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Abstract. We have analysed the spatial variations in the mean stable water isotopic values, snow accumulation patterns and

moisture sources along coast to inland transects in central Dronning Maud Land (cDML) and Princess Elizabeth Land (PEL)

regions of East Antarctica. The δD and δ18O varied systematically from coastal to inland regions in cDML and PEL regions

in response to the surface air temperature. While the elevation effect was not clearly visible, the isotope variations appeared

to be associated with snow accumulation in cDML region and temperature in PEL region, which ultimately are associated5

with elevation. Further, a clear influence of topography on the snow accumulation was observed in cDML region. Such an

observation was not recorded in PEL transect, apparently due to the strong snow redistribution in this region due to katabatic

winds. The moisture sources to the study areas were identified using HYSPLIT backtrajectory calculations. The major sources

of precipitation during summer arrived from the south Atlantic ocean in the cDML and the Indian Ocean in PEL. During winter,

the sources of precipitation in cDML extended upto Weddell Sea while in PEL, the sources extended upto 50◦S in the Indian10

Ocean. In order to understand the post-depositional isotope diffusion processes in firn, a  firn core which was drilled close to 

the cDML transect, five years after the snow core transect, was analysed in comparison with snow records. Our study showed 

a significant isotope amplitude diffusion with a diffusion length of 6 cm from the surface to 4 m depth in 5 years.

1 Introduction15

Ever since Dansgaard (1964) successfully explained the dependency of stable isotopic composition of precipitation on physical

parameters such as temperature, latitude and altitude, the stable water isotopes (δD and δ18O) have become the primary proxy

tool in paleoclimate studies. As a result, the high resolution δD and δ18O records from the polar regions have been continuously

used to interpret the temperature and snow accumulation information from decadal to millennial time scales (e.g. EPICA, 2006;

2k PMIP3 group, 2015). However, the stable water isotope records in Antarctic snow depends on multiple factors such as the20

temperature of the moisture source region where evaporation occur, followed by fractionation due to subsequent condensation

and evaporation cycles during transport and finally the temperature at which the precipitation forms (Landais et al., 2017).
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Though ice core δD and δ18O records are often assumed to represent climatic signals of an entire region, spatial variation of

these isotope records indicate complex signals that are often not straightforward to interpret. Factors such as accumulation rates,

erosion and redistribution by wind contributes to such variations in spatial scale (Fisher et al., 1985; Town et al., 2008). Another25

important factor that could influence the isotope based climate records in Antarctic ice is the role of extreme precipitation events

(Turner et al., 2019). The deuterium excess (d), which is a second-order parameter defined by combination of δD and δ18O (d

= δD – 8.δ18O), reflects the behaviour of these two isotopic species occurring during the kinetic and equilibrium fractionation

(Jouzel and Merlivat, 1984). The association between ‘d’ and the climatic parameters such as the surface temperature, relative

humidity and the wind speed in the moisture source region have been established in previous studies (Jouzel et al., 1982; Jouzel30

and Merlivat, 1984; Petit et al., 1991).

Paleoclimate studies based on ice cores primarily rely on stable water isotope records to provide paleoclimate informa-

tion. However, these stable isotope records are modified post deposition by diffusion processes (Johnsen, 1977; Whillans and

Grootes, 1985). Even though the stable isotope composition in top layers of snow and firn is influenced by diffusion of water

vapour and snow densification (Cuffey and Steig, 1998; Hörhold et al., 2011), no net change in isotopic composition were35

observed due to these processes.The diffusion rate in ice beneath the firn is negligible and therefore gets preserved for much

longer time after surviving the diffusion in the top layers (Johnsen, 1977). Studies by Steen-Larsen et al. (2014) and Ritter

et al. (2016) have shown isotopic exchanges in the boundary layer on daily scale and on diurnal scales in the polar regions.

