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Abstract 

Snow is a sensitive component of the climate system. In many parts of the world, water stored as snow is a vital resource for 

agriculture, tourism and the energy sector. As uncertainties in climate change assessments are still relatively large, it is 

important to investigate the interdependencies between internal climate variability and anthropogenic climate change and their 

impacts on snow cover. We use regional climate model data from a new single model large ensemble with 50 members 15 

(ClimEX LE) as driver for the physically based snow model SNOWPACK at eight locations across the Swiss Alps. We 

estimate the contribution of internal climate variability to uncertainties in future snow trends by applying a Mann-Kendall test 

for consecutive future periods of different lengths (between 30 and 100 years) until the end of the 21st century. Under RCP8.5, 

we find probabilities between 15% and 50% that there will be no significantly negative trend in future mean snow depths over 

a period of 50 years. While it is important to understand the contribution of internal climate variability to uncertainties in future 20 

snow trends, it is likely that the variability of snow depth itself changes with anthropogenic forcing. We find that relative to 

the mean, inter-annual variability of snow increases in the future. A decrease of future mean snow depths, superimposed by 

increases in inter-annual variability will exacerbate the already existing uncertainties that snow-dependent economies will 

have to face in the future. 

1 Introduction 25 

In large parts of the world, water stored in snow is a vital resource for water management with regard to agriculture and power 

generation. Snow cover extent and duration is also a premise for winter tourism. As part of the climate system, snow influences 

the energy balance and heat exchange and is therefore a crucial component for land surface-atmosphere interactions (Hadley 

and Kirchstetter, 2012; Henderson et al., 2018). At the same time, snow is very sensitive to changes in the climate system. 

Several studies have analyzed trends in historical snow cover, but there is not a uniform pattern across the world. While there 30 

are many regions where snow cover and depth are decreasing, there are also areas that show no trend or even increasing snow 

depths (Dyer and Mote, 2006; Schöner et al., 2019; Zhang and Ma, 2018). These contrasting findings can be attributed to 

spatial and temporal climate variability, from global to local scales.  

In addition to studies dealing with historical snow trends, many studies investigate the potential impacts of anthropogenic 

climate change on snowpack. The vast majority of those studies conclude that anthropogenic climate change will significantly 35 

reduce snow cover. In a global analysis, Barnett et al. (2005) find that reduced snow cover will lead to severe consequences 

for future water availability. On the continental scale, Brown and Mote (2009) simulate a serious decrease in seasonal snow 

cover in a future climate. On the regional scale, Marty et al. (2017) and Verfaillie et al. (2018) compared the impact of different 

emission scenarios on future snowpack in the Swiss and French Alps respectively and found a significant reduction under all 

scenarios and for all elevation zones. Ishida et al. (2019) and Khadka et al. (2014) found that climate change will lead to severe 40 

shifts in snow regimes in California and Nepal, respectively.        
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However, the potential impacts of climate change on snow hydrology remain disputed, largely because of uncertainties 

attributed to future greenhouse gas emissions, model uncertainties and internal climate variability (ICV) (Beniston et al., 2018). 

ICV is defined as the natural fluctuations in the climate system that arise in the absence of any radiative forcing (Hawkins and 

Sutton, 2009). Typically, studies compare different emission scenarios to tackle the uncertainties related to future greenhouse 45 

gas emissions and use a multi-model ensemble approach to estimate uncertainties related to model uncertainties (Frei et al., 

2018; Marty et al., 2017). While future greenhouse gas emissions and model uncertainties are the subject of multiple studies 

(Kudo et al., 2017), only very few studies investigate the impact of ICV on snow (Fyfe et al., 2017).   

When using a multi-model ensemble approach, it is difficult to quantify ICV impacts or separate contributions from ICV and 

external forcing since it is very challenging to distinguish between model uncertainties and ICV. The reason for this is that 50 

inter-model spread is commonly derived from the complex coupling of different model structures, parameterizations and 

atmospheric initial conditions (Gu et al., 2019). Nevertheless, a few studies estimated the fraction of uncertainty in the hydro-

meteorological process chain ranging from different emission scenarios to the applied impact model and found that on shorter 

timescales, ICV represents the single most important source of uncertainty (Fatichi et al., 2014; Lafaysse et al., 2014). To 

investigate the combined influences of ICV and anthropogenic forcing (atmospheric concentration of greenhouse gases and 55 

aerosols), single model large ensembles, generated by small differences in the models’ initial conditions, have been developed 

(Deser et al., 2012; Kay et al., 2015; Leduc et al., 2019). Those studies allow a probabilistic assessment of ICV. Deser et al. 

(2012), for example, used a 40-member initial condition ensemble to estimate the contribution of ICV in future North American 

climate, or Fischer et al. (2013) used a 21-member single model ensemble to assess the role of ICV in future climate extremes. 

Mankin and Diffenbaugh (2014) investigated the influence of precipitation variability on near-term Northern Hemisphere snow 60 

trends. Because of high computational costs, those ensembles are usually used on the scale of General Circulation Models; 

Dynamically downscaled single model large ensembles, using a Regional Climate Model (RCM), are very rare. To our 

knowledge, only Fyfe et al. (2017) used snow water equivalent from a downscaled single model large ensemble to estimate 

the impact of ICV on near-term snowpack loss over the United States. Nevertheless, the combined effects of ICV and external 

forcing on snow remain insufficiently quantified and a single model large ensemble has not yet been used to drive a snowpack 65 

model for regional impact studies.  

While it is important to estimate the contribution of ICV to uncertainties in future snow trends, it is however as important to 

investigate the inter-annual variability (IAV), of snow itself, which is defined as the year-to-year deviation from a long-term 

mean (He and Li, 2018) and which is likely to change under a future climate (IPCC, 2013). While the response of IAV of snow 

depths to anthropogenic climate change can pose risks and increasing uncertainties for agriculture, power generation and winter 70 

tourism, these processes are only inadequately studied. Again, by complementing multi model-based approaches and by 

separating ICV from forced responses, a single model large ensemble can help answering how inter-annual variability might 

respond to changes in climatic forcing. 

We state the following hypotheses and aim at answering two research questions: First, ICV is a major source of uncertainty in 

trends of future Alpine snow depth. Our research question is: what are the uncertainties in future trends in Alpine snow depth 75 

attributed to ICV? Second, IAV of snow depth will change with anthropogenic climate forcing. Hence, our research question 

is: how does IAV of snow depth change with anthropogenic climate forcing? 

