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Abstract. Arctic sea ice experiences a dramatic annual cy-
cle, and seasonal ice loss and growth can be characterized
by various metrics: melt onset, breakupCE1 , opening, freeze
onset, freeze-up, and closing. By evaluating a range of sea-
sonal sea ice metrics, CMIP6 sea ice simulations can be eval-5

uated in more detail than by using traditional metrics alone,
such as sea ice area. We show that models capture the ob-
served asymmetry in seasonal sea ice transitions, with spring
ice loss taking about 1–2 months longer than fall ice growth.
The largest impacts of internal variability are seen in the in-10

flow regions for melt and freeze onset dates, but all met-
rics show pan-Arctic model spreads exceeding the internal
variability range, indicating the contribution of model differ-
ences. Through climate model evaluation in the context of
both observations and internal variability, we show that bi-15

ases in seasonal transition dates can compensate for other
unrealistic aspects of simulated sea ice. In some models, this
leads to September sea ice areas in agreement with observa-
tions for the wrong reasons.

1 Introduction20

Metrics of seasonality have been underutilized in evaluating
sea ice in climate models due to a lack of long-term ob-
servational products, the required daily model output, and
the complexities in defining seasonal Arctic sea ice transi-
tions. However, new process-based metrics for model evalu-25

ation are much needed; the spread between climate model
projections of sea ice area has been on the order of mil-

lions of square kilometers in Coupled Model Intercompari-
son Project (CMIP) Phases 3, 5, and 6 (Stroeve et al., 2012;
SIMIP-Community, 2020), while the causes of the model 30

spread remain largely unknown. Furthermore, the sources of
model biases can be obscured by models that show realistic
sea ice areas for the wrong reasons. Seasonal sea ice transi-
tions can provide additional process-based metrics to assess
climate models. Newly available observational data (Steele 35

et al., 2019) and model output from CMIP6 models (Notz
et al., 2016) allow such model assessment for the first time. In
this study, we assess how different metrics of seasonal sea ice
transitions are represented in models and observations and
evaluate how these metrics can inform our understanding of 40

simulated Arctic sea ice throughout the year. To do this, we
utilize observations and 16 global climate models, including
three sets of ensembles with at least 30 members. Using this
rich dataset, we evaluate model biases in the context of both
the observed sea ice state and multiple simulated representa- 45

tions of internal variability.

2 Background: seasonal transitions in the Arctic sea
ice cover

Arctic sea ice exhibits a large annual cycle, with a differ-
ence of approximately 8× 106 km2 between the maximum 50

area reached in March and the minimum area in September.
From spring to fall, the sea ice experiences various stages
of transition forced by both the atmosphere and the ocean
(Steele et al., 2010; Persson, 2012; Ballinger et al., 2019). In
the spring, clouds formed by northward warm air advection 55
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2 A. Smith et al.: Seasonal sea ice transitions

trap downwelling longwave radiation, initiating melt on the
surface of the sea ice or in the snowpack on top of it (Persson,
2012; Ballinger et al., 2019). As liquid water collects on the
snow and sea ice, it forms melt ponds. Melt ponds decrease
the albedo of the surface: snow-covered ice has an albedo of5

0.85, while the albedo of melt ponds ranges between 0.1 and
0.5 (Perovich et al., 2002). Shortwave absorption causes ther-
modynamic ice loss, and regional studies show that top melt
dominates during the early summer (Steele et al., 2010). As
the ice breaks up, larger areas of open ocean facilitate greater10

solar absorption (the albedo of open water is 0.07; Pegau and
Paulson, 2001) and ice divergence. Energy is absorbed by the
surface ocean (Timmermans, 2015), and as solar heating de-
clines in the late summer, ice melt becomes dominated by
bottom melt (Steele et al., 2010). After the annual sea ice15

minimum in September, ice growth begins. Congelation ice
growth along existing ice generally begins before frazil ice
growth in the open ocean, meaning that areas where ice is re-
tained throughout the summer experience earlier ice growth
than areas of open water (Smith and Jahn, 2019). As fall pro-20

gresses, the Arctic loses shortwave input. Temperatures de-
cline, and ice growth continues through the winter, reaching
the maximum area in March.

One metric alone cannot capture the range of seasonal
transitions seen in the Arctic, so individual transitions have25

been characterized by many different definitions in both
satellite data and models. Seasonal transition metrics are of-
ten referred to interchangeably when they are in fact defined
in very different ways. Pan-Arctic satellite retrievals of sea-
sonal sea ice transitions are largely based on passive mi-30

crowave brightness temperatures. Retrieval algorithms have
been created to derive pan-Arctic seasonal sea ice metrics,
such as melt onset and freeze onset, directly from brightness
temperatures for the entire satellite era (Markus et al., 2009;
Drobot and Anderson, 2001; Belchanksy et al., 2004; Bliss35

and Anderson, 2014; Bliss et al., 2017). Despite great spatial
and temporal coverage, melt and freeze onset dates are diffi-
cult to utilize for model evaluation. This is in part due to the
variations between retrieval algorithms, which can introduce
large differences in both magnitude and trends of observed40

melt onset dates (Bliss et al., 2017). Furthermore, bright-
ness temperatures are not simulated in climate models, so
model definitions of melt and freeze onset must be based on
other simulated variables. There are multiple possible vari-
ables for diagnosing melt and freeze onset, such as surface45

temperature, thermodynamic ice growth, and snowmelt, and
the choice of variable has been shown to impact which pro-
cesses are captured by the dates as well as their comparability
to satellite data (Smith and Jahn, 2019).

Another strategy for defining seasonal sea ice transitions50

is to create metrics based on ice concentration, a variable
that has equally good spatial and temporal satellite data cov-
erage since satellite-observed ice concentration is derived
from passive microwave brightness temperatures (Comiso
et al., 1997). While this introduces some error through sea55

ice concentration retrieval algorithms (Ivanova et al., 2015),
seasonal sea ice metrics based on ice concentration provide
more direct comparisons between models and observations
than the current comparisons made between melt and freeze
onset. Ice breakup, retreat, freeze-up, and advance have been 60

defined using ice concentration data in satellite data (Stam-
merjohn et al., 2008, 2012; Serreze et al., 2016; Stroeve et al.,
2016; Bliss et al., 2019) and in model studies (Barnhart et al.,
2016; Wang et al., 2018). However, these studies are often
difficult to compare directly since the definitions themselves 65

vary substantially in terms of the region and date range stud-
ied, the selected threshold of ice concentration, and the cri-
teria that the threshold must meet (e.g., last day greater than
15 % vs. less than 15 % 2 d in a row). In some cases, def-
initions are also created to fill specific user needs, such as 70

seasonal navigation (Johnson and Eicken, 2016). A selection
of previously used metrics defined using ice concentration
is described in Table S1 in the Supplement to provide an
overview.

3 Data and methods 75

In this study we use satellite data to evaluate the perfor-
mance of 15 CMIP6 models and the Community Earth Sys-
tem Model Large Ensemble (CESM LE) in terms of their
seasonal sea ice transitions in the Arctic from 1979 to 2014.
By utilizing model ensembles, we are able to account for the 80

role of internal variability in modeling the seasonality of Arc-
tic sea ice. As there is no single metric that fully describes
seasonal sea ice changes, we utilize a variety of metrics that
have been developed for both models and observations. All
seasonal transition date means and means of other sea ice 85

variables are calculated between 66 and 84.5◦ N in both mod-
els and satellite data in order to exclude the largest polar hole
in satellite data. We define “inflow regions” as the Chukchi
Sea, Barents Sea, and Greenland Sea, with the Barents and
Greenland seas referred to as “Atlantic inflow regions”. 90

3.1 Global coupled climate models

CMIP establishes a set of common experiments for global
climate model simulations to quantify how the Earth sys-
tem responds to forcing as well as to identify the sources
and consequences of model biases (Eyring et al., 2016). 95

This study uses models from the most recent phase, CMIP6,
in order to evaluate the current state of sea ice simula-
tion. Models are selected for analysis based on the avail-
ability of two daily sea ice variables: sea ice concentra-
tion (CMIP6 variable name: siconc) and the surface tem- 100

perature of the sea ice or snow on sea ice (CMIP6 vari-
able name: sitemptop). Our study utilizes all CMIP6 mod-
els that met these criteria by 4 March 2020, which in-
cludes 15 models from nine different institutions (ACCESS-
CM2, BCC-CSM2-MR, BCC-ESM1, CanESM5, CESM2, 105
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A. Smith et al.: Seasonal sea ice transitions 3

CESM2-FV2, CESM2-WACCM, CESM2-WACCM-FV2,
CNRM-ESM2-1, CNRM-CM6-1, EC-Earth3, IPSL-CM6A-
LR, MRI-ESM2-0, NorESM2-LM, NorESM2-MM). As the
scope of the study is limited to the satellite era, we use the
historical forcing experiment from each model for the period5

that overlaps with satellite data (1979–2014). All models are
kept on their native grids to minimize errors related to in-
terpolation and regridding. Ocean and ice model component
details for all models are provided in Table S2 (based upon
Stammerjohn et al., 2008; Stammerjohn et al., 2012; Serreze10

et al., 2016; Stroeve et al., 2016; and Bliss et al., 2019).
The number of available ensemble members varies by

model, with some models providing as few as 3 members and
others as many as 35 with the required daily variables. Here
we use the first ensemble member (r1i1p1f1 or r1i1p1f2)15

from each model for intermodel comparisons and evaluation
against satellite data. To assess the internal variability of the
seasonal sea ice metrics, the two CMIP6 models with at least
30 members (CanESM5 and IPSL-CM6A-LR, hereafter re-
ferred to as IPSL) are utilized in addition to the CESM LE.20

All of the coupled global models have a nominal ocean reso-
lution of 1◦. Relevant variables are available at a daily tempo-
ral resolution for 40 members in the CESM LE, 35 members
in the CanESM5, and 30 members in the IPSL. When evalu-
ating internal variability, we utilize the first 30 members from25

the CESM LE and CanESM5 for comparison to each other
and IPSL in order to standardize the sample size. The re-
sults are insensitive to the subsetting of ensemble members
(a version of Fig. 8 using all available ensemble members is
provided as Fig. S2 in the Supplement).30

In previous work, the CESM LE was employed to compare
multiple model definitions of melt and freeze onset (Smith
and Jahn, 2019). Hence, the CESM LE is utilized here to
leverage what is already known about modeled seasonal sea
ice transitions in evaluating CMIP6 models even though the35

CESM1.1 used for the CESM LE is not a CMIP6 model
and does not use CMIP6 forcing. Nonetheless, the CESM
LE can be compared with the CMIP6 models over the period
1979–2014 as the CMIP5 RCP8.5 forcing is not substantially
different from the CMIP6 historical forcing over the period40

2006–2014 (O’Neill et al., 2016). Furthermore, the CESM
LE is also a useful addition to the CMIP6 models because it
adds diversity to the sea ice models used for evaluating inter-
nal variability: the CESM LE uses the CICE Version 4.0 sea
ice model, while CanESM5 and IPSL both use the Louvain-45

la-Neuve Sea Ice Model Version (LIM Version 2.0 and LIM
Version 3.0, respectively).