The isotope signals on the near-surface snow and firn undergo fractionation due to sublimation and condensation processes as

observed both in-situ and laboratory studies (Stichler et al., 2001; Sokratov and Golubev, 2009). Apart from the temperature-40

based fractionation, other factors such as relative humidity and wind speed also influence the post-depositional variations in

the ice core isotope signals.

The climate records in ice cores reflect the conditions at which snowfall occurred. These records are influenced by various

parameters such as the season at which the precipitation occur and variations in sources of moisture for precipitation. In order

to better interpret the ice core stable isotope records, it is important to understand their present variability and interrelationships45

using modern precipitation and surface snow. The present study analyses the spatial variability of stable water isotopes in terms

of latitudinal and altitudinal effects, variation in snow accumulation rates and possible moisture sources in two geographically

distinct regions of East Antarctica – Princess Elizabeth Land (PEL) and central Dronning Maud Land (cDML). We also discuss

the effect of diffusion of stable isotope signals in the top layers of snow by comparing with the data from an ice core that was

drilled close to the transect in the cDML region.50

2 Materials and Methods

The study regions are in two different sectors of East Antarctica – the Princess Elizabeth Land (PEL) and the central Dronning

Maud Land (cDML), facing the Indian Ocean and the Atlantic Ocean sectors, respectively (Fig. 1). Majority of snow cores (41)

were recovered from PEL and cDML transects during the same austral summer of 2008–09 and five more cores were recovered

from the inland section of cDML during 2009–10. The transects were categorized into coastal, mountainous and inland regions55
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based on topography as mentioned in detail in our earlier publications (Mahalinganathan et al., 2012; Mahalinganathan and

Thamban, 2016). The snow cores were collected using KOVACS Mark IV system and each core was typically 1 meter long and

14 cm diameter. After recovery, the snow cores were transferred directly into pre-cleaned high-density polyethylene bags and

sealed immediately to avoid contamination during storage and shipped under frozen conditions to the National Centre for Polar

and Ocean Research, India. The cores were stored at –20◦C till analysis. The snow cores were sub-sampled at a 5 cm resolution60

under a clean laminar hood. A total of 667 sub-samples were processed where the outer layers were removed manually by a

clean ceramic knife and the innermost cube was utilized for density measurements from which the snow accumulation rate

values were calculated (Mahalinganathan et al., 2012). A portion of each sub-sample was transferred to a 10 mL teflon vials

and sealed for further stable isotope analyses.

All sub-samples were melted and immediately analysed for δD and δ18O values in the Ice Core Laboratory of National Cen-65

tre for Polar and Ocean Research using a dual inlet, Isoprime Isotope Ratio Mass Spectrometer, following standard procedures

(Naik et al., 2010) which had an external precision of 0.05 ‰ . Fresh samples were also analysed using a unique laser-based

Off-Axis – Integrated Cavity Output Spectroscopy (OA–ICOS) Triple Isotope Water Analyser (TIWA) by Los Gatos Research.

The melted samples were introduced directly into the TIWA using a Hamilton 1.2 µL zero dead volume syringe via an auto

injector equipped with a heated ( 85◦C) injector block. In order to eliminate inter sample memory effect, four preparatory in-70

jections (injections which are not measured), followed by five measurement injections were run for each sample. The last five

injections were averaged to produce a single, high-throughput sample measurement. The analytical precision of measurements

for δD was ±0.5‰ and δ18O was ±0.1‰ using the TIWA system. Details of sampling locations and analytical results are

provided in tables 1 and 2 for cDML and PEL, respectively.

