αdiff ). For SNICARv2.1 we also calculated the weighted average albedo, which should be compared

to the net measured albedo:

α= ραdiff + (1− ρ)αdir (4)

2.4 Alerce glacier surface mass balance model240

To analyze the role of albedo decrease over the surface mass balance of Alerce glacier, we use
:::
used

:
a spatially distributed

surface mass-balance model (spatial resolution 20 m) driven by daily temperature, precipitation, and potential direct solar

radiation (Huss et al., 2008). The model was calibrated by surface mass balance measurements performed on a seasonal to

annual basis through the year 2016 over Alerce glacier.

Here we summarize the most relevant model components. Snow accumulation C(x,y,t) for all grid cells (x,y) and all time245

steps (t) was calculated based on precipitation P(t) occurring below a threshold air temperature of 1.5 ◦C (Hock, 1999).

Accumulation distribution Ds(x,y) was inferred based on a spatial distribution pattern derived from winter snow measurements

and topographic parameters (slope, curvature) to account for small-scale snow redistribution (Huss et al., 2008; Sold et al.,

2016).

C(x,y,t) = P(t)CpreDs(x,y) (5)250
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P(t) was the daily precipitation at Tepuel
::::::
Tepual weather station (

:::::
90 m

::::::
altitude,

:
ID = 857990; http

::::
https://www7.ncdc

::::::::
www.ncei.noaa.gov/

:::::::::::::::::::::::::::::::::::::::::::
access/search/data-search/global-summary-of-the-day).

The factor Cpre allows adjusting precipitation measured at the weather station to the conditions on the glacier.

Snow and ice melt were calculated based on a simplified energy-balance formulation proposed by Oerlemans (2001), where

the energy available for melt Ψd(x,y,t) was defined as follows:

Ψd(x,y,t) = τ(1−α(x,y,t))I(x,y,t) + (c0 + c1T(t)) (6)255

where I(x,y,t) is the potential direct solar radiation in Wm−2, τ is the atmospheric transmission to solar irradiance, T(x,y,t)
the air temperature and c0 and c1 represent parameters. T(t) was taken from the air surface temperature at Bariloche airport

weather station (
:::::
846 m

:::::::
altitude,

:
ID = 877650; http

::::
https://www7.ncdc

::::::::
www.ncei.noaa.gov/). After calibration of the model,

c0 = −50Wm−2 and c1 = 12Wm−2 ◦C−1.
:::::::::::::::::::::::::::::::::::::::::::::
access/search/data-search/global-summary-of-the-day). Potential direct solar ra-

diation for all grid cells and days was calculated following Hock (1999). The local surface albedo α(x,y,t) was taken to be260

constant for bare-ice surfaces (αice = 0.34), using most commonly applied literature value (Oerlemans and Knap, 1998; Cuf-

fey and Paterson, 2010), for snow surfaces, αsnow was calculated based on the snow aging function proposed by Oerlemans and

Knap (1998) with a maximum snow albedo (αmax) of 0.8 and a variable minimum snow albedo (αfirn, table 2) . Glacier-wide

mass balance changes between
:::::
αmin :::::::

adjusted
:::::
during

:::
the

:::::::::
calibration

:::::::::
procedure.

:

:::
The

::::::
model

:::
was

:::::::::
calibrated

::
in

:::
two

:::::
steps

:::::
using

::::::
surface

::::
mass

:::::::
balance

::::::::::::
measurements

::
of

::::
year

:::::
2016

::
in

::::::
Alerce

::::::
glacier

::::
(Fig.

:::
S4

::
in265

::
the

::::::::::::
Supplement).

:::::
First,

:::
the

:::::
model

::::
was

:::
run

::::
over

:::
the

::::::
winter

::::::
period

::::
with

:::
an

:::::
initial

:::
set

::
of

::::::::
constants

:::
(c0::::

and
:::
c1)

:::
and

::
a
:::::
guess

:::
for

::
the

:::::::::::
precipitation

:::::::::
correction

:::::
factor

:::::
Cpre.

:::
As

::::
melt

::
is
:::

of
:::::
minor

::::::::::
importance

::
in

::::::
winter,

::::
this

:::
run

::::
was

::::
used

::
to
::::::::

calibrate
:::::
Cpre,

::::
that

:::::
scales

:::
Ds:::

for
:::::
every

:::::
snow

:::
fall

:::::
event.

:::::
After

::
a

::::
good

:::::::::
agreement

::
of

:::::::::
measured

:::
and

:::::::::
calculated

::::::
winter

:::::::::::
accumulation

::::
was

::::::::
obtained,

::
the

::::::
model

:::
was

::::
run

::::
over

:::
the

:::::
entire

:::
year

::::
and

:::
the

::::::::
remaining

::::::::
constants

:::::
were

::::::::
calibrated

::
so

::::
that

:::
the

::::::::::::::
root-mean-square

:::::
error

:::::::
between

:::::::
modelled

::::
and

::::::::
observed

::::
point

::::::
annual

::::::::
balances

::::
were

:::::::::
minimized

:::
and

:::
the

:::::::
average

:::::
misfit

::::
was

::::
close

:::
to

::::
zero

::::
(Fig.

:::
S5

:::
and

:::
S6

::
in

:::
the270

:::::::::::
Supplement).

::
A

::::::
random

:::
set

::
of

:::::
snow

:::::::::::
accumulation

:::
and

:::::::
ablation

::::::
stakes

::::::::::::
measurements

:::::::::
performed

::::::
through

:::
the

::::
year

::::
and

:::
not

::::
used

::
to

:::::::
calibrate

:::
the

:::::
model

:::::
were

:::
left

::::
apart

::
to
:::::::
validate

:::
the

::::::
results

::
of

:::
the

::::::
surface

:::::
mass

::::::
balance

::::::
model.

:

:::
We

::::::
studied

::::::
surface

::::
mass

:::::::
balance

:::::::
changes

:::
for different values of αfirn :::::

αmin :::::
(Table

:::
2),

:::::
which are indicative of the sensitivity

of glacier mass balance to a change in albedo that might occur in response to the darkening of the glacier surface.

3 Results and Discussion275

3.1 PM concentration on Alerce glacier

PM concentrations in samples obtained in both field campaigns in the accumulation and the ablation zones are depicted in

Fig. 2 as a function of pit or core depth. Alternating thin, high PM concentration layers and thick, low PM concentration

layers are indicative of the seasonal glacier mass balance of more than one hydrological years, combined with the impact of

long-range transported aerosols and the re-suspension and re-deposition
::::::::::
resuspension

::::
and

::::::::::
redeposition

:
of local particles.280

Thick and low PM concentration layers (4.9 mgkg−1 to 51 mgkg−1, excluding two samples from ablation zone of higher

concentration, (128± 2) mgkg−1 and (667± 17) mgkg−1) correspond to snow accumulated during autumn and winter (accumulation

10



season)
:::::::::::
accumulation

::::::
season. Meanwhile, thin and high PM concentration layers (with a wide range of concentration, be-

tween (339± 26) mgkg−1 and (9040± 950) mgkg−1), are related to the surface enrichment of PM content due to the melt of

snow during spring and summer (ablation season) or fair-weather melt events during the accumulation season. In the longest285

snow/firn core (Acc1-2016), four high PM concentration layers were recognized. The first one at 3-5 cm deep represent

::::::::
represents

:
the end of the ablation season of the hydrological year 2015-16, with a concentration of (339± 26) mgkg−1. The

next two thin layers with relative high PM concentration at 118 cm to 120 cm and 187 cm to 191 cm deep ((365± 26) mgkg−1

and (410± 20) mgkg−1, respectively), were, on the basis of microscopy analysis (see section
::::::::::
microscopic

