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Abstract. The objective of this note is to provide the background and basic tools to estimate the statistical error of deformation 

parameters that are calculated from displacement fields retrieved from synthetic aperture radar (SAR) imagery or from location 

changes of position sensors in an array. We focus here specifically on sea ice drift and deformation. In the most general case, 15 

the uncertainties of divergence/convergence, shear, vorticity, and total deformation are dependent on errors in coordinate 

measurements, the size of the area and the time interval over which these parameters are determined, and the velocity gradients 

within the boundary of the area. If displacements are calculated from sequences of SAR images, a tracking error also has to be 

considered. Timing errors in position readings are usually very small and can be neglected. We give examples for magnitudes 

of position and timing errors typical for buoys and SAR sensors, in the latter case supplemented by magnitudes of the tracking 20 

error, and apply the derived equations on geometric shapes frequently used for deriving deformation from SAR images and 

buoy arrays. Our case studies show that the size of the area and the time interval for calculating deformation parameters have 

to be chosen within certain limits to make sure that the uncertainties are smaller than the magnitude of deformation parameters.   

1 Introduction 

Sea ice drifts under the influence of wind and ocean currents.  Spatial gradients in the sea-ice motion lead to distortion 25 

of the sea-ice cover, termed deformation.  The retrieval of sea ice drift vectors and deformation parameters from pairs or 

sequences of satellite synthetic aperture radar (SAR) images has gained increased attention during recent years because of the 

growing availability of suitable data (e.g. Stern and Moritz, 2002; Karvonen, 2012; Berg and Eriksson, 2014;  Komarov and 

Barber, 2014;  Lehtiranta, 2015;  Muckenhuber et al., 2016;   Demchev et al., 2017; Korosov and Rampal, 2017). Sea ice 

kinematics is also studied based on data from arrays of buoys or GPS receivers (e.g. Lindsay, 2002; Hutchings et al., 2008; 30 

Hutchings et al., 2012; Itkin et al. 2017), which in addition can serve as reference in comparisons to motion vectors obtained 

from SAR images. The knowledge of spatially detailed motion and deformation fields is potentially useful in ice navigation to 

locate divergent or compressive ice areas, as complementary information for operational sea-ice mapping, for validation of 

models for forecasting of ice conditions, and for assimilation into ice models (Karvonen, 2012). Such practical applications 

require that the errors of the retrieved drift and deformation parameters are known. For buoys, errors in drift measurements 35 

depend on the accuracy of position and time readings. The accuracy of deformation parameters is not only affected by errors 

in drift magnitude and direction but also by the size and shape of buoy arrays (e.g. Hutchings et al., 2012; Griebel and Dierking, 

2018). Drift vectors derived from pairs of satellite images are the result of correlation techniques or object detections, while 

deformation parameters are calculated from spatial arrangements of adjacent drift vectors surrounding the area of interest, in 

a manner that is independent of the coordinate system. This means that drift and deformation errors do not only depend on the 40 

geolocation accuracy and spatial resolution of satellite images but also on the reliability and robustness of the drift retrieval 
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algorithm.  In this technical note we focus on the estimation of statistical errors for ice velocity and deformation. The issue of 

error estimation was repeatedly addressed in the past, scattered in a number of publications and restricted to single aspects 

related to the respective analysis (e.g. Lindsay and Stern, 2003; Hollands and Dierking, 2011; Bouillon and Rampal, 2015; 

Hollands et al., 2015; Linow et al., 2015; Griebel and Dierking, 2018), and is also addressed in a more recent analysis by 45 

Bouchat and Tremblay (2020). Our motivation is to provide the mathematical background, together with examples of 

applications and discussions of validity, in a broader context. We emphasize that here we deal with statistical errors, but not 

with boundary definition errors as described, e.g. in Lindsay and Stern (2003), Bouillon and Rampal (2015) and Griebel and 

Dierking (2018). Although this note is specifically focused on retrievals of parameters characterizing sea ice kinematics, the 

mathematical framework is also applicable to movement and deformation of ice shelves and glaciers, or for model simulations 50 

of sea ice, glacier, and ice sheet dynamics. 

In Sect. 2 we summarize the basics and provide equations for calculating errors of drift and deformation parameters: 

divergence, vorticity, shear, and total deformation. The equations are used in Sect. 3 to quantify the influence of different 

parameters such as geolocation and tracking errors, or shape and size of buoy arrays and grid cells. Conclusions are presented 

in Sect. 4.  55 

2 Errors of drift and deformation parameters 

In this section, we provide a short description of the estimation of errors and the computation of strain rates, and then 

derive the statistical errors for drift velocity, polygon areas, divergence, shear, vorticity, and total deformation. The statistical 

errors quantify uncertainties that are introduced by random fluctuations in the measurements. If the random fluctuations are 

small, data are measured with a high degree of precision, but not necessarily with high accuracy. The latter requires that the 60 

measured value is close to the true value, whereas precision refers to the reproducibility of a measurement (Bevington and 

Robinson, 2003, chapter 1). 

2.1 Error propagation and calculation of deformation 

The formula for error propagation is based on the splitting method, i.e. the decomposition of a measured variable x 

into its true value and the measurement error:  x = xtrue + xerror, where xtrue is considered to be a constant, and xerror is a random 65 

variable with expected value E(xerror) = 0 and variance E(x2error) = σ2. If a quantity Q is calculated from measured variables xk, 

i. e. Q = f(x1, x2, …, xn), a Taylor series expansion can be applied to estimate the error of Q. Usually only the linear term is 

retained:  
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The variance is obtained by moving the first term to the left-hand side, squaring both sides and applying the expected value 

operator E( ) (Bevington and Robinson, 2003). This operation results in 
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where σi2 is the variance of xi and σij the covariance of xi and xj. If we can assume that the errors are uncorrelated, the second 

term on the right side of (2) is zero. We will use the notation “uncertainty” synonymously with “standard deviation of the 

absolute error”.  
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Deformation parameters are calculated from different combinations of the components of the velocity gradient tensor (∂u/∂x, 80 

∂v/∂x, ∂u/∂y, ∂v/∂y) = (ux, vx, uy, vy) (Leppäranta, 2011), here given in a Cartesian coordinate system, where u(x,y) and v(x,y) 

are the velocity components in x- and y-direction at position (x,y). We have 

divergence  𝜀2̇,3 = 𝑢+ + 𝑣4         (3a) 

vorticity       𝜀3̇$# = 𝑣+ − 𝑢4          (3b) 

shear   𝜀5̇6$ =	 :$𝑢4 + 𝑣+(
' + $𝑢+ − 𝑣4(

'#
       (3c) 85 

and total deformation 𝜀#̇-# = :𝜀2̇,3
' + 𝜀5̇6$'

#
         (3d) 

Divergence and shear are the two invariants of the symmetric deformation tensor. The dimension of 𝜀̇ is velocity change per 

length unit, hence [time]-1. For ease of reference, we briefly repeat the physical meaning of different velocity gradient 

combinations (after Cuffey and Paterson, 2010; Leppäranta, 2011): Imagine a rectangle with its sides Lx and Ly parallel to the 

x and y-axes of a 2D Cartesian coordinate system. In this case the gradients ux, vy are normal strain rates, leading to an extension 90 

or contraction of the rectangle in the respective direction. The normal strain along the x-axis, e.g., is ∆Lx(t) / Lx = ux ∆T. Here 

∆T is the time interval ∆T = t - t0 during which the effect of deformation is analyzed, and Lx+∆Lx is the side length at time 

t0+∆T. The sum ux + vy is the divergence or convergence, dependent on the sign. The expression uy + vx is linked to the change 

of shape of the rectangle (pure shear). The normal shear, ux - vy, quantifies the change in length difference between the sides of 

the rectangle.  The vorticity (vx - uy), which is twice the rotation rate, describes the rotation about an axis vertical to the x-y 95 

plane (positive counterclockwise) without change of shape. Let the rectangle be located in a temporally constant velocity field 

with, e.g., ux=0.1d-1, vy=0.05d-1, uy=0, vx=0, then the divergence is 𝜀2̇,3 =	0.15 d-1 = 15% d-1. Assuming that the sides of the 

rectangle are Lx and Ly at time t0, its area A0 = Lx Ly increases to (Lx + ux Lx ∆T) (Ly + vy Ly ∆T) = A0 (1+ ux ∆T)(1+vy ∆T) = 1.155A0 

for ∆T = 1 day. Since only the difference ux-vy contributes to the square root (3c), 𝜀5̇6$ =0.05d-1=5% d-1 is the normal shear 

(Hutchings et al., 2012).   100 

The deformation of a region R (covered by the buoy array or grid cell) with area A is calculated from the spatial 

averages of the velocity gradient components over the region. For the ux component, for example, the expression is (Thorndike, 

1986): 

 

     𝑢+;;; =
!
7∬

)%
)+8 𝑑𝑎 = 	 !
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Here da and dl are the differentials for area and length, n is the outward normal vector to the perimeter C of R, and ex is the 

unit vector in x-direction. This is Green’s theorem, which relates a line integral along a closed curve C to the area integral over 

a plane region R bounded by C. The application of the theorem requires that the velocity components u and v have continuous 

first-order partial derivatives on R. In a Cartesian coordinate system, the calculation of the velocity gradient in x-direction is 110 

carried out using 

 

     𝑢+ =	
!
7 ∮ 𝑢	𝑑𝑦 ≅ !