3.2 Satellite data

In order to evaluate the climate models against observations,
we use the Arctic Sea Ice Seasonal Change and Melt/Freeze50

Climate Indicators from Satellite Data, Version 1 (Steele
et al., 2019). This dataset includes seasonal sea ice indica-
tors from 1 March 1979 through 27 February 2017, derived

from sea ice concentration data from the NOAA/NSIDC
Climate Data Record of Passive Microwave Sea Ice Con- 55

centration and brightness temperature observations from the
DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Tem-
peratures. Indicators (referred to here as seasonal sea ice
transition metrics) are described in Sect. 3.3. Data are grid-
ded to a 25 km resolution grid. We calculate the sea ice area 60

from the NOAA/NSIDC Climate Data Record of Passive Mi-
crowave Sea Ice Concentration, accessed through the Walsh
et al. (2019) dataset.

3.3 Defining seasonal sea ice transitions

Establishing a set of metrics for studying the seasonality of 65

Arctic sea ice is important for comparing models and obser-
vations as well as interpreting the relationships between tran-
sition times and other sea ice characteristics. Here we utilize
a range of seasonal sea ice transition dates and periods to
study multiple thermodynamic phases of the ice that may be 70

relevant to our physical understanding of the sea ice. These
metrics are summarized in Tables 1 and 2.

3.3.1 Melt onset, freeze onset, and the melt season

The melt season length is defined as the number of days be-
tween melt onset and freeze onset. The melt season length 75

has been utilized as a parameter to investigate energy ab-
sorption of the Arctic surface ocean, and relationships have
been found between the melt season length and sea ice extent
(Stroeve et al., 2014). The metrics of melt onset and freeze
onset are used to describe the first date of continuous sea 80

ice melt and freeze at each grid cell for each year. Melt and
freeze onset are meant to capture a change in phase between
water and ice. For melt onset, this means water on the surface
of the ice or snowpack. For freeze onset, the change in phase
refers to either congelation or frazil ice growth. 85

In satellite retrievals, continuous melt and freeze onset are
defined using the brightness temperature of the surface be-
cause brightness temperature is sensitive to the phase of wa-
ter (Markus et al., 2009; Steele et al., 2019). Brightness tem-
peratures are collected at the 19 V and 37 VCE3 polarizations 90

from SMMR, SSM/I, and SSMIS sensors. Melt and freeze
onset dates are derived from weighted brightness tempera-
ture parameters to determine early melt and freeze onset and
continuous melt and freeze onset, and the retrieval algorithm
(known as PMW) is described fully in Markus et al. (2009). 95

In this study we use continuous melt and freeze onset be-
cause these dates are more representative of a seasonal tran-
sition in the sea ice compared to early melt onset. The ad-
vanced horizontal range algorithm (AHRA) dataset provides
an alternative set of melt onset dates that are derived from 100

passive microwave brightness temperatures using the AHRA
retrieval algorithm instead of the PMW retrieval algorithm.
However, the AHRA melt onset dates are more representa-
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4 A. Smith et al.: Seasonal sea ice transitions

Table 1. Definitions of the seasonal transition dates, including the date range, timing criteria, variable, and threshold used. SIC is sea ice
concentration. Definitions based on ice concentration are designed to be comparable to Steele et al. (2019).

Dates Date range Timing Variable Threshold

Melt onset 1 January to 31 December for 3 d TS1 surface temperature above −1 ◦C
Freeze onset 29 June to 15 May for 21 d surface temperature below −1.8 ◦C
Breakup 1 March to SIC minimum date last day ice concentration below 15 %
Freeze-up SIC minimum date to 28 February first day ice concentration above 15 %
Opening 1 March to SIC minimum date last day ice concentration below 80 %
Closing SIC minimum date to 28 February first day ice concentration above 80 %

Figure 1. Conceptual diagram of seasonal sea ice transitions, beginning with spring melt onset and ending with fall ice closing. Transition
dates (Table 1) as well as interseasonal and intraseasonal transition periods (Table 2) are labeled.

Table 2. Definitions of the periods of time between the seasonal
transition dates, including shorter, intraseasonal periods of transi-
tion as well as longer, interseasonal periods. The CE2outer ice-free
period and the seasonal loss-of-ice and gain-of-ice periods were de-
fined in Steele et al. (2019).

Intraseasonal periods No. of days between

Melt period Melt onset and opening
Freeze period Freeze onset and freeze-up
Seasonal loss-of-ice period Opening and breakup
Seasonal gain-of-ice period Freeze-up and closing

Interseasonal periods No. of days between

Melt season Melt onset and freeze onset
Open-water period Breakup and freeze-up
Outer ice-free period Opening and closing

tive of early melt (Drobot and Anderson, 2001), so they are
not utilized in this study.

Because climate models do not simulate brightness tem-
peratures, another definition must be used to identify contin-
uous melt and freeze onset dates within models. Although5

there is no single model definition that fully captures the
processes represented by the brightness-temperature-based
satellite data, recent work demonstrates that melt and freeze
onset dates derived from surface temperature are compara-
ble, particularly when considering the range of internal vari-10

ability (Smith and Jahn, 2019). We therefore utilize model
definitions of melt and freeze onset developed in Smith and
Jahn (2019), based on the surface temperature passing be-
low or above a given threshold. For melt onset, a threshold

of −1 ◦C is used to minimize the impacts of daily variabil- 15

ity and maintain comparability with previous studies (Jahn
et al., 2012; Mortin and Graversen, 2014). For freeze on-
set, a threshold equal to the freezing point of ocean water
(−1.8 ◦C) is used.

3.3.2 Breakup, freeze-up, and the open-water period 20

The open-water period, also known as the inner ice-freeCE4

period (Bliss et al., 2019), is defined as the number of days
between ice breakup and freeze-up (also commonly referred
to as ice retreat and advance). The open-water period has
been utilized as a metric to study variability and trends in 25

the sea ice (Serreze et al., 2016; Barnhart et al., 2016) and
seasonal predictability of the ice (Stroeve et al., 2016).

Of the seasonal sea ice transition dates investigated here,
the definitions of breakup, freeze-up, and the open-water pe-
riod vary the most across the literature (Table S1). In the 30

models, we use the definitions for breakup, freeze-up, and
the open-water period used in Steele et al. (2019) to allow
for comparison with observations. Of the definitions identi-
fied and described in Table S1, the Steele et al. (2019) defi-
nitions are most similar to those established by Stroeve et al. 35

(2016). Breakup is defined as the last day that sea ice concen-
tration passes below the threshold of 15 % between 1 March
and the annual sea ice concentration minimum date (Bliss
et al., 2019). Freeze-up is defined as the first day that sea
ice concentration passes above the 15 % threshold between 40

the sea ice concentration minimum date and 28 February of
the following year. The open-water period is defined as the
number of days between breakup and freeze-up.
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A. Smith et al.: Seasonal sea ice transitions 5

3.3.3 Date of opening, date of closing, and the outer
ice-free period

The outer ice-free period has been used the least frequently
as a metric of Arctic sea ice seasonality, and it is based on the
dates of opening and closing defined by Steele et al. (2015).5

The Steele et al. (2015) definitions are applied in the Steele
et al. (2019) dataset, as described in Bliss et al. (2019). The
date of opening is defined as the first day that sea ice concen-
tration passes below the threshold of 80 % between 1 March
and the annual sea ice concentration minimum date. Like-10

wise, the date of closing is defined as the first day that sea
ice concentration passes above the 80 % threshold between
the sea ice concentration minimum date and 28 February of
the following year. By definition, opening must occur before
breakup, and freeze-up must occur before closing. However,15

dates of opening and closing are not limited solely by the
existence of breakup and freeze-up dates: if ice concentra-
tion falls below or above 80 % but not below or above 15 %,
there will still be an opening or closing date. This means that
the areal coverage of opening and closing dates is generally20

larger than those of breakup and freeze-up dates.

3.3.4 Melt period and freeze period

In addition to the interseasonal periods (melt season, open-
water period and outer ice-free period), we describe four in-
traseasonal periods between the established dates (melt pe-25

riod, seasonal loss-of-ice period, freeze period, and seasonal
gain-of-ice period; Fig. 1). The melt period is designed to
capture the rate of transition between snow and sea ice to
the initial appearance of open water, and it is defined as the
number of days between sea ice melt onset and the date of30

opening. Similarly, the freeze period is defined as the num-
ber of days between freeze onset and freeze-up and is de-
signed to describe the length of the transition between initial
ice growth and the time at which an area stops being “ice-
free” by exceeding the 15 % concentration threshold.35

3.3.5 Seasonal loss-of-ice period and seasonal
gain-of-ice period

The seasonal loss-of-ice period and the seasonal gain-of-ice
period were established in Steele et al. (2019) and Bliss et al.
(2019). The seasonal loss-of-ice period is defined as the num-40

ber of days between sea ice opening and breakup, and the
seasonal gain-of-ice period is defined as the number of days
between freeze-up and closing (Bliss et al., 2019). The sea-
sonal loss-of-ice period and the seasonal gain-of-ice period
can only be calculated at grid cells where both of their re-45

spective dates exist for that year (e.g., both a date of opening
and breakup are needed for a valid seasonal loss-of-ice pe-
riod). The seasonal loss-of-ice period describes how quickly
the ice concentration transitions from 80 % to 15 %, while

the seasonal gain-of-ice period describes the rate of transi- 50

tion between 15 % and 80 % ice concentration.