The seasonality in snow cores was determined by establishing the summer and winter peaks in isotope records where a75

minimum amplitude of 4‰ between summer and winter was used to differentiate these peaks as detailed in figure 2 our previous

publications (Mahalinganathan et al., 2012; Mahalinganathan and Thamban, 2016). Near-surface temperature measurements

were estimated for the year 2008 from Regional Atmospheric Climate Model version 2.3 (RACMO 2.3) output with a horizontal

resolution of 27 km (Wessem et al., 2014). Isotope results from an ice core (IND33/B8, ∼101 m) drilled close to the cDML

transect was used in order to estimate the diffusion of stable water isotopes in firn. The firn diffusion model originally described80

in Johnsen et al. (2000) was employed to estimate the diffusion length using the equations provided in Gkinis et al. (2014), Dee

et al. (2015) and Münch and Laepple (2018). These calculations were performed using the measurements from the ice core

site (site specific parameters) with an average firn density of 340 kgm−3, a mean surface temperature of –22◦C, local mean

surface pressure of 800 mbar and a local accumulation rate of 300 kgm−2yr−1. The density and local accumulation rates were

directly measured from the snow cores and ice core data while the temperature and local mean surface pressure values were85

derived from the RACMO output.
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3 Results

Snow accumulation rates at both cDML and PEL regions were generally high (averaged values) and reduced from coastal to in-

land sections as expected (Tables 1 and 2). Accumulation in the coastal section of cDML ranged between 313–410 kgm−2yr−1

(mean 354 kgm−2yr−1) while in the inland section, it ranged between 104–250 kgm−2yr−1 (mean 154 kgm−2yr−1) with the90

mountainous section ranging between 200–320 kgm−2yr−1 (mean 235 kgm−2yr−1). In PEL, the snow accumulation ranged

between 156–390 kgm−2yr−1 (mean 276 kgm−2yr−1) in the coastal section, while in the inland section it ranged between

138–376 kgm−2yr−1 (mean 261 kgm−2yr−1).

Stable isotope values and related parameters for snow core sites from both cDML and PEL transects are provided in Tables

1 and 2. All snow cores from both transects showed clear seasonal variations in stable isotope values except for the cores at95

240 km in cDML transect and 70 and 100 km in PEL transect, where seasonality could not be established, presumably due to

core damage during transportation.

The relationship between δD and δ18O from all snow cores were assessed using linear regression analysis (Fig. 2). The

analysis showed a strong correlation between δD and δ18O in both cDML (orange circles) and PEL (green circles) transects

from coastal to inland region. The slope of the PEL transect (8.12) was close to that of the global meteoric water line (Craig,100

1961) with the equation δD = 8.12 x δ18O + 7.10 while the cDML transect followed the linear equation δD = 7.9 x δ18O +

2.66. The relationship between average δ18O values and annual mean temperature (RACMO 2.3 values) at each snow core site

in both transects showed linearity with equations δ18O = 0.70 x T – 14.75 in cDML region and δ18O = 1.01 x T – 5.70 in PEL

(Fig. 3).

Deuterium excess (d) was calculated for each 5 cm sub-sample of all the snow cores. The d values varied between –1.97‰105

and 17.18‰ in cDML and –3.43‰ and 11.10‰ in PEL region. The relationship between near-surface temperature and ‘d’

was analysed using linear regression method which showed a significant relationship for samples from cDML region with the

regression equation: d = –0.11 x T + 2.78. (R = –0.41, p < 0.01). For the PEL region however, no significant relationship was

found (Fig. 4).

Results from the isotope firn diffusion calculations using the R package by Münch and Laepple (2018) revealed a diffusion110

length of 6 cm over a period of 5 years (Fig. 5).