To answer these questions, we use a dynamically downscaled single model large ensemble to drive a state-of-the-art, physically 

based snowpack model for eight stations across the Swiss Alps. In the first part, we assess the ensemble mean change of snow 

depths in a future climate. In the second part, we assess the probabilities for a significant reduction in annual mean and 80 

maximum snow depth in the presence of ICV. In the third part, we quantify how inter-annual variability of snow depth might 

change in a future climate.  
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2 Methods and Data 

2.1 Case studies 

This study assesses the interdependencies between ICV and anthropogenic climate change for eight stations across the Swiss 85 

Alps. The choice of these case studies was driven by the availability of long-term observations needed for model validation 

and bias correction. The selected stations are considered representative, as they spread over the whole ridge of the Swiss Alps 

and cover the northern and southern parts of the mountain range and cover elevations between 1060 m a.s.l. and 2540 m a.s.l. 

(Fig. 1, Table 1). Observational data of temperature, precipitation, wind speed, humidity and incoming shortwave radiation 

was provided by the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss: 90 

https://www.meteoswiss.admin.ch/home/services-and-publications/beratung-und-service/datenportal-fuer-lehre-und-

forschung.html), and the WSL Institute of Snow and Avalanche Research (SLF) in a 3-hourly temporal resolution. Daily 

measurements of snow depth used for model validation stem from the same sources. The temporal coverage of the 

observational data for the purpose of bias correction and model validation ranges from 1983 to 2010. 

 95 

Figure 1: Overview map of case studies used for this study (produced using Copernicus data and information funded by the 

European Union – EU-DEM layers). 
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Table 1: Summary of case studies. 

Station ID Coordinates  

(lat° N/ lon° E) 

Elevation  

(m a.s.l.) 

Adelboden ABO 46.5/7.6 1325 

Engelberg ENG 46.8/8.4 1060 

Davos DAV 46.8/9.9 1560 

Montana MON 46.3/7.5 1590 

Scuol SCU 46.8/10.3 1298 

Ulrichen ULR 46.5/8.3 1366 

Weissfluhjoch WFJ 46.8/9.8 2540 

Zermatt ZER 46.0/7.8 1600 

    105 

 

2.2 The SNOWPACK model 

SNOWPACK is a physically-based, one-dimensional snow cover model (Lehning et al., 1999). It was originally developed 

for avalanche forecasting (Lehning et al., 2002a), but is increasingly used for climate change studies (Katsuyama et al., 2017; 

Schmucki et al., 2015). SNOWPACK is highly advanced with regard to snow microstructural detail. The model uses a 110 

Lagrangian finite element method to solve the partial differential equations regulating the mass, energy and momentum 

transport within the snowpack. Calculations of the energy balance, mass balance, phase changes, water movement and snow 

transport by wind are included in the model. Finite elements can be added through solid precipitation and subtracted by erosion, 

melt water runoff, evaporation or sublimation (Lehning et al., 2002a; Lehning et al., 2002b; Lehning et al., 1999; Schmucki et 

al., 2014). Recommended temporal resolutions range from 15 minutes (e.g. for avalanche forecasting) to three hours (e.g. for 115 

long-term climate studies). Minimum meteorological input for SNOWPACK is air temperature, relative humidity, incoming 

long wave radiation, wind speed and precipitation. Due to the lack of measurements, incoming longwave radiation had to be 

estimated based on air temperature, incoming short wave radiation and relative humidity, using the parameterization by 

Konzelmann et al. (1994). Shakoor et al. (2018) and Shakoor and Ejaz (2019) applied this method for multiple sites and 

elevations and found that it gives reliable estimates. As wind induced gauge undercatch underestimates precipitation, especially 120 

for mixed-, and solid precipitation, we do not use the original measured precipitation data to run the model. As described in 

Schmucki et al. (2014) precipitation was undercatch-corrected by applying a method developed by Hamon (1973), using a 

function of wind speed and temperature.  

Soil layers are not included in our model setup. Therefore, ground surface temperature is determined as a Dirichlet boundary 

condition (Schmucki et al., 2014) and soil temperature is fixed at 0 °C. To account for site-specific characteristics, we calibrated 125 

roughness length and rainfall/ snowfall threshold temperature. For roughness length, we used values between 0.01 and 0.08. 

For rainfall/snowfall discrimination, we used threshold temperatures between 0.2 and 1.2 °C, which lies well within the 

calibration ranges between -0.4 °C and 2.4 °C based on results from Jennings et al. (2018). The calibration was carried out 

individually for each site. A threshold of 50 % in relative humidity was set for all stations for rainfall/ snowfall discrimination.  

SNOWPACK usually operates on very high temporal resolutions. After an initial sensitivity analysis, to get better simulation 130 

results, the meteorological input was resampled within SNOWPACK to a resolution of one hour. Precipitation was evenly 

disaggregated from a three-hourly time step to one hour, while the remaining parameters were linearly interpolated. The case 

studies were validated based on observed daily and monthly snow depths.  
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2.3 Simulation data 

In this study, we use climate model data from a new single model large ensemble, hereafter referred to as the ClimEx large 135 

ensemble (ClimEx LE) (Leduc et al., 2019; von Trentini et al., 2019), to analyze the combined influence of ICV and climate 

change on future snow depth. The ClimEx LE consists of 50 members of the Canadian earth system model (CanESM2) (Arora 

et al., 2011), which is downscaled for a European and North American domain by the Canadian regional model (CRCM5) 

(Šeparović et al., 2013). Each ensemble member undergoes the same external forcing and starts with identical initial conditions 

in the ocean, land and sea-ice model components, but slightly different initial conditions in the atmospheric model. The 50 140 

members of the CanESM2 originate from five families of simulations, each starting at different 50-year intervals of a 

preindustrial run with a stationary climate and range from 1850 to 1950. In 1950, small differences in the initial conditions are 

used to separate each family into 10 members.  After applying small atmospheric perturbations in the initial conditions each 

member evolves chaotically over time. Therefore, the model spread shows how much the climate can vary as a result of random 

internal variations (Deser et al., 2012). This makes all 50 members equally likely, plausible realizations of climate change over 145 

the next century. Until 2005 the ensemble is driven by observed forcing, from 2006 to 2099 all simulations are forced with 

concentrations according to the RCP8.5 scenario (Moss et al., 2010).  