3.3.6 Accounting for differences in spatial coverage

Variability between models depends on the selected metric
for evaluating seasonal sea ice changes. Over the satellite
era, opening, breakup, freeze-up, and closing each have an 55

ice concentration boundary where there are no existing dates
beyond that boundary because the ice concentration does not
pass the chosen threshold. The models have different sea
ice areas (Fig. S1), and the position of the ice concentra-
tion boundary varies substantially between them. It is there- 60

fore important to compare the models between each other
and the satellite data in a way that captures these differences
in spatial coverage. Using one ensemble member from each
CMIP6 model and one ensemble member from the CESM
LE, we find the mean of each characteristic at each grid cell 65

over the period 1979–2014. We then take the spatial mean by
weighing each grid cell value by its respective area between
66 and 84.5◦ N. This value is referred to as the “satellite-era
mean” and represents the pan-Arctic nature of each charac-
teristic. Figure S3 shows the value of each transition date ver- 70

sus the percent area it spans, demonstrating that the spatial
distribution of the modeled dates and their skews are realis-
tic compared to satellite data. While some model differences
are less pronounced when using satellite-era medians instead
of satellite-era means, the results are generally insensitive to 75

the chosen measure of center. As with the transition dates,
the interseasonal and intraseasonal periods are calculated at
each grid cell before taking the area-weighted spatial means.

For each seasonal transition metric, model spreads in
satellite-era means are defined as the number of days be- 80

tween the earliest and latest simulated date. Spreads are cal-
culated between the first ensemble member of all models as
well as between the first 30 ensemble members of CESM
LE, CanESM5, and IPSL. Figures 2–7 show each of the sea-
sonal sea ice metrics derived from satellite data, one ensem- 85

ble member from each available CMIP6 model, and one en-
semble member of the CESM LE averaged over the period
1979–2014. Each figure includes stippling to show where the
characteristic exists for less than 20 % of years in the time
period. 90

4 Results

Results are presented in five sections. In Sect. 4.1–4.3 we
describe the pan-Arctic observed and simulated seasonal sea
ice transition metrics from 1979 to 2014. In Sect. 4.4 and 4.5
we compare observed and simulated relationships between 95

the various seasonal sea ice transition metrics and sea ice area
and thickness.
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6 A. Smith et al.: Seasonal sea ice transitions

Figure 2. Melt onset dates (defined using surface temperature in the models and brightness temperatures in the satellite data) averaged over
the period 1979–2014 at each grid cell using satellite data (a), the first ensemble member of the CESM LE (b), and the first ensemble member
of each CMIP6 model (c–q). Stippling indicates where melt onset dates exist in less than 20 % of years in the time range. Models on tripolar
grids produce plot gaps filled by gray lines.

4.1 Spring transitions

We find that the transition from sea ice melt onset to breakup
takes 2 to 3 months in both satellite data and models. Satel-
lite data show that melt onset generally occurs between April
and June over most regions of the Arctic (Fig. 2a), with the5

mean date of melt onset occurring on 6 June. The mean date
of opening (16 July) occurs about 40 d after melt onset, and
the mean breakup date (4 August) occurs 19 d after opening
(Table 3). This indicates that the most time-consuming aspect
of the observed spring ice loss is the transition between the10

start of melt on the ice or snow surface and a decline in ice
area (the melt period). Once open water is present in the grid
cell, the transition between 80 % ice concentration and 15 %
ice concentration is faster due to energy absorption from the
change in the surface albedo (Perovich et al., 2002).15

Models generally agree with satellite data on the tim-
ing of spring transitions (Figs. 2–4), with mean melt onset
dates over the satellite era occurring between 15 May and

18 June (observed mean date of 6 June; Table 3). Exclud-
ing the CNRM models (which show particularly late mean 20

melt onset dates and are explored further in Sect. 4.5), the
model spread (15 May–3 June) shifts earlier, and the mean
melt onset dates from the remaining models all occur ear-
lier than the satellite data. The models generally capture the
spatial variation in the opening and breakup dates across the 25

Arctic, showing a spatial standard deviation between 23 and
34 d compared to 32 d in satellite data and between 18 and
28 d compared to 27 d in satellite data, respectively (Fig. S3).
However for the melt onset, the spatial standard deviation be-
tween models shows a difference by a factor of 4 between 30

the models (12–47 d) compared to 20 d in the satellite data
due to the very early melt onsets detected in the Atlantic in-
flow regions in some models (Fig. 2). Melt onset dates in the
Atlantic inflow regions that fall between January and March
demonstrate that melt onset at the surface of the snow pack 35

can occur while the ice area is still expanding in those re-
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A. Smith et al.: Seasonal sea ice transitions 7

Figure 3. Opening dates (80 % ice concentration threshold) averaged over the period 1979–2014 at each grid cell using satellite data (a), the
first ensemble member of the CESM LE (b), and the first ensemble member of each CMIP6 model (c–q). Stippling indicates where opening
dates exist in less than 20 % of years in the time range. Models on tripolar grids produce plot gaps filled by gray lines.

gions. This highlights that surface-temperature-based defi-
nitions, such as melt onset, capture different physical pro-
cesses than sea-ice-concentration-based definitions, as was
previously shown (Smith and Jahn, 2019).

In agreement with observations, all models project the5

mean length of the melt period to be longer than the seasonal
loss-of-ice period (Table 4). The mean time between melt on-
set and opening (the melt period) is 32–54 d in models and
39 d in the satellite data, while the mean time between open-
ing and breakup (the seasonal loss-of-ice period) is 14–34 d10

in models and 28 d in observations (Table 4, Figs. S4 and S5).
We find that for all spring transition metrics, the model

spread exceeds estimations of internal variability, which
show a maximum of 8 d between ensemble members (Ta-
ble 3). Of the spring sea ice transition dates (melt onset,15

opening, and breakup), the sea ice melt onset dates show
the largest spread in satellite-era means between the mod-
els (34 d; Table 3). This range is skewed late by the CNRM-
ESM2-1 and CNRM-CM6-1. If the two CNRM models are

excluded, the spread in mean melt onset dates is 22 d instead 20

of 33 d, still larger than the other two spring metrics (16 d
for opening and 15 d for breakup). As the CNRM melt onset
dates are more than 8 d later than the other models, this also
means that differences between the CNRM models and the
other models are unlikely explained by internal variability 25

alone. The CNRM models are further discussed in Sect. 4.5.
Of the spring transition dates, the internal variability is high-
est for the melt onset dates, particularly in the marginal ice
zones (Fig. 8). High variability between ensemble members
in the marginal ice zones is likely related to the interannual 30

variations in the position of the ice edge. Additionally, mod-
eled melt onset is defined using daily surface temperature,
which exhibits greater variability than daily ice concentra-
tion (Smith and Jahn, 2019).

4.2 Fall transitions 35

Like the spring transition metrics, we find that pan-Arctic
model differences in fall transition metrics are unlikely due to
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8 A. Smith et al.: Seasonal sea ice transitions

Figure 4. Breakup dates (15 % ice concentration threshold) averaged over the period 1979–2014 at each grid cell using satellite data (a), the
first ensemble member of the CESM LE (b), and the first ensemble member of each CMIP6 model (c–q). Stippling indicates where breakup
dates exist in less than 20 % of years in the time range. Models on tripolar grids produce plot gaps filled by gray lines.

internal variability alone. In the satellite data, the mean freeze
onset date is 4 October, and the mean freeze-up date is 15 Oc-
tober. In the models, the satellite-era means of freeze onset
fall between 2 October and 3 November, and mean freeze-up
dates fall between 8 and 30 October. Multiple models there-5

fore tend to show later freeze onset than observed (Figs. 5–7).
The maximum range in mean freeze onset dates due to inter-
nal variability is 11 d (Table 3), and the majority of the model
means (10 out of 16) are more than 11 d later than the satel-
lite data, indicating that this delay of the mean freeze onset in10

the models is not only due to internal variability. Freeze-up is
also generally delayed in models compared to satellite data,
with 5 of the 16 models falling outside the maximum range of
internal variability (9 d) of the observations. In the fall transi-
tion dates, the average standard deviation between ensemble15

members is highest for marginal ice zone freeze onset dates
(Fig. 8). As described for melt onset, this large internal vari-
ability is due to the changing interannual position of the ice
edge and the variability of surface temperature.

The mean closing date occurs on 13 October in satellite 20

data and between 4 October and 5 November in the mod-
els (Table 3). Ice freeze-up occurs before the date of clos-
ing by definition as both are defined using ice concentration,
but areas closer to the central Arctic (that fall below 80 %
but not 15 %) skew the mean of the closing dates earlier (in 25

some cases earlier than the mean freeze-up date). As with the
spring transition dates, models generally capture the spatial
variability of the fall transition dates. Closing date standard
deviations across the Arctic (which only vary by 4 d between
models) do not overlap with satellite data, but freeze onset 30

and freeze-up, which show more variation between models
in terms of their standard deviations, do span the satellite
data (Table S3). The mean length of the seasonal gain-of-
ice period, the time between freeze-up and closing, is 15 d in
satellite data and 7–14 d in models. Thus the seasonal loss- 35

of-ice period is almost twice as long as the seasonal gain-of-
ice period in both satellite data and models (Table 4, Figs. S5
and S7).
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Table 3. Pan-Arctic, satellite-era (1979–2014) means of seasonal sea ice transition dates. The satellite-era means and the all-model spreads
(latest minus earliest) are calculated using the first ensemble member from each model. Models labeled with ∗ show the spread in means
between the first 30 ensemble members of that model. Model spreads are given in days, and all metrics are calculated between 66 and
84.5◦ N.