Five-day back-trajectory frequency maps of coastal, mountainous and inland locations showed vast differences in the sources

between summer and winter (Fig. 6). During winter, the air parcels to cDML coast arrived from Weddell Sea and south Atlantic

ocean while during summer the trajectories were mostly arriving from the Indian Ocean. Similarly, the air parcels to cDML

inland arrived from the Weddell Sea, south Atlantic and the Indian Ocean. The air mass to PEL arrived predominantly from115

south Indian Ocean during summer and winter.
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4 Discussion

4.1 Spatial variability of snow accumulation and stable water isotopes

Spatial variations of snow accumulation in Antarctica are primarily due to the presence of physical barriers during snowfall

and snow redistribution post deposition (Melvold et al., 1998; Vaughan et al., 1999). The accumulation rates in cDML re-120

gion showed a large spatial variation with the near-coastal section having a substantially high average accumulation of 354

kgm−2 yr−1 (Table 1). Compared to this, the interior section of the transect had less than half of the accumulation rate than

the coast (average 155 kgm−2 yr−1), while the mountainous section showed moderately high accumulation rate (average 235

kgm−2 yr−1). Such large spatial variability in cDML region can be attributed to the presence of extensive mountain chains

existing parallel to the coast. These mountain chains in cDML act as a physical barrier to the air masses arriving from the125

Southern Ocean impacting the snow accumulation and redistribution. As a result, the study area could be separated into three

distinct accumulation regimes. The physiography and topography of the cDML region evidently influenced the snow accu-

mulation rates showing a strong correlation with distance and elevation (Table 3). On the contrary, the PEL transect showed

moderately high accumulation with little variation between the coastal (276 kgm−2 yr−1) and the inland (260 kgm−2 yr−1)

sections. Although there exist substantial slope (> 8 mkm−1) in the coast of PEL (Mahalinganathan et al., 2012), it did not130

affect the overall accumulation rates in the region. Such uniform accumulation pattern in PEL transect could be explained

by snowdrift and redistribution induced by strong katabatic winds in this region (Allison, 1998; Ding et al., 2020). With no

orographic barriers to influence the flow of katabatic winds, the accumulation pattern in PEL tend to get smoothened by the

wind scouring and snow redistribution.

The mean values of δ18O and δD from each core location decreased from coastal to inland in both cDML and PEL regions135

suggesting the typical continental effect, i.e. depletion of δ18O and δD with the increasing distance and elevation from the

moisture source (Tables 1 and 2). However, the multiple regression models using the geographical parameters and δ18O showed

negligible variance with distance and elevation (Table 4). Based on these regressions in cDML region, the snow accumulation

changes were found to be the primary driver for spatial variations in δ18O and δD values. Surface temperature also had

noticeable effect on isotopic values in this region (Table 4). However, in the PEL region, the snow accumulation did not play140

any role in the spatial variations of δ18O and δD while temperature played a crucial role. The distance from coast and elevation

are known to impact the isotopic composition variation in Antarctic snow (e.g. Huybrechts et al., 2000; Masson-Delmotte

et al., 2008). However, there are large regional variations and within short transects, such relationships may not be linear. Since

accumulation and temperature parameters are directly impacted by the distance from the coast and elevation, they have indirect

influence on the isotopic change.145

The relationship between δ18O and δD was determined using all the snow cores and the local meteoric water lines (LMWL)

for this region were calculated (Fig. 2). The δ18O values in cDML region (orange circles) were more depleted than that of the

PEL region (green circles). Though the coastal sections in cDML and PEL appears to be almost on the same latitude (∼ 69◦S),

a difference of 6 ‰ was observed between the coasts. This could be due to the fact that the sampling in cDML begin from 110

km inland while the sampling in PEL begins 10 km from the open ocean. The slope of the LMWL in cDML (7.9) is lower150
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than that of the global meteoric water line (GMWL) while the slope of LMWL in PEL (8.12) had a slope close to GMWL. The

cDML transect, therefore, have a slope closer to that of the Antarctic meteoric water line (AMWL), while the PEL transect

have a slope closer to that of the GMWL. All the samples were utilized to observe the δ18O and δD relationship which did not

appear to show any deviation from the AMWL.

