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Response to Martin Siegert’s comments
General comments

I very much enjoyed looking at this paper. Using neural networks (and ai) to better
depict the shape of the Antarctic bed is a great idea, and I applaud this effort.

The authors have done a good job in describing their work, and its potential significance,
and I think it should be published in the Cryosphere with some moderate changes first
necessary.

I like that this paper represents a new approach to studying the bed landscape in
Antarctica and for that reason it should be a valuable asset for future work.

There are a few ways it can be improved, however - and I note my comments in the
attached pdf.

We would like to thank the reviewer for their feedback, and for recognizing the significance of
this work on applying Deep Learning to the Cryospheric domain. Some interesting comments have
been raised on the output and inner workings of the model, and we will respond to each individual
comment in depth below. It is nice to see that we are in agreement on several ideas, and that there
is a clear path towards what is needed in terms of data collection to improve the next generation
model.

Specific comments
1. some discussion on the fact that Deepbed seems to be rougher than the base data.

Correct, the DeepBedMap DEM does appear to be rougher than the base data (groundtruth)
in Fig. 6 of the manuscript, and also in general, but this roughness is also something that can
be adjusted by tweaking the training regime. The DeepBedMap neural network model works by
minimizing the elevation error between the groundtruth DEM and the predicted DeepBedMap
DEM. So the main product is bed elevation, with roughness being a secondary statistic derived
from this generated bed elevation. It is certainly possible to incorporate roughness (or any other
statistical measure) into the loss function, to yield the desired surface, and this will be explored in
future work.

Added note on rougher bed and explanation at lines 297-300.

2. how roughness anisotropy is captured, as this is known to occur and should be
critical to more accurate modelling.

Bed roughness anisotropy is indeed an important consideration, and a good example is shown
by Holschuh et al. (2020) who used swath radar to characterize elongated features (e.g. crag and
tails) at the subglacial landscape of two sites in Thwaites Glacier. We illustrate this over the same
Thwaites Glacier region here in Fig 1, which shows DeepBedMap is able to capture aspects of the
bed anisotropy from the groundtruth grid it was trained on (ice is flowing from top right to bottom
left).

The DeepBedMap model derives bed anisotropy from 1) ice flow direction from the MEaSURESs
ice velocity x and y components (Mouginot et al., 2019), 2) ice surface aspect derived from the
REMA ice surface (Howat et al., 2019), and 3) the BEDMAP2 bed elevation input (Fretwell et
al., 2013). There are therefore inherent assumptions that the topography of the current bed is
associated with the current ice flow direction, surface aspect and existing BEDMAP2 anisotropy.
Provided that the direction of this surface velocity and aspect are the same as bed roughness
anisotropy, as demonstrated in (Holschuh et al., 2020), the neural network will be able to recognize
it and perform accordingly. However, if the ice flow direction and surface aspect is not associated
with bed anisotropy, then this assumption will be violated and the model will not perform well.

Added new paragraph on how bed anisotropy is captured at lines 304-311.



3. how bed geology influences the roughness.

While geology is linked to roughness, the training dataset does not adequately sample the
distribution of different geology types over the Antarctica, nor is the the geology of Antarctica
particularly well known beneath the ice. Ideally, we would have a training dataset that is trained
on different geological domains, and though the neural network does not currently take geology as
an input, we see that this can be addressed in future work. The main challenge lies in finding a
suitable geological map (or geopotential proxy) with sufficient resolution and an adequate training
dataset that covers the different lithologies.

To have geology as an input variable, we would ideally need to convert it from a lithological
map (categorical/qualitative) to a hardness map with an appropriate erosion law and history
incorporated (quantitative). If the geology is given as a categorical variable (e.g. sedimentary,
igneous or metamorphic), this may be harder to incorporate into neural networks that typically
work with quantitative data. Though it is possible to train Generative Adversarial Networks on
qualitative data, it would require a more elaborate model architecture and loss function.

Expanded section on how geology can be incorported in future studies at lines 328-334.

4. that there appear to be major gaps and to emphasize that radar is the only tool for
solving this.