'7∑ (𝑢,;! + 𝑢,)
(
,.!: (𝑦,;! − 𝑦,)        (5) 

           

and the other components of the velocity gradient tensor accordingly. This expression comes from the trapezoid rule for 115 

integration, taking n points around the perimeter of R, where (ui+1 + ui)/2 is the estimate of u on the ith segment, and (yi+1 − yi) 

is dy.  In (5), i is the summation index which traces the boundary in a counterclockwise sense, n is the number of vertices for 

the grid cell (or number of buoys), and A is the area of the grid cell (or of the polygon spanned by the buoy array). Here, un+1 

≡ u1 and yn+1 ≡ y1 (closed polygon). In Eq. (5) we have omitted the overbar. The velocity gradients are implicitly averages over 

R. This will also be the case for our estimates of the deformation parameters, Eqs. (3a) – (3d). 120 
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The velocity vectors may be obtained from an array of buoys, where the buoys’ positions are regarded as the vertices 

of a polygon. The displacement of a buoy is usually calculated from the distance between distinct positions, and the velocity 

is determined as the displacement divided by the time period between position fixes. When using pairs of satellite images, sea 

ice deformation is obtained from the displacements of recognizable structures or patterns in these images. These are referred 

to as ice structures from here on. In the reference image, a grid can be constructed by connecting the center positions of adjacent 125 

ice structures by lines. If movements of single ice structures differ between acquisitions of image 1 and image 2, the shapes 

and sizes of grid cells have changed in the second image. It is the presence of velocity gradients due to locally varying physical 

forces that causes the deformation. In practice the movement of sea ice is obtained using different methods (e.g. Holt et al., 

1992; Stern and Moritz, 2002; Karvonen, 2012; Muckenhuber et al., 2016; Korosov and Rampal, 2017), which determine the 

spatial distribution and density of the displacement vectors. The vectors can be regularly spaced on the crossing points of 130 

horizontal and vertical grid lines as a result of pattern matching algorithms in an Eulerian approach, or they can be irregularly 

distributed, which is typical for the Lagrangian approach applied in feature or buoy tracking (see Fig. 1).  

The errors discussed in the following subsections can be traced back to errors in the position of reference points (i.e. 

vertices of a grid, or buoys). Lindsay and Stern (2003) denote this error type as geolocation error. On a horizontal plane two 

coordinates (e.g  x, y or latitude, longitude) determine the positions of the start and end points of the displacement, respectively. 135 

The distance 𝑑 = G(𝑥
< − 𝑥)' + (𝑦< − 𝑦)'

#  is prone to the errors of the coordinate readings. Its uncertainty is σd2 = 2σcoord2, 

assuming σcoord = σx = σy = σx’ = σy’, and no correlation between coordinate measurements at the end points (see Eq. (2)). When 

displacements are retrieved from a pair of SAR images, one needs to consider position and tracking uncertainties, i.e. σcoord2 

and σtr2, respectively. The latter arises from the fact that in a satellite image details of structures on pixel scale may be difficult 

to match between images 1 and 2. In this case the uncertainty in displacement (which here is the distance between positions of 140 

a fixed point on an ice structure in images 1 and 2) is σd2 = 2σcoord2+σtr2. For buoy arrays, σtr2 is zero, since a buoy remains 

fixed relative to the ice floe on which it was deployed.  

In a SAR image, the geolocation (position) error is caused by the inaccuracies of the parameters describing the satellite 

orbit as a function of space and time.  In general, the error caused by these inaccuracies is uniform across the image with only 

small local variations.  Hence the assumption of independent geolocation errors is not valid if distances between moving 145 

objects are small. Holt et al. (1992) give a correlation length of 10 km for the uncertainty of the geolocation error, σcoord, but 

correlation lengths of up to 100 km may be possible (R. Kwok, personal communication, 2020). Deformation parameters from 

SAR image pairs are usually calculated over regions that are on the order of 10 kilometer or less across. With correlation 

lengths of ≥10 km, geolocation errors at all pixels in the region are almost equal, which means that geolocation error variances 

σcoord are small (as is discussed in section 3.4.1). It is hence reasonable in many cases to regard the geolocation errors in image 150 

1 and image 2 as constant biases and to assume that σcoord = 0 (section 3.4.2). When calculating the distance between two 

points with identical geolocation errors, we obtain hence σd2 = σtr2. Differences between the biases in image 1 and 2 affect the 

retrieval of ice drift. Deformation, on the other hand, is calculated from the relative change of size and shape of a given area 

between acquisitions of image 1 and image 2. The relative area change is independent of the regionally constant difference 

between the biases and depends only on the error variances (also here position uncertainties are assumed to be equal in image 155 

1 and image 2). Therefore, deformation can be estimated with sufficient accuracy even if geolocation errors are large.  

2.2 Uncertainty of drift velocity 

The deformation is calculated from components of the velocity gradients according to Eq. (5). Hence, we have to 

consider the uncertainty in the measurements of velocity components ui and vi. The components are calculated from u = dx/∆T 

and v = dy /∆T, where dx = (x’ - x) and dy = (y’ - y) are the displacements in x- and y-direction, respectively, and ∆T is the time 160 
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interval needed for the position change from (x, y) to (x’, y’). Considering that errors in measuring time and positions are not 

correlated, we obtain from Eq. (2), taking into account a possible tracking error:  

     𝜎%' =	
!
∆>#

𝜎2$
' + 0

?2$
∆>#1

'
𝜎∆>' =	 !

∆>#
(2𝜎+' + 𝜎#$$

' + 𝑢'𝜎∆>' )       (6a) 

 

     𝜎3' =	
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'
𝜎∆>' =	 !

∆>#
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' + 𝑣'𝜎∆>' )       (6b) 165 

 

where 𝜎2$, 𝜎2% are the uncertainties of the displacements (distances) in x- and y-direction, and 𝜎#$$, 𝜎#$% are the corresponding 

components of the tracking error.  If the uncertainty in timing,	𝜎∆>'   is not zero, the assumption that σu2 = σv2 is only valid if u2 

= v2. The uncertainty in speed U (i. e. the magnitude of velocity vector U) can be computed using Eq. (6), replacing 𝜎%' with 

𝜎@' , 𝜎2$
'  with 𝜎2' ,	𝜎#$$

' with 𝜎#$' , and u with U, considering that 𝑈 = 𝑑/∆𝑇	 = √𝑢
' + 𝑣'# , and	𝑑 = G(𝑥

< − 𝑥)' + (𝑦< − 𝑦)'
# . 170 

When calculating the relative error variance σU/U, one obtains Eq. (A1) in Hutchings et al. (2012).  

If, on the other hand, both components of the vector U are determined separately (hence considering magnitude and direction), 

the result is different: 
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𝜎3'                                               (7)  175 

 

Substituting Eq. (6) for σu2 and σv2 and setting σdx2 = σdy2 = 2𝜎B--$2' + 𝜎#$' 		yields 

 

     𝜎𝑼' =
'C&''()

# ;C*(
#

∆>#
+ C∆,

#

∆># 0
%-;3-
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 180 

If σ∆T cannot be neglected, and if u=0 and v=U or v=0 and u=U, the second term of Eq. (8) yields U2(σ∆T2/∆T2), which is the 

uncertainty in speed given above. If, on the other hand, u=v and hence U2=2u2, the second term is 0.5U2(σ∆T2/∆T2). This result 

may be viewed as if independent measurements of the two components u and v reduce the uncertainty contribution of σ∆T2.  

2.3 Uncertainty of polygon area 

The uncertainty of an area measurement is needed for application of Eq. (5) and equations presented in the following 185 

sections. The starting point for calculating the variance of error for the measurement of an area is the Surveyor’s Area Formula 

valid for a polygon with an outline consisting of n segments in a plane spanned by the x- and y-axis: 

 

    𝐴 = !
'∑ (𝑥,(

,.! 𝑦,;! −	𝑥,;!𝑦,)          (9) 

 190 

Here xn+1 ≡ x1 and yn+1 ≡ y1 (closed polygon), i is the summation index, and the boundary is traced in a counterclockwise sense. 

We have to consider that each coordinate appears twice in the sum of Eq. (9). When i=k we have, e.g. for x: xk yk+1, and when 

i=k-1 we have -xk yk-1. For the law of error propagation, we need the derivatives: 

 

     )7
)+.

= !
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= − !
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where k is the index of the derivative. Hence, we obtain 
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We can assume that coordinate uncertainties σi_x2 = σi_y2 = σcoord2 are equal and the same for all measured positions. The 

uncertainty of the area is then  
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#
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 205 

Examples of applying Eq. (12) on basic polygons are shown in Fig. 2. Arbitrarily shaped triangles and quadrangles, which are 

basic patterns for arrays of three or four buoys and for grid cells in satellite images when applying the Lagrangian approach, 

are shown at the bottom. The x-y coordinate system is here oriented such that the calculation of the uncertainty is easy. For 

any orientation of the triangle or quadrangle, side lengths and distances can be derived from the coordinates (x, y) of the edge 

points. For squares and equal-sided right-angled triangles, which are typical grid cells when retrieving ice drift from satellite 210 

images in a Eulerian approach, the uncertainty is directly proportional to the area. If a square grid cell is split into two triangles 

(as in Fig. 1), the uncertainty in area of each triangle is half that of the square.  

For an assessment on how the polygon shape affects the magnitude of uncertainty we require that the enclosed area remains 

constant. The areas of a square with side length L and a right-angled triangle with two sides of length LT are equal if LT = √2L. 

In this case we get σA2= 2σcoord 2L2 for both square and triangle, which means that in this particular case the increase in number 215 

of vertices does not result in a decrease of σA. For a hexagon with A = L2, on the other hand, one obtains 𝑠' = 2𝐿'/3√3 and 

σA2=1.44σcoord 2L2 (where s is the length of a line segment on the boundary of the hexagon, see Fig.2). The issue of adding more 

vertices while keeping the shape of the polygon is addressed in Sect. 3.6. 