Melt onset Opening (80 %) Breakup (15 %) Freeze onset Freeze-up (15 %) Closing (80 %)

ACCESS-CM2 3 June 15 July 31 July 6 October 15 October 12 October
BCC-CSM2-MR 24 May 15 July 27 July 8 October 11 October 10 October
BCC-ESM1 30 May 22 July 1 August 2 October 10 October 8 October
CanESM5 3 June 12 July 21 July 16 October 16 October 16 October
CESM2 20 May 8 July 31 July 23 October 29 October 29 October
CESM2-FV2 22 May 14 July 3 August 18 October 23 October 23 October
CESM2-WACCM 23 May 16 July 3 August 17 October 25 October 22 October
CESM2-WACCM-FV2 21 May 14 July 31 July 17 October 26 October 22 October
CNRM-ESM2-1 14 June 19 July 28 July 28 October 30 October 5 November
CNRM-CM6-1 18 June 19 July 29 July 21 October 25 October 30 October
EC-Earth3 2 June 10 July 21 July 10 October 8 October 4 October
IPSL-CM6A-LR 15 May 6 July 22 July 3 November 24 October 25 October
MRI-ESM2-0 22 May 6 July 28 July 25 October 24 October 26 October
NorESM2-LM 21 May 12 July 25 July 17 October 21 October 16 October
NorESM2-MM 29 May 19 July 29 July 8 October 13 October 6 October

CESM LE 29 May 22 July 5 August 7 October 21 October 13 October

Satellite data 6 June 16 July 4 August 4 October 15 October 13 October

All-model spread 34 16 15 32 22 32

CanESM5 spread∗ 5 4 4 7 5 8
IPSL-CM6A-LR spread∗ 7 8 6 11 9 13
CESM LE spread∗ 4 4 5 8 5 5

The observed time between mean freeze onset and freeze-
up (the freeze period) is 9 d, with the mean freeze-up occur-
ring before the mean freeze onset in the satellite data, leading
to a negative freeze period in the mean and across most of the
Arctic (Table 4, Fig. S6). This means that the transition dates5

do not always occur in the expected order at each grid cell,
and out-of-order dates occur much more frequently for the
freeze period than the melt period (Figs. S4 and S6). In satel-
lite data, simultaneous freeze onset and freeze-up dates may
in part be explained by the satellite retrieval algorithms: the10

PMW retrieval algorithm for freeze onset uses an 80 % ice
concentration metric to derive freeze onset at locations where
the date cannot be reliably derived using the weighted bright-
ness temperature scheme (Markus et al., 2009). This would
skew the freeze onset dates later and make them more similar15

to the closing dates. Hence, the use of ice concentration by
both the freeze onset and freeze-up retrieval algorithms may
contribute to cases where the dates are not sequential. A de-
tailed assessment of this is not possible, however, as the data
do not contain information on how often this backup method20

is employed.
In models, the definitions of seasonal sea ice metrics aim

to capture thermodynamic changes in the sea ice, but the sim-
ilar and sometimes out-of-order dates for freeze onset and
freeze-up highlight that dynamic sea ice changes influence25

the ice-concentration-based transition metrics as well. While
a particular grid cell may not register a persistent change
in surface temperature below the threshold for freeze onset
(−1.8 ◦C), it is possible that the ice concentration of the grid
cell surpasses 15 % due to dynamic transport into the grid 30

cell, triggering the detection of freeze-up. This occurs in sev-
eral models such that freeze onset occurs later than freeze-up
in some parts of the Arctic, leading to negative freeze peri-
ods, as found for the satellite data (Fig. S6).

4.3 Interseasonal transition periods 35

Out of the three interseasonal periods of transition (the melt
season, the open-water period, and the outer ice-free period),
the outer ice-free period is the only one that is consistent with
satellite data. The outer ice-free period (80 % ice concentra-
tion thresholds) has an observed mean length of 88 d and 40

model means falling between 73 and 95 dTS3 (Table 5 and
Fig. S8).

In contrast, the melt season length and the open-water pe-
riod are too long in models compared to observations. Gen-
erally, the greatest contribution to the differences between 45

the observed and modeled open-water period is from later-
than-observed freeze-up dates. The open-water period has
a mean of 71 d in the satellite data and means ranging be-
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10 A. Smith et al.: Seasonal sea ice transitions

Figure 5. Freeze onset dates (defined using surface temperature in the models and brightness temperatures in the satellite data) averaged
over the period 1979–2014 at each grid cell using satellite data (a), the first ensemble member of the CESM LE (b), and the first ensemble
member of each CMIP6 model (c–q). Stippling indicates where freeze onset dates exist in less than 20 % of years in the time range. Models
on tripolar grids produce plot gaps filled by gray lines.

tween 78 and 113 dTS4 in the models (a spread of 35 d;TS5

Table 5 and Fig. S9). Modeled melt seasons that are too long
compared to observations are also largely driven by their
fall transition metric (freeze onset dates) occurring late. The
observed mean melt season length is 117 d, and the model5

means range between 121 and 165 d (Table 5 and Fig. S10).
Therefore the melt season length exhibits the largest model
spread of all the interseasonal periods (44 d). This is due to
larger model ranges in both melt onset and freeze onset than
the other transition dates, and the contribution of each date10

to the model spread in melt season length is approximately
equal (Table 5). The melt season length model range is also
skewed high by the IPSL model, which has a mean melt sea-
son length of 165 d in its first ensemble member. This is 11 d
longer than the next longest model mean, and the choice of15

ensemble member likely plays a role; the IPSL model has
a particularly large range of internal variability in the mean
melt season length (17 d compared to 10 and 12 d in the other

two model sets; Table 5). While the mean melt season and
open-water periods are long compared to satellite data, all 20

modeled spatial standard deviations in interseasonal period
lengths agree with satellite data (Table S4).

4.4 Seasonal transitions affect sea ice area and
thickness year-round

Model representations of seasonal sea ice transitions are ex- 25

pected to impact sea ice area and thickness because seasonal
transitions are strongly linked to the ice albedo feedback
(Perovich et al., 2008; Timmermans, 2015; Kashiwase et al.,
2017; Perovich, 2018; Lebrun et al., 2019). Ice loss earlier in
the spring has been related to later ice gain in the fall (Stroeve 30

et al., 2014, 2016; Lebrun et al., 2019), and a weaker relation-
ship has been described between later ice gain and earlier
spring loss during the following year (Lebrun et al., 2019).
Both processes favor greater areas of open ocean for longer
periods each year, but little has been done to evaluate which 35
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Figure 6. Freeze-up dates (15 % ice concentration threshold) averaged over the period 1979–2014 at each grid cell using satellite data (a), the
first ensemble member of the CESM LE (b), and the first ensemble member of each CMIP6 model (c–q). Stippling indicates where freeze-up
dates exist in less than 20 % of years in the time range. Models on tripolar grids produce plot gaps filled by gray lines.

transition metrics are most appropriate for describing pan-
Arctic sea ice relationships. Here we demonstrate year-round
relationships using seasonal transition dates, March mean ice
thickness, and summer (June–September) mean ice area. We
show that pan-Arctic relationships between seasonal transi-5

tions and other ice characteristics are most discernible using
seasonal transition metrics with extensive spatial coverage
(Fig. 9). Summer mean ice area is evaluated instead of the
ice area of a single month in order to better represent the in-
tegrated surface energy absorption as ice area declines. Ice10

area and seasonal ice transition dates are practical for assess-
ing sea ice in a pan-Arctic sense as they are reliably available
for both models and observations. Discussion of the sea ice
thickness here is limited to model projections since observa-
tions of Arctic sea ice thickness are temporally limited and15

contain large uncertainties (Bunzel et al., 2018).
We find that in satellite data, mean summer ice area (June–

September) and the mean timing of freeze onset are strongly
anticorrelated (R =−0.93; Table 6 and Fig. 9). Lower sum-

mer ice area corresponds to a lower surface albedo, allowing 20

for greater shortwave absorption by the surface ocean and
increasing ocean heat content (Timmermans, 2015), delay-
ing the freeze onset (Stroeve et al., 2014). Slightly weaker
relationships exist between mean observed summer sea ice
area and freeze-up (R =−0.64) and closing (R =−0.82). 25

In models, the greatest agreement on the correlation between
mean summer ice area and fall transition metrics is seen us-
ing the freeze onset dates, where all of the correlation coef-
ficients that are statistically significant at the 95 % level (14
out of 16 models) are equal to or more negative than −0.67 30

(Table 6). Models tend to show later freeze onset than ob-
served, as discussed in Sect. 4.2, and despite this offset the
observed relationship between summer ice area and freeze
onset is captured well by the models (Fig. 9). Summer ice
area is generally larger in satellite data than in the models 35

but falls within the model spread. Relationships between fall
transition dates and mean summer ice thickness are similar
but slightly weaker than found with ice area (Table S5).
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12 A. Smith et al.: Seasonal sea ice transitions

Figure 7. Closing dates (ice passes the 80 % ice concentration threshold) averaged over the period 1979–2014 at each grid cell using satellite
data (a), the first ensemble member of the CESM LE (b), and the first ensemble member of each CMIP6 model (c–q). Stippling indicates
where closing dates exist in less than 20 % of years in the time range. Models on tripolar grids produce plot gaps filled by gray lines.