The 50 members are then dynamically downscaled over Europe using CRCM5 with a horizontal grid-size of 0.11 ° on a rotated 

latitude-longitude grid, corresponding to a 12 km resolution (von Trentini et al., 2019). Detailed information on the design of 

the experiment can be found in Leduc et al. (2019). The ClimEx LE provides meteorological data on a 3-hourly temporal 150 

resolution. 

In an inter-comparison experiment by von Trentini et al. (2019), the ClimEx LE was compared to 22 members of the EURO-

CORDEX multi-model ensemble. It was found that the ClimEx LE shows stronger climate change signals and the single model 

spread is usually smaller compared to the multi model ensemble spread. Our analysis and Leduc et al. (2019) found a 

substantial bias between the ClimEx LE and observational data aggregated to the 12 km grid. Especially over the Alps, a strong 155 

wet bias was identified. With regard to temperature, we found a cold bias for most grid points covering the Swiss Alps. The 

bias between model data and observations justifies the application of a bias adjustment procedure, which is explained in Sect. 

2.4. 

2.4 Bias adjustment 

As simulations from General Circulation Models are usually too coarse to be directly used as input in impact models, CanESM2 160 

was dynamically downscaled to a 12 km resolution, which better represents regional topography and therefore regional 

climatology. As practically all regional climate models still have a systematic model bias, and as our impact model simulates 

snow for a particular one dimensional point in space, another downscaling/bias adjustment step is needed to adjust systematic 

model biases and to bridge the gap between RCM simulations and the impact model. There exist multiple methods for bias 

adjustment and downscaling, and approaches are dependent on the study purpose. While e.g. the delta change approach is 165 

robust and easy to implement, the method neglects potential changes in variability and is therefore not suitable for our study. 

In recent years, many studies have concluded that Quantile Mapping (QM) performs similar or superior to other statistical 

downscaling approaches (Feigenwinter et al., 2018; Gutiérrez et al., 2019; Ivanov and Kotlarski, 2017). 

When multi-model ensembles are bias corrected, usually each simulation is corrected separately, whereas bias adjusting a 

single model large ensemble requires specific considerations, as the chosen method should not only correct the bias of each 170 

individual member, but should also retain the individual inter-member variability (Chen et al., 2019). We applied a distribution-

based quantile mapping approach to bias correct and downscale the model data to the station scale in one step, based on the 

daily translation method by Mpelasoka and Chiew (2009). Several studies tested this method and confirmed a reasonable 

performance (Gu et al., 2019; Teutschbein and Seibert, 2012). A downscaling to station approach was also performed for the 

official CH2018 Swiss climate scenarios (Feigenwinter et al., 2018). We modified the approach in the form that it was applied 175 
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to a transient climate simulation ranging from 1980 to 2099 and, in contrast to previous studies that use daily scaling factors it 

is based on sub-daily scaling factors. The last-mentioned modification was necessary, as SNOWPACK needs sub-daily 

meteorological input.  

In a first step, we computed the empirical distributions of observed and simulated climate variables for the baseline period 

1984 to 2009. We chose this period, as it is the period during which all of the stations have the smallest count of missing data. 180 

Overall 99 quantiles were estimated separately for each month and each three hourly timestep of the day. The grid cells 

overlying the respective climate stations described in Sect. 2.1 provide the simulated input series. For the ClimEx LE 

simulations, all 50 members were aggregated to compute a single empirical distribution. A large part of the internal variability 

would be removed or filtered if the distributions were calculated independently for each member (Chen et al., 2019). Thus, we 

computed the distribution based on the pooled ensemble members, because all runs are derived from the same climate model 185 

with the same forcing and are therefore assumed to have the same climatological bias (Chen et al., 2019; Gu et al., 2019).  

In a second step, we computed scaling factors between the simulated and observed data in the baseline period. For temperature, 

an additive scaling factor was estimated, while for the remaining variables multiplicative scaling factors were estimated. In a 

last step, for temperature the scaling factors were added to the empirical distributions of each single ensemble member, while 

for the remaining variables the scaling factors were multiplied with the empirical distributions of the simulations. The same 190 

scaling factors were transiently applied to the distribution functions of 25-year slices of each ensemble member. 

The method does not take into account inter-variable dependency. As SNOWPACK is a physically-based model, physical 

inconsistencies in the data can lead to serious model errors. For example, precipitation occurring simultaneously with low 

humidity will result in model error. As we use a univariate bias adjustment approach, we also had to test the results for these 

inconsistencies.     195 

2.5 Validation of bias adjustment and SNOWPACK 

The performance of the applied bias adjustment approach, as well as the performance of SNOWPACK, and the snow 

simulations using the ClimEx LE as driver were validated prior to continued analyses.  

To evaluate the performance of the bias adjustment approach, we compared the statistical characteristics of observed 

meteorological variables to the bias-adjusted ClimEx LE for subdaily, daily, monthly and yearly values and compared the 200 

diurnal and annual regimes of the corrected parameters. We obtained good results in the calibration period 1984 to 2009. 

In terms of distributional quantities and climatologies this is to be expected, as the bias correction scheme was calibrated for 

exactly this period. Due to this reason and as the performance of the chosen bias correction method is already subject of the 

studies by Chen et al. (2019) and Gu et al. (2019) we do not present the validation exercise in detail. Instead we focus on a 

validation that is highly relevant for snow accumulation, namely on the performance of the bias adjustment with regard to the 205 

snowfall fraction assuming the calibrated SNOWPACK rain-snow temperature thresholds. This is of special interest, as a 

univariate bias adjustment approach, as employed here, does not explicitly correct for biased inter-variable dependencies, 

which could, among others, affect the snowfall fraction. 