The question arises how large the smallest detectable area change is in a SAR image? To address this question, we 

assume a square grid cell with its vertices on the positions of adjacent displacement vectors and its sides parallel to the x- and 220 

y-axes of a Cartesian coordinate system. The cell covers m × m square-shaped pixels of side length ∆x. The minimum possible 

change is to move one edge point by the side length of one pixel, either in x- or y- direction. This adds the area of a right 

triangle with legs ∆x and m∆x (∆y = ∆x) and the change of the area is ∆A = ½ m∆x2, i.e. 100/(2m) percent of the original area 

(m∆x)2. Hence the larger the number of pixels in the area, the smaller the detectable relative area change. However, until now 

we assumed that the position error is zero, but we have to consider the uncertainty of the area estimate, which is σA2= 225 

2σcoord2m2∆x2 for a square with L = m∆x. To be sure that a detected area change is real, ∆A needs to be larger than σA or σcoord 

< !
'√'

Δ𝑥. 

2.4 Uncertainties for divergence, shear, vorticity, and total deformation in fixed grids 

We consider a grid with displacement or drift velocity vectors on the vertices. For calculating the deformation parameters, we 

need the velocity gradients ux, uy, vx, vy, obtained from Eq. (5). Formally, the gradients depend on the area A, positions (xi , yi), 230 

and velocities (ui, vi), see Sect. 2.5. Here we assume that the geo-referencing of the satellite images is accurate. In this case, 

the positions (xi, yi) of vertices and the area of each grid cell are known precisely, which means that σcoord = 0 and σA = 0. The 

displacement or velocity vectors, however, have an uncertainty related to the tracking error. With ∂ux/∂uk = (yk+1 - yk-1)/2A and 

again considering that two terms in the sum Eq. (5) include ui, the uncertainty of the velocity gradient in the x-direction is 

(Griebel and Dierking, 2018): 235 
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    	𝜎%+' = C/#

E7#∑ (𝑦,;! − 𝑦,?!)'
(
,.!           (13)  

 

and analogous equations for the other gradient components. The divergence is �̇�div = ux+vy, Eq. (3a), and the corresponding 

uncertainty is 𝜎2,3 = G𝜎%+
' + 𝜎34'# , if ux and vy are independent. Throughout this section we assume that σU = σu = σv and σ∆T = 240 

0, hence the error variance for the divergence is 
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Equation (14) resembles the uncertainty for a polygon, Eq. (11). Since the position uncertainty scoord is set to zero, the 245 

uncertainty of velocity U is only a function of the tracking uncertainty str, see Eq. (8) (assuming s∆T = 0). For the vorticity Eq. 

(3b) one obtains 𝜎3$# = G𝜎3+
' + 𝜎%4'#  and thus the same expression as for the divergence. The shear rate is given by Eq. (3c). 

Calculating the derivatives with respect to the velocity gradient components and applying the law of error propagation yields:  
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#

	K̇12(
# $𝜎%+

' + 𝜎34' ( +
H%%;3$I

#

	K̇12(
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' + 𝜎3+' (        (15a) 250 

 

With f = ½ arctan ((uy + vx) / (ux – vy)), which gives the principal direction of shear, and using Eq. (3c) and relations 

𝑐𝑜𝑠'(arctan(𝑥)) = 1/(1 + 𝑥')  and   𝑠𝑖𝑛'(arctan(𝑥)) = 𝑥'/(1 + 𝑥'), Eq. (15a) can be expressed as 

 

     𝜎56$' = 𝑐𝑜𝑠'(2𝜙)	𝜎2,3' + 𝑠𝑖𝑛'(2𝜙)	𝜎3$#'          (15b) 255 

 

Since 𝜎2,3' = 𝜎3$#'  and cos2(2f) + sin2(2f) = 1, the error variances are equal for divergence, vorticity and shear. For the total 

deformation, Eq. (3d), we need the derivatives 𝜕(	𝜀#̇-#)/𝜕(𝜀5̇6$) and  𝜕(	𝜀#̇-#)/𝜕(𝜀2̇,3) with which we obtain 

 

      𝜎MNM' = 	K̇12(
#

	K̇*'*
# 𝜎56$' + 	K̇)!3

#

	K̇*'*
# 𝜎2,3'           (16a) 260 

 

If we define θ = arctan (εshr / εdiv) (Stern et al., 1995), Eq. (16a) can be rewritten as 

 

      𝜎MNM' = 𝑠𝑖𝑛'(𝜃)	𝜎56$' + 𝑐𝑜𝑠'(𝜃)	𝜎2,3'          (16b) 

 265 

The angle θ gives the relative contributions of divergence and shear: pure divergence is θ = 0°, uniaxial extension is θ = 45°, 

pure shear is θ = 90°, uniaxial compression is θ = 135°, and pure convergence is θ = 180°. Since the uncertainties for shear 

and divergence are of equal magnitude, it follows that 

 

     𝜎#-#' = 𝜎56$' = 𝜎2,3' = 𝜎3$#'           (17) 270 

 

In the following, we assume that σ∆T can be neglected and that the standard deviations for the velocity components u and v are 

equal. Using Eq. (14) for a square cell, we obtain for the uncertainty of the divergence:  

 

    σOPQ' = C0
#

E7# (4𝐿
' + 	4𝐿') = 	

'C)
#

R#∆>#
= 'C*(

#

R#∆>#
          (18)  275 
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with A = L2, σU2 = σd2/∆T2, and ∆T = t-t0 as above. Since the position uncertainty is zero in the case investigated here, σd2 

(which equals 2σcoord2+σtr2, see Section 2.1) depends only on the tracking error (compare to Eq. (17) in Lindsay and Stern, 

2003). 

2.5 Uncertainties of deformation parameters, general case 280 

For an array of buoys, we have to consider errors of the area, the buoy velocity components u and v, and the 

coordinates (x, y) of each buoy position. The general case does also apply to SAR images if geolocation error variances cannot 

be neglected. A buoy array consists of single buoys arbitrarily positioned over a plane. When connecting all buoy positions 

with lines, a polygon of area A is formed in which distances between adjacent buoys are usually different. The starting point 

is Eq. (5). In the following equations summation bounds from i = 1 to n are omitted. We note that the equations in this section 285 

have been independently derived by Bouchat and Tremblay (2020) as well. 

For the uncertainty in ux we obtain 

 

    𝜎%+' = 𝜎7' 0
)%$
)7 1

'
+	𝜎%'∑0

)%$
)%!1

'
+ 𝜎4' ∑0

)%$
)4!1

'
               (19) 

     290 

With  )%$
)7

= − !
'7#∑(𝑢,;! + 𝑢,)(𝑦,;! − 𝑦,), 

 )%$
)%.

= !
'7 (𝑦D;! −	𝑦D?!), and  )%$

)4.
= − !

'7 (𝑢D;! −	𝑢D?!), Eq. (19) reads: 

 

    𝜎%+' = C4
#

E7- [∑(𝑢,;! + 𝑢,)(𝑦,;! − 𝑦,)]
' +	 C/

#

E7#∑(𝑦,;! − 𝑦,?!)
' + C%#

E7#∑(𝑢,;! − 𝑢,?!)
'            (20) 

 295 

The first term on the right side is calculated on line segments connecting adjacent vertices (i+1,j+1), (i, j), the second and third 

on chords from (i+1, j+1) to (i-1, j-1).  Assuming σcoord2 = σx2 =σy2; σU2 = σu2 = σv2 (the latter follows from σT2/∆T2 ≈ 0) one 

obtains for the divergence: 

 

     𝜎2,3' = 𝜎%+' + 𝜎34' = C4
#

E7- {[∑(𝑢,;! + 𝑢,)(𝑦,;! − 𝑦,)]
' + [∑(𝑣,;! + 𝑣,)(𝑥,;! − 𝑥,)]'}   300 

                 + C0
#

E7# [∑(𝑥,;! − 𝑥,?!)
' +∑(𝑦,;! − 𝑦,?!)'] +

C&''()
#

E7# [∑(𝑢,;! − 𝑢,?!)' +∑(𝑣,;! − 𝑣,?!)']   (21) 

 

 where the first term can be written as C4
#
H%$
#;3%#I
7#

 , considering Eq. (5). For the vorticity, only the first term is different: 

 

     𝜎3$#' = 𝜎%4' + 𝜎3+' = C4
#

E7- {[∑(𝑢,;! + 𝑢,)(𝑥,;! − 𝑥,)]
' + [∑(𝑣,;! + 𝑣,)(𝑦,;! − 𝑦,)]'} 305 

																				+ C0
#

E7# -∑(𝑥,;! − 𝑥,?!)
' +∑(𝑦,;! − 𝑦,?!)'. +

C&''()
#

E7# [∑(𝑢,;! − 𝑢,?!)' +∑(𝑣,;! − 𝑣,?!)']    (22) 

 

Here, the first term can be written as 𝝈𝑨
𝟐
H𝒖𝒚
𝟐;𝒗𝒙𝟐I
𝑨𝟐

. The first terms in Eqs. (21) and (22), right side, consider that the relative error 

variance of the area affects the magnitude of the average velocity gradients. The second term is the variance of 

divergence/vorticity of the velocity field in a fixed grid where positions of vertices are known precisely, Eq. (14). The last 310 

term takes into account the effect of uncertainties in the positions of buoys in the field of velocity vectors. The velocity is 

usually determined from buoy positions separated by a time interval ∆T=Ti+1-Ti. However, within ∆T also the buoy array 

changes its area and shape. Hence an alternative approach would be to determine the average velocity from positions at Ti-1, 
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Ti, and Ti+1 and link it with the geometric properties of the buoy array at time Ti. For the shear and total deformation, the results 

are formally equal to Eqs. (15a), (15b) and (16a), (16b), where now σux, σuy, σvx, σvy are calculated using Eq. (20) and analogous 315 

expressions. Note that in this case the uncertainties of divergence, vorticity, shear, and total deformation differ from one 

another, unless σux2 =σuy2= σvx2 =σvy2. In practical applications, they can be evaluated numerically. This requires the knowledge 

of uncertainties σcoord for buoys. and σcoord, σtr for satellite images.   