In the models, the timing of fall transition dates is strongly
correlated with the March mean ice thickness (Table 7 and
Fig. 9) but does not affect the March ice area of the following
year (Table S6). The differences in correlation coefficients
indicate that increased heat absorption and delayed freeze5

onset reduce the March thickness of the ice but have a much
smaller impact on the ice area. This supports past work on
the Canada Basin, showing that anomalous solar heat input
(Perovich et al., 2008) reduced ice thickness over the winter
of 2007–2008 by 25 % (Timmermans, 2015). The strongest10

correlations between March ice thickness and the previous
year’s fall transition metrics are found between freeze onset
and March ice thickness, with statistically significant corre-
lation coefficients ranging between −0.54 and −0.92 in the
models (Table 7). Because of sea ice thickness uncertainties15

discussed earlier (Bunzel et al., 2018), we are unable to confi-
dently evaluate whether model biases in freeze onset impact
the simulated relationship between freeze onset and March
mean ice thickness compared to observations. With respect to

the other fall transition metrics, we find that statistically sig- 20

nificant correlations between March ice thickness and freeze-
up or closing (which are both based on ice concentration) are
less consistent between models and generally stronger for
the closing dates rather than freeze-up dates (Table 7). Ad-
ditionally, other relationships involving freeze-up and spring 25

sea ice of the following year (such as the relationship be-
tween the timing of freeze-up and the next year’s breakup)
have been shown to be dampened by the tendency of thin ice
to grow faster than thicker ice (Bitz and Roe, 2004; Lebrun
et al., 2019). The growth rate of thin ice, in addition to the 30

spatial coverage of the freeze-up dates, may limit the impact
that a late freeze-up date has in reducing the following year’s
March mean ice thickness.

Modeled melt onset and opening dates both demonstrate
weak to moderate relationships with the mean March ice 35

thickness of the same year (Table 7 and Fig. 9). Thinner
March sea ice generally corresponds with earlier mean melt
onset and opening dates. For March ice thickness and melt
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Table 4. Lengths of pan-Arctic, satellite-era (1979–2014) means of intraseasonal transition periods in days. The satellite-era means and the
all-model spreads (latest minus earliest) are calculated using the first ensemble member from each model. Negative values indicate where the
freeze-up date falls earlier than the freeze onset on average. Models labeled with ∗ show the spread in means between the first 30 ensemble
members of that model. Model spreads are given in days, and all metrics are calculated between 66 and 84.5◦ N.

Melt Seasonal loss-of-ice Freeze Seasonal gain-of-ice
period period period period

ACCESS-CM2 43 30 11 11
BCC-CSM2-MR 52 22 −1 9
BCC-ESM1 54 20 1 10
CanESM5 40 26 −1 14
CESM2 45 32 11 7
CESM2-FV2 52 33 10 7
CESM2-WACCM 52 33 9 8
CESM2-WACCM-FV2 53 31 11 8
CNRM-ESM2-1 37 14 4 12
CNRM-CM6-1 32 17 6 12
EC-Earth3 33 25 −4 10
IPSL-CM6A-LR 42 25 −8 9
MRI-ESM2-0 43 34 −1 14
NorESM2-LM 52 31 4 8
NorESM2-MM 52 33 4 9

CESM LE 39 30 −7 11

Satellite data 39 28 −9 15

All-model spread 22 20 19 7

CanESM5 spread∗ 4 3 4 1
IPSL-CM6A-LR spread∗ 5 2 8 1
CESM LE spread∗ 4 3 8 2

onset, statistically significant correlations range from 0.26
to 0.75, with the CESM LE representing the weakest re-
lationship in that range (Table 7). For March ice thickness
and opening dates, statistically significant correlations range
from 0.13 to 0.65 (Table 7). One might expect that thinner ice5

would correspond to earlier breakup dates because thinner
ice is easier to melt out or split apart. However, models do not
agree on the sign or statistical significance of any relationship
between breakup (which are defined using ice concentration,
like opening dates) and March mean ice thickness. This lack10

of relationship is a strong indication that the spatial coverage
of breakup dates is not sufficient for describing pan-Arctic
sea ice feedbacks. Increases in ice thickness after March may
dampen the relationship between thin March ice and an ear-
lier breakup date since some models show faster ice growth15

from March to April in areas of thin March ice rather than
thick March ice (supporting past work on ice growth rates
by Bitz and Roe, 2004). However, this pattern is not seen in
all models and thus cannot fully account for the weakness of
the relationships between March ice thickness and breakup.20

In addition, relationships between spring transition dates and
March ice area are weaker than those between spring transi-
tion dates and March ice thickness (Table S6).

Melt onset and opening are related to mean summer ice
area in both satellite data and models (Table 6 and Fig. 9; ex- 25

cluding the CNRM models, which are discussed in Sect. 4.5).
Earlier melt is correlated with lower mean summer ice area,
with a correlation coefficient of 0.83 in satellite data and a
range of 0.37–0.85 in statistically significant model correla-
tions (Table 7). Earlier opening is slightly less correlated with 30

lower mean summer ice area with a correlation coefficient of
0.72 in satellite data, and the models range between 0.41 and
0.89 in statistically significant correlations (Table 7). Both
earlier melt onset and opening dates decrease the surface
albedo – the former through the formation of melt ponds and 35

the latter through the presence of more open ocean. This once
again facilitates greater surface absorption, which has been
shown to increase the ocean heat content and decrease the
summer sea ice cover (Stroeve et al., 2014). Relationships
also exist between melt onset or opening and summer sea ice 40

thickness (Table S5), but since the summer sea ice is already
quite thin, greater ocean heat content is more likely to affect
the ice area than it is in March, when ice is much thicker
overall. Models do not agree on the sign or magnitude of
the correlation between breakup and summer ice area, again 45

indicating that the spatial coverage of breakup dates is insuf-
ficient for describing pan-Arctic sea ice processes.
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Figure 8. The average standard deviation between the first 30 ensemble members over the period 1979–2014 for (a) melt onset, (b) opening,
(c) breakup, (d) freeze onset, (e) freeze-up, and (f) closing. CanESM5 is displayed in the first row, IPSL is displayed in the second row, and
CESM LE is displayed in the third row. The standard deviation is calculated at each grid cell for each year, and then the average of all years
is plotted for each grid cell. The same figure using all available ensemble members of each model is displayed in Fig. S2.

4.5 Seasonal transitions can compensate for unrealistic
sea ice characteristics

CNRM-CM6-1 and CNRM-ESM2-1 demonstrate that biases
in seasonal sea ice transitions can unrealistically compensate
for other sea ice biases. As mentioned in Sect. 4.1 and 4.4,5

the CNRM models show mean melt onset dates occurring
11–15 d later than the next latest model and 8–12 d later than
those found in satellite data (Table 5). The largest differ-
ences in melt onset between the CNRM models and both
satellite data and the other models are found in the central10

Arctic (Fig. 2k, l). While melt onset dates fall late in the
CNRM models, their September ice areas are overall realis-
tic (Voldoire et al., 2019) and fall within the spread of avail-
able models (Fig. S1). The CNRM models are the only two
models (out of 16) that lack statistically significant correla-15

tions between later melt onset and larger summer ice area
seen in most models and observations (Sect. 4.4). Further-
more, mean ice thickness in the CNRM models from 1979 to
2014 is much lower than in any of the other models (Fig. S1).
Thus, the models’ ability to produce realistic September sea20

ice areas likely relies on the biased seasonal transition: late
melt onset acts to retain thin ice that would otherwise be lost
over the summer by shortening the length of the melt season.
Following melt onset, the CNRM models have mean open-
ing and breakup dates that fall fully within the model spread,25

indicating that the impact of seasonal transition biases can be
large, even if the biases exist only in one metric.

The cause of delayed melt onset in CNRM models is not
currently clear. Melt onset is the only transition metric that
captures changes at the surface of the snowpack rather than 30

a change in ice concentration. Recent work suggests that the
winter snow on the sea ice is too thick in the CNRM models,
overinsulating the sea ice and preventing it from reaching re-
alistic ice thicknesses (Voldoire et al., 2019). We find that
the overinsulation in CNRM models may be more related 35

to September–November snow thickness since the CNRM
models show the largest area of 15–30 cm deep snow of
all the models across this time frame (Fig. S11) but show
similar snow thicknesses compared to other models during
December–February (Fig. S12). Delayed melt onset could 40

also be related to the use of the GELATO sea ice model as the
CNRM models are the only models used in this study that use
the GELATO model (Table S2). Since GELATO has a single
snow-on-sea-ice layer and fixed albedos for dry snow and
melting snow (0.88 and 0.77, respectively; Voldoire et al., 45

2019), simplified processes in GELATO may contribute to
snow biases.

5 Conclusions

Seasonal sea ice transitions can be characterized by various
metrics (melt onset, opening, breakup, freeze onset, freeze- 50
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Figure 9. TS6Scatterplots of mean seasonal sea ice transition metrics versus other ice characteristics for CMIP6 models (colors), CESM
LE (gray), and satellite data (black). Each scatter point represents 1 year in one ensemble member from 1979 to 2014. Panels (a)–(d) show
relationships with mean melt and freeze onset dates, panels (e)–(h) show relationships with mean opening and closing dates, and panels (i)–
(l) show relationships with mean breakup and freeze-up dates. Metrics are scattered against mean summer (June–September) ice area in the
first and fourth columns and March mean ice thickness in the second and third columns. All metrics are scattered against ice characteristics
from the same year, except those in the second column, in which fall transition metrics are scattered against the next year’s mean March ice
thickness. All available ensemble members are used for CESM LE, CanESM5, and IPSL. All metrics are calculated between 66 and 84.5◦ N.
All models are represented in each panel (a)–(l), but the labels are distributed across panels (h, k, l).
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Table 5. Lengths of pan-Arctic, satellite-era (1979–2014) means of
interseasonal transition periods in days. The satellite-era means and
the all-model spreads (latest minus earliest) are calculated using the
first ensemble member from each model. Models labeled with *
show the spread in means between the first 30 ensemble members
of that model. Model spreads are given in days, and all metrics are
calculated between 66 and 84.5◦ N.TS2

Melt Open- Outer
season water ice-free

period period
(15 %) (80 %)

ACCESS-CM2 121 89 78
BCC-CSM2-MR 136 87 78
BCC-ESM1 125 78 73
CanESM5 130 95 88
CESM2 154 113 91
CESM2-FV2 148 101 83
CESM2-WACCM 147 99 84
CESM2-WACCM-FV2 148 100 88
CNRM-ESM2-1 132 110 95
CNRM-CM6-1 121 103 89
EC-Earth3 127 86 80
IPSL-CM6A-LR 165 111 95
MRI-ESM2-0 154 111 90
NorESM2-LM 147 96 89
NorESM2-MM 130 78 77