SNOWPACK itself was calibrated for the period 1985 to 1989 and cross-validated for different five-year periods between 

1990 and 2009 using observed meteorological input, which was compared to measured snow depths. All periods provide 210 

similar results. For a clearer visualization, we only show results for the period 2000 to 2004. To assess goodness of fit, we 

compared daily and monthly measured snow heights with modelled snow heights simulated with observed meteorological 

input using several performance indicators such as mean absolute error (MAE), Nash-Sutcliffe coefficiency (NSE), coefficient 

of determination (R2) and index of agreement (d) (e.g. Krause et al. (2005) and Legates and McCabe (1999)).  
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2.6 Statistical analysis of simulated snow depth 215 

In the first part of our analysis, we estimate the ensemble mean changes for annual mean and maximum snow depth between 

the reference period ranging from 1980 to 2009 (REF) and three future periods ranging from 2010 to 2039 (near future: FUT1), 

2040 to 2069 (mid-future: FUT2) and 2070 to 2099 (far-future: FUT3).  

In the second part of the analysis, we estimate the uncertainties in future snow trends (and their drivers) emerging from ICV.  

We apply the Mann-Kendall (MK) trend detection test (Kendall, 1975; Mann, 1945), to test for statistically significant trends 220 

of different lengths of time-series starting in the year 2000 and ending between 2029 and 2099. The Mann-Kendall test is 

frequently used in climatological-, and hydrological applications (Gocic and Trajkovic, 2013; Kaushik et al., 2020).  The MK 

test statistic (S) is computed as: 

𝑆 =  ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖 =1

 (Eq. 1) 

 

where 𝑥𝑖 and 𝑥𝑗 are the data points at times 𝑖 and 𝑗; 𝑛 represents the length of the time-series; 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) is a sign function 225 

defined as: 

𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) =  {

+1, 𝑖𝑓 𝑥𝑗 − 𝑥𝑖 > 0

0, 𝑖𝑓  𝑥𝑗 − 𝑥𝑖 = 0

−1, 𝑖𝑓  𝑥𝑗 − 𝑥𝑖 < 0
 (Eq. 2) 

 

The null hypothesis of the MK-test is that a time-series has no trend (Libiseller and Grimvall, 2002). In this study, trend 

significance was tested for p-values of 0.01, 0.05 and 0.1. As air temperature below a certain threshold occurring 

simultaneously with precipitation is the most important prerequisite of snowfall (Morán-Tejeda et al., 2013; Sospedra-Alfonso 230 

et al., 2015), we do not only test for future snow depth trends, but also for the drivers of future snow conditions. For that 

reason, we apply the Mann-Kendall test also to temperature, precipitation, snowfall fraction and snowfall time-series. 

In the third part of the study, we estimate the change in IAV. As measure for IAV, we use the standard deviations of annual 

mean/ maximum snow depths for the respective reference and future periods. The standard deviation is commonly used as a 

measure of IAV, such as in Siam and Eltahir (2017). All analyses were performed with the statistical software R (R Core 235 

Team, 2017). All analyses in Sect. 3.3 to 3.5 are performed for mean and maximum winter snow depths. Winter is defined as 

the months October to March. 

3 Results 

3.1 Validation of SNOWPACK 

The validation results of SNOWPACK using meteorological observations as input are summarized in Fig. 2. From Table 2, 240 

we can deduce a good model fit. For all stations, the annual snow regime is very similar between observations and simulations 

and the month of maximum snow depth is always identical. Maxima are also well represented. There is no systematic over-, 

or underestimation visible across stations. Only for the station Montana a systematic overestimation of simulated snow depths 

across all years is apparent.  

The performance indicators of daily measured and simulated snow depths show good results for all stations. With an R2 and 245 

NSE larger than 0.75, and an index of agreement larger than 0.9 the stations Davos, Montana, Zermatt, Ulrichen and 

Weissfluhjoch show a very good model performance. The low elevation stations Engelberg and Adelboden, as well as Scuol 

still show a reasonably good model fit with an R2 larger or equal to 0.6 and an NSE larger than 0.5, as well as an index of 

agreement (d) larger than 0.85.       
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 250 

Figure 2: Validation results of SNOWPACK. Simulated daily (left) and monthly (right) mean snow depth driven by 3-hourly 

meteorological observations (sim) vs. measured daily and monthly mean snow depth (obs) for the period 2000 to 2004.  See Table 1 

for the acronyms of case studies. 

Table 2: Goodness of fit measures between measured daily snow depth and SNOWPACK simulated daily snow depth driven by 3-

hourly meteorological observations for the period 2000 to 2004. Measures are: mean absolute error (MAE), Nash-Sutcliffe 255 
coefficiency (NSE), coefficient of determination (R2) and index of agreement (d). See Table 1 for the acronyms of case studies. 

 ABO ENG DAV WFJ ZER MON SCU ULR 

MAE 3.91 5.75 4.47 18.5 4.58 5.66 4.49 7.21 

NSE 0.59 0.64 0.92 0.91 0.79 0.86 0.51 0.88 

d 0.87 0.9 0.98 0.98 0.94 0.96 0.9 0.97 

R2 0.6 0.66 0.92 0.91 0.79 0.87 0.75 0.9 
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3.2 Performance of bias adjustment and ensemble SNOWPACK simulations 

Inter-variable dependence between precipitation and humidity, as well as incoming short wave radiation was not corrupted 

through the bias correction (e.g. there were no cases of precipitation and simultaneously low humidity, or precipitation and 260 

simultaneously high incoming shortwave radiation; not shown). We concentrate the presentation of our results on the impacts 

of bias adjustment on temperature and precipitation dependencies and consequently snowfall fraction, as this is an essential 

part of the snow modelling process. 

Fig. 3 visualizes the mean winter snowfall fraction for each station based on observed temperature and precipitation and based 

on the bias adjusted temperature and precipitation data for the corresponding rainfall/snowfall threshold temperatures. 265 

Snowfall fractions based on observations and bias-adjusted simulations are almost similar for Adelboden, Engelberg, Davos 

and Weissfluhjoch. For Scuol, the bias-adjusted ClimEx LE underestimates the observed snowfall fraction by 12% and for 

Ulrichen by up to 16%. For the two stations Zermatt and Montana we find an even stronger underestimation by 33% and 50%, 

respectively. The results imply that there is no systematic error between observed and simulated snowfall fractions, but there 

are stations that show a significant underestimation of snowfall fraction compared to observations. The potential reasons for 270 

this underestimation are addressed in the discussion (Sect. 4). 