::::::::::::::
characterization

:::::
(Sect. 3.2), attributed to the resuspension and redeposition of dust and volcanic ash, and also, possible melt events, related to290

fair-weather events during the accumulation season of the hydrological year 2015-2016. The deepest (242 cm to 247 cm deep)

thin, high PM concentration layer ((1970± 200) mgkg−1) was interpreted as the surface at end of the ablation season of the

hydrological year 2014-15
::::::::::
2014-2015,

:::::
based

::
on

:::
the

::::::
abrupt

:::::::
change

::
of

:::
the

:::::::
density,

:::::::
hardness

::::
and

:::::
grain

::::
size

:::
of

:::
the

::::
snow

::::::
above

:::
this

::::
layer

::::
and

:::
the

:::
firn

:::::
found

::::::
below. In addition to PM enrichment due to melting, this last layer suffered a direct ash fall event

from Calbuco volcano, which erupted on 22-23 April 2015 (Reckziegel et al., 2016).295

The same alternating pattern of low and high PM concentration layers was observed at other snow pits in the accumulation

zone (Acc2-2016, Acc4-2017 to Acc7-2017). At the snow pit Acc4-2017, roughly the same location as Acc1-2016, the low PM

concentration layer between the high concentration layers, is less than 30 cm thick, which illustrates the strong decrease in

direct snow-fall during the accumulation season of the hydrological year 2016-2017. At site Acc3-2016, due to the slope of the

site, there was no fresh snow accumulation, so it is interpreted as representative of the surface of the accumulation area at the300

end-of-ablation season.

In the ablation zones we collected samples in two different environments: accumulation pockets (Abl1-2016, Abl3-2017,

Abl4-2017) and glacier ice with or without fresh snow on top of it (Abl2-2016, Abl5-2017, Abl6-2017).

The net accumulation layer of Abl2-2016
::::::::
Abl1-2016 goes only from 3 cm to 26 cm deep. This accumulation pocket com-

pletely disappeared in the summer 2016-17. In the 2017 campaign we took two samples in a different accumulation pocket(
:
.305

::::
Sites Abl3-2017 and Abl4-2017 ). These sites had a negative net balance during hydrological year 2016-17, consequently the

surface layer presented the highest PM content observed in both campaigns ((30000± 5000) mgkg−1 and (12000± 2000) mgkg−1

respectively), due to the accumulation of PM depositions from several hydrological years (together with the impact of volcanic

eruptions). In-situ
:
In

::::
situ stratigraphy revealed that in Abl4-2017 site, the high concentration layer was on top of relatively low

concentration, firn layer from 2015 winter, which means that, during the 2016-2017 ablation season, all the snow accumulated310

during 2016 winter was melted. Site Abl3-2017 presented an even lower net balance, revealing older firn (winter 2014) below

the surface high concentration layer.
:::
See

::::
Sect.

:::
S2

::
in

:::
the

::::::::::
Supplement

:::
for

:::::::::
additional

:::::
details

:::
on

:::
the

:::::::::
attribution

::
of

:::::
layers

:::
in

::::
sites

::::::::
Abl3-2017

:::
and

:::::::::
Abl4-2017.

:

The fresh snow at the top of Abl2-2016 shows slightly higher content of PM than fresh snow sampled on the accumulation

zone ((21.9± 0.6) mgkg−1). In the case of fresh snow on site Abl5-2017 (with a higher PM content of (1410± 30) mgkg−1)315

we could not discard, due to its thin thickness, some contamination with PM from the glacier ice. Glacier ice was highly
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heterogeneous (relatively pure ice mixed with debris and cryoconite holes), in consequence a substantial variability of PM

content over the ice surface was retrieved ((200± 20) mgkg−1 to ((4300± 900) mgkg−1).

Figure 5 combines data from both field campaigns and groups PM concentrations according to the attributed date of the

layers, but excludes glacier ice samples, which cannot be assigned to an specific year/season. It must be noted that PM content320

varies over several orders of magnitude (1.3 mgkg−1 to 21.9 mgkg−1 on fresh snow, to up to (30000± 5000) mgkg−1 in

end-of-summer layers of the ablation zones). As discussed in section
:::
Sect. 3.3, this is one of the main causes of the albedo

values variation.

The alternation of thin and high PM concentration with thick and low PM concentration is partially due to seasonality, as ex-

plained above. But in addition to seasonality, there is a large spatial heterogeneity, specially
::::::::
especially

:
during spring/summer (in325

winter, abundant fresh snow covers the glacier and gives a more homogeneous PM content and albedo distribution, as observed

in other glaciers, Brock et al., 2000)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(in winter, abundant fresh snow covers the glacier and gives a more homogeneous PM content and albedo distribution, as observed in other glaciers, Brock et al., 2000)

. The spatial variation is not only between the ablation and accumulation zones of the glacier. The interaction between glacier

topography and prevailing winds produce accumulation pockets and windswept ridges, which have contrasted snow accumu-

lation values. These areas of higher and lower accumulation lead to a wide range of spectral albedos. The detailed variations in330

PM concentrations, and therefore in the albedo, need to be accounted for in a detailed mass balance of the glacier (see section

::::
Sect. 3.4).

Field observations on Monte Tronador in 2013 and 2014 confirmed the presence of volcanic ash in the atmosphere, derived

from re-suspension
::::::::::
resuspension

:
of volcanic ash. The magnitude of resuspension events in Andean Patagonia, a region with

strong, persistent westerlies and low seasonal
:
a

:::
dry

::::::
season

::::
with

::::
low

::::::
relative

:
humidity, is well known. These events

::::::
aeolian335

::::::::::::
remobilization

:::::
events

::::
may

:
produce huge ash clouds that may be

:::
even

:
confused with true volcanic plumes, they

:::
can remobilize

ash tenths of kilometres
::::::::
kilometers

:
away (Toyos et al., 2017). In particular, the deposits of volcanic ash that are covered by

snow during the winter in the high mountain usually become exposed to remobilization during the summer, travelling
:::::::
traveling

through the atmosphere and redepositing
:::
over

::::::::
different

:::::::
surfaces

::::
due

::
to

::::::::
decrease

::
of

:::::
wind

::::::::::
competence

:::
or

::
by

:::::::::
adherence

:::
of

:::::::
particles

::
on

::::::
humid

:::::::
surfaces,

:::::
even at considerably high altitudes.340

The 2011 Puyehue-Cordón Caulle eruption produced several ashfall events during the second semester of 2011, by January

2012 explosive activity had declined. As a consequence, thick deposits of tephra with different grain size covered an extended

area in Argentina (see Fig. 2, Alloway et al., 2015). Calbuco eruption (April 2015) was active during a shorter period, but due

to its location and predominant wind direction also affected Monte Tronador (Romero et al., 2016; Reckziegel et al., 2016).

Direct ash deposition and re-suspension
:::::::::::
resuspension events can affect the glacier surface in different ways. Continuous,345

thick layers of ash (few millimeters to few centimeters) have
::::
been

:
shown to behave as an isolating layer when deposited over

snow, in a similar way as in debris-covered
:::::
similar

:::
to

:::
the

:::::
effect

:::
of

:::::
debris

:::
in

:::::::
covered glaciers (Brock et al., 2007), which

reduces ablation. But on the other hand, a thinner or disperse deposit may have the opposite effect, lowering the surface albedo

of the glacier and increasing its melting. The effect of ash (or other PM, for instances
::::::
instance

:
from biomass burning events)

deposition during autumn or winter can extend a few days until the next snow event, which covers the dark surface with the350

highly reflecting surface of fresh snow (see Fig. 7, Córdoba et al., 2015). But during spring and summer, warmer temperatures
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and fewer snow events result in an increase of ablation processes over accumulation. Snow melting can flush some of the

smaller, hydrophilic PM, but larger particles (or less water-soluble small particles) are concentrated in
::
on

:
the glacier surface

(Conway et al., 1996; Xu et al., 2012; Doherty et al., 2013; Li et al., 2017; Skiles and Painter, 2017), producing up to two orders

of magnitude of surface enrichment of PM content (Doherty et al., 2016). Resuspension and surface enrichment explain the355

observed alternating thin, high PM concentration layers and thick, low PM concentration layers. They also impact the spatial

variability of albedo on the glacier surface during summer (Fig. 1) (Brock et al., 2000).