Indeed, there is only so much we can extrapolate outside of the regions we have data for,
no matter how advanced a technique we use. Radio echo sounding is the best tool to not only
provide the background coarse resolution dataset, but also the high resolution datasets needed for
training. Swath processing of existing datasets would be of great benefit. Targeted acquisition of
high resolution grids over a range of bed and flow types would also be beneficial.

Emphasized importance of radar at lines 339-342.

5. importantly, that the approach could be better trained by working on formerly
glaciated beds, such as the Laurentide ice sheet - or any land surface. Why not demon-
strate the utility of the model in this way??

Thank you for raising this idea. We have actually considered this, though our thought was
to use the swath bathymetry data around Antarctica instead. The current model implementation
does not support using solely ’elevation’ as an input, as it also requires ice elevation, ice surface
velocity and snow accumulation data. To support using these paleo-beds as training data, one
could do one of the following;:

1. Have a paleo ice sheet model that provides these ice surface observation parameters. How-
ever, continent scale ice sheet models quite often produce only kilometer scale outputs, and there
are inherent uncertainties with past ice sheet reconstructions that may bias the resulting trained
neural network model.

2. Modularize the neural network model to support different sets of training data. It is
theoretically possible to train one main branch with just the high resolution bed elevation data,
and have the separate conditional inputs as optional branches into the model. In fact, this main
branch would simply be a Single Image Super Resolution problem, where we try to map a low
resolution BEDMAP? tile to a high resolution groundtruth image (be it from a contemporary bed,
paleo bed, or offshore bathymetry). The supporting conditional branches would then improve on
the result of this naive super resolution method, and in particular, the ice velocity input would
provide information on ice flow direction. This modular neural network design would be more
complicated to set up and train, but it will no doubt increase the available training data by at
least an order of magnitude, and lead to better results.

Added new paragraph on using formerly glaciated beds at lines 346-359.

That said, much of these issues can be addressed in future work. I still think this is a
good piece of work and look forward to seeing the modified version.

We hope this paper lays a foundation, and we too look forward to continuing this work and
collaborating with others in the future.
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Response to Anonymous Referee #2’s comments
General comments

This paper introduces a new method, based on Machine Learning, namely a Generative
Adversarial Network (GAN), to add short-scale roughness to the bed of Bedmap2. The
paper is well written, easy to follow and well illustrated, I really enjoyed reading it.
I recommend publication after minor revisions. My main problem while reading the
manuscript was that I felt like the authors were overselling their approach and the
performance of the GAN.

What the GAN is doing is to essentially try to reintroduce basal roughness in the
smooth bed of Bedmap2 based on surface features. While the method is different, the
goal of this study is very similar to the paper of Graham et al. 2017 (www.earth-syst-sci-
data.net/9/267/2017/) or Goff et al. 2017 (https://doi.org/10.3189/2014J0G13J200),
papers that are barely mentioned in the text.

We thank the reviewer for their considered review and comments. Thank you for highlighting
the work of Goff et al. (2014) and Graham et al. (2017). In regard to the publication by Graham
et al. (2017), we have actually compared their Synthetic HRES product at some earlier conferences
(see Leong and Horgan (2019b) and Leong and Horgan (2019a)), but decided to focus on the newer
BedMachine Antarctica product for this manuscript. For completeness, we have now reproduced
a 3D image of this Synthetic HRES product here (see Fig 1), using the same Pine Island Glacier
extent in Fig. 3 of the manuscript.

We acknowledge that the goal of this paper is similar to the two aforementioned papers, and
fall in the broad category of using spatial statistics to derive a higher spatial resolution bed.
Specifically, the conditional simulation method applied by Goff et al. (2014) is able to resolve both
fine-scale roughness and channelized morphology over the complex topography of Thwaites Glacier,
and make use of the fact that roughness statistics are different between highland and lowland areas.
Graham et al. (2017) uses a two-step approach to generate their synthetic HRES grid, with the high
frequency roughness component coming from the ICECAP and Bedmapl compilation radar point
data, and the low frequency component coming from BEDMAP2. In DeepBedMap, we attempt
to capture bed topography directly from gridded pixels, while incorporating extra knowledge from
satellite remote sensing datasets to fill in larger gaps between flightlines, much like in BedMachine
Antarctica (Morlighem et al., 2019). Neither one method is perfect, and we see all of them as
complementary.