The δ18O–temperature relationship vary depending on the location of the sampling sites. An Antarctic wide study by155

Masson-Delmotte et al. (2008) obtained a slope of 0.80‰ per degree Celsius, where the spatial slopes were calculated con-

sidering a radius of 400 km, thereby smoothing out the regional topography and moisture source areas. The annual δ18O–

Temperature relationship is known to be weak in the coastal zones around Antarctica (Goursaud et al., 2019; Bertler et al.,

2011; Thomas et al., 2013). Isaksson and Karlén (1994) observed a poor correlation between δ18O and Temperature below

1000 m a.s.l and a significant correlation above 1000 m a.s.l. The present study includes all such topographic variations as it160

covers a small region from coast and inland. In spite of such complications, the results from the present study area (Fig. 3)

showed that with an increase of every δ18O‰ value, there was an increase in the temperature by 0.7◦C in cDML and 1◦C in

PEL. Therefore, the proposed spatial slope (0.80‰ /◦C) by Masson-Delmotte et al. (2008) seems to be reasonable.

The deuterium excess (d) values did not show any correlation with any geographical parameters in both cDML and PEL

transects (Table 3). An Antarctic-wide compilation of datasets by Masson-Delmotte et al. (2008) showed that even though165

both elevation and distance appear to generally control d, results from locations below 2000 m elevations did not produce

any satisfactory correlation. The PEL transect in this study had only two sampling sites above 2000 m elevation, while the d

above 2000 m altitude in cDML transect did not show any meaningful correlation with the geographic parameters. This could

be due to involvement of other factors such as regional differences in moisture sources (Simmonds et al 2003). A significant

negative correlation was observed between surface temperature and d in cDML (Fig. 4). This negative correlation could be170

associated with various factors such as the changes in moisture sources, kinetic fractionation on ice crystals at supersaturation

point (Jouzel and Merlivat, 1984) and increase of d along the distillation path (Masson-Delmotte et al., 2008).

4.2 Extent and impact of isotope diffusion

Stable water isotope records undergo rapid diffusion in snow and firn than in solid ice (Johnsen, 1977; Whillans and Grootes,

1985). As a result, the seasonal amplitude of these records is homogenized in firn – resulting in a considerable reduction in the175

summer and winter δ values. Since these records are the primary tool in understanding the relationship between isotope ratios

and temperature, it is important to estimate the amount of isotope diffusion.

In order to understand the extent of such diffusion in a high accumulation region like the cDML transect, we compared the

isotope records of a snow core (cDML 9) with that of a shallow ice core close to the snow transect, IND–33/B8 (Fig. 1). This

ice core was drilled 5 years after the snow cores were retrieved (2013–14 Summer). The detailed stable isotope records and180

chronology of this ice core is discussed in an upcoming paper (Tariq et al., 2020, unpublished). A direct comparison of δ18O

values of the ice core to a snow core from the transect showed a considerable amount of diffusion in the seasonal amplitude of

δ18O (Fig. 5). The snow cores originally had an amplitude >5‰ while the ice core seasonal amplitude was reduced to 2‰ .
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Further, to analyse the extent and impact of isotope diffusion in this core site, the diffusion length was estimated using a firn

diffusion model (Johnsen et al., 2000), using the site specific temperature (–22◦C), surface firn density (340 kgm−3), local185

mean surface pressure (800 mbar) and the local accumulation rate (300 kgm−2yr−1). The degree of smoothing of the stable

water isotope record depends on the isotopic diffusion length which is shown to increase in the topmost firn layer (Johnsen

et al., 2000). Differential diffusion (σ) was calculated using the equation σ =
√
σ2(z2)−σ2(z1), where z1 and z2 are initial and

final depths (Münch et al., 2016; Münch and Laepple, 2018). Results from firn diffusion model on the 33/B8 ice core showed

a diffusion length of around 6 cm in the surface to a depth of 4 m (Fig. 5, inset). The calculation showed a rapid increase in190

diffusion length from the surface before attaining a maximum at 30 meters. This findings can be used during interpretation of

stable isotope record of deep ice cores by removing the effects of diffusion on inter-annual variability.