3.2 PM characterization

Three main types of particles were identified in samples collected in the field: mineral dust, volcanic ash and crystals derived

from ash-fall
:::::
ashfall

:
events, and carbonaceous particles.360

Based on glass morphology, SEM images, and energy dispersive spectroscopy (EDS) microanalysis performed on selected

fragments, we were able to identify the presence of volcanic glass derived from Cordón Caulle 2011 (CC) and Calbuco 2015

(Cal) eruptions. Isopach maps for both eruptions (Alloway et al., 2015; Villarosa et al., 2016; Reckziegel et al., 2016) show that

Monte Tronador was reached by different plumes from ash fall
:::::
ashfall events marginally, further confirming that most of the

volcanic ash identified in the filters derive from these two recent eruptions. Though both eruptions deposited pumiceous ash east365

of the Andes in Patagonia, they can be distinguished by petrographic and morphological characteristics of the glass fragments

(Fig. 6). CC glass is very fine-grained colourless glass (rhyolitic
:
in

:::::::::::
composition) while Cal pumice is light to pale brown,

clear glass (dacitic to andesitic
:
in

:::::::::::
composition). SEM images show the presence of irregular glass fragments, with evidence

of bubble coalescence, flat or slightly curved platy glass shards that are most probably pieces of broken thin vesicle walls and

triangular (in cross section) to Y-shaped particles, which are vesicle walls from the junction of three adjacent vesicles (Fig. 7).370

EDS analysis of individual fragments of glass from these samples were performed, and were compared with the composition

of volcanic glass from samples collected in nearby locations during direct ash-fall
:::::
ashfall

:
events. Results confirm the presence

of glass shards from 2015 Cal and 2011 CC eruptions (Fig. 8). One of the samples described under microscope, corresponds to

::
In a sub-surface sample from site Abl3-2017, it was dated

:::::
which

:::
was

::::::::::
interpreted as winter snow from 2014, previous to 2015

Calbuco eruption, and
::
Cal

::::::::
eruption,

:::
we

:::::
found

::::
that

:
approximately 75 % of the observed particles correspond to fine-grained375

colourless pumiceous ash. EDS of individual fragments confirmed that ash on that sample corresponded
:::::::::
correspond

:
to CC

eruption, as expected.

Another evidence of the presence of volcanic material within the PM collected in the study area are crystals from pyroclastic

origin. They are clearly identified as they are partially surrounded by or associated with patches of glass and they are irregular

in shape. Crystals that are not directly derived from CC 2011 or Cal 2015 are more or less rounded due to erosion and transport380

and they exhibit a dull lustre, and they are identified as mineral dust.

Another identified PM component is charcoal, present as black, elongated, brittle fragments. In addition, some of the samples

showed evidence of the presence of BC particles, identified by their characteristic shape (carbon spherules of 100 nm to 200 nm

in aggregates of different morphology). Carbon content by EDS could not be used to confirm the identity of BC particles due

to the usage of carbon tape to fix the particles for SEM imaging.385
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The predominance of volcanic glass in the collected PM indicates the need to take into account the effect of volcanic ash

in the albedo of seasonal snow and glaciers of the region, which can be frequently affected by volcanic eruptions. It must be

emphasized that ash from CC and Cal eruptions was observed in most of the samples, not only in layers dated immediately after

the eruptions, but also many years after direct deposition.
::::
Field

::::::::::
stratigraphy

:::::::
together

::::
with

::::
these

::::::::::
microscopy

::::::
results

::::::
suggest

::::
that

::
we

::::
can

::::
study

:::
the

:::::
effect

::
of

::::
LAP

:::
on

::::
snow

::::::
albedo

::::::::::
considering

:::
that

:::
all

:::
PM

::::::
content

::::
can

::
be

::::::::
attributed

::
to

::::
LAP

::::
(and

:::::
more

::::::::::
specifically,390

::
to

:::::::
volcanic

::::
ash).

::::::
Further

::::::::
chemical

::::::
studies

::::
will

::
be

:::::::::
performed

::
on

:::
the

:::
PM

:::::::
samples

::
to

:::::
refine

:::
the

::::::::::::
representation

::
of

::::
LAP

::
in

:::
the

:::::
snow

:::::
albedo

::::::
model,

:::::
since

::::::
optical

::::::::
properties

:::
can

:::
be

::::
very

:::::::
different

:::
for

:::
BC,

:::::::
mineral

::::
dust,

:::::::
volcanic

::::
ash,

:::
etc.

::::
(the

::::
ratio

::
of

::::
light

:::::::::
absorption

::
to

::::
light

::::::::
scattering

::
at

:::::::
different

:::::::::::
wavelengths

:::::::
depends

::
on

:::::::
particle

::::
size,

:::::
shape,

::::
and

::::::::
chemical

:::::::::::
composition).

:

3.3 Albedo: measurements and models

Table 1 shows measured and modeled albedo values for six sites (two from the first field campaign, 2016, and four from the395

latter, 2017), together with different measured properties of the snow topmost layer and site.

Reported values of measured albedo include shadow corrections, although these corrections were quite small in all cases

(below 3.5 % for worst conditions in the 2016 campaign and below 2 % for the 2017 campaign). In some cases (site Acc3-

2016) the corrections in the measured incoming and reflected radiation are higher (10 to 14 %), but they largely balance out.

For the 2016 campaign, the reported measured albedo is a single measurement
:::::::::
(registered

::::
after

::::::
voltage

:::::::
reached

:
a
:::::
stable

::::::
value)400

and is informed together with its instrumental uncertainty. It must be noted that for this campaign the reported uncertainty

reached values as high as 15
:
% for worst conditions (low incident radiation and low albedo, as in Acc3-2016) or around 2

:
%

for best conditions (clear sky, high albedo). For the 2017 campaign the instrumental uncertainty was lowered by improving the

accuracy of the digital multimeter used with the pyranometer, achieving uncertainties lower than 3.5
:
% (worst conditions) or

lower than 1.2
:
% (best conditions).405

Results from the 2017 campaign, obtained using the improved support
::::::::
mounting

::::
stand, shed light on the reproducibility of

albedo measurements. For this campaign, we found that repeated albedo measurements in the same site have a standard devia-

tion corresponding around 5 to 10 % of the average values. This range could be partly due to the leveling of the support
::::
stand, or

to inherent variability of the measurement at these sites (specially to
::::::::
especially differences in the solar irradiance for situations

with rapid changes in cloudiness).410

Regarding snow grain sizes
:::
size, it is relevant to notice the range of observed average radius. In fresh snow samples from

the accumulation zone (sites Acc5-2017 and Acc6-2017) we found an average
::::
snow

:::::
grain

:
radius of (151± 41) µm, whereas

in samples of older firn in the ablation zone (or sub-surface snow/firn in the accumulation zone) we measured values usu-

ally around (1000± 200) µm.
:::::::::::::::::
Pirazzini et al. (2015)

::::
also

::::
used

:::
2D

::::::
photos,

:::
but

:::::
with

:
a
:::::::
different

:::::::
metric.