Mentioned the spatial statistical papers at lines 49-56.

Specific comments

It is clearly an excellent idea to try to use these methods, established in other fields, to
the mapping of the Antarctic bed. It also seems natural to use surface data (velocity,
SMB, etc) as a “predictor” for the shape of the bed. That being said, it seems like
the surface observations provided to the GAN do not make it possible to recover big
features such as ridges or valleys in the bed that could have a large impact on ice flow
models, but only to add some high-resolution roughness to the overly smooth bed of
Bedmap?2.

Being able to capture both long wavelength and short wavelength bed features is the goal. We
do however rely on the BEDMAP2 surface as a reference for this super resolution task, which
limits the generated topography to within a tolerance of the surface. If we don’t use BEDMAP2,
then the modelled bed elevation could diverge significantly from the actual bed elevation. Ideally
we would be able to run the model independent of BEDMAP2, however, this would no longer be
a super resolution model.



Note that the provided DeepBedMap DEM model is only one ‘possible’ version, generated
from one model training run we deemed best according to our training metric, and we may have
biased our model towards resolving short wavelength features, compared to BedMachine Antarctica
which recovers large scale features like ridges and valleys well. That is not to say we cannot
combine super resolution with inversion techniques, and as mentioned in text, the DeepBedMap
model architecture should be applicable to any reference bed, be it BedMachine Antarctica or the
upcoming BEDMAPS3.

Noted these points at lines 319-320, 342-345.

This is a valuable exercise and using machine learning to do this is definitely a good
idea and worth publishing, but I don’t think we are there yet. The training dataset is
extremely small and probably not representative of all the different types of terrains
under the Antarctic ice sheet (as mentioned by the authors).

There is certainly more work to do on both the modelling and data collection side (see our
reply to Reviewer 1). It should be mentioned though that bed interpolation exercises such as ours
and BedMachine Antarctica help tell us where the data gaps are. As more datasets are gathered
from targeted acquisitions, marine swath bathymetry, etc, these method will become even more
powerful.

Mentioned where future efforts of the glaciological community should focus on at lines 336-368.

We see a lot of artifacts in the solution and many of these artifacts are discussed in the
text: dunes and missing mountains around Byrd (4h), Terraces (4i), Speckle (4a), etc.
In the maps of figure 4, I could not find a bed that seemed realistic.

In Figure 4 of the manuscript, we have chosen to highlight different locations, some of which
are unrealistic as acknowledged in the text. The example we provide in our reply to Reviewer 1
(see Fig. 1 there) provides an example of a realistic bed as does Fig 5e over the non-mountainous
areas of Rutford Ice Stream.

If we able to quantify precisely what is wrong with the generated bed topography, this can be
incorporated into the Discriminator component of the Generative Adversarial Network. Currently
we use a basic Discriminator designed for standard computer vision tasks. That is not to say that we
cannot incorporate glaciology specific criteria such as ice flow direction into the Discriminator model
design, which would push the Generator model to produce more realistic results. Alternatively,
we can adjust the loss function weights to dampen the effects of the REMA ice surface elevation
input, as our model may have overfitted to the REMA surface DEM.

Added sentence on how Discriminator model can be improved at lines 319-320.

Even along the flight line of OIB (figure 6) the roughness of DeepBedMap seems ex-
acerbated and not necessarily representative of the actual roughness measured by the
radar. And again, the authors make it clear, I just find the title/abstract and parts of
the paper a bit misleading in the sense that I don’t think this approach achieves the
objectives of this work, and that’s ok! I would not say that the GAN “better resolves”
the bed topography for example.