3 Discussion 

Eqs. (21) and (22) together with Eq. (15) and (16) provided above indicate that statistical uncertainties are not only influenced 320 

by geolocation and tracking errors but also depend on the shape and size of grid cells and buoy arrays. In the following 

discussion we consider magnitudes of geolocation and tracking errors reported in the literature and selected squares and 

triangles as examples for grid cells in SAR images (Lindsay, 2002; Bouillon and Rampal, 2015) and for splitting large buoy 

arrays into smaller units (Hutchings et al., 2012; Itkin et al., 2017). The effect of combining several cells is investigated. 

Finally, we focus on the range of validity of the equations derived in Sect. 2, and alternative methods of analysis.  325 

3.1 Typical magnitudes of deformation parameters 

The statistical uncertainties have to be related to the typical magnitudes of the deformation parameters. According to 

Leppäranta (2011, p.70) the total deformation of drifting ice typically varies between around 90% d-1 in the marginal ice zone 

to 0.9% d-1 in the central Arctic. For the vorticity, magnitudes up to 9% d-1 = ½ (0.09) revolutions d-1 = 16.2° d-1 were observed. 

Hutchings et al. (2012, Figs. 4 and 7) analyzed displacements of an array of 24 buoys deployed in the Weddell Sea on first- 330 

and second-year ice with concentrations above 90 percent. For divergence, they found most values between -90% d-1 and 90% 

d-1 at a spatial scale of 10 km; at 60 km scale mainly between ±25% d-1, and up to 35% d-1 for the shear. Note that spatial scales 

are mentioned here since they affect the observed magnitudes of deformation (e.g. Marsan et al., 2004). Itkin et al. (2017) 

observed exceptional events of strong divergence and shear of up to 200% d-1 from buoys in an area north of Svalbard (their 

Fig. 4), but over most of the measurement period, magnitudes were lower.  At scales of 15 km or less, values for divergence 335 

covered the range ±20% d-1 over several days to weeks, but also variations of about ±100% d-1 occurred for three weeks. Shear 

was close to zero for a few days but varied mainly from 20 to 70% d-1 for three weeks. At measurement scales larger than 

60 km, the magnitudes of divergence and shear were lower than at ≤15 km scale, with the exception of very short periods 

during which the opposite was the case. Magnitudes for divergence were roughly at ±10% d-1 with occasional minima and 

maxima in the range of ±100% d-1, and for shear most values were ≤10% d-1 with a few peaks at about 100% d-1. Based on 340 

merged velocity measurements from buoys and different satellite sensors, Lindsay (2002) provided a table for monthly 

averaged values of divergence (-0.6 to 0.5% d-1), shear (0.9 to 4% d-1), and vorticity (-2.3 to 3.2% d-1) from the Beaufort Sea 

at a scale of 100 km. Stern and Moritz (2002, Fig. 4) used SAR images and found decreasing magnitudes for the divergence 

for increasing spatial scales from 50×50 km to 200×200 km in the Beaufort Sea. Magnitudes were largest between August and 

February with minima/maxima between -5% d-1 and 5% d-1 at a scale of 50 km, decreasing at larger scales. Note that the 345 

uncertainties resulting from the equations given in the subsections below have to be multiplied by 100 to obtain a value in 

percent per time unit.   

3.2 Uncertainties for areas of simple geometric shape 

In general, the uncertainty of the deformation parameters depends on the ratio σcoord 2/A2 (since σA and σU are functions 

of σcoord), hence for given geolocation and tracking errors it decreases with increasing area. The first term in Eqs. (21) and (22) 350 

is smallest if, for given area and velocity gradients, σA is at a minimum. For an arbitrary triangle with sides a, b, c, the 

Kommentiert [WD1]: Former equations (23) and (24) removed 
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uncertainty σA2 is 0.25σcoord 2 (a2+b2+c2) (see Fig. 2). Of all triangles with the same base and the same area A, the equal-sided 

triangle with a = b = c has the smallest perimeter and hence the lowest uncertainty, which is 𝜎7' =	√3𝜎B--$2
' = 1.73𝜎B--$2' 	for 

a unit area. (This follows from the equations for the area of the equal-sided triangle which is 𝐴 = √W
E
𝑎' and for the uncertainty 

𝜎7' =	
WX#

E
𝜎B--$2'  if A = 1). In case of rectangles and rhombi, squares have the smallest perimeter (see Fig. 2). In both cases the 355 

uncertainty is 𝜎7' =	2𝜎B--$2'  for a unit area, hence larger than for the equal-sided triangle. For the regular hexagon, which is 

composed of six equal-sided triangles, one obtains 𝜎7' =	
Y
'√W

𝜎B--$2' = 1.44𝜎B--$2'  (Fig. 2).  So the progression of σ2A/σ2coord 

from triangles to squares to hexagons goes from 1.73A to 2.00A to 1.44A. 

3.3 Uncertainties in time 

The accuracy of time readings for the acquisitions of satellite images is on the order of sub-seconds. The product of 360 

sea ice drift velocity and uncertainty of time reading appears on the right-hand side of Eq. (6): 2σcoord 2 + σtr 2+ u2 σ∆T 2.  Average 

sea ice drift velocities range mostly from 0 to 0.35 m/s (Rampal et al., 2009). Kræmer et al. (2015) determined instantaneous 

line-of-sight ice drift velocities, using Doppler frequency measurements from SAR, and found values as large as 0.4-0.6 m/s.  

If we assume a maximum value of u = 1 m/s and a maximum uncertainty of time readings of 1 millisecond, the term u2 σ∆T2 

on the right side of Eq. (6) is 10-6 m2 at the most. It can be neglected compared to the typical values of terms σx2, σy2  and 𝜎#$$
2, 365 

𝜎#$%
2 in Eq. (6) (see Sect. 3.4 for a discussion of the effect of position and tracking errors). The uncertainty 	𝜎∆> of the GPS 

time (used both for buoys and satellites such as Sentinel-1) is given as better than one millisecond (see, e.g. websites [1] and 

[2]). Similar considerations apply to Eq. (8). Hence, in Eqs. (21) and (22) we have σU2= (2σcoord2+ σtr2)/∆T2 both for velocity 

retrievals from satellite image pairs and buoy arrays. For given position and tracking errors, the second term in Eq. (21) 

decreases with increasing time interval ΔT and area A. The third term involving the coordinate uncertainty σcoord also decreases 370 

with increasing area A. 

Another issue that has to be considered is the time synchronization between individual buoys in an array. Differences 

of a few seconds may be possible in practice. In the following discussion we assume that position data of all buoys are exactly 

synchronized but also discuss an example for which this was not the case in Section 3.5. 

3.4 Deformation retrievals from square grid cells 375 

Here we first focus on the retrieval of deformation parameters calculated from square grid cells in SAR images or 

from square-shaped buoy arrays.  For SAR images, we consider the case in which geolocation errors may have slight variations, 

hence σcoord ≠ 0. If a square of side length L, with sides parallel to the x- and y-axes, is positioned in a spatially varying velocity 

field as shown in Fig. 3, the uncertainty of the divergence is: 

 380 

     𝜎2,3' = WC&''()
#

R# $𝑢+
' + 𝑣4'( +

C&''()
#

R# $𝑢4
' + 𝑣+'( +

EC&''()
#

∆>#R#
+ 'C*(

#

∆>#R#
      (23) 

 

This follows from Eq. (21) with the velocities given in Fig. 3 at the edges 1-4 of the square. The uncertainty of the vorticity is 

from Eq. (22) 

 385 

     𝜎3$#' = WC&''()
#

R# $𝑢4
' + 𝑣+'( +

C&''()
#

R# $𝑢+
' + 𝑣4'( +

EC&''()
#

∆>#R#
+ 'C*(

#

∆>#R#
      (24) 

 

Uncertainties of shear and total deformation can be calculated using Eqs. (15b) and (16b) as weighted averages of the 

error variances of divergence and vorticity, and of shear and divergence, respectively. The second term in Eq. (23) and first 
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term in Eq. (24) indicates that the uncertainties of divergence and vorticity are affected by contributions from pure shear. The 390 

third and fourth term of Eq. (23) are independent of the velocity gradients and are only a function of position and tracking 

error, time interval between position measurements, and size of the square. The fourth term is equal to Eq. (17) in Lindsay and 

Stern (2003). In general, it is more realistic to assume that arrays of four buoys are arbitrarily shaped quadrangles. As 

mentioned in Section 1, drift vectors from SAR image pairs are irregularly spaced if calculated using feature tracking (e.g. 

Komarov and Barber, 2014; Muckenhuber et al., 2016; Demchev et al., 2017). While σtr, σcoord, and ∆T are constant, σA and A 395 

depend on the size and shape of the quadrangle that changes from grid cell to grid cell (Figs. 1c and 2). In this case the most 

convenient approach for calculating deformation parameters is the application of Eqs. (21) and (22) together with Eqs. (15) 

and (16). We emphasize, however, that the heterogeneous spatial distribution of drift vectors is regarded as a disadvantage for 

evaluating and analyzing sea ice deformation, since the latter is a scale-dependent process (Korosov and Rampal, 2017). 