::::
They

:::::::
suggest

:::
that

:::::
SSK

:::::::
(shortest

:::::::
skeleton

:::::::
branch)

::
is
::

a
:::::
proxy

:::
for

:::::
“half

:::
the

::::::
width

::
of

:::
the

:::::::
shortest

:::::::
particle

:::::::::::
dimension”,

:::::
which

::::
they

::::::
claim

::
is

:
a
::::::

better415

::::::::::::
approximation

::
of

:::
the

::::::::
optically

::::::::
equivalent

:::::
snow

:::::
grain

::::::
radius.

::::
Our

:::::
metric

::::
(see

:::::
Sect.

:::::
2.2.3)

::::::
would

:::::::
probably

::::
give

::::::
higher

::::::
results

:::
than

:::::
SSK,

:::
and

::::::
hence

::
we

::::::
might

::::
have

:::::::::::
overestimated

:::
the

::::::::
optically

::::::::
equivalent

:::::
snow

:::::
grain

::::::
radius.

:::::::::::
Nevertheless,

::
as

:::
we

::::
show

::::::
below

::
in

:::
this

:::::::
section,

:::
our

:::::
grain

::::
size

::::::::::::
measurements

:::::
seem

::
to

::
be

:::::
good

:::::::
enough

::
to

::::::::
reproduce

:::
the

:::::::::
measured

::::::
albedo

:::
for

:::
fine

::::
and

::::::
coarse

::::
snow

::
in
::::::::::::

SNICARv2.1
:::::
snow

::::::
albedo

::::::
model.

:
It must be emphasized here that the developed method for characterizing snow
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grains for the 2017 campaign allows us to measure the size distribution and to assess the relevance of different grain shapes420

(when necessary). It has been shown that the shape of the snow grains can significantly affect snow albedo (Libois et al.,

2013; He et al., 2017). Except for fresh snow (snow less than one day old), where it is possible to still distinguish crystal

fragments, in both campaigns the observed snow/firn grains were rounded. This is related with the temperate climate at Monte

Tronador, where snow temperature is above −5 ◦C and the temperature gradient is low. Also, the presence of meltwater within

the snow layers enhance the rate at which grains become rounded, because the grains melt first at their extremities. Finally,425

the average grain size increases because the smaller grains tend to melt before the larger ones (Cuffey and Paterson, 2010)

::::::::::::::::::::::
(Flanner and Zender, 2006). Hence, we assumed spherical grains for all modeled albedo calculations.

Table 1 also reports modeled albedo results for each site. Results of the updated model (SNICARv2.1) were calculated

with the direct and diffuse spectra estimated for the specific sky conditions, as detailed in section
::::
Sect. 2.3. The weighted

average of pure direct and pure diffuse radiation albedos represents the net albedo of snow for total incident radiation. For430

comparison, results from SNICARv2 with the available standard spectra (mid-latitude clear-sky direct radiation spectrum or

overcast sky diffuse radiation spectrum) are presented. As expected, for clear-sky conditions (site Acc2-2016) the pure direct

albedo from SNICARv2 is similar to the weighted average from SNICARv2.1. The pure diffuse albedo from both models

differ significantly, but the fraction of diffuse radiation is very low, and hence its contribution to net albedo is also low. For

overcast conditions (Acc3-2016, Abl3-2017 and Abl4-2017), the pure diffuse albedo from both models is also similar, and435

weighted average albedo from SNICARv2.1 is coincident with the pure diffuse albedo. For both models, the diffuse radiation

spectrum for overcast conditions is coincident with global solar radiation spectrum (see Fig. 4), which explains the similar

results.
::
It

::::
must

:::
be

::::::
noticed

::::
that

:::
for

:::
site

:::::::::
Abl4-2017

:
,
:::
we

:::::::
observed

:::::
rapid

:::::
cloud

::::::::::
movements,

::::
and

:::
we

:::::::
decided

::
to

:::::::
register

:::
two

::::
sets

::
of

::::::
albedo

::::::::::::
measurements,

::::
The

:::::::
average

:::::
albedo

:::
of

:::
the

::::::
second

:::
set

::
is

::::::
similar

::
to

:::
the

:::::::
modeled

::::::::
weighted

:::::::
average

::::::
albedo

::::
and

::
to

:::
the

:::::::::::
measurement

:::
for

:::
site

:::::::::
Abl3-2017

:
.
:::
We

:::::::
suggest

::::
that

:::
this

::::::::::
coincidence

::::::
means

::::
that

:::
the

:::::::
pictures

::
of

::::
the

:::
sky

:::::
above

::::
the

:::
site

::::::
(taken440

::::
after

:::
the

:::
two

::::
sets

:::
of

::::::::::::
measurements)

::::
and

:::
the

:::::::
estimate

:::
of

:::::
cloud

:::::
cover

:::::
based

:::
on

:::::
those

:::::::
pictures

::::::::
represent

:::::
more

:::::::::
accurately

:::
the

:::
sky

:::::::::
conditions

::::::
during

:::
the

::::::
second

:::
set

::
of

::::::::::::
measurements.

:
Finally, partly cloudy skies (sites Acc5-2017 and Acc6-2017) are the

main reason for the development of SNICARv2.1. For these cases, pure direct and pure diffuse albedo differ much more

than the associated uncertainties, and pure diffuse albedo from SNICARv2.1 also differs from that from SNICARv2. These

differences are also evident from the comparison between the diffuse radiation spectra for partly cloudy skies developed for445

SNICARv2.1 and the diffuse spectra for overcast skies used in SNICARv2 (Fig. 4). For these sites, SNICARv2 cannot give

a good approximation. For Acc5-2017 SNICARv2.1 weighted average albedo seems a good approximation of the measured

albedo. For Acc6-2017, measured albedo is lower than pure direct and pure diffuse albedo, so both models give higher estimates

for this site. As discussed below in this section, the effect of the diffuse radiation fraction does not seem to be the main source

of this disagreement.450

The updated model reproduces quite well the main features of the measured albedo (with a larger discrepancy for sampling

site Acc3-2016). One of the most important parameters affecting albedo is PM content: the measurements with lower albedo

values ( αmeas < 0.4 ) correspond to sites with the highest PM content (Acc3-2016, Abl3-2017 and Abl4-2017), whereas

the remaining sites have much lower PM content (fresh snow) and αmeas > 0.6. It must be noted that for high PM con-
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tent, a further increase in particle content does not significantly affect the albedo: our simulations for site Acc3-2016, with455

(7800± 1500) mgkg−1 of PM match closely those for sites Abl3-2017 and Abl4-2017, with (30000± 5000) mgkg−1 and

(12250± 2050) mgkg−1 of PM, respectively. The same effect is noticed when simulating the impact of the possible presence

of BC on snow. For sites with low PM content, an increment of 100 µgkg−1 of aged BC has a relevant impact on modeled

albedo (between −0.017 and −0.022 for the studied sites). However, for sites with higher PM content, much higher BC concen-

trations were needed in order to observe a relevant effect in modeled albedo (for a 20 mgkg−1 increment of BC, we calculated460

an effect of −0.015 to −0.050 in calculated albedo). Ginot et al. (2014) have already reported simulation results for Mera

Glacier, Nepal, that showed that the effect of dust and BC content on albedo and potential melting of snow are non-additive.