 

Figure 3:  Mean winter snowfall fraction based on observations (obs; red) and for the bias-adjusted ClimEx LE (blue) for the period 
1984 to 2009. temp-th indicates the calibrated snowfall-rainfall separation threshold for the respective station. See Table 1 for the 

acronyms of case studies. 275 

In Fig. 4 we show the long-term monthly mean snow depths for observations, simulations driven by observed meteorological 

input and simulations driven by the bias adjusted ClimEx LE.  As already mentioned in Sect. 3.1, the comparison between 

observations and SNOWPACK simulations driven by observational data show a good model fit for all stations. For the stations 

Adelboden, Engelberg, Davos, Weissfluhjoch and Scuol, the 50 ClimEx LE simulations enclose the observed snow depths for 

the calibration period of the bias adjustment. This implies a good performance of the bias adjustment. As shown above, the 280 

bias-adjusted dataset systematically underestimates snowfall fraction in Zermatt and Montana, resulting in a pronounced 

underestimation of simulated snow depths. The two stations are not excluded from further analyses, but we have to clarify that 
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those results must be interpreted cautiously and that we cannot consider absolute snowfall fraction or snow depth values for 

those stations.   

 285 

Figure 4: Long-term monthly mean snow depth for observations (obs), simulations driven by meteorological observations (sim) and 

the ensemble spread of simulations driven by the ClimEx LE for the period 1984 to 2009. See Table 1 for the acronyms of case 

studies. 

Lastly, it is important to validate the ability of the ClimEx LE SNOWPACK simulations to reproduce IAV. In Fig. 5, we 

present IAV of winter mean snow depth for the ClimEx LE SNOWPACK simulations, observed snow depth and simulated 290 

snow depths based on observed meteorological input. For all stations but Zermatt and Montana, IAV of simulations driven by 

observational data lie within the envelope of the 50 ClimEx LE members. For the stations Zermatt and Montana, the systematic 

underestimation of snow depth consequently leads to an underestimation of IAV. Surprisingly, despite the satisfying validation 

results and in relation to the ClimEx LE spread, IAV between observations and simulations driven by observations differ 

significantly for the stations Adelboden, Engelberg and Scuol.  295 
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Figure 5: Inter-annual variability of mean winter snow depth for SNOWPACK simulations using ClimEx LE as driver, using 

observed meteorological data as driver (sim) and observed IAV (obs) of mean winter snow depth for the period 1984 to 2009. The 

boxes represent the inter-quartile range with the median as horizontal line. The whiskers represent 1.5 times the inter-quartile range 

and the dots represent outliers. See Table 1 for the acronyms of case studies. 300 

3.3 Mean climate change signal 

Both the impacts of ICV on future snow trends and the changes of IAV under a given emissions scenario must be put into 

perspective to the ensemble mean climate change signal. To do so, we present the absolute and relative changes in mean and 

maximum winter snow depth between our reference-, and future periods. Fig. 6 visualizes the mean and maximum winter 

snow depths for the reference and future periods and the respective percentage change. For the ensemble mean, we find a 305 

continuous and significant decrease of mean and maximum snow depth over all stations. While absolute changes are partly 

stronger for maximum winter snow depths, the percentage decrease in mean winter snow depth is more severe for all case 

studies. All stations below 2000 m.a.s.l., except Ulrichen, show a similarly strong decrease in mean winter snow depth. The 

decrease in the near future period is relatively small and for all stations but Scuol, there is at least one member that simulates 

a small increase in winter mean/ maximum snow depth. For the mid- and far-future periods, decreases range from -40% to -310 

60% until 2069 and up to -60% to -80% until 2099. For Ulrichen, we obtain a slightly smaller decrease of up to -60% until 

2099. For the high-elevation station Weissfluhjoch, decreases are considerably lower, ranging from -30% until 2069 to -50% 

until 2099. The percentage decreases for maximum snow depths are considerably lower compared to those for mean snow 

depths, with an ensemble mean ranging from -30% to -40% until 2069 and -40% to -60% until 2099 for all stations but 

Weissfluhjoch. For Weissfluhjoch we observe an ensemble mean decreases of -10% until 2069 and -15% until 2099. In the 315 

discussion, we set these values into perspective to results from other studies.        
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Figure 6: Winter mean maximum and mean snow depth [cm] (left) for the ClimEx LE and mean changes [%] (right) between the 

REF period 1980 to 2009 and FUT1 (2010 to 2039), FUT2 (2040 to 2069) and FUT3 (2070 to 2099) for stations Adelboden (ABO), 

Engelberg (ENG), Davos (DAV), Weissfluhjoch (WFJ), Zermatt (ZER), Montana (MON), Scuol (SCU) and Ulrichen (ULR). The 320 
boxes represent the inter-quartile range with the median as horizontal line. The whiskers represent 1.5 times the inter-quartile range 

and the dots represent outliers.  

3.4 Significance of future snow depth trends  

Despite the strong mean climate change signal described in Sect. 3.3, section 3.4 points out the important role of ICV for the 

detection of statistically significant trends in future time-series of snow depth, and its most important drivers temperature, 325 

precipitation, snowfall fraction and snowfall. Note that, according to the poor validation results, we cannot draw conclusions 



13 

 

on the absolute values of snowfall fraction, snowfall and snow depth for the stations Zermatt and Montana. Nevertheless, we 

can apply the trend test and compare relative changes. Figure 7 visualizes the results of the Mann-Kendall test for a positive 

trend in winter mean temperature and winter precipitation sums and a negative trend for winter snowfall fraction, snowfall, as 

well as winter mean and maximum snow depth for the lowest station Engelberg, and the highest station Weissfluhjoch for 1%, 330 

5% and 10% significance levels. Each time-series starts in the year 2000 and ends in 5-year intervals between 2029 and 2099. 

Figure 8 shows the percentage of members with a significant Mann-Kendall test result for all case studies, based on the 5% 

significance level. 

With regard to temperature, all case studies show a rapidly increasing percentage of significant positive trends. For a 30-year 

period, already between 45% and 60% of members show significant results. Until the year 2049 more than 90% of members 335 

show a significant positive trend and by 2059 all stations show a 100% trend significance. Here we can clearly conclude that 

the anthropogenic climate change signal is significantly stronger than the ICV of temperature, i.e. the forced trend emerges 

from internal climate variability. For precipitation, we find a completely different picture. For all stations but Scuol, there is 

no clear sign towards an increase in future winter precipitation sums. There is a tendency towards an increasing number of 

members with a significant positive trend in precipitation towards the end of the century, but the percentage is below 50% for 340 

all stations but Scuol. For Scuol, there is a clear sign towards an increase in winter precipitation sums. Here, more than 75% 

of members show a significant positive trend in winter precipitation sums. In summary, we cannot detect a clear climate change 

signal for precipitation, because of strong ICV. 