CESM LE 125 80 82

Satellite data 117 71 88

All-model spread 44 35 22

CanESM5 spread∗ 10 7 12
IPSL-CM6A-LR spread∗ 17 11 21
CESM LE spread∗ 12 9 9

up, and closing), and each metric represents a distinct stage
of sea ice loss or gain. As such, seasonal transitions pro-
vide unique insights into Arctic sea ice processes, but they
have so far been underutilized in evaluating climate models
due to a lack of long-term observational products and daily5

model output as well as the complexities of defining seasonal
transitions. Taking advantage of newly available daily model
output (Notz et al., 2016) and observational data of seasonal
transitions (Steele et al., 2019), we show that models capture
the observed asymmetry in seasonal sea ice transitions, with10

spring ice loss taking about 1–2 months longer than fall ice
growth (Figs. 2–7). Models also generally agree with satel-
lite data on the timing of spring transitions. For fall transi-
tion dates, 10 out of 16 models show mean freeze onset dates
later than observed such that the differences between each15

model’s mean freeze onset date and the observed date exceed
the largest estimations of internal variability (Table 3). Like-
wise, in 5 out of 16 models, the difference between the mean
freeze-up date and the observed date exceeds the largest es-

timations of internal variability. Delayed freeze onset and 20

freeze-up extend simulated melt seasons and open-water pe-
riods, respectively, making the outer ice-free period (the time
between ice opening and closing) the only interseasonal pe-
riod in which models consistently agree with satellite obser-
vations. 25

We find that differences in seasonal transitions between
models are unlikely due to internal variability alone and are
hence likely a reflection of model differences. Sea ice metrics
are each impacted differently by internal variability: models
do not agree on a metric most affected, and no single model 30

exhibits the greatest internal variability across all metrics.
Despite the uncertainty associated with internal variability,
all metrics show pan-Arctic model spreads exceeding even
the largest estimations of internal variability in seasonal sea
ice transition metrics (Tables 3–5). The largest standard de- 35

viations between ensemble members are seen in the inflow
regions for melt and freeze onset dates (Fig. 8), and this is
due to the changing interannual position of the ice edge and
the variability of surface temperature.

Because differences in seasonal sea ice transition metrics 40

between models are unlikely due only to internal variabil-
ity, these metrics can be used for evaluating differences be-
tween models in terms of other sea ice characteristics. We
show that pan-Arctic relationships between transition metrics
and sea ice area and thickness depend on the spatial cover- 45

age of the metric (Fig. 9). Out of the six transition dates, melt
and freeze onset dates consistently cover the largest area of
the Arctic, and they are most closely related to pan-Arctic
ice area and mean thickness. Low mean summer ice area
delays freeze onset (Table 6), which in turn leads to lower 50

March ice thickness (Table 7). Thinner March ice leads to
earlier melt onset and, again, low mean summer ice area (Ta-
ble 6). Other relationships between sea ice area and thickness
are somewhat discernible using opening and closing dates
but almost indistinguishable using breakup and freeze-up 55

dates (Fig. 9). Since the differences in relationship strengths
are seen across definitions that use both surface temperature
and ice-concentration-based definitions, these differences are
more likely related to the spatial coverage of the seasonal sea
ice transition dates rather than their defining variables (Ta- 60

bles 6 and 7, Fig. 9). While models tend to show later freeze
onset than observed, this offset does not impact the ability
of the models to produce the observed relationship between
lower summer ice area and later freeze onset.

Finally, we demonstrate how seasonal sea ice transition 65

metrics can provide context to sea ice changes that otherwise
lack quantified explanations. We find that CNRM-ESM2-1
and CNRM-CM6-1 exhibit biases in both melt onset (late)
and ice thickness (thin) but realistic September sea ice area,
exemplifying how seasonal ice transitions can compensate 70

for other unrealistic aspects of the sea ice. Late melt onset
helps retain thin ice throughout the summer such that both
CNRM models exhibit realistic September sea ice areas for
the wrong reasons. Seasonal sea ice transition metrics there-
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Table 6. Correlation coefficients (R values) between seasonal sea ice transition dates and mean summer (June–September) sea ice area of the
same year from 1979 to 2014. Values in bold are statistically significant at the 95 % confidence level. Correlation coefficients and p values
for models in the first 13 rows are determined using 1 ensemble member, for CanESM5 using all 35 ensemble members, for IPSL using all
30 ensemble members, and for CESM LE using all 40 ensemble members. All values are calculated between 66 and 84.5◦ N.

Melt onset Opening (80 %) Breakup (15 %) Freeze onset Freeze-up (15 %) Closing (80 %)

ACCESS-CM2 0.66 0.78 0.22 −0.84 −0.77 −0.73
BCC-CSM2-MR 0.47 0.64 0.39 −0.80 −0.60 −0.74
BCC-ESM1 0.53 −0.14 −0.05 −0.67 −0.53 −0.45
CESM2 0.37 0.87 0.43 −0.87 −0.78 −0.87
CESM2-FV2 0.70 0.89 0.21 −0.90 −0.75 −0.82
CESM2-WACCM 0.62 0.85 0.22 −0.86 −0.68 −0.79
CESM2-WACCM-FV2 0.61 0.81 0.47 −0.84 −0.73 −0.78
CNRM-ESM2-1 0.08 −0.32 −0.25 0.24 0.14 0.14
CNRM-CM6-1 0.13 −0.19 −0.15 −0.07 −0.04 −0.12
EC-Earth3 0.85 0.65 0.53 −0.93 −0.83 −0.85
MRI-ESM2-0 0.49 0.66 −0.05 −0.91 −0.82 −0.84
NorESM2-LM 0.55 0.69 0.11 −0.73 −0.51 −0.64
NorESM2-MM 0.56 0.18 −0.27 −0.74 −0.61 −0.49

CanESM5 0.74 0.66 0.11 −0.84 −0.68 −0.71
IPSL-CM6A-LR 0.58 0.70 0.13 −0.88 −0.80 −0.84
CESM LE 0.54 0.41 0.06 −0.87 −0.43 −0.56

Satellite data 0.83 0.72 0.64 −0.93 −0.64 −0.82

Table 7. Correlation coefficients (R values) between seasonal sea ice transition dates and March sea ice thickness from 1979 to 2014.
Spring transition dates (melt onset, opening, and breakup) are correlated with March mean ice thickness from the same year, while fall
transition dates (freeze onset, freeze-up, and closing) are correlated with March mean ice thickness from the following year. Values in bold
are statistically significant at the 95 % confidence level. Correlation coefficients and p values for models in the first 13 rows are determined
using 1 ensemble member, for CanESM5 using all 35 ensemble members, for IPSL using all 30 ensemble members, and for CESM LE using
all 40 ensemble members. All values are calculated between 66 and 84.5◦ N.

Melt onset Opening (80 %) Breakup (15 %) Freeze onset Freeze-up (15 %) Closing (80 %)

ACCESS-CM2 0.25 0.64 0.3 −0.76 −0.79 −0.67
BCC-CSM2-MR 0.43 0.55 0.35 −0.82 −0.65 −0.77
BCC-ESM1 0.49 −0.12 0.02 −0.68 −0.60 −0.52
CESM2 0.30 0.72 0.29 −0.88 −0.84 −0.91
CESM2-FV2 0.60 0.65 0.13 −0.88 −0.73 −0.76
CESM2-WACCM 0.48 0.62 −0.06 −0.79 −0.54 −0.72
CESM2-WACCM-FV2 0.48 0.65 0.38 −0.81 −0.70 −0.74
CNRM-ESM2-1 0.32 −0.26 −0.17 −0.17 −0.04 −0.07
CNRM-CM6-1 0.09 −0.10 −0.12 −0.23 −0.17 −0.24
EC-Earth3 0.75 0.57 0.49 −0.92 −0.85 −0.79
MRI-ESM2-0 0.43 0.42 −0.13 −0.84 −0.83 −0.82
NorESM2-LM 0.42 0.60 0.07 −0.74 −0.53 −0.63
NorESM2-MM 0.38 0.01 −0.37 −0.54 −0.41 −0.37

CanESM5 0.65 0.52 0.01 −0.73 −0.64 −0.64
IPSL-CM6A-LR 0.41 0.54 0.1 −0.89 −0.78 −0.80
CESM LE 0.26 0.13 −0.12 −0.79 −0.39 −0.45
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fore provide a process-based constraint on model simulations
in addition to the commonly used September and March sea
ice areas (Stroeve et al., 2012; Rosenblum and Eisenman,
2017).

To conclude, routinely saved daily sea ice variable out-5

put (in particular sea ice concentration and surface tempera-
ture) will be critical for using seasonal transitions as a new
metric to assess and quantify model uncertainties associated
with Arctic sea ice simulations. Since a new observational
data product for these seasonal sea ice transitions now exists10

(Steele et al., 2019), seasonal sea ice transition dates should
be used routinely in the future to better identify model biases
in sea ice evolution as well as the sources of these biases.

Data availability. CMIP6 data are publicly available at the World
Climate Research Programme (WCRP) CMIP6, supported by the15

Department of Energy’s Lawrence Livermore National Labora-
tory and the Earth System Grid Federation (https://esgf-node.
llnl.gov/projects/cmip6/, Department of Energy Lawrence Liver-
more National Laboratory, 2020). All CMIP6 model output used
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Data Gateway (https://www.earthsystemgrid.org/, National Center
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Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-14-1-2020-supplement.