Our results show that for site Acc3-2016 20 mgkg−1 of BC represent a lowering of −0.049 of albedo for snow containing

7800 mgkg−1 of volcanic ash, but the impact increases to −0.057 if the snow contains only 6300 mgkg−1 of volcanic ash

(which is possible due to the uncertainty in gravimetric PM content).465

In
:::
On the other hand, comparison between sites with low PM content shows that snow grain size has a remarkable effect, as

previously reported (Wiscombe and Warren, 1980; Hadley and Kirchstetter, 2012). Fresh snow with small grain size presents

αmeas ≈ 0.8 (sites Acc5-2017 and Acc6-2017), but snow with similar PM content that has aged a few days presents αmeas ≈
0.6 (site Acc2-2016).

:::::::
Spectral

::::::
albedo

::::::::::::
measurements

::::
(not

:::::::
available

::
in

::::
our

::::
field

:::::::::
campaigns)

::::::
would

:::::
allow

::
us

::
to

:::::
study

:::::::::
separately

::
the

:::::
effect

::
of

:::::
grain

:::
size

::::
and

::::
LAP

::::::
content

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see for instance measurements of snow specific surface area, SSA, in Carmagnola et al., 2013)470

:
,
::
to

::::::
confirm

::::
that

:::
our

:::::
grain

:::
size

::::::::::::
measurements

:::
are

:
a
:::::
good

:::::::
estimate

::
of

:::
the

::::::::
optically

::::::::
equivalent

:::::
grain

::::::
radius.

The last column in Table 1 reports the results of sensitivity studies to evaluate the impact on the calculated albedo of the

uncertainty in key input parameters. The parameters have been modified in ranges allowed by the uncertainty of the input

parameters
::
We

::::::
define

:::
the

::::::::::
sensitivities

::
as

::::
the

:::::::
modeled

::::::
albedo

:::::::
changes

:::::::::
increasing

:::
or

:::::::::
decreasing

::::
one

::::::::
parameter

:::
in

:::
the

:::::
same

::::::::
magnitude

:::
of

::
its

::::::::
reported

:::::::::
uncertainty

:::::::::
(identified

:::
in

:::::
Table

:
1
:::::

with
:
a
::::
“+”

::
or

::
a

:::
“–“

:::::
sign,

:::::::::::
respectively),

:::::
while

:::::::
keeping

:::
all

:::::
other475

:::::::::
parameters

:::::::::
unchanged. For each site, we studied PM content and grain size impact, together with other parameters that could

be relevant at each site.
:::
We

:::::::::
highlighted

:::::
(with

::::
bold

:::::::::
characters)

:::
the

::::::
higher

::::::::::
sensitivities

:::
for

::::
each

::::
site.

Concerning grain size uncertainty
:::
(the

::::::::
standard

::::::::
deviation

::
of

:::::
snow

:::::
grain

::::
radii

:::
in

::::
each

:::::::
sample), it is clear that the impact

on albedo is much larger when PM content is low (sites Acc2-2016, Acc5-2017 and Acc6-2017). For low PM content sites,

the effect is comparable to experimental uncertainty, and is relevant both for sites with finer and coarser grain sizes
:::
size480

snow. For sites with high content of PM the uncertainty of grain size do
::::
does

:
not have an appreciable effect. Volcanic ash

contentuncertainty
::::::::::::::::::
Pirazzini et al. (2015)

:::::::::
determined

:::
11

::
%

:::::::::
uncertainty

::
in
:::
the

:::::
grain

::::
size

:::::::::::
measurements

:::::
from

:::
2D

::::::
photos

::::
(due

::
to

::
the

::::::::::
subjectivity

::
of
:::

the
::::::::

software
:::::::::
operators).

::::::::
Although

:::
we

:::
did

:::
not

:::::::::
determine

::::
such

::::::::::
uncertainty

::
in

:::
our

::::::::::::
measurements,

:::
we

:::::::
suggest

:::
that

:::
the

:::::::
reported

::::::::
standard

::::::::
deviation

:::::::
(between

:::
16

::
%

::::
and

::
26

:::
%

::
of

:::
the

:::::::
average

:::::
value)

::
is

::::::::
probably

:::::
larger

::::
than

:::
the

:::::::::
uncertainty

:::
of

::
the

:::::::
method.

::::
The

:::::::::
sensitivity

::::::
studies

::::::
showed

::::
that

:::
the

:::::
effect

::
on

:::
the

:::::::
modeled

::::::
albedo

::
is

:::::
lower

::::
than

:::
4.5

::
%

:::
for

:::::
clean

::::
snow

::::
and

:::::
lower485

:::
than

:::
0.8

:::
%

::
for

:::::
dirty

:::::
snow.

:::
We

::::::
believe

:::
that

::::
this

:::::::
explains

:::
the

:::
fact

::::
that

::
we

::::
can

::::::::
reproduce

:::
the

::::::::
measured

::::::
albedo

:::::
using

:::
the

::::::::
estimated

::::
grain

::::
size

:::::::
together

::::
with

:::::
other

::::
snow

:::::::::
properties

:::::::::
(especially

::::
LAP

::::::::
content),

::::
even

::::::
though

::::
our

::::
grain

::::
size

::::::::
estimates

:::::
might

:::
not

:::
be

::
as

:::::::
accurate

::
as

:::::
those

:::::::
obtained

::
by

:::::
other

::::::::
methods.
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:::
The

::::::::::
uncertainty

::
of

:::::::
volcanic

:::
ash

::::::
content

:
does not have a relevant impact for any of the sites, although it is larger for site Abl4-

2017. However, as previously mentioned, the presence of BC (not yet quantified in these samples) could have a more relevant490

impact on albedo. For instance, it could explain the difference between measured and modeled albedo for site Acc6-2017, and

the difference with site Acc5-2017.

Regarding the impact of the uncertainty of layer thickness, the results show that several factors determine the relevance of

this parameter. The impact is maximum for very thin layers, especially when the underlying layer has a significantly different

albedo (i.e., PM content
:::
site

:::::::::
Abl4-2017,

:::::::
0.1 cm

::::
thick), and its minimum for the thicker layers ,

::::
(sites

:::::::::
Acc5-2017 or

::::::::
Acc6-2017

:
,495

::::
9 cm

::::::
thick),

::
or for intermediate thicknesses with high PM content (i.e., low penetration of incident light

:
,
:::
site

:::::::::
Abl3-2017,

:::::::
0.3 cm

::::
thick). The impact of uncertainty of snow density was not studied in detail, but the impact is inverse to that of the thickness of

the layer. Hence, we report only the moderate impact of snow density uncertainty for site Abl4-2017.

The impact of the uncertainty of the diffuse to global irradiance ratio is moderate but appreciable, which emphasizes the

relevance of measuring the ratio on the field. Finally, the impact of the uncertainty of the incidence angle is low, and not500

appreciable for this range of experimental albedo uncertainty.

Another possible reason for disagreement between modeled and measured albedo, especially for aged snow, is surface

roughness. Millimeter scale surface roughness due to snow aging have
::
has

:::::
been

:
shown to reduce albedo, especially in the

infrared region, due to multiple reflections in the cavities (Pirazzini et al., 2015). Computer simulations have studied the

parameters that determine the magnitude of the effect of sastrugi (centimeter-scale roughness) on albedo (Zhuravleva and505

Kokhanovsky, 2011). Quantification of the impact of surface roughness of snow in measured albedo is out of the scope of this

work, but it must be remarked that
:
in

:
sites with higher PM content, which has been under

:::::
where

:::::
there

:::
has

::::
been

:
longer snow

metamorphosis processes (Acc3-2016, Abl3-2017 and Abl4-2017), presented
::
we

::::::::
observed higher surface roughness.