3.4.1 Geolocation error and uncertainties in SAR images 400 

When ice drift is retrieved from images of modern SAR systems, the contribution of those terms that depend on 

σcoord/L can usually be neglected, as we will show below. For Envisat ASAR stripmap and wide-swath mode images (IM and 

WSM), e.g., Small et al. (2005) reported differences between measured positions of reflectors and their positions in the SAR 

image of 1.63±0.82 m in azimuth (considering bi-static correction) and 2.02±0.51 m in slant range for normal imaging mode 

in single-look complex format. Ground range products require the transformation from slant- to ground-range as an additional 405 

step. When judging the effect of position errors on the uncertainty of divergence and vorticity, the systematic bias (mean error) 

of positions affects all vertices of a grid cell in the same way, hence only the standard deviation σ has to be considered as 

geolocation uncertainty. Considering the σ-values of position errors given above, we use a value of 1 m as a conservative 

estimate of the azimuth and ground-range position uncertainty for IM. For ground-range WSM images, the accuracy of 

positioning was better than one pixel. If we assume that the ratio σ[m]/σ[pixel] is approximately the same for IM and WSM, 410 

the uncertainty for the latter is about 7 m at maximum. In the study of Hollands and Dierking (2011), e.g., resolution pyramids 

and cascades are used for retrieving sea ice displacements from Envisat ASAR IM and WSM data. For the level of highest 

spatial resolution, the side lengths of the grid cells (distance between adjacent displacement vectors) was 300 m for IM and 

1200 m for WSM. Hence, the corresponding ratios σcoord 2/L2 are on the order of 12/3002 ≈ 10-5 and 72/12002 ≈ 3.4 × 10-5, 

respectively.  For modern SAR systems such as TerraSAR-X and Sentinel-1, the positioning accuracy is even better than for 415 

Envisat (e.g. Schubert et al., 2008; Schubert et al., 2017). The geolocation error of older SAR systems, however, is larger. In 

their analysis of drift and deformation products from the RADARSAT Geophysical Processor System (RGPS), Lindsay and 

Stern (2003) report geolocation errors (to be treated as bias, see above) of 225 m and 277 m for RADARSAT ScanSAR images. 

For the combined geolocation and tracking uncertainty 𝜀8Z[\ = G2𝜎B--$2
' + 𝜎#$'  they found a value of 286 m. With a tracking 

uncertainty of 100 m, the geolocation uncertainty is hence 190 m. The initial grid cells used for the RGPS are squares of 10 420 

km side length, but they change their shape in successive time steps since the RGPS drift and deformation products are based 

on the Lagrangian approach. The ratio σcoord 2/L2 is approximately 2002/100002 = 4.0 × 10-4. The third and fourth term in Eqs. 

(23) and (24) can be directly computed from position and tracking error, the time interval ∆T between image acquisitions, and 

the grid cell size. The ratio between the fourth and the third term is σtr2/2σcoord 2.  In the following section, the relative 

contribution of single terms in Eqs. (23) and (24) are discussed.    425 

3.4.2 Examples: Uncertainties versus true magnitudes of deformation     

According to Sect. 3.1, a value of ±1 d-1 can be regarded as large divergence rates which is rarely exceeded in reality.  

Large values of shear were at about 0.7 d-1. Considering the numbers for divergence and shear given in Sect. 3.1 we can deduce 

that the terms $𝑢+
' + 𝑣4'( and $𝑢4

' + 𝑣+'( in Eqs. (23) and (24) are < 1 d-2 in most cases, and at larger length scales and weak 
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deformation more likely on the order of 10-1 d-2 or 10-2 d-2. This means that σcoord 2/L2 and 3σcoord 2/L2 can be used as upper 430 

bounds for the first and second term in Eqs. (23) and (24) (see Table 1). 

Hollands and Dierking (2011) found tracking errors between 0.8 and 1.6 pixels (their Tables 3 and 4, standard 

deviations), which corresponded to 20 - 40 m for IM (pixel size 25 m) and 120 – 240 m for WSM (pixel size 150 m). With 

σcoord = 1 m for IM and 7 m for WSM, the ratios between fourth and third term in Eqs. (23) and (24) are hence 200 – 800 for 

IM and 147 – 588 for WSM. In this case the first three terms can be neglected compared to the fourth (see Table 1, columns 2 435 

and 3, in which the range from minimum to maximum values for the fourth term is estimated using corresponding combinations 

of ∆T and σtr). With a grid cell size of L = 300 m (IM) and 1200 m (WS), and time differences ranging from 1.2 to 5.8 days 

for IM image pairs and from 2 to 6 days for WSM image pairs, the uncertainties σdiv and σvrt were between 2.4% d-1 and 14 % 

d-1 for IM and 3.5% d-1 and 12.7% d-1 for WSM (calculated for each image pair listed in Table 1 of Hollands and Dierking 

(2011), with the corresponding tracking errors from their Tables 3 and 4). Comparing these values to the typical magnitudes 440 

of divergence and vorticity in Sect. 3.1, the respective uncertainties are too large in areas of weaker deformation. 

 Lindsay and Stern (2003) calculated deformation parameters for the RGPS initial velocity grid (L=10 km), and a 

time interval ∆T of 3 days. They use a tracking error of 100 m for RADARSAT ScanSAR images (pixel size 100 m) and 

assumed that the geolocation error can be regarded as bias with zero uncertainty. Hence, only the fourth term of Eqs. (23) and 

(24) is used (their Eq. (17)), and uncertainties for divergence and vorticity are 0.5% d-1 (Table 1, column 4). However, when 445 

considering the uncertainty of the geolocation error mentioned in Sect. 3.4.1, the fourth term contributes less than the other 

three terms (Table 1, column 5). Only if terms $𝑢+
' + 𝑣4'( and $𝑢4

' + 𝑣+'( are of magnitudes < 0.001 d-2, the first and second 

term can be neglected compared to the third term.  

At first sight, larger time intervals and grid cells seem to be advantageous to keep the uncertainties of deformation 

parameters at a low level. However, larger time intervals may cause problems in the retrieval of the ice drift field, since ice 450 

structures, which serve as reference for the retrieval, may change or even vanish with time. Larger grid cells may smooth out 

local variations of deformation.  

If the first and second term in Eq. (23) and (24) can be neglected, i.e. when magnitudes of deformation parameters 

are low (which is most likely for measurements over larger spatial scales and for weak deformation events), we can determine 

the minimum grid cell size that is required to keep the uncertainties of divergence and vorticity below a given threshold. If we 455 

assume an uncertainty threshold of 1% d−1, then the third and fourth term of Eqs. (23) and (24) tells us that the ratio between 

combined position and tracking uncertainty and grid cell size should satisfy G4𝜎B--$2
' + 2𝜎#$' 	/𝐿 ≤ 0.01	[𝑑?!] × ∆𝑇	[𝑑]. If 

σcoord << σtr we obtain	𝜎#$/𝐿 ≤ 0.01	[𝑑?!] × ∆𝑇	[𝑑]/√2 ≅ 0.007	[𝑑?!] × ∆𝑇	[𝑑]. For ∆T = 1 d, this means a grid cell length 

of roughly 150 × σtr (uncertainty 1% d-1) or larger (uncertainty < 1% d-1). 

3.5 Deformation retrievals from triangular grid cells or buoy arrays 460 

Also triangles are used for calculations of deformation parameters in SAR images (e.g. Bouillon and Rampal, 2015; 

Griebel and Dierking, 2018) and they form the smallest units of buoy arrays (e.g. Hutchings et al., 2011; Hutchings et al., 

2012). Using the same approach as for the square above, we obtain for a triangle with its base a parallel to the x-axis (Fig. 4): 

 

     𝜎2,3' = C&''()
#

HX
#;]#;B#I

69#X# $𝑢+
' + 𝑣4'( +

H'C&''()
# ;C*(

#
IHX

#;]#;B#I
∆>#69#X#

  465 

 

     + 'C&''()
#

69#X# -(𝑢+
' + 𝑣+')(𝑎' + 𝑎!' − 𝑎𝑎!) + $𝑢4

' + 𝑣4'(ℎX
' + $𝑢+𝑢4 + 𝑣+𝑣4((2𝑎! − 𝑎)ℎX.            (25) 
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Sides b, c, height ha, and segments a1, a2 are shown in Fig. 4. For the vorticity, the sum (ux2 + vy2) in the first term has to be 

replaced by (uy2 + vx2). Equation (25), which is shown here for an acute triangle (all internal angles <90°), is also valid for an 470 

obtuse triangle (one internal angle >90°) setting a1 negative and a2 to zero. For a right triangle with b = a, c =	√2a, ha = a, and 

a1 = a, Eq. (25) yields 

 

     𝜎2,3' = ^C&''()
#

X# $𝑢+
' + 𝑣4'( +

'C&''()
#

X# 0𝑢4
' + 𝑣+' + $𝑢+𝑢4 + 𝑣+𝑣4(1 +

_C&''()
#

∆>#X#
+ EC*(

#

∆>#X#
    (26a) 

 475 

However, if the right angle is placed at the left side of the triangle, i.e. c = a, b =	√2a, ha = a, and a1 = 0, the resulting equation 

changes to: 

 

     𝜎2,3' = ^C&''()
#

X# $𝑢+
' + 𝑣4'( +

'C&''()
#

X# -𝑢4
' + 𝑣+' − $𝑢+𝑢4 + 𝑣+𝑣4(. +

_C&''()
#

∆>#X#
+ EC*(

#

∆>#X#
    (26b) 

 480 

Similarly as for the grid of squares, the contributions of terms 1-3 of Eqs. (26a) and (26b) can be neglected when geolocation 

uncertainties are much smaller than tracking uncertainties. When comparing the third and fourth terms of Eqs.  (26) and (23) 

one finds that the squared uncertainty of a right triangle is two times the squared uncertainty of a square for a = L and identical 

σcoord, σtr, and ∆T, which can be attributed to the reduced coverage of the triangle over the varying velocity field. For an 

uncertainty of 1% d-1, we obtain a value of ≤ 0.005 [d-1] × ∆T [d] for the ratio σtr /a, corresponding to a base length a of 200 × 485 

σtr if ∆T = 1 d.  