With regard to snowfall fraction, we find a consistent increase of members with a significant negative trend in snowfall fraction 

over time, but, as expected, the strong temperature signal does not translate into a similarly strong trend significance and there 345 

are significant differences between case studies. Over a 50-year period, most stations show a significance for only up to 50% 

of members. The stations Davos, Weissfluhjoch and Scuol, the stations with the highest snowfall fraction in the reference 

period, show significant reductions for 75% to 85% of members over this period. This emphasizes the huge contribution of 

ICV to future trends in winter snowfall. Over a period of 60 years there is still a 35% chance of not detecting a significant 

negative trend in snowfall fraction for Montana due to ICV, but by 2069 all stations show significant decreases in snowfall 350 

fraction for more than 90% of members. 

In contrast to snowfall fraction, we find a lower statistical significance for negative trends of total winter snowfall sums. For 

all stations, but Weissfluhjoch, over a period of 60 years, the percentage of statistically significant negative trends in winter 

snowfall sums is only between 25% and 60%. Over a period of 80 years between 60% and 90% of members show a statistically 

negative trend and by the end of the century only the stations Engelberg, Zermatt, Montana and Scuol show a trend significance 355 

for 100% of members. For the station Weissfluhjoch no statistically significant negative trend is obtained over any period. 

Even over 100 years less than 10% of members show a significant reduction in winter snowfall sums. These results imply that 

despite the strong temperature increase and a significant reduction of snowfall fraction, a reduction of total snowfall sums at 

this site remains very uncertain. 

Similar to snowfall fraction, we find a steady increase in the count of members with a statistically significant negative trend in 360 

winter mean snow depth, but compared to winter temperature this development starts considerably later. Generally, the trend 

significance is stronger compared to snowfall fraction, but there is still a 50% to 25% chance (for all stations but Scuol, where 

more than 90% of members show significant negative trends) that ICV will superimpose anthropogenic climate change impacts 

on mean winter snow depth over a period of 50 years. By 2069, the percentage of significant members increases to more than 

90%. The stronger significance of mean snow depth compared to snowfall fraction and the higher significance compared to 365 

snowfall sums implies the combined effects of a very uncertain decrease of snowfall sums, combined with more rapid and 

more frequent snow melt. Lastly, maximum winter snow depth shows a significantly different evolution than mean winter 

snow depth. Here, we also obtain large differences between the lower lying stations and the highest station Weissfluhjoch. For 

most stations but Scuol, there is a probability of more than 50% of no significantly negative trend in future maximum snow 
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depth over a period of 50 years. For Scuol this probability is only 15%, while it is 80% for Weissfluhjoch. Over a period of 80 370 

years all stations but Weissfluhjoch show a significant decrease in maximum snow depths in more than 90% of the cases. For 

Weissfluhjoch a high probability for ICV to superimpose anthropogenic climate change remains. By 2049 the percentage of 

negative trends is below 20%, by 2079 the probability is still below 50% and even over a period of 100 years there is a 25% 

chance of no significantly negative trend in maximum winter snow depth. This emphasizes that also in the far future individual 

important snow peaks can be expected, especially at high elevations. 375 

Our results underline the outstanding contribution of ICV to uncertainties related to future trends in snow depth and its drivers. 

Especially in the near future ICV can hamper a clear impact signal of anthropogenic warming, as the strong signal for mean 

winter temperature does not directly translate into clear snow-related signals.   

 

Figure 7: Heat maps of trend significance for the Mann-Kendall test for different periods starting in 2000 and ending between 2029 380 
and 2099, for winter mean temperature, winter precipitation sums, winter snowfall fraction, winter snowfall sums and winter mean 

and maximum snow depth, for the lowest station Engelberg (ENG) and the highest station Weissfluhjoch (WFJ). 
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Figure 8: Percentage of significant trends (p-value 5%) for time-series of temperature, winter precipitation sums, snowfall fraction, 

snowfall sums, mean and maximum snow depth starting in 2000 and ending between 2029 and 2099 for all case studies. See Table 1 385 
for the acronyms of case studies. 

3.5 Changes in inter-annual variability 

In Sect. 3.4 we revealed the large contribution of ICV to uncertainties related to future trends in snow depth. However, the 

variability of snow depth itself is likely to change with anthropogenic forcing. Here we investigate how IAV of mean and 

maximum snow depth, defined as the standard deviation of snow depth over a period of 30 years is likely to change under RCP 390 

8.5. From Fig. 6 and Fig. 9 we can see that a gradual decrease of winter mean and maximum snow depth is accompanied by a 

decrease in absolute IAV. Nevertheless, in relative terms (relative to the mean of the corresponding periods), IAV can strongly 
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increase in the future, but there are differences between mean and maximum snow depth and at different stations. In the 

reference period, and at lower elevation, relative IAV of mean snow depth lies between 30% (Scuol) and 70% (Engelberg) and 

relative IAV of maximum snow depth lies between 20% (Scuol) and 60% (Engelberg). For most cases, relative IAV of mean 395 

snow depth is larger compared to maximum snow depth. For Weissfluhjoch the overall variability is lower compared to the 

other stations (22% in reference period) and maximum snow depth has a larger variability than mean snow depth. For 

Weissfluhjoch neither for mean, nor for maximum snow depth an increase in relative IAV can be found. In contrast, an increase 

in relative IAV for the stations Adelboden, Engelberg, Davos, Zermatt, Montana, Scuol and Ulrichen is projected. Larger 

increases of relative IAV are obtained for mean winter snow depth, while the increases for maximum snow depth are very 400 

small. For Davos, for example, we find an ensemble mean increase in relative IAV of mean snow depth from 35% to 55% 

until the end of the century. Increases in relative IAV of maximum snow depth range from 35% to 40%. For Montana IAV 

increases from 50% in the reference period to more than 80% in the future 2 period. For Scuol we find an increase from 40% 

up to 70% between the two periods.  