Literature values of snow albedo depend mainly
::::::
mainly

::::::
depend

:
on the PM content. Two other studies that found snow albedo

ranges similar to our measurements are connected with local/regional transport of dust (Painter et al., 2012; Wittmann et al.,510

2017). Young et al. (2014) modeled the direct deposition of volcanic ash from Redoubt volcano 2009 eruption on Arctic snow,

finding similarly high albedo reductions. Sicart et al. (2001) also found a similar albedo range at Zongo glacier, but their lower

values of albedo are not attributed to PM surface enrichment but to very thin snow layers over dirty ice.

Recent studies in Chilean Andes measured or modeled small reductions on snow albedo, due to traffic related BC (Cereceda-

Balic et al., 2018) or to a combination of urban BC and dust from desert regions (Rowe et al., 2019). Similarly, studies on Mera515

Glacier, Nepal (Ginot et al., 2014), and at several sites at
::
on

::::
the Tibetan Plateau (Zhang et al., 2018) found small albedo

reductions due to BC and dust, and almost negligible effects of impurities in Greenland (Carmagnola et al., 2013; Wright et al.,

2014).

3.4 Albedo and
:::::::
modeled

::::::
impact

:::
on

:
glacier mass balance

Table 2 shows the glacier-wide
:::::::
modeled annual and winter

::::::
surface

:
mass balance, Equilibrium Line Altitude (ELA) and Ac-520

cumulation Area Ratio (AAR) for different values of old snow albedo (αfirn::::
αmin). Figure 9 shows the change in cumulative

glacier-wide surface mass balance and ablation and the annual mass balance elevation gradient for the different values of
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αfirn ::::
αmin. The mass balance sensitivity to albedo change, defined as the change in glacier-wide

::::::
surface

:
mass balance per

0.1 of αfirn:::::
αmin decrease is around of −0.6 mwe/yr and −0.07 mwe/yr, for annual and winter mass balance, respectively

(Table 2). Firn albedo or old snow albedo have
::::
Aged

:::::
snow

::::::
albedo

:::
has

:
a considerable effect on the surface mass balance of525

Alerce glacier (Fig. 9 A) increasing the amount of melt during the ablation period, from almost 2.4 m w.e. to more than 4.6 m

w.e. when αfirn ::::
αmin:

is decreased from 0.7 to 0.3 (Fig. 9 B). Although the accumulation of the glacier does not change (the

amount of precipitation for the different run test is the same) there is a decrease in the winter (accumulation) mass balance due

to the albedo effect over ablation episodes at the begging of the accumulation season (Fig. 9, Table 2). The decrease in the old

snow albedo had
::::
aged

::::
snow

::::::
albedo

:::::
αmin :::

has an impact all over the glacier, decreasing the surface mass balance at all elevation530

range. Other glaciological parameters related to the surface mass balance of the glacier, like the ELA or AAR also seems to

be profoundly impacted with the decrease of albedo, with a total increase of ELA of 250 m and a decrease of AAR of more

than 50 % when the old snow albedo changes from 0.7 to 0.3. Nevertheless, since both ELA and AAR depends
::::::
depend

:
on the

hypsometry of the glacier the change
:::::::
changes do not increase constantly.

Table 2. Albedo values for ice (αice), old snow (firn, αmin) and fresh snow (αmax) used for the sensitivity study of Alerce glacier-wide mass

balance to change in the albedo. The winter and annual glacier-wide surface mass balance, ELA and AAR for each simulation is presented.

αice αmin αmax

Wint. MB

(m w.e.)

Annu. MB

(m w.e.)

ELA

(m)

AAR

(%)

0.35 0.3 0.8 3.32 -1.28 2165 22.30

0.35 0.4 0.8 3.4 -0.69 2125 34.6

0.35 0.5 0.8 3.48 -0.08 2055 50.3

0.35 0.6 0.8 3.55 0.56 1935 70.5

0.35 0.7 0.8 3.61 1.22 1915 78.8

To give physical meaning to the albedo values presented in Fig. 9 and Table 2, we can use as a reference the daily-averaged535

albedo values modeled with SNICARv2.1 for some of the sampling sites in Table 1.

The αmax = 0.8 used in the mass balance model is equivalent to the daily average of 0.805 for clear-sky conditions, 0.803

for overcast sky, and 0.835 for 33 % of cloudiness, modeled for fresh recent snow ,
::::
snow

:
with very low PM content at site

Acc5-2017. The αfirn = 0.6
:::::::::
αmin = 0.6

:
scenario in Table 2 is similar to the daily average of 0.612 for clear-sky conditions,

0.605 for overcast sky, and 0.637 for 33 % of cloudiness, modeled for recent aged snow with low PM content (Acc2-2016).540

Although it represents intermediately aged snow, it can serve as an example of a
:::::
snow/firn surface with low PM content, a

situation where no ash fall occurred at Monte Tronador. The αfirn = 0.4
:::::::::
αmin = 0.4

:
scenario in Table 2, is similar to the

modeled daily average of 0.407 for clear-sky conditions, 0.368 for overcast sky, and 0.382 for 33 % of cloudiness of the firn

with very high PM content (Abl4-2017). These values are representatives of the
:::::::::::
representative

::
of

:::
the

:::::
snow/firn albedo during

summer for the years 2016 and 2017. The other scenarios are used to depict intermediate or more extreme situation and to545

analyze the role of albedo change in the surface mass balance of the glacier.
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Our αfirn ::::
αmin:

analysis allows us to estimate the impact of volcanic ash on the surface mass balance of Alerce glacier.

In absence of volcanic eruptions, if we assume that other local or regional PM sources (mineral dust, biomass burning, etc.)

do not affect significantly fresh snow albedo, it is expected that the summer αfirn ::::
αmin:over glacier surface is similar to

αfirn = 0.6
::::::::::
αmin = 0.6 scenario. Although we could not sample summer firn layers previous to 2015 Cal eruption to test550

this hypothesis, this first order assumption would mean, that volcanic ash are
::
is responsible for a 1.25 mwe decrease in the

glacier-wide annual
::::::
annual

::::::
surface mass balance (or a 36

:
% increase in summer ablation), if we compared the αfirn = 0.6 and

αfirn = 0.4
::::::::::
αmin = 0.6

:::
and

::::::::::
αmin = 0.4 scenarios.

Although more sampling of firn/snow layer and further chemical analysis on the samples are needed to confirm that the

decrease of albedo is only due to the effect of volcanic ash, we have shown that PM content (and hence αfirn:::::
αmin) varies555

largely over the glacier surface. Taking into account these spatiotemporal changes in albedo for glacier mass balance models is

a defying task. Defining a low number of representative regions over the glacier surface is not an easy task, due to the already

mentioned high heterogeneity. In addition, it would be difficult to regularly measure PM content (and/or albedo) on those

regions, due to the distances and path conditions on the glacier. Regional atmospheric models could be of help in predicting

deposition of volcanic ashes
::
ash, mineral dust, BC and other PM. But the spatial scale of those models (≥1 km) is too coarse560

to capture to reproduce the spatial variation of the albedo over the glacier.

These challenges have been acknowledged in literature, and several approaches have been followed to estimate snow/ice

melting. The simplest approaches have used measured or modeled albedo changes together with measured or modeled solar

radiation to estimate melting, without taking into account spatial heterogeneity (in surface temperature, PM concentration, etc)

(Ginot et al., 2014; Zhang et al., 2018). For Mera glacier, Ginot et al. (2014) calculate that BC and dust are responsible of565

approximately 26
:
% of total melting. Zhang et al. (2018) do not report the effect on melt rates but only the impact on seasonal

snow cover duration, and hence the results are not easy to compare with ours. Painter et al. (2013) used a glacier mass balance

model similar to ours, but introducing temperature anomalies (due to BC radiative forcing) to estimate mass balance changes.