Author contributions. AS and AJ conceived the study, and AS ana-
lyzed the data and prepared the manuscript, with guidance and edits
from AJ and MW.35

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. We acknowledge the WCRP, which through its
Working Group on Coupled Modelling coordinated and promoted
CMIP6. We thank the climate modeling groups for producing and40

making available their model output, the Earth System Grid Fed-
eration (ESGF) for archiving the data and providing access, and
the multiple funding agencies who support CMIP6 and ESGF. We
are grateful for the efforts of SIMIP, supported by the Climate and
Cryosphere core project of the WCRP, for requesting the new daily45

variables used in our analysis and encouraging process-based model
analysis. The CESM project is supported by the National Science

Foundation and the Office of Science (BER) of the U.S. Department
of Energy. Computing resources for the CESM LE were provided
by the Climate Simulation Laboratory at NCAR’s Computational 50

and Information Systems Laboratory (CISL), sponsored by the Na-
tional Science Foundation and other agencies. Five of the CESM
LE simulations were produced at the University of Toronto under
the supervision of Paul Kushner. NCL (2017) was used for data
analysis. 55

Financial support. Abigail Smith’s contribution is supported by
the Future Investigators in Earth System Science (grant no.
80NSSC19K1324), the National Science Foundation Graduate Re-
search Fellowship (grant no. DGE 1144083), and the NSF-OPP
(award no. 1847398). Alexandra Jahn acknowledges support from 60

the NSF-OPP (award no. 1847398). Muyin Wang is supported by
the NSF (grant no. 1751363). She is also funded by the Joint In-
stitute for the Study of the Atmosphere and Ocean (JISAO) under
NOAA cooperative agreement no. NA15OAR4320063, contribu-
tion no. 2020-1056, and by the NOAA Arctic Research Program, 65

Pacific Marine Environmental Laboratory contribution no. 5076.

Review statement. This paper was edited by John Yackel and re-
viewed by two anonymous referees.

References

Ballinger, T., Lee, C., Sheridan, S., Crawford, A., Overland, J., and 70

Wang, M.: Subseasonal atmospheric regimes and ocean back-
ground forcing of Pacific Arctic sea ice melt onset, Clim. Dy-
nam., 52, 5657–5672, https://doi.org/10.1007/s00382-018-4467-
x, 2019.

Barnhart, K. R., Miller, C. R., Overeem, I., and Kay, J. E.: Map- 75

ping the future expansion of Arctic open water, Nature Climate
Change, 6, 280–285, https://doi.org/10.1038/NCLIMATE2848,
2016.

Belchanksy, G., Douglas, D., and Platonov, N.: Duration of the
Arctic Sea Ice Melt Season : Regional and Interannual Vari- 80

ability, J. Climate, 17, 67–80, https://doi.org/10.1175/1520-
0442(2004)017<0067:DOTASI>2.0.CO;2, 2004.

Bitz, C. M. and Roe, G. H.: A Mechanism for the High
Rate of Sea Ice Thinning in the Arctic Ocean, J. Cli-
mate, 17, 3623–3632, https://doi.org/10.1175/1520- 85

0442(2004)017<3623:AMFTHR>2.0.CO;2, 2004.
Bliss, A. C. and Anderson, M. R.: Snowmelt onset over Arctic

sea ice from passive microwave satellite data: 1979–2012, The
Cryosphere, 8, 2089–2100, https://doi.org/10.5194/tc-8-2089-
2014, 2014. 90

Bliss, A. C., Miller, J. A., and Meier, W. N.: Comparison of passive
microwave-derived early melt onset records on Arctic sea ice,
Remote Sensing, 9, 1–23, https://doi.org/10.3390/rs9030199,
2017.

Bliss, A. C., Steele, M., Peng, G., Meier, W., and Dickinson, 95

S.: Regional variability of Arctic sea ice seasonal change cli-
mate indicators from a passive microwave climate data record,
Environ. Res. Lett., 14, 045003, https://doi.org/10.1088/1748-
9326/aafb84, 2019.

The Cryosphere, 14, 1–20, 2020 https://doi.org/10.5194/tc-14-1-2020

https://esgf-node.llnl.gov/projects/cmip6/
https://esgf-node.llnl.gov/projects/cmip6/
https://esgf-node.llnl.gov/projects/cmip6/
https://www.earthsystemgrid.org/
https://doi.org/10.5067/KINANQKEZI4T
https://doi.org/10.18739/A2000014J
https://doi.org/10.5194/tc-14-1-2020-supplement
https://doi.org/10.1007/s00382-018-4467-x
https://doi.org/10.1007/s00382-018-4467-x
https://doi.org/10.1007/s00382-018-4467-x
https://doi.org/10.1038/NCLIMATE2848
https://doi.org/10.1175/1520-0442(2004)017<0067:DOTASI>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<0067:DOTASI>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<0067:DOTASI>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2
https://doi.org/10.5194/tc-8-2089-2014
https://doi.org/10.5194/tc-8-2089-2014
https://doi.org/10.5194/tc-8-2089-2014
https://doi.org/10.3390/rs9030199
https://doi.org/10.1088/1748-9326/aafb84
https://doi.org/10.1088/1748-9326/aafb84
https://doi.org/10.1088/1748-9326/aafb84


A. Smith et al.: Seasonal sea ice transitions 19

Bunzel, F., Notz, D., and Pederson, L.: Retrievals of Arctic Sea-
Ice Volume and Its Trend Significantly Affected by Interan-
nual Snow Variability, Geophys. Res. Lett., 45, 11751–11759,
https://doi.org/10.1029/2018GL078867, 2018.

Comiso, J., Cavalieri, D., Parkinson, C., and Gloersen, P.: Pas-5

sive microwave algorithms for sea ice concentration: A com-
parison of two techniques, Remote Sens. Environ., 60, 357–384,
https://doi.org/10.1016/S0034-4257(96)00220-9, 1997.

Department of Energy Lawrence Livermore National Laboratory:
World Climate Research Programme Coupled Model Intercom-10

parison Project (Phase 6), available at: https://esgf-node.llnl.gov/
projects/cmip6/, last access: 19 February 2020.

Drobot, S. D. and Anderson, M. R.: An improved method for de-
termining snowmelt onset dates over Arctic sea ice using scan-
ning multichannel microwave radiometer and Special Sensor15

Microwave/Imager data, J. Geophys. Res., 106, 24033–24049,
https://doi.org/10.1029/2000JD000171, 2001.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,
Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimen-20

tal design and organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Ivanova, N., Pedersen, L. T., Tonboe, R. T., Kern, S., Heyg-
ster, G., Lavergne, T., Sørensen, A., Saldo, R., Dybkjær, G.,
Brucker, L., and Shokr, M.: Inter-comparison and evaluation25

of sea ice algorithms: towards further identification of chal-
lenges and optimal approach using passive microwave observa-
tions, The Cryosphere, 9, 1797–1817, https://doi.org/10.5194/tc-
9-1797-2015, 2015.

Jahn, A., Sterling, K., Holland, M. M., Kay, J. E., Maslanik, J. A.,30

Bitz, C. M., Bailey, D. A., Stroeve, J., Hunke, E. C., Lipscomb,
W. H., and Pollak, D. A.: Late-twentieth-century simulation of
Arctic sea ice and ocean properties in the CCSM4, J. Climate, 25,
1431–1452, https://doi.org/10.1175/JCLI-D-11-00201.1, 2012.

Johnson, M. and Eicken, H.: Estimating Arctic sea-ice freeze-up35

and break-up from the satellite record: A comparison of different
approaches in the Chukchi and Beaufort Seas, Elem. Sci. Anth.,
4, 1–16, https://doi.org/10.12952/journal.elementa.000124,
2016.

Kashiwase, H., Ohshima, K., Nihashi, S., and Eicken, H.: Evi-40

dence for ice-ocean albedo feedback in the Arctic Ocean shift-
ing to a seasonal ice zone, Nature Scientific Reports, 7, 8170,
https://doi.org/10.1038/s41598-017-08467-z, 2017.

Lebrun, M., Vancoppenolle, M., Madec, G., and Massonnet, F.:
Arctic sea-ice-free season projected to extend into autumn, The45

Cryosphere, 13, 79–96, https://doi.org/10.5194/tc-13-79-2019,
2019.

Markus, T., Stroeve, J. C., and Miller, J.: Recent changes in Arctic
sea ice melt onset, freezeup, and melt season length, J. Geophys.
Res., 114, C12024, https://doi.org/10.1029/2009JC005436,50

2009.
Mortin, J. and Graversen, R. G.: Evaluation of pan-Arctic

melt-freeze onset in CMIP5 climate models and reanalyses
using surface observations, Clim. Dynam., 42, 2239–2257,
https://doi.org/10.1007/s00382-013-1811-z, 2014.55

National Center for Atmospheric Research (NCAR): NCAR Cli-
mate Data Gateway, Version 3.0.10-20200728-204736, avail-
able at: http://www.earthsystemgrid.org, last access: 19 Febru-
ary 2020.

NCL: The NCAR Command Language, Version 6.4.0, 60

UCAR/NCAR/CISL/TDD, Boulder, Colorado, USA,
https://doi.org/10.5065/D6WD3XH5, 2017.

Notz, D., Jahn, A., Holland, M., Hunke, E., Massonnet, F., Stroeve,
J., Tremblay, B., and Vancoppenolle, M.: The CMIP6 Sea-
Ice Model Intercomparison Project (SIMIP): understanding sea 65

ice through climate-model simulations, Geosci. Model Dev., 9,
3427–3446, https://doi.org/10.5194/gmd-9-3427-2016, 2016.

O’Neill, B., Tebaldi, C., van Vuuren, D., Eyring, V., Friedlingstein,
P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J.,
Meehl, G., Moss, R., Riahi, K., and Sanderson, B.: The Scenario 70

Model Intercomparison Project (ScenarioMIP) for CMIP6, Geo-
phys. Res. Lett., 9, 3461–3482, https://doi.org/10.5194/gmd-9-
3461-2016, 2016.

Pegau, W. and Paulson, C.: The albedo of Arc-
tic leads in summer, Ann. Glaciol., 33, 221–224, 75

https://doi.org/10.3189/172756401781818833, 2001.
Perovich, D. K.: Sunlight, clouds, sea ice, albedo, and the radia-

tive budget: the umbrella versus the blanket, The Cryosphere, 12,
2159–2165, https://doi.org/10.5194/tc-12-2159-2018, 2018.

Perovich, D. K., Grenfell, T., Light, B., and Hobbs, P.: Seasonal 80

evolution of the albedo of multiyear Arctic sea ice, J. Geophys.
Res., 107, 8044, https://doi.org/10.1029/2000JC000438, 2002.