  405 
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Figure 9: Inter-annual variability for the REF (1980 to 2009), FUT1 (2010 to 2039), FUT2 (2040 to 2069) and FUT3 (2070 to 2099) 

periods expressed as the absolute standard deviation [cm] (left) and standard deviation relative to the mean [%] (right) for mean 

and maximum snow depth for the stations Adelboden (ABO), Engelberg (ENG), Davos (DAV), Weissfluhjoch (WFJ), Zermatt 

(ZER), Montana (MON), Scuol (SCU), Ulrichen (ULR). The boxes represent the inter-quartile range with the median as horizontal 410 
line. The whiskers represent 1.5 times the inter-quartile range and the dots represent outliers.  

4 Discussion  

Many studies have significantly improved our knowledge about the cryosphere in a future climate (Barnett et al., 2005; 

Beniston et al., 2018). Nevertheless, the predominant number of studies focuses on changes in the mean, while studies on the 

interdependencies of climate change and ICV are very rare. Our analysis is the first study that uses a single-model large 415 

ensemble as input for a physically based snow model. This allows a probabilistic uncertainty assessment of future snow trends 

in the European Alps attributable to ICV. We further estimate how IAV might change in a future climate. 
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4.1 Uncertainties and limitations 

While we are gaining important insights into the dynamics of mean, maximum and inter-annual variability of snow depth and 

the role of ICV under climate change conditions, a number of important uncertainties and limitations must be taken into 420 

account, which span over the whole modelling process. Important boundary conditions are that our results are highly dependent 

on the choice of the emissions scenario and GCM-RCM combination, as well as the selected bias adjustment approach. First, 

it must be stated that the ClimEx LE is still unique regarding members and spatio-temporal resolution; like other currently 

existing single RCM initial condition large ensembles it is available under RCP8.5 only. Being aware of the extreme character 

of this GHG-concentration scenario and the high sensitivity of the GCM-RCM combination, the results obtained from the 425 

presented analyses are considered valid as they represent the expected dynamics and states of other emission scenarios, but 

reach certain levels of change earlier in time.  

Due to the single model approach, it is understood that the presented setup has limited capacity in providing a robust estimate 

of anthropogenic climate change; this is where multi model ensemble setups have clear advantages (Tebaldi and Knutti, 2007). 

Comparing the detected climate change signals of the ClimEx LE with the EURO-CORDEX ensemble shows that the data 430 

used for this study provide a highly sensitive forced response, yet within plausible ranges (von Trentini et al., 2019). 

Nevertheless, multi model ensembles make it very difficult to distinguish between model uncertainties and ICV, which is a 

major advantage of our approach, when the goal is to study ICV. Of course, it would be of interest to estimate model 

uncertainties and do a probabilistic analysis of ICV. To do so an ensemble of ensembles would be the preferred approach. Due 

to computational limitations such analyses are not yet feasible, especially on the regional scale. 435 

Another source of uncertainty is the choice of the bias adjustment methodology. While quantile mapping was found to be 

similar or superior to many other bias adjustment approaches (Gutiérrez et al., 2019; Ivanov and Kotlarski, 2017; Teutschbein 

and Seibert, 2012), it has some important drawbacks. QM assumes stationarity of the model bias structure, an assumption that 

is uncertain under changing climatic conditions (Maraun, 2013). Furthermore, QM cannot correct misrepresented temporal 

variability (Addor and Seibert, 2014). Therefore, inter-annual variability was validated in Sect. 3.2, yielding acceptable results. 440 

When applied in a downscaling context, QM cannot reproduce local processes and feedbacks, as QM is a purely empirical 

approach (Feigenwinter et al., 2018; Kotlarski et al., 2015). In contrast, QM can modify the raw climate change signal and 

simulated trends (Ivanov et al., 2018). This point is especially important in our study, as we have to correct each member based 

on the empirical distribution of the whole ensemble to retain the internal climate variability. Therefore, the climate change 

signals of the single members are modified. Cannon et al. (2015) developed a method that preserves the raw climate change 445 

signal, but applied to this study it would only preserve the ensemble mean signal. Further research is needed to develop 

potential methods that preserve the climate change signal for single members from single model ensembles. As a last point, 

we employ a univariate bias adjustment approach, which treats all meteorological variables independently. While inter-variable 

consistency cannot be guaranteed (Feigenwinter et al., 2018), multiple studies show that QM generally maintains inter-variable 

consistency (Ivanov and Kotlarski, 2017). In the course of this work, inter-variable consistency was validated and we obtained 450 

good results for radiation, precipitation and humidity. Variable consistency with regard to snowfall fraction was inaccurate for 

individual case studies. Prior to bias adjustment, a strong cold bias over most grid points caused snowfall fraction to be 

significantly too high. Therefore, bias correction generally improved the simulated snowfall fractions. The exploration of 

possible reasons for inaccurate snowfall fractions in some cases will be subject to future work.    

Schlögl et al. (2016) found that the uncertainties from the snow model itself account for approximately 15%. However, as we 455 

focus on investigating relative changes in snow depth, this source of uncertainty is of less concern. 

Lastly, as most stations are situated in elevations between 1320 m.a.s.l and 1640 m.a.s.l, a detailed analysis on elevation 

dependencies could not be performed. 
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4.2 Discussion of results in context to existing research and potential future research 

Despite the above-mentioned uncertainties and limitations, this study can provide important insights into the interdependencies 460 

between anthropogenic climate change and ICV and its impacts on snow depth in the Alps. Its novelty stems from a true 

probabilistic assessment of ICV. In the first part of our results section, we presented the ensemble mean change between a 

reference period (1980-2009) and three future periods and found significant decreases of ensemble mean snow depth in the 

future. Schmucki et al. (2015) present a similar analysis for partly the same case studies using ten GCM-RCM model chains 

from the ENSEMBLES project under the IPCC A1B emissions scenario. Although the reference periods do not fully match 465 

(Schmucki et al. (2015) use 1984-2010), we can put the changes between the reference period and the mid- (2040-2069 in this 

study and 2045-2074 for Schmucki et al. (2015)) and far-future period (2070-2099) into perspective. For Weissfluhjoch, 

Schmucki et al. (2015) simulate a mean decrease of 28% (near future) and 35% (far future), which is close to our simulation 

results of -20% (near future) and -29% (far future) in mean winter snow depth and -30% (near future) and -42% (far future) 

for annual mean snow depth. Both studies show comparable decreases in mean snow depth at Weissfluhjoch, although our 470 

study uses the much stronger RCP8.5 compared to the A1B scenario in Schmucki et al. (2015). 