4.3 Sources of moisture for precipitation in the region

The sources of moisture in Antarctica is widely distributed and strongly influenced by topography, sea-ice conditions and mid-

latitude land-ocean contrasts (Sodemann and Stohl, 2009). Moisture source regions could be identified using several techniques.195

For instance, d was used as a tracer in isotope models by Petit et al. (1991) and Ciais and Jouzel (1994). An attempt was made

to understand the moisture origin by tracing backwards in time, the air parcels from different sampling sites.

Five-day air parcel backward trajectory frequency map showed moisture source regions close to 60◦S latitude during summer

and up to 50◦S latitude during winter (Fig. 6). The cDML region had moisture sources from the Weddell sea and south Atlantic

Ocean during winters while during summer, the sources were much restricted to the southern Atlantic and Indian Ocean. This200

observation is also in line with the results from the cDML region (Rahaman et al., 2016). The winter (JJA) trajectories had

a much wider spread in comparison to summer (DJF) due to the storminess in the southern hemisphere in winter.Also, the

expanding sea ice conditions during the winter blocks the local moisture source contributions to these regions (Sodemann

and Stohl, 2009). About 90% of the trajectories converged along the coastal patch covering predominantly ice shelves, ice

rises and the ice cap itself with a small amount covering the sea-ice and open ocean region, strictly followed the orography205

of this region with the southern bounds up to various mountain ranges (Queen Fabiola, Sir Rondane, Wohlthat mountains)

along 72◦S. In summer, this converging zone with 90% trajectories extended up to 42◦E (Prince Olav coast). As a result of

more widespread trajectory distribution in winter, this zone shifted slightly westward extending between 35◦E and 8◦E. About

50% of the trajectories from coastal section of cDML transect had a wider distribution covering 15◦W–70◦E and 60◦–75◦S

while a small number of trajectories (∼10%) originated beyond 55◦S from the Southern Ocean and 75◦S in the continent. In210

winter, the trajectories had a much wider coverage extending between 30◦W–70◦E and 57◦–80◦S. Similarly, trajectories from

the coastal and inland regions of PEL showed a predominant distribution towards east of the transect with 90% of trajectories

converging up to 100◦E (Shackleton ice shelf) in summer and up to 110◦E in winter. The southern bounds of the trajectories

were controlled by steep orography – with 2000 m elevation limit. In summer, about 50% of the trajectories in coastal section of

PEL extended between 60◦–75◦S and 50◦–140◦E with an increase of about 5◦ spread in winter. The inland section of transect215

had moisture sources all the way between 60◦–80◦S. In summary, the moisture sources in both cDML and PEL regions were

strongly controlled by orography, with highly mixed sources originating from the Southern Ocean.
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5 Conclusions

Our study explored the spatial variations in snow accumulation, stable isotopic variations, the moisture sources as well as the

post-depositional isotope diffusion in coastal Antarctica. The snow accumulation in central Dronning Maud Land (cDML)220

region was affected by the mountainous topography while in the Princess Elizabeth Land (PEL) region accumulation pattern

smoothed due to the absence of orographic influence. The stable water isotopes from high resolution snow cores sampled

from the same season from different regions in Antarctica aided in understanding the spatial variations and to investigate

the influences of meteorological and geographical controls. The δ18O–T relationship showed a relationship of 0.7‰ ◦C−1

in cDML and 1‰ ◦C−1 in PEL. Considering the spatial variations in δ18O–T gradients and the complex difference between225

snow and firn samples within the continent, careful consideration should be exercised during the application of paleoclimate

reconstruction. Comparison of snow core isotope data with the firn core revealed a considerable diffusion with time, showing

a diffusion length of about 6 cm from the surface to the depth of 4 m in 5 years. Moisture source studies in this region showed

that the majority of the air masses to cDML originated from the south Atlantic (up to 50◦S) and Weddell sea during winter and

mainly south Atlantic in summer. Within the PEL region, the source was mainly from the Indian Ocean sector.230
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Figures