  

The uncertainty of the equal-sided triangle (c = b = a, ha2 = 3a2/4, and a1 = a/2) is 

  

     𝜎2,3' = ^C&''()
#

X# $𝑢+
' + 𝑣4'( +

'C&''()
#

X# $𝑢4
' + 𝑣+'( +

_C&''()
#

∆>#X#
+ EC*(

#

∆>#X#
      (27) 490 

 

Note that compared to a square of length L, the area of an equal-sided triangle with base L is 0.433Asquare. The area of an 

arbitrary triangle with constant base increases when changing its shape from the equal-sided to the right triangle.  

3.5.1 Uncertainties in position and temporal sampling 

For buoys, the tracking error is zero. Itkin et al. (2017) quoted 25 m as geolocation accuracy for stationary buoys but 495 

used 50 m to account for effects of buoy drift. One of us (Hutchings) analyzed the position errors of GPS receivers in the 

Fairbanks (Alaska) region. The errors were normally distributed for position data collected at the same location for several 

days. The relative position error between pairs of GPS receivers, which has to be used for deformation calculations, was 2 m 

over distances of 1-10 km.  Reported time intervals between acquisitions of buoy positions range from 10 seconds to 3 hours 

(Hutchings, 2012; Itkin et al., 2017) with uncertainties in time less then milliseconds (see above). Hutchings at al. (2012), 500 

however, mention also a time error of 30 seconds, which was due to the acquisition times of the buoys not being exactly time 

coincident. In such exceptional case, the second term on the right-hand side of Eq. (8) may have to be considered. If the ice 

drifts in x-direction (i.e. v = 0), the right-hand side of Eq. (8) reads (2σcoord 2 + u2 𝜎∆>' ) / ΔT2 (σtr = 0 for buoys). Here we ask: 

What is the maximum value of the drift velocity for which the term u2 𝜎∆>'  can still be neglected?  Our criterion for neglecting 

it is that its value is 1% of 2σcoord 2 or less. Then the velocity u must be equal or smaller than 424 m/h if we assume that σcoord 505 

= 25 m and 𝜎∆> = 30 s. If σcoord = 2 m, the result is u = 34 m/h. The speed of sea ice drift ranges mainly between 0 and 1.3 

km/h, with possible extreme values around 3.6 km/h (see Sect. 3.3) which means that the term u2𝜎∆>'  has to be taken into 

account in most cases. Conversely, we may ask how large the acceptable maximum temporal sampling error is so that the 
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second term is negligible (i.e. < 1% compared to the first term). With umax = 3.6 km/h = 1 m/s and σcoord = 2 m one obtains 𝜎∆> 

= 0.3 s, and for σcoord = 25 m it is 𝜎∆> = 3.5 s.      510 

3.5.2 Optimal sizes of buoy arrays 

In this section we ask how large the area of a triangle-shaped buoy array has to be chosen to keep the uncertainty for 

deformation below a given threshold? We assume that the temporal sampling error can be neglected. The time interval ∆T is 

set to the temporal sampling rate of buoy positions.  For buoy arrays, the tracking error is zero. With a given threshold for 

divergence, e.g., one can use Eqs. (26) and (27) to calculate base a of right-angle or equal sided triangles. Solutions of these 515 

simple cases can serve for approximately fixing the optimal area size for triangles of arbitrary shapes. For such triangles, the 

corresponding Eq. (25) cannot be directly solved since they need to be described by additional geometric parameters besides 

base a.  

 The first two terms of Eqs. (26) and (27) require the knowledge of the sea ice velocity field and its gradients. We 

will here focus on cases for which these terms can be neglected. This requires that 8∆T-2 >> 6, i.e. that ∆T is small. Itkin et al. 520 

(2017) analyzed deformation for constellations of three buoys using temporal sampling intervals of ∆T1 = 1 h and ∆T2 = 3 h, 

which results in ∆T1-2 = 576 d-2 and ∆T2-2 = 64 d-2. For a large fraction of measured divergence and shear data we can assume 

that $𝑢+
' + 𝑣4'( and $𝑢4

' + 𝑣+'( are smaller than one (see Sect. 3.4.2) and neglect the first two terms in Eqs. (26) and (27). At 

low magnitudes of deformation this is also justified for ∆T3 = 24 h, which gives ∆T3-2 = 1 d-2. 

Using only the third term (8/∆T2) ´ (σcoord 2/a2) the uncertainty of the divergence can be expressed as σdiv = 71/a h-1 525 

for ∆T1 = 1 h and 24/a h-1 for ∆T2 = 3 h, where σcoord = 25 m and the value for base a has to be given in meters. In the following 

we accept an uncertainty of 5% or less relative to the majority of the magnitudes of divergence derived in Itkin et al., 2017 

which are ≤ 0.4 d-1 = 0.017 h-1.  Hence the uncertainty is σdiv =0.00085 h-1, which means that base a of the triangle has to be 

larger than 83.5 km for ∆T1 = 1 h and 28 km for ∆T2 = 3 h. If one calculates the divergence using only the position change 

after 24 hours, the required base is 2.95/a h-1, and for σdiv = 0.00085 h-1 one obtains a =3.5 km. Hence, by choosing a larger 530 

time interval, acceptable uncertainties can be obtained over smaller spatial scales. If positions acquired at shorter time intervals 

are available, they can be used for controlling the temporal evolution of the ice drift. Using σcoord = 2 m instead of 25 m in the 

example given above, we obtain σdiv = 5.7/a h-1 for ∆T = 1 h, i.e. a base length of 6.7 km for a single measurement with σdiv = 

0.00085 h-1, and 2.2 km for one measurement with ∆T = 3 h. Itkin et al. (2017) used triangle arrays with the smallest distance 

between two buoys of 2 km, and the largest of 70 km.  535 

Since the area and shape of the triangle change under the action of continuous stress, the uncertainty does not simply 

decrease by a factor of 1/√𝑛, i.e. with the number n of buoy position readings. If we assume that the three-buoy array keeps 

the shape of an equal-sided triangle for 24 hours, with an increase in side length from a0 to 1.1a0 (i.e. the area of the triangle 

increases by a factor of 1.05), the uncertainty of the last single measurement at the end of the 24 hour period is lower by a 

factor of 1/1.1=0.91, Eq. (27, third term). Here it is assumed that the divergence is constant, the ratio ux/vy is fixed by the ratio 540 

between base a and height ha of the triangle, and the vorticity is zero, i.e. uy=vx=0. As mentioned above, the position error may 

be as small as 2 m.  

3.6 Combination of grid cells or buoys 

The combination of grid cells or several buoys is one possibility to lower the uncertainty of the area σA. In general, 

the uncertainty of deformation rates is reduced when they are evaluated over a larger area, as can be deduced from the equations 545 

provided in Sects. 2.4 and 2.5. However, the uncertainty of the area, σA, appears explicitly only in the equations derived for 

the general case, Sect. 2.5. In Sects. 3.4 and 3.5 we showed that the terms including σA can be neglected since velocity gradients 

observed for sea ice are usually small. Since, on the other hand, the change of the area inside a buoy array or of a grid cell can 
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also be used to quantify deformation (Lindsay and Stern, 2003), it is worthwhile to have a closer look at the effect of combining 

several grid cells or buoys.    550 

Because buoy arrays rarely reveal simple shapes such as squares or right triangles, the uncertainties in area have to 

be calculated numerically using Eq. (11) or (12). Hutchings et al. (2012), e.g., used 22 buoys, which they split into arrays of 

approximately equilateral triangles, but also into arrays of six, nine, and twelve buoys. Here we discuss combinations of squares 

and triangles. 

First we investigate the effect of splitting a square or a right triangle into smaller units. We start with a square window 555 

covering N × N cells, i.e. we have 4N displacement vectors around it. Let Lʹ be the length of each side of a square covering 

several grid cells (Fig. 5). We divide each side of the square into N segments of equal length. If N = 2 then each side of the 

square is 2 segments of length Lʹ/2, and correspondingly for N > 2 it is L’/N. The term Σ(xi+1 – xi-1)2 is zero if both xi+1 and xi-1 

are located on the vertical sides of the square. On the top and bottom sides parallel to the x-axis, N−1 terms in the summation 

contribute (2Lʹ/N)2 for each side (indicated by green bars in Fig. 3). In addition, each corner contributes (Lʹ/N)2 (blue bars). 560 

The total contribution is hence 2(N−1)(2Lʹ/N)2 + 4(Lʹ/N)2 = 4(2N−1)(Lʹ/N)2. The term Σ (yi+1 – yi-1)2 contributes the same 

amount. Hence application of Eq. (12) yields:  

 

      σ𝐴2 = σcoord2 (4𝑁 − 2) (𝐿′/N)2          (28a)  

 565 

Since each side of the square is divided into N segments, the total number of points defining the boundary is n = 4N. With L = 

Lʹ/N, we can rewrite Eq. (28a) as σA2 = σcoord2(n−2)L2. However, the notation in Eq. (28a), using N and Lʹ instead of n and L, is 

preferable because it explicitly shows that σA2 decreases as N increases for a fixed L’. Note that Eq. 28a is valid for buoy arrays. 

In case of SAR images, the tracking error has to be considered as well. When σ𝐴2 is estimated for an area that deforms between 

acquisitions of SAR image 1 and 2, and the variance of the position error σcoord2 can be set to zero (see section 2.1), σ𝐴2 = 0 for 570 

image 1. In image 2, however, it is σ𝐴2 = σtr2(n−2)L2 (Lindsay and Stern, 2003). 