In the near and far future, Schmucki et al. (2015) found an ensemble spread of mean snow depth of 35-135 cm (near future), 

and 30-130 cm (far future), whereas we simulate an ensemble spread of 62-87 cm (near future) and 52-82 cm (far future) for 

winter mean snow depth and 48-70 cm (near future), and 39-60 cm (far future) for annual mean snow depth.  

Marty et al. (2017) use 20 different GCM-RCM chains to compare the impacts of different emission scenarios on mean snow 475 

depth for two catchments in Switzerland that partly also cover stations analyzed in this study. For the Aare catchment that 

covers our stations Adelboden and Engelberg and under IPCC A2, Marty et al. (2017) simulate an ensemble mean decrease of 

65% and an ensemble spread between -33% to -85% between the reference period 1999 to 2012 and the far future 2070 to 

2099. For our case studies Adelboden and Engelberg, we find decreases in mean snow depth between 65% to 80% in the far 

future. Put into a global perspective, Kudo et al. (2017) investigate the uncertainties in future snow projections related to GCM 480 

uncertainties in Japan and find snow equivalent reductions between 65% and 90% based on 11 climate projections derived 

from five GCMs.  

Accordingly, the ensemble spread of the single model large ensemble (present work) is considerably smaller compared to 

previous assessments based on multi-model ensembles. This agrees with results by von Trentini et al. (2019), who found that 

for temperature and precipitation, the single model spread is usually smaller compared to the multi model ensemble. The results 485 

emphasize the large uncertainties related to the choice of the GCM-RCM model chain that could be mistaken and falsely 

interpreted as ICV.  

While a regression-based analysis of different elevations is not possible due to the limited elevation ranges, we still find 

significant differences between stations, especially between the highest station Weissfluhjoch and the lower elevation case 

studies. With regard to trend significance, we can conclude that for all stations there is a non-negligible probability of hiatus 490 

periods of mean and maximum snow depth of lengths up to 50 years. Still, those probabilities are highest for Weissfluhjoch, 

where we find a probability of more than 50% that there will be no significant reduction in future maximum winter snow 

depths over a period of 80 years. This is also confirmed by Morán-Tejeda et al. (2013) and Kudo et al. (2017), who find 

different drivers for changes in snowpack and different responses to anthropogenic warming for different elevation bands. 

We also find an uneven response of different snow metrics to anthropogenic warming. Statistically significant trends are first 495 

detected for mean winter snow depth, followed by winter snowfall fraction and later still by winter maximum snow depth; for 

trends in winter snowfall sums we can identify large uncertainties related to ICV. Our results are confirmed by Ishida et al. 

(2019) for three case studies in California, who investigate climate change impacts on interrelations between snow-related 

variables and find that temperature rise will affect, but will not dominate the future change in snow water equivalent and who 

also find uneven responses of different snow-related variables to anthropogenic forcing. Further, these results coincide with 500 

Pierce and Cayan (2013) and emphasize two points. First, also in the far future, we must expect considerable winter snowfall 
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sums and events of large snow accumulation, even under RCP8.5. Overall a reduction of mean snow depth is rather driven by 

increased snowmelt than by a strong decrease in absolute snowfall sums. Consequently, trend detections for maximum snow 

depths over periods of less than 50 years largely depend on noise from ICV. Second, ICV remains the highest source of 

uncertainty over a short to medium range of time, but it can even hamper a statistically significant signal over periods of more 505 

than 50 years. On the other hand, with regard to future research, ICV cannot only reveal the possibilities of long hiatus periods, 

but it can also illustrate even faster snowpack declines in the Swiss Alps.  

In this study, we found that ICV does not only obscure the forced climate change signals, but that variability in terms of IAV 

itself is likely to change in the future. These findings do not only support our understanding on the ranges of internal climate 

variability, they are particularly useful to distinguish the “noise” of climate variability from “real” climate change signals. 510 

With regard to changes in IAV, Weissfluhjoch is the only station where we cannot identify a change in the IAV relative to the 

mean. For the remaining stations, we find that anthropogenic climate change has an impact on IAV. A thorough investigation 

of the causes of this change is beyond the scope of the present work. We assume that snow rich and snow scarce winters are 

often dependent on general circulations, such as large scale blockings (García-Herrera and Barriopedro, 2006), and also large 

scale oscillations caused by El Niño or the Arctic oscillation (Seager et al., 2010; Xu et al., 2019). These factors remain 515 

insufficiently studied and their identification could be subject of future research, which takes into account large scale synoptic 

patterns from the ClimEx LE.   

5 Summary and conclusions 

In the present work, we analyzed the interdependencies between ICV and anthropogenic climate change and its impacts on 

snow depth for eight case studies across the Swiss Alps. For this purpose, we made use of a 50-member single model RCM 520 

ensemble and used it as driver for the physically based snow model SNOWPACK. The large number of members used in this 

study allowed for a probabilistic analysis of ICV. We can confirm our first hypothesis that states that ICV is a major source of 

uncertainty in trends of future Alpine snow depth. By applying a Mann-Kendall trend test we estimate the trend significance 

of snow depth and its main drivers for time series of different length (i.e. different lead times). We present the probabilities of 

detecting significant trends caused by anthropogenic forcing in the presence of ICV and find that ICV is a major source of 525 

uncertainty for lead times up to 50 years and more.  

We can also confirm our second hypothesis that states that IAV of snow depth will change with anthropogenic climate forcing. 

To answer our initial research question, we compare inter-annual variabilities of snow between a reference period and three 

future periods, and find that relative to the mean, IAV of snow considerably increases in the future, for most cases but the 

high-elevation station Weissfluhjoch. 530 

Our results show how important it is to not only analyze changes in the mean snow depth, but also its variability, as it is a 

dominant source of uncertainty, and because variability itself can change with anthropogenic climate change. For all economies 

being directly dependent on snow, or being dependent on runoff from snowmelt, future climate impact assessments are, hence, 

subject to important uncertainties. On the one hand, climate change will significantly reduce snow cover, but to what extent 

remains disputed and ICV is one of the top sources of this uncertainty. On the other hand, in addition to a reduction of mean 535 

snow depths its variability is likely to change. This will additionally increase vulnerabilities of snow dependent economies in 

the future.   
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