Figure 1. Study region showing sampling locations along the central Dronning Maud Land (cDML) and Princess Elizabeth Land (PEL) in

East Antarctica. Colour coded sampling locations indicate coastal (red), mountainous (orange) and inland (blue) regions of the transect. The

ice core 33/B8 shown in the cDML region was drilled during 2013–14 field season. Background map sourced from Hillshades and Elevation

model compiled using ETOPO1, IBSCO and RAMP2 data.
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Figure 2. Relationship between δD and δ18O in cDML and PEL transects. Blue line is Global Meteoric Water Line.
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Figure 3. Relationship between mean annual δ18O values and annual mean temperature in cDML and PEL transects.
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Figure 4. Relationship between deuterium excess and Temperature from cDML and PEL regions.
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Figure 5. Differences in seasonal amplitude of δ18O in snow core and ice core. The ice core was drilled after 5 seasons in 2013–14 summer.

The firn diffusion model (inset) calculated based on site specific temperature, pressure and density of surface firn showed a diffusion length

of around 6 cm in the surface explaining the amplitude diffusion in ice core.
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Figure 6. Five-day back-trajectory frequencies in coastal (top), inland (middle) and mountainous sections (bottom panels) of the cDML

and PEL transects during the austral summer (left panel) and winter (right). The translucent purple color shows the lowest frequency and

the translucent green shows the highest frequency of trajectories arriving to the sampling sites. The frequencies were derived using HYS-

PLIT model with inputs from meteorological parameters of GDAS dataset. Background map sourced from Hillshades and Elevation model

compiled using ETOPO1, IBSCO and RAMP2 data.
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Tables345

Table 1. Geographical distribution and averaged stable isotope values of the snow cores from cDML region.

cDML
Lat Lon Dis Ele δD δ18O d Temp Acc

S E km m ‰ ‰ ‰ ◦C kgm−2 yr−1

1 –70.85 11.74 110 610 –193.97 –24.61 2.90 –13.4 -

2 –70.94 11.59 120 914 –191.90 –24.55 4.46 –17.8 361

3 –71.03 11.53 130 1067 –216.44 –27.62 4.5 –19.9 352

4 –71.12 11.45 140 1158 –206.37 –26.54 5.99 –21 313

5 –71.21 11.37 150 1250 –235.92 –30.39 7.19 –21.8 334

6 –71.3 11.3 160 1341 –236.31 –30.07 4.28 –21.9 410

7 –71.38 11.21 170 1524 –236.57 –30.58 8.05 –22.2 320

8 –71.46 11.14 180 1600 –225 –28.49 2.88 –22 227

9 –71.54 11.06 190 1768 –236.95 –30.34 5.78 –22.3 157

10 –71.64 10.99 200 1890 –250.79 –31.99 5.1 –25.1 226

11 –71.73 10.91 210 2012 –271.83 –34.44 3.66 –26.3 224

12 –71.81 10.83 220 2103 –287.01 –36.79 7.31 –25.4 202

13 –71.89 10.75 230 2225 –290.59 –37.11 6.32 –26 292

14 –71.98 10.67 240 2377 –270.23 –34.64 6.9 –28 -

15 –72.07 10.6 250 2576 –284.43 –36.13 4.63 –27.8 106

16 –72.16 10.51 260 2652 –279.1 –35.43 4.3 –28.8 180

17 –72.23 10.43 270 2743 –289.24 –37.2 8.35 –29.6 207

18 –72.33 10.34 280 2865 –267.1 –34.19 6.41 –31.8 222

19 –72.41 10.25 290 2896 - - - –32.4 249

20 –72.5 10.16 300 3018 - - - –33.8 157

21 –72.57 10.07 310 3045 –306.2 –38.93 5.27 –33.7 126

22 –72.65 9.97 320 3068 –296.47 –37.88 6.55 –34.4 123

23 –72.73 9.88 330 3082 –290.59 –37.54 9.74 –35.4 117

24 –72.83 9.8 340 3101 –319.65 –40.55 4.71 –36.5 110

25 –72.92 9.7 350 3130 –326.09 –41.53 6.11 –37.4 104
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Table 2. Geographical distribution and averaged stable isotope values of the snow cores from PEL region.