Perovich, D. K., Richter-Menge, J., Jones, K., and Light, B.:
Sunlight, water, and ice: Extreme Arctic sea ice melt dur-
ing the summer of 2007, Geophys. Res. Lett., 35, L11501, 85

https://doi.org/10.1029/2008GL034007, 2008.
Persson, P. O. G.: Onset and end of the summer melt sea-

son over sea ice: Thermal structure and surface energy
perspective from SHEBA, Clim. Dynam., 39, 1349–1371,
https://doi.org/10.1007/s00382-011-1196-9, 2012. 90

Rosenblum, E. and Eisenman, I.: Sea ice trends in climate models
only accurate in runs with biased global warming, J. Climate, 30,
6265–6278, https://doi.org/10.1175/JCLI-D-16-0455.1, 2017.

Serreze, M. C., Crawford, A. D., Stroeve, J. C., Barrett,
A. P., and Woodgate, R. A.: Variability, trends, and pre- 95

dictability of seasonal sea ice retreat and advance in the
Chukchi Sea, J. Geophys. Res.-Oceans, 121, 7308–7325,
https://doi.org/10.1002/2016JC011977, 2016.

SIMIP-Community: Arctic Sea Ice in CMIP6, Geophys. Res. Lett.,
47, e2019GL086749, https://doi.org/10.1029/2019GL086749, 100

2020.
Smith, A. and Jahn, A.: Definition differences and internal

variability affect the simulated Arctic sea ice melt season,
The Cryosphere, 13, 1–20, https://doi.org/10.5194/tc-13-1-2019,
2019. 105

Smith, A. and Jahn, A.: Arctic sea ice seasonal transition met-
rics from coupled climate model simulations, 1979–2013, Arctic
Data Center, https://doi.org/10.18739/A2000014J, 2020.

Stammerjohn, S., Martinson, D., Smith, R., Yuan, X., and Rind,
D.: Trends in Antarctic annual sea ice retreat and advance 110

and their relation to El Nino–Southern Oscillation and South-
ern Annular Mode variability, J. Geophys. Res., 113, 1–20,
https://doi.org/10.1029/2007JC004269, 2008.

Stammerjohn, S., Massom, R., Rind, D., and Martinson, D.:
Regions of rapid sea ice change: An inter-hemispheric 115

seasonal comparison, Geophys. Res. Lett., 39, L06501,
https://doi.org/10.1029/2012GL050874, 2012.

https://doi.org/10.5194/tc-14-1-2020 The Cryosphere, 14, 1–20, 2020

https://doi.org/10.1029/2018GL078867
https://doi.org/10.1016/S0034-4257(96)00220-9
https://esgf-node.llnl.gov/projects/cmip6/
https://esgf-node.llnl.gov/projects/cmip6/
https://esgf-node.llnl.gov/projects/cmip6/
https://doi.org/10.1029/2000JD000171
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/tc-9-1797-2015
https://doi.org/10.5194/tc-9-1797-2015
https://doi.org/10.5194/tc-9-1797-2015
https://doi.org/10.1175/JCLI-D-11-00201.1
https://doi.org/10.12952/journal.elementa.000124
https://doi.org/10.1038/s41598-017-08467-z
https://doi.org/10.5194/tc-13-79-2019
https://doi.org/10.1029/2009JC005436
https://doi.org/10.1007/s00382-013-1811-z
http://www.earthsystemgrid.org
https://doi.org/10.5065/D6WD3XH5
https://doi.org/10.5194/gmd-9-3427-2016
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.3189/172756401781818833
https://doi.org/10.5194/tc-12-2159-2018
https://doi.org/10.1029/2000JC000438
https://doi.org/10.1029/2008GL034007
https://doi.org/10.1007/s00382-011-1196-9
https://doi.org/10.1175/JCLI-D-16-0455.1
https://doi.org/10.1002/2016JC011977
https://doi.org/10.1029/2019GL086749
https://doi.org/10.5194/tc-13-1-2019
https://doi.org/10.18739/A2000014J
https://doi.org/10.1029/2007JC004269
https://doi.org/10.1029/2012GL050874


20 A. Smith et al.: Seasonal sea ice transitions

Steele, M., Zhang, J., and Ermold, W.: Mechanisms of
summertime upper Arctic Ocean warming and the ef-
fect on sea ice melt, J. Geophys. Res., 115, C11004,
https://doi.org/10.1029/2009JC005849, 2010.

Steele, M., Dickinson, S., Zhang, J., and Lindsay, R.: Sea-5

sonal ice loss in the Beaufort Sea: Toward synchrony
and prediction, J. Geophys. Res.-Oceans, 120, 1118–1132,
https://doi.org/10.1002/2014JC010247, 2015.

Steele, M., Bliss, A. C, Peng, G., Meier, W. N., and Dickinson,
S.: Arctic Sea Ice Seasonal Change and Melt/Freeze Climate10

Indicators from Satellite Data, Version 1, Data subset: 1979-
03-01 to 2017-02-28, NASA National Snow and Ice Data Cen-
ter Distributed Active Archive Center, Boulder, Colorado, USA,
https://doi.org/10.5067/KINANQKEZI4T, 2019.

Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T.,15

Holland, M., and Meier, W. N.: Trends in Arctic sea ice extent
from CMIP5, CMIP3 and observations, Geophys. Res. Lett., 39,
L16502, https://doi.org/10.1029/2012GL052676, 2012.

Stroeve, J. C., Markus, T., Boisvert, L., Miller, J., and Bar-
ret, A.: Changes in Arctic melt season and implications20

for sea ice loss, Geophys. Res. Lett., 41, 1216–1225,
https://doi.org/10.1002/2013GL058951, 2014.

Stroeve, J. C., Crawford, A. D., and Stammerjohn, S.: Us-
ing timing of ice retreat to predict timing of fall freeze-
up in the Arctic, Geophys. Res. Lett., 43, 6332–6340,25

https://doi.org/10.1002/2016GL069314, 2016.

Timmermans, M. L.: The impact of stored solar heat on Arc-
tic sea ice growth, Geophys. Res. Lett., 42, 6399–6406,
https://doi.org/10.1002/2015GL064541, 2015.

Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, 30

A., Chevallier, M., Colin, J., Guérémy, J., Michou, M., Moine,
M., Nabat, P., Roehrig, R., Salas y Mélia, D., Séférian,
R., Valcke, S., Beau, I., Belamari, S., Berthet, S., Cassou,
C., Cattiaux, J., Deshayes, J., Douville, H., Ethé, C., Fran-
chistéguy, L., Geoffroy, O., Lévy, C., Madec, G., Meurdes- 35

oif, Y., Msadek, R., Ribes, A., Sanchez-Gomez, E., Terray, L.,
and Waldman, R.: Evaluation of CMIP6 DECK Experiments
With CNRM-CM6-1, J. Adv. Model. Earth Sy., 11, 2177–2213,
https://doi.org/10.1029/2019MS001683, 2019.

Walsh, J., Chapman, W., Fetterer, F., and Stewart, J.: Grid- 40

ded Monthly Sea Ice Extent and Concentration, 1850 On-
ward, Version 2, Data subset: 1979-01 to 2014-12, National
Snow and Ice Data Center (NSIDC), Boulder, Colorado, USA,
https://doi.org/10.7265/jj4s-tq79, 2019.

Wang, M., Yang, Q., Overland, J. E., and Stabeno, P.: Sea-ice 45

cover timing in the Pacific Arctic: The present and projec-
tions to mid-century by selected CMIP5 models, Deep-Sea Re-
search Part II: Topical Studies in Oceanography, 152, 22–34,
https://doi.org/10.1016/j.dsr2.2017.11.017, 2018.

The Cryosphere, 14, 1–20, 2020 https://doi.org/10.5194/tc-14-1-2020

https://doi.org/10.1029/2009JC005849
https://doi.org/10.1002/2014JC010247
https://doi.org/10.5067/KINANQKEZI4T
https://doi.org/10.1029/2012GL052676
https://doi.org/10.1002/2013GL058951
https://doi.org/10.1002/2016GL069314
https://doi.org/10.1002/2015GL064541
https://doi.org/10.1029/2019MS001683
https://doi.org/10.7265/jj4s-tq79
https://doi.org/10.1016/j.dsr2.2017.11.017


Remarks from the language copy-editor

CE1 I understand your point from an aesthetic perspective, but for US English we go by Merriam-Webster, which does not
use a hyphen for breakup and does use one for freeze-up. “Open water” has been hyphenated when used as a compound
modifier as per our house standard.

CE2 We can keep it like this, but the hyphen between “outer” and “ice” affects the meaning. The way it is written now, outer
refers to the period. If it is the outer ice, then there should be a hyphen.
CE3 Are these voltages? If so, it is our house standard to use this notation.
CE4 Please see response to outer ice-free period.

Remarks from the typesetter

TS1 It’s our standard to abbreviate SI-accepted units of measure up to day (i.e., s, min, h, and d).
TS2 Please give an explanation of why this needs to be changed. We have to ask the handling editor for approval. Thanks.
TS3 Please give an explanation of why this needs to be changed. We have to ask the handling editor for approval. Thanks.
TS4 Please give an explanation of why this needs to be changed. We have to ask the handling editor for approval. Thanks.
TS5 Please give an explanation of why this needs to be changed. We have to ask the handling editor for approval. Thanks.
TS6 Please note that the figure cannot be shown larger. Please send a new figure with enlarged text.


	Abstract
	Introduction
	Background: seasonal transitions in the Arctic sea ice cover
	Data and methods
	Global coupled climate models
	Satellite data
	Defining seasonal sea ice transitions
	Melt onset, freeze onset, and the melt season
	Breakup, freeze-up, and the open-water period
	Date of opening, date of closing, and the outer ice-free period
	Melt period and freeze period
	Seasonal loss-of-ice period and seasonal gain-of-ice period
	Accounting for differences in spatial coverage


	Results
	Spring transitions
	Fall transitions
	Interseasonal transition periods
	Seasonal transitions affect sea ice area and thickness year-round
	Seasonal transitions can compensate for unrealistic sea ice characteristics

	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