For a right triangle, we have only two contributions from the corners instead of four as for the square (Fig. 5). In x-

direction, e. g., the term xi+4 – xi+2 is zero. Hence the total contribution in x- and y-direction is 4(N−1)(2Lʹ/N)2 + 4(Lʹ/N)2 or  

 

     σ𝐴2 = σcoord2 (4𝑁 − 3) (𝐿′/N)2          (28b) 575 

 

This can be written as σ2A / (σ2coord Lʹ2) = (4N – 3) / N2, which takes the values 1, 5/4, 1 for N = 1, 2, 3, and then decreases as 

N increases.  Note that the uncertainty initially increases from N=1 to N=2, and an improvement over N=1 is not reached until 

N=4. 

In SAR applications, the question is whether it is preferable to use, e.g., the smallest possible (“elementary”) square 580 

cell (determined by the resolution of the ice drift field) with four drift vectors at the edges, or to combine adjacent cells. 

Formally, the uncertainty in area for the elementary cell is 2σcoord 2𝐿2, and for a cell with side length 𝐿′ = N×L, covering N×4 

drift vectors, Eq. (28a) yields σA2 = σcoord 2(4N-2) 𝐿2. Hence the uncertainty of the area increases when elementary cells are 

combined. However, since also the cell area increases by a factor of N 2, the single terms in Eqs. (13) – (22) that include the 

factor A-2 decrease. When all terms except the fourth in Eqs. (23) and (24) can be neglected, it is immediately clear that the 585 

uncertainties of divergence and vorticity decrease if several elementary cells are combined into a larger square. The effect of 

local variations of the drift field on the deformation rate, however, can be considered in more detail when elementary cells (or 

smaller units of buoys arrays) are used for the calculations. 

For buoy arrays it may be of advantage to use a larger number of buoys along the outline of a polygon. Here we study 

the example of an isosceles triangle with two sides of equal length (Fig. 6), which, e.g., comes closest to the array / subarrays 590 
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used by Hutchings et al. (2012). The term Σ(xi+1 – xi-1)2 of Eq. (12) results in (6N-4.5)(Lʹ/N)2, for the term Σ (yi+1 – yi-1)2 we 

obtain  (8N-6)(h/N)2.The areal uncertainty is hence:    

 

     σ𝐴2 = (σcoord2/2) [(3𝑁 – 2.25) (𝐿′/N)2 + (4N-3)(h/N)2]       (29)  

 595 

Compared to an array consisting of three buoys at the edges of the triangle, the uncertainty can be reduced for N ≥ 4, i.e. at 

least 12 buoys are required along the outline of the triangle. This also applies to the use of SAR images, when drift fields are 

retrieved from triangular cells.  

If the shape of an array with many buoys approximately approaches the shape of a circle with radius r, and if the sum 

of two line segments s connecting vertices with summation index i+1 and i differs only slightly compared to the chord length 600 

sc between vertices i+1 to i-1, the uncertainty of the area can be estimated as follows. We require that sc2≈(2s)2.  According to 

Eq. (12) the uncertainty in area is 
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 605 

in agreement with Jansson and Persson (2014, Eq. (29)). Here we use the relationship s = 2πr/n and take into account that both 

the even chords (i-1, i+1) with i=1,3,5,… and the odd chords with i=2,4,6,… each approximate the total perimeter of the circle 

(see e.g. Fig. 2, hexagon). To calculate the number of chords that is required to fulfill Eq. (30), we demand that n’sc (1+e) = 

2πr, with n’= n/2, and e is the error between the perimeter of a regular polygon and a circle. With sc/r = 2sin(π/n’) the condition 

is sin(π/n’)(1+e) = π/n’. If n’=10 (i.e. a circled-shaped array with 20 buoys), e is < 0.017.   610 

3.7 Validity 

It has to be kept in mind that the fundamental Eqs. (1), (2), (4) and (5) that we used for estimating the statistical 

uncertainties in the retrieval of deformation parameters are based on simplifying assumptions. Hence it is necessary to consider 

their range of validity when applying them.   

3.7.1 Truncation error 615 

The right-hand side of Eq. (5) for estimating ux is based on the trapezoid rule applied to the contour integral on the 

left side.  The trapezoid rule is exact if u is linear in x and y; otherwise, the non-linear part of u gives rise to a truncation error.  

Define segment k of the contour integral to be the straight line from (xk, yk) to (xk+1, yk+1), and define ∆xk = xk+1 – xk and ∆yk = 

yk+1 – yk.  Then segment k of the contour integral ∮𝑢𝑑𝑦 is estimated by ½(uk+1 + uk)∆yk, as in Eq. (5), and the associated error 

is: 620 

 

     𝑒D = − !
!' $𝑢++∆𝑥D

' + 2𝑢+4∆𝑥D∆𝑦D + 𝑢44∆𝑦D'(∆𝑦D                                        (31) 

 

where the partial derivatives are evaluated at some point on segment k (Atkinson, 1989). As can be seen, if u is linear in x and 

y on segment k then ek = 0.  Similar error expressions apply to the estimates of the other velocity derivatives.  625 

Higher-order estimates for ux could be derived, but they would not necessarily be more accurate because the ice 

motion may not be continuously differentiable to higher order, e.g. uxxx and higher derivatives may not exist.  Higher-order 

estimates would only be more accurate for sufficiently differentiable fields.   
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3.7.2 Spatial resolution 

Equation (5) provides an area-averaged estimate of ux. The question arises as to whether the spatial resolution (i.e. 630 

the area) is small enough to capture the spatial variability in u(x, y).  One way to answer this question is to sub-divide the 

region into smaller pieces and repeat the calculation of ux for each piece.  If the variability of ux from piece to piece is large 

then the sub-division of the original area was necessary; otherwise, it was not.  In practice, sub-dividing a region means adding 

new data points, which is not always possible, unless the original region is purposely chosen to consist of the union of several 

smaller pieces.  An alternative method for determining whether the spatial resolution is adequate is given at the end of Sect. 635 

3.8 below. 

3.7.3 Temporal sampling 

What temporal sampling is necessary to resolve changes in the sea-ice velocity field? The velocity may be 

decomposed into a mean field and a fluctuating part (Thorndike, 1986).  Rampal et al. (2009) showed that the variance of the 

fluctuating part has two regimes separated by a time scale of ~1.5 days.  Since buoys deployed on sea ice report their positions 640 

every few hours or less, their sampling frequency is sufficient to resolve the velocity and its fluctuations. The revisit time of 

modern satellite constellations such as Sentinel-1 is less than a day at the high latitudes of the poles but older systems with 

three-day sampling may have missed some of the deformation caused by spatial variations in those fluctuations.  

3.7.4 Correlation of errors 

We have assumed that different error sources are uncorrelated and hence we have ignored the second term on the 645 

right-hand side of Eq. (2). While it is often true that spatial errors are uncorrelated with temporal errors, it may not always be 

the case that spatial errors are uncorrelated with each other. For example, for the distance 𝑑 = G(𝑥
< − 𝑥)' + (𝑦< − 𝑦)'

#  

between two points (xʹ, yʹ) and (x, y), the full error variance of d is given by: 

 

      𝜎2' =	0
)2
)+:1

'
𝜎+:
' + 0

)2
)+1

'
𝜎+' + 0

)2
)4:1

'
𝜎4:
' + 0

)2
)41

'
𝜎4' + 2 0

)2
)+:1 0

)2
)+1𝜎+:+ 650 

     +20
)2
)4:1 0

)2
)41 𝜎4:4 + 20

)2
)+:1 0

)2
)4:1 𝜎+:4: + 20

)2
)+1 0

)2
)41 𝜎+4 + 20

)2
)+:1 0

)2
)41 𝜎+:4 + 2 0

)2
)+1 0

)2
)4:1𝜎+4:   (32) 

 

If the coordinate uncertainties are all equal (σx = σy = σx’ = σy’ = σcoord), and the covariances are all equal (σxy = σx’y’ = σx’y = σxy’ 

= σy’y = σx’x = c), then we obtain σd2 = 2σcoord2 – 2c. Since the correlation between, e.g., x and y (and correspondingly for all 

combinations above) is ρ = σxy / (σxσy ) = c / σcoord2 we obtain σd2 = 2σcoord2 (1 – ρ). In this case, a positive correlation serves to 655 

reduce σd2 while a negative correlation serves to increase it.  Since position errors are more likely to be positively correlated 

(due to systemic bias), ignoring the correlation terms is actually a conservative approach to error estimation. 

3.7.5 Velocity discontinuities  

When calculating uncertainties of deformation parameters, it is implicitly assumed that the sea-ice velocity does not 

have discontinuities within the polygon in which the deformation is being estimated. This is because we use Eq. (5), which is 660 

based on Green’s theorem.  Numerous observations of the sea-ice velocity field show narrow shear zones or “linear kinematic 

features” (e.g. Kwok, 2003; Marsan et al., 2004; Kwok, 2006) across which the velocity jumps abruptly, as a result of stresses 

in the ice that create leads and ridges.  Some researchers, e.g. Griebel and Dierking (2017) have proposed methods to detect 

and isolate these discontinuities in the velocity field to avoid smoothing effects when averaging adjacent velocity vectors (e.g. 

for replacing outliers).  665 
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When applying Eq. (5) over an area with a discontinuity in the velocity field, a step-like function occurring between 

two positions ri+1 and ri with ri = (xi, yi) is instead represented by a linear gradient. As the interval ∆r is decreased, the gradient 

increases. Hence, there is a numerical scaling effect: e.g. divergence and shear increase when calculated on grids of velocity 

vectors with higher spatial resolution. A discontinuity can be defined by a threshold for the difference of the velocities on both 

sides of it. The threshold depends on realistic values of velocity gradients in sea ice, and on the spatial resolution of the grid. 670 

The detection of possible discontinuities in a discrete field of velocity vectors, e.g. retrieved from SAR images, is helpful for 

the interpretation of the magnitudes of deformation.   