PEL
Lat Lon Dis Ele δD δ18O d Temp Acc

S E km m ‰ ‰ ‰ ◦C kgm−2 yr−1

2 –69.55 76.3 20 300 –152.55 –19.64 4.61 –14.2 227

19 –69.55 76.25 23 579 –145.71 –19.21 7.97 –14.4 156

20 –69.56 76.28 26 640 –167.94 –21.57 4.6 –14.6 269

3 –69.6 76.46 30 792 –175.02 –22.54 5.33 –16.1 389

21 –69.63 76.56 35 884 –191.87 –24.63 5.18 –16.9 200

4 –69.67 76.58 40 975 –191.58 –24.19 1.95 –17.2 329

22 –69.71 76.71 45 1036 –205.81 –26.36 5.08 –17.8 292

5 –69.75 76.81 50 1113 –188.78 –24.06 3.69 –18.5 347

6 –69.81 77 60 1234 –200.06 –25.92 7.27 –19.3 270

7 –69.88 77.13 70 1280 –210.32 –27.09 6.41 –19.8

8 –70 77.41 87 1494 –204.08 –25.58 0.53 –21.1 376

9 –70.01 77.48 90 1509 –219.93 –27.67 1.47 –21.3 335

10 –70.08 77.65 100 1585 –250.04 –31.34 0.67 –21.8

11 –70.15 77.83 110 1631 –259.17 –32.76 2.87 –22.3 256

12 –70.21 78 120 1722 –225.12 –28.64 3.97 –22.8 138

13 –70.28 78.18 130 1768 –260.84 –33.01 3.23 –23.2 249

14 –70.36 78.36 140 1875 –259.26 –32.62 1.71 –24 179

15 –70.43 78.53 150 1920 –253.01 –32.38 6.01 –24.5 335

16 –70.48 78.71 160 1987 –262.96 –33.49 4.97 –25 225

17 –70.55 78.9 170 2118 –251.04 –31.8 3.39 –25.8 246

18 –70.61 79.08 180 2210 –267.71 –33.79 2.62 –26.6 263
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Table 3. Correlation between stable water isotopes and physical and climate parameters in cDML and PEL regions. All correlations are

significant at 0.01 level.

Distance Elevation δD δ18O d Temp Acc

central Dronning Maud Land

Distance 1 0.986 –0.936 –0.937 - –0.985 –0.834

Elevation 0.973 1 –0.937 –0.939 - –0.974 –0.834

δD –0.925 –0.946 1 0.999 - 0.923 0.781

δ18O –0.927 –0.946 0.999 1 - 0.926 0.778

d - - - - 1 - -

Temp –0.983 –0.995 0.948 0.947 - 1 0.794

Acc. - - - - - - 1

Princess Elizabeth Land

Table 4. Multiple regression model summaries explaining the percentage of stable isotope variability attributed to accumulation, temperature

and the physical parameters. Temperature effect is clear in PEL while precipitation effect is dominant in cDML region.

PEL Model
δ18O

R Variance (%)

1 Accumulation 0.109 1.2

2 Accumulation, Temperature 0.952 89.4

3 Acc., Temp., Distance 0.952 0.1

4 Acc., Temp., Distance, Elevation 0.953 0

cDML Model

1 Accumulation 0.778 60.5

2 Accumulation, Temperature 0.915 23.2

3 Accumulation, Temperature, Distance 0.930 2.9

4 Acc., Temp., Distance, Elevation 0.934 0.7
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