We may have been overly enthusiastic in some of our language and will do our best to temper
this in revision. In regard to roughness, our neural network model was trained by minimizing the
error between the generated bed elevation and the bed elevation of the groundtruth training data,
rather than the roughness parameter which is a derived statistic. Incorporating roughness into the
loss function would be a useful exercise. ”Better” is indeed a subjective term that is dependent on
the current baseline, and we will consider using another title for the formal publication.

Title and abstract have been tempered.

Another problem is that it is not straightforward to constrain the model with radar
data, and this is not mentioned in the text. The roughness of the bed that is cap-
tured (and known) by the radar data along flightlines cannot be preserved. This is an
important limitation.



We agree that the pixel-based DeepBedMap model is unable to constrain itself easily to point-
based radar data. The along track resolution of radar bed picks are much smaller than the 250
m pixels, and it it not easy to preserve roughness from radar unless smaller pixels are used. This
may change once we start using swath radar data for training instead of interpolating our own grid
from radar point data collected along flightlines.

Limitation mentioned at lines 313-316.

I also did not understand the paragraph line 204-205: why would we use the inferred
bed under ice shelves when clearly surface features do not reflect the shape of the
bathymetry? It is not because the authors “can” do it that they should do it.

The intention was to provide a means for others to more easily interpolate their own bathymetry
grid with the DeepBedMap grid. There is a choice of different grounding lines, and rather than
enforce one, we would prefer to let others cut and blend it with their own bathymetry dataset,
smoothed out over any selected distance. We now intend to provide a mask file with the final
product, allowing the user to apply this ice shelf mask directly, or use one of their own. We will
also clarify this intention better in text so as not to suggest that we have managed to super resolve
the under ice shelf bathymetry.

Intention clarified at lines 218-224.

That said, much of these issues can be addressed in future work. I still think this is a
good piece of work and look forward to seeing the modified version.

There is always potential to improve this work further, and one that we have faced over the
year developing this methodology, with better techniques and new data coming in all the time.
Hopefully this paper can serve as a good starting point, and we are excited to see what others will
come up with in the future.

Technical corrections

Other than that, the paper is easy to follow and really well written, I only found one
typo: line 297: care has been taking — taken

Once again, thank you very much for your constructive feedback.
Fixed at line 337.
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Abstract. To betterresolve the bed elevation of Antarctica, we present DeepBedMap - a novel machine learning method that
produees-realistie-can produce Antarctic bed topography with adequate surface roughness from multiple remote sensing data
inputs. Our-The super-resolution deep convolutional neural network model is trained on scattered regions in Antarctica where
high resolution (250 m) groundtruth bed elevation grids are available. The-This model is then used to generate high resolution
bed topography in less well-surveyed areas. DeepBedMap improves on previous interpolation methods by not restricting itself
to a low spatial resolution (1000 m) BEDMAP2 raster image as its prior. It takes in additional high spatial resolution datasets,
such as ice surface elevation, velocity and snow accumulation to better inform the bed topography even in the absence of
ice-thickness data from direct ice-penetrating radar surveys. Our-The DeepBedMap model is based on an adapted Enhanced
Super Resolution Generative Adversarial Network architecture, chosen to minimize per-pixel elevation errors while producing
realistic topography. The final product is a four times upsampled (250 m) bed elevation model of Antarctica that can be used
by glaciologists interested in the subglacial terrain, and by ice sheet modellers wanting to run catchment or continent-scale
ice sheet model simulations. We show that DeepBedMap offers a more-realistic-topographie-roughnessrougher topographic
profile compared to a standard bicubic interpolated BEDMAP2 and BedMachine Antarctica, and envision it to be used where

a high resolution bed elevation model is required.