3.8 Alternative method of analysis 

In Sect. 2, the area-averaged velocity derivatives in a region are obtained by estimating contour integrals of the 

velocity around the boundary of the region.  Two alternatives to this boundary integral (“BI”) method are briefly discussed 675 

here: the least squares (“LS”) method and the finite difference (“FD”) method. 

In the LS method, the velocity components u and v are modeled as linear functions of x and y, plus error. Suppose 

velocities (uk, vk) are given at locations (xk, yk) for k = 1 to n. The linear model is: 

 

     uk = A + B xk + C yk + εk          (33a) 680 

     vk = D + E xk + F yk + δk          (33b) 

 

where the constants A, B, C, D, E, F are chosen to minimize the variance of the errors εk and δk. The velocity derivatives ux 

and uy are then B and C, while vx and vy are E and F.  The next step is to check whether the linear model accounts for a 

reasonable fraction of the variance in uk and vk by computing the squared correlation, and then whether the linear model does 685 

in fact provide a good fit to the data (by examining the spatial pattern of the errors εk and δk), or whether a quadratic or other 

non-linear model is more appropriate. 

The FD method provides an estimate of ux (and the other velocity derivatives) at a single point, based on Taylor series 

expansions of u and v about that point.  For example, suppose we have velocities uk+1 and uk−1 at locations (xk+1, y) and             

(xk−1, y), where xk = x0 + k∆x. Then an estimate of ux at (xk, y) is: 690 
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where the derivatives on the right-hand side are evaluated at (xk, y).  The first term on the right-hand side is the true value of 

ux at (xk, y); the rest of the terms are the truncation error, i.e. error = uxFD – ux = (1/6) uxxx ∆x2 + higher-order terms.  695 

In summary, the BI method provides area-averaged estimates of ux, uy, vx, vy; the LS method provides the best linear 

models of u and v, from which ux, uy, vx, vy follow;  and the FD method provides point estimates of ux, uy, vx, vy. 

For a rectangular region with velocities given only at the four corners, it turns out that all three methods give the same 

estimates of ux, uy, vx, vy, assuming the FD estimate is made at the center of the rectangle.  For a general configuration of points, 

the three methods give different estimates.  Note that in the BI method, velocities inside the boundary of the region are ignored.  700 

In the LS method, velocities farther from the mean location (�̅�, 𝑦;) have greater weight in determining the slope of the linear 

model.  The FD method is most appropriate for regularly-spaced square grids, whereas the BI and LS methods are equally 

applicable to irregular grids. 

The LS method can be used as a diagnostic tool to determine whether the spatial resolution of the velocity data 

adequately captures the variability of the velocity field.  Analysis of the spatial pattern of the LS residuals (errors) by standard 705 

methods (autocorrelation) reveals whether the linear velocity model is in fact a good fit to the velocity data or not.  If it is a 
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good fit, then the spatial resolution is adequate, and the truncation error in the BI method is small.  If it is not a good fit and 

sufficient data are available, the region should be divided into smaller pieces and the calculation repeated for each piece.  The 

BI method should be used to calculate the actual (area-averaged) velocity derivatives, since it does not depend on a model that 

needs to be checked for goodness of fit.  710 

4. Conclusions 

In this study we derived equations for calculating the magnitude of different deformation parameters within a given area, 

using displacement vectors retrieved from SAR images or buoy arrays. In the most general case, presented in Sect. 2.5, errors 

in measurements of position (“geolocation error”), velocity (determined from displacement), and area size have to be 

considered. Uncertainties in velocity and area size can be related to uncertainties in position measurements and (for velocity) 715 

time readings (Sects. 2.2 and 2.3). When retrieving displacements from pairs of SAR images a tracking error has to be 

considered additionally.  

In Sect. 3, uncertainties of divergence and vorticity are derived based on the general equations introduced in Sect. 2, 

assuming squares and triangles as outlines for the area over which deformation is calculated. We chose these geometric shapes 

since they have been frequently used in past and recent studies of deformation in sea ice. The major findings are as follows. 720 

• The equations reveal that the uncertainties in divergence and vorticity increase with the magnitudes of the velocity 

gradients, and with the geolocation and tracking errors. They decrease with increasing size of the area and the time interval 

∆T used for calculating the velocity gradients (Sects. 3.4 and 3.5). These results agree with the recent work of Bouchat 

and Tremblay (2020). Since uncertainties of shear and total deformation are weighted averages of divergence and vorticity 

(Sect. 2.5), the conclusions drawn for the latter are also valid for the former.  725 

• Since geolocation errors in SAR images are usually correlated over scales of ≥ 10 km they can be treated as a constant 

bias. In this case, position uncertainties are relatively small and may even be set to zero (Sects. 2.1, 2.4, 3.7.4). 

•  Geolocation errors in imaging modes of modern SAR systems are smaller than their spatial resolution (see Sect. 3.4.1). 

Errors in time readings of buoy positions and SAR image acquisitions are negligible in most cases. For buoy arrays, the 

magnitude of the position error may not be negligible. Here, the reader is advised to check the manual for the position 730 

sensor and pay attention to whether the error is given as standard deviation or in another format.     

• The tracking error that needs to be considered for displacement fields retrieved from SAR images is on the order of the 

length of one pixel, as several studies showed. If the geolocation error can be neglected relative to the tracking error, a 

good approximation for the uncertainty of divergence and vorticity valid for a square with side L or a triangle with base L 

is σ = a×σtr /(∆T×L), where a = √2 for the square and a = 2 for the triangle. If squares or triangles are small, the ratio σtr / 735 

L and hence the uncertainty is large.    

• For a given threshold of acceptable uncertainty we estimated the necessary size of rectangular grid cells in SAR images 

and triangular buoy arrays, focusing on divergence and vorticity as examples (Sects. 3.4.2 and 3.5.2.). At larger temporal 

sampling rates, the areas can be made smaller.  

• The area uncertainty of the smallest possible (“elementary”) cell, determined by the position of three or four adjacent 740 

displacement vectors at the edges of a triangle or square, is smaller than for a group of adjacent elementary cells with 

more displacement vectors on the perimeter around the group (Sect. 3.6). If, on the other hand, for an area of fixed size a 

variable number N of displacement vectors can be selected, the area uncertainty normally decreases with increasing N.  

For triangles, however, we found that the area uncertainty with 6 displacement vectors is larger than the one with three 

(see Sect. 3.6 for details).  745 

• In Sects. 3.7 and 3.8 we provided thoughts concerning the validity of the derived equations, which assume that the velocity 

field inside elementary cells is continuous and can be approximated by a two-dimensional linear function. By including 
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second-order terms or carrying out least-square fits over sub-regions of the velocity field, the validity of linearity can be 

judged. In the former case the second-order terms need to remain below a certain threshold, in the latter, the correlation 

coefficient should be large. Discontinuities in the velocity field should be detected before deformation is calculated to 750 

allow their impact to be assessed and to consider appropriate strategies to alleviate their impact.  
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Figure 1: Eulerian grids (a) and (b) are re-initialized at every time step to a regular configuration.  Lagrangian grids (c) evolve over time 850 
without being re-initialized. 
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 855 
Figure 2: Application of Eq. (12) to different geometrical figures: rectangle, equal-sided right triangle, rhombus, regular hexagon, triangle, 

and quadrangle. 
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Figure 3. Uncertainty of divergence and vorticity for a square in a spatially varying velocity field with gradients ux, uy, vx, vy. 
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Figure 4. Uncertainty of divergence for a triangle in a spatially varying velocity field with gradients ux, uy, vx, vy. The height ha is 2A/a (A 

can be calculated from Heron’s formula), and a1 = c2-ha
2. Side a is the base of the triangle. 
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Figure 5: Derivation of equation 30 in x-direction for N = 3. Green and blue bars indicate terms to be considered in the derivation of Eqs. 885 
(28a) and (28b). 
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 890 
Figure 6. Application of Eq. (12) on a triangle with two equal sides for N = 3.  
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Table 1: Magnitudes of terms 1 to 4 in Eqs. (23) and (24) 

Reference Hollands and 

Dierking (2011) 

Hollands and 

Dierking (2011) 

Lindsay and Stern 

(2003) 

Lindsay and Stern 

(2003) 

Image mode ASAR IM 

scoord = 1 m 

L=300 m 

ASAR WS 

scoord = 7 m 

L=1200 m 

Radarsat ScanSAR, 

assump. scoord = 0 

L=10 km 

Radarsat ScanSAR 

scoord = 190 m 

L=10 km 

1. term < 3.33 ´ 10-5 d-2 < 1.02 ´ 10-4 d-2 0 < 1.2 ´ 10-3 d-2 

2. term < 1.11 ´ 10-5 d-2 < 3.40 ´ 10-5 d-2 0 < 4.0 ´ 10-4 d-2 

3. term 
∆T = 1 d 
∆T = 3 d 
∆T = 6 d 

 
4.44 ´ 10-5 d-2 
0.49 ´ 10-5 d-2 
0.12 ´ 10-5 d-2 

 
1.36 ´ 10-4 d-2 
1.51 ´ 10-5 d-2 
0.38 ´ 10-5 d-2 

 
 
0 
 

 
 
1.78 ´ 10-4 d-2  

4. term 
∆T = 3 d, str = 100 m 
max: ∆T = 1 d, str = 40 m 
min: ∆T = 6 d, str = 20 m 
max: ∆T = 1 d, str = 240 m 
min: ∆T = 6 d, str = 120 m 
 

 
 
3.56 ´ 10-2 d-2 
2.47 ´ 10-4 d-2 

 
 
 
 
0.08 d-2 

5.56 ´ 10-4 d-2 

 
2.2 ´ 10-5 d-2 

 
2.2 ´ 10-5 d-2 

 