They used several approximations to postulate BC concentrations over the glaciers based on limited ice cores. Their results

are difficult to compare to ours due to the different approach, they analyze general mass balance trends over two centuries.570

Flanner et al. (2007) and Ménégoz et al. (2014)
:::::::::::::::::
Flanner et al. (2007)

:::
and

:::::::::::::::::::
Ménégoz et al. (2014) used emission inventories and

general circulation models to study deposition of BC (and mineral dust, in the latter work) and its radiative forcing. The

spatial resolution of their simulations make difficult the comparison with field PM concentration measurements, and hinder the

accuracy of quantitative mass balance calculations (Ménégoz et al., 2014; Qian et al., 2015). Young et al. (2014) used modeled

ash deposition, SNICAR and a restricted degree-day radiation balance. They found melt rates between 140
:
% and 320

:
% higher575

than for pure snow, although the low spatial resolution of the simulations (≈ 18km) may affect the precision of the results.

Vionnet et al. (2012)
:::::::::::::::::
Vionnet et al. (2012) used the detailed snow model CROCUS implemented on the soil model SURFEX

to study the snowpack on the Grandes Rousses mountain range in the French Alps . They used a high resolution DEM (150 m)

together with meteorological forcing from interpolation of SAFRAN atmospheric reanalysis. They main weakness is that at

that moment CROCUS did not explicitly treated PM in snow (it was only implicitly included in the
:::
their

:
parametrization of580

snow albedo changes with snow aging).
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There are also some examples on literature that studied the coupling of meteorological models with glacier or snowpack

models. Different authors studied climate feedback effects on Karakoram glaciers (Collier et al., 2013) and in the Svalbard

glaciers (Aas et al., 2016), and the snowpack in Antarctica (Vionnet et al., 2012). The authors suggest that the next steps would

be to couple a regional atmospheric model with the ability of prognosis of PM deposition (such as Ménégoz et al. (2014))585

:::::::::::::::::::::::::
(such as Ménégoz et al., 2014) with a high resolution glacier mass balance model (such as ours or CROCUS implementation on

SURFEX (Vionnet et al., 2012))
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(such as ours or CROCUS implementation on SURFEX, Vionnet et al., 2012), and including

explicit treatment of PM effect on snow albedo (such as SNICAR or recent CROCUS implementations (Tuzet et al., 2017)

)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(such as SNICAR or recent CROCUS implementations Tuzet et al., 2017).

4 Conclusions590

Our study combines field observation and modeling activities to analysis
:::::::::::
measurements

::::
and

::::::::
modeling

::
to

:::::::
analyze the role of

PM over the albedo of Alerce glacier in Monte Tronador.

PM content of the samples varied in a wide range, from lowest to highest: fresh snow (1.1 mgkg−1 to 21.9 mgkg−1), old

winter snow/firn (4.9 mgkg−1 to 51 mgkg−1, except from
:::
for some samples from ablation zone), and thin, darker layers with

contribution of local/regional resuspension of dust/ashes
:::
ash (365 mgkg−1 to 410 mgkg−1) or with high PM enrichment due to595

spring and summer ablation (339 mgkg−1 to 9040 mgkg−1, reaching even 12250 mgkg−1 to 30000 mgkg−1 in the ablation

zone). Microscopical
::::::::::
Microscopic

:
characterization of PM showed that the major component on snow and firn layers after 2014

and also glacier ice surface is volcanic ash, not only from the recent Calbuco eruption (2015), but also from the Cordón Caulle

eruption (2011). Minor contributions of mineral dust and Black Carbon
::::
black

::::::
carbon were also detected.

The major presence of volcanic ash
:::
fact

::::
that

:::::::
volcanic

::::
ash

::::::::
represents

:::
the

::::::
largest

:::::::
fraction

::
of

:::
the

::::::::
collected

::::
PM in all studied600

samples indicate
:::::::
indicates

:
that the effect of nearby volcanic eruptions are expected not only inmediately

::::::::::
immediately

:
after

direct deposition, but also many years later, due to surface enrichment and wind resuspension and redeposition. The spatial

and temporal distribution of PM is highly heterogeneous, due both to seasonality and to the combination of glacier topography

and prevailing wind direction. These facts need to be accounted for when studying the effect of snow albedo on glacier mass

balance.
:::::
While

:::
the

::::::
albedo

:::::::::::::
parametrization

::::
used

:::
in

:::
the

::::
mass

:::::::
balance

:::::
model

::::::::
partially

:::::::
accounts

:::
for

:::
the

::::::
spatial

:::::::::::
heterogeneity

:::
of605

:::
PM

::::::
surface

::::::::::::
concentration

::::::::::
(implicitly),

:::
we

::::::
suggest

::::
that

::
in

:::
the

:::::
future

::
it

:::::
would

::
be

::::::
useful

::
to

::::::
couple

:::
our

:::::
mass

::::::
balance

::::::
model

::::
with

::
an

::::::::::
atmospheric

::::::
model

:::::
which

:::::::
provides

:::::::::
prognosis

::
of

:::
PM

:::::::
content

:::
and

:
a
:::::
snow

::::::
albedo

:::::
model

::::
that

:::::::
includes

::::
LAP

:::::
effect

:::::::::
explicitly.

The measured snow albedo also varied in a wide range (0.26 to 0.81), similar to that of other glaciers with dust of volcanic

concentrations in
:
or

::::::::
volcanic

:::
ash

::::::::::::
concentration

::
in

:::
the

:
same order of magnitude. We found that

::
for

::::
our

:::::
set-up

:::::::
(where

:::
the

::::::::::
pyranometer

::::
must

:::
be

:::::::
inverted

::::::::::
sequentially

::
to

:::::::
measure

:::::::::
upwelling

:::
and

:::::::::::
downwelling

::::::::
radiation)

:
rapid changes in cloudiness hin-610

der the repeatability of albedo measurements and may difficult
::::::
degrade

:
the comparison with modeled albedo. Nevertheless,

comparison of measured and modeled snow albedo showed a good match, and illustrates the effect of PM content and compo-

sition (i.e., BC versus dust or volcanic ash), snow grain size, layer thickness, and cloudiness on snow albedo. To evaluate the

latter, we updated the SNICAR snow albedo model , to accurately represent the effect of cloudiness on direct and diffuse solar
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spectra (SNICARv2.1). This update improved considerably the match of measured and modeled albedo for partially cloudy615

sky conditions. The effect of uncertainties of field measurements of snow properties was evaluated for different types of sam-

ples(lower or higher PM content, grain size, layer thickness, snow density, etc.), ,
:
suggesting strategies to reduce uncertainty in

snow albedo modeling or retrieval of snow properties from measured albedo.
::
We

::::::
found

:::
that

:::::
snow

::::
grain

::::
size

::::
must

:::
be

::::::::
measured

::::
more

::::::::
carefully

::
in

:::::::
samples

::::
with

::::
low

:::::::
volcanic

:::
ash

::::::
content

::::
and

:::
that

:::
the

::::::::
accuracy

::
of

:::::
layer

::::::::
thickness

:::
can

:::
be

:::::::
relevant

:::
not

::::
only

:::
for

::::
very

:::
thin

:::::
layers

:::::::
(0.1 cm

:
)
:::
but

::::
also

::
for

:::::::
thicker

:::::
layers

:::::
(6 cm

:
)
::::
with

:::
low

:::
ash

:::::::
content.

::::
The

::::::::
accuracy

::
of

:::
ash

::::::
content

::::
was

:::::
found

::
to

:::
be620

::::
good

::::::
enough

:::
for

:::::::::::
reproducing

:::
our

::::::
albedo

::::::::::::
measurements.