Copyright statement. This work is distributed under the Creative Commons Attribution 4.0 License

1 Introduction

The bed of the Antarctic ice sheets-sheet is one of the most challenging surfaces on Earth to map due to the thick layer of ice
cover. Knowledge of bed elevation is however essential for estimating the volume of ice currently stored in the ice sheets, and
for input to the numerical models that are used to estimate the contribution ice sheets are to likely to make to sea level in the
coming century. The Antarctic ice sheet is estimated to hold a sea level equivalent (SLE) of 57.9 4+ 0.9 m (Morlighem et al.,
2019). Between 2012 and 2017, the Antarctic fee-Sheet-ice sheet was losing mass at an average rate of 219 + 43 Gt yr~!
(0.61 & 0.12 mm yr—! SLE), with most of the ice loss attributed to the acceleration, retreat and rapid thinning of major West
Antarctic Ice Sheet outlet glaciers ¢2)(IMBIE, 2018). Bed elevation exerts additional controls on ice flow by routing subglacial
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water, and providing frictional resistance to flow (Siegert et al., 2004). Bed roughness, especially at short-wavelengths, exerts
a frictional force against the flow of ice, making it an important influence on ice velocity (Bingham et al., 2017; Falcini et al.,
2018). The importance of bed elevation has led to major efforts to compile bed elevation models of Antarctica, notably with the
BEDMAPI1 (Lythe and Vaughan, 2001) and BEDMAP?2 (Fretwell et al., 2013) products. A need for higher spatial resolution
Digital Elevation Model (DEM) is also apparent, as ice sheet models move to using sub-kilemeter-sub-kilometre grids in order
to quantify glacier ice flow dynamics more accurately (Graham-et-al2047)(Le Brocg et al., 2010; Graham et al., 2017). Finer
grids are especially important at the ice sheet’s grounding zone where adaptive mesh refinement schemes have focused on (e.g.
Cornford et al., 2016), and attention to the bed roughness component is imperative for proper modelling of fast flowing outlet
glaciers (Durand et al., 2011; Nias et al., 2016). Here we address the challenge of producing a high resolution DEM while
preserving a realistic representation of the bed terrain’s roughness.

Estimating bed elevation directly from geophysical observations primarily uses ice penetrating radar methods (e.g. Robin
et al., 1970). Airborne radar methods enable reliable along track estimates with low uncertainty (around the 1% level) intro-
duced by imperfect knowledge of the firn and ice velocity structure, with some potential uncertainty introduced by picking the
bed return. Radar derived bed estimates remain limited in their geographic coverage (Fretwell et al., 2013), and are typically
anisotropic in their coverage, with higher spatial sampling in the along track direction than between tracks.

To overcome these limitations, indirect methods of estimating bed elevation have been developed, which-and these include
inverse methods and spatial statistical methods. Inverse methods use surface observations combined with glaciological process
knowledge to determine ice thickness (e.g. van Pelt et al., 2013). A non-linear relationship exists between the thickness of
glaciers, ice streams and ice sheets and how they flow (Raymond and Gudmundsson, 2005), meaning one can theoretically use
a well resolved surface to infer bed properties (e.g. Farinotti et al., 2009). Using surface observation inputs, such as the glacier
outline, surface digital elevation models, surface mass balance, surface rate of elevation change, and surface ice flow velocity,
various models have been tested in the Ice Thickness Models Intercomparison eXperiment (ITMIX, Farinotti et al., 2017) to
determine ice thickness (surface elevation minus bed elevation). While significant inter-model uncertainties do exist, they can
be mitigated by combining several models in an ensemble to provide a better consensus estimate (Farinotti et al., 2019). On a
larger scale, the inverse technique has also been applied to the Greenland (Morlighem et al., 2017) and Antarctic (Morlighem

et al., 2019) ice sheets, specifically using the mass conservation approach (Morlighem et al., 2011). Spatial statistical methods

seek to derive a higher spatial resolution bed by applying the topographical likeness of bed features known to great detail in
one area to other regions. For example, the conditional simulation method applied by Goff et al. (2014) is able to resolve both
fine-scale roughness and channelized morphology over the complex topography of Thwaites Glacier, and make use of the fact
that roughness statistics are different between highland and lowland areas. Graham et al. (2017) uses a two-step approach to
generate their synthetic HRES grid, with the high frequency roughness component coming from the ICECAP and Bedmapl
compilation radar point data, and the low frequency component coming from BEDMAP2. Neither one method is perfect, and
we see all of the above methods as complementary.