::::::::
However,

::
it
::::
was

::::::::
remarked

:::
that

:::
the

::::::::
presence

::
of

:::::
small

:::::::
amounts

:::
of

:::
BC

:::
can

:::::
affect

:::
the

::::::
albedo

::::::::::
significantly

::
in

:::::::
samples

::::
with

:::
low

::::
ash

:::::::
content.

We showed that glacier-wide
:::::
surface

:
mass balance is highly sensitive to firn or old snow albedochanges

:::
the

:::::::::::::
parametrization

::
of

::::
aged

:::::
snow

::::::
albedo. We find a glacier-wide albedo change sensitivity of around of −0.6 mwe/yr, mostly due to a higher

ablation during spring and summer. Finally, we suggest that the effect of volcanic ashes
:::
ash in Alerce glacier can be as high as625

a 1.25 mwe decrease in the glacier annual mass balance or a 34 % of increase in the melt during the ablation season,
::::::::::
considering

:
a
::::::
surface

::::::::
volcanic

:::
ash

::::::
content

::::::::::
compatible

::::
with

::::
that

::::::::
measured

::
in

::::
sites

:::::::::
Acc3-2016

:
,
:::::::::
Abl3-2017

:::
and

:::::::::
Abl4-2017. Nevertheless, a

more accurate calculation of volcanic ash impact would take into account the amount of other regional or local sources of PM

present on the glacier in absence of such volcanic eruptions, which cannot be estimated with the results of the field campaigns

reported in this article.630

To the best of our knowledge, this work is the first study of PM content and snow albedo on Argentinian glaciers. Our results

highlight the need of considering appropriately
:::::::::::
appropriately

::::::::::
considering the effect of volcanic eruptions on snow albedo and

glacier mass balance even years after the eruption events. We suggest possible future steps to improve prognosis ability and

mass balance accuracy, using a combination of measurements and modeling.

Code and data availability. The complete set of field measurements are available from the corresponding author on reasonable request. The635
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Figure 2. PM concentration (grayscale) as a function of pit depth for different sampling sites.
::::

Notice
::::
that

::
the

::::::::
grayscale

:
is
:::::::::
logarithmic.

:
Top

panel: accumulation zone. Bottom panel: ablation zone. α symbol is used to highlight sites with concurrent albedo measurements. In sample

Abl2-2016, the top rectangle corresponds to the average PM content of the first two layers (fresh snow and end-of-summer dark layer).
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Figure 3. Albedo measurement equipment. (a) support
:::::::
Mounting

:::::
stand used in the 2016 campaign. (b) support

:::::::
Mounting

::::
stand

:
used in the

2017 campaign. The presence of the support
::::
stand

:
and the observer is taken into account to correct the albedo measurement through the

angles θ and φ and Eq. (S1) and (S2) in the Supplement.
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Figure 4. Different
::::::::
normalized spectral distributions of sun radiation for SNICAR snow albedo model. SNICARv2 included two spectra

for mid-latitude locations: one for overcast conditions(light green line), and one for clear sky conditions.
::::::::::
SNICARv2.1

:::::
allows

:::::::::
calculation

::
of

:::::
diffuse

:::::
spectra

:::
for

:::::
partly

:::::
cloudy

::::::::
conditions (dark green line

:::
50%

:::
and

::::
95%

::::
cloud

::::::
fraction

:::
are

:::::
shown

::
as

:::::::
examples). SMARTS diffuse (light red

line) and direct (dark red line) clear sky spectra for one of our sampling sites are represented for comparison.Dotted lines represent spectra

for partly cloudy conditions (SNICARv2.1).
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Figure 5. Seasonal range of PM concentration found on snow/firn samples. For accumulation season, the values represent the mean PM

concentration in thick, low PM layers of snow/firn. For ablation season the values represents the surface PM concentration at the end of the

season. The box encompasses one standard deviation of data, and whiskers represent minimum and maximum values (when N > 2).
:::::
Notice

:::
that

::
for

:::::::
seasonal

::::
layers

::::
with

::::
only

:::
two

:::::::::::
measurements,

::
the

:::
box

::::::::
represents

::::
those

:::
two

:::::
values

:::::::::
(coincident

:::
with

:::
the

:::::::
definition

::
of

:::::::
standard

:::::::
deviation

::
for

::
N

:
=
:::

2). The plot includes data from both field campaigns, and excludes ablation ice samples, which cannot be assigned to an
:
a specific

year/season. Fresh snow represent snow fallen a few days before field campaigns of 2016 or 2017.
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Figure 6. Stereo microscope images of juvenile glass fragments from ash fall events identified in the filters. Different morphologies are

shown: A: Colourless glass fragment with elongate, thin, pipe-shaped vesicles (2017 end-of-summer dark layer, site Acc7-2017); B: Colour-

less pumice (surface ablation ice, site Abl6-2017). C: Dark brown fragment of vesicular glass (2017 end-of-summer dark layer, site Acc7-

2017). D: Glass fragments with smooth, round surfaces formed by surface tension within still-molten, vesiculating droplets suggesting highly

vesicular interior (2017 end-of-summer dark layer, site Acc7-2017). E and F: Two flat, tan glass shards derived from broken vesicle walls.

Left: Y-shaped fragment formed where three bubbles were in close proximity (surface ablation ice, site Abl6-2017). Right: flat glass plate

formed by the fragmentation of walls that enclosed large elongated, flattened vesicles as those shown above (fresh snow on top of ablation

ice, site Abl5-2017). G: Pyroxene crystal with two patches of colourless glass with tiny dots of magnetite (2016 end-of-summer dark layer,

site Acc4-2017). H: planar piece of charcoal with subtle striated surface texture and brilliant luster.
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Figure 7. Scanning Electron Microscopy images of samples collected on Alerce glacier. A: irregular glass fragment with low vesicularity,

evidence of bubble coalescence, and small, flat, platy, very thin glass shards indicated by red arrows, loosely adhering to the grain surface.

These tiny fragments are remnants of burst vesicle walls. B: glass fragment with smooth surface. C: glass fragment, with remnant of parallel

pipe vesicles, notice the thin vesicle walls. D: Y-shaped glass fragment, remnant of a partially broken pumiceous pyroclast with elongated

parallel bubbles. E: glass fragment with smooth surface. F: closeup of the glass fragment in E, showing in detail the smooth surface. G:

portion of a vitric pyroclast with loose material on its surface (adhering dust), mostly tiny glass fragments, and a vesicle indicated by a red

circle which contains small particles. H: closeup of the vesicle filling in G, showing an aggregate of carbon spherules of 100 nm to 200 nm

corresponding to Black Carbon
::::
black

:::::
carbon

:
(BC) particles.
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Figure 8. Classification diagram TAS (Le Bas et al., 1986). Major element compositions of glass shards from the AD 2015 Calbuco eruption

acquired by electron microprobe analyses (LAMARX, Córdoba, Argentina) from samples collected during direct ashfall events in Junín de

los Andes and Paso Cardenal Samoré, Argentina (Villarosa et al., 2016) and from the AD 2011 Puyehue-Cordón Caulle eruption acquired by

electron microprobe (EMP) analysis, samples collected in San Carlos de Bariloche, Villa La Angostura and Paso Cardenal Samoré, Argentina

(Alloway et al., 2015). Red circles: EDS analyses from PM samples from the studied area. Glass shards derived from Puyehue-Cordón Caulle

(black circles) are rhyolitic in composition while glass from Calbuco eruption (grey triangles) is andesitic to dacitic in composition.

Figure 9. Sensitivity of Alerce glacier-wide surface mass balance to change in albedo of old
:::
aged

:
snowor firn. A) cumulative glacier-wide

surface mass balance, B) cumulative melt and C) mass balance gradient of Alerce glacier for the different albedo
::::
αmin:::::

values.
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