We present a deep neural network method that belongs—to-the-inverse-modelling—ecategory—and-is trained on direct ice-
penetrating radar observations over Antarctica, and one which has features from both the indirect inverse modelling and spatial
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statistical methodologies. An artificial neural network, loosely based on biological neural networks, is a system made up of
neurons. Each neuron comprises of a simple mathematical function that takes an input to produce an output value, and neural
networks work by combining many of these neurons together. The term deep neural network is used when there is not a
direct function mapping between the input data and final output, but two or more layers that are connected to one another (see
LeCun et al., 2015, for a review). They are trained using backpropagation, a procedure whereby the weights or parameters of
the neurons’ connections are adjusted, so as to minimize the error between the groundtruth and output of the neural network
(Rumelhart et al., 1986). Similar work has been done before using artificial neural networks for estimating bed topography
(e.g. Clarke et al., 2009; Monnier and Zhu, 2018), but to our knowledge, none so far in the glaciological community have
attempted to use convolutional neural networks that works in a more spatially-aware, 2-dimensional setting. Convolutional
neural networks differ from standard artificial neural networks in that they use kernels or filters in place of regular neurons
(again, see LeCun et al., 2015, for a review). The techniques we employ are prevalent in the computer vision community,
having existed since the 1980s (Fukushima and Miyake, 1982; LeCun et al., 1989) and are commonly used in visual pattern
recognition tasks (e.g. Lecun et al., 1998; Krizhevsky et al., 2012). Our main contributions are twofold: 1) Present a high
resolution (250 m) bed elevation map of Antarctica that goes beyond the 1 km resolution of BEDMAP?2 (Fretwell et al., 2013);
and 2) Design a deep convolutional neural network to integrate as many remote sensing datasets as possible which are relevant
for estimating Antarctica’s bed topography. We name the neural network "DeepBedMap", and the resulting digital elevation

model (DEM) product as "DeepBedMap_DEM".

2 Related Work
2.1 Super-Resolution

Super-Resolution involves the processing of a low resolution raster image into a higher resolution one (Tsai and Huang,
1984). The idea is similar to the work on enhancing regular photographs to look crisper. The problem is especially ill-posed
because a specific low resolution input can correspond to many possible high resolution outputs, resulting in the development of
several different algorithms aimed at solving this challenge (see Nasrollahi and Moeslund, 2014, for a review). One promising
approach is to use deep neural networks (LeCun et al., 2015) to learn an end-to-end mapping between the low and high
resolution images, a method coined Super-Resolution Convolutional Neural Network (SRCNN, Dong et al., 2014). Since
the development of SRCNN, multiple advances have been made to improve the perceptual quality of super resolution neural
networks {see-Yang-etal; 2048, forareview)(see Yang et al., 2019, for a review). One way is to use a better loss function, also
known as a cost function. A loss function is a mathematical function that represents the error between the output of the neural
network and the groundtruth (see also Appendix A). By having an adversarial component in its loss function, the Super-
Resolution Generative Adversarial Network (SRGAN;Ledigetal52016)-(SRGAN, Ledig et al., 2017) manages to produce
super resolution images with finer perceptual details. A Generative Adversarial Network (Goodfellow et al., 2014) consists
of two neural networks, a Generator and a Discriminator. A common analogy used is to treat the Generator as an artist that

produces imitation paintings, and the Discriminator as an art critic that determines the authenticity of the paintings. The
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artist wants to fool the critic into believing its paintings are real, while the critic tries to identify problems with the painting.
Over time, the artist or generator model learns to improve itself based on the critic’s judgement, producing authentic looking
paintings with high perceptual quality. Perceptual quality is the extent to which an image looks like a valid natural image,
usually as judged by a human. In this case, perceptual quality is quantified mathematically by the Discriminator or critic
taking into account high level features of an image like contrast, texture, etc. Another way to improve performance is by
reconfiguring the neural network’s architecture, wherein the layout or building blocks of the neural network are changed.
By removing unnecessary model components and adding residual connections (He et al., 2015), the Enhanced Deep Super-
Resolution network (EDSR, Lim et al., 2017) features a deeper neural network model that has better performance than older
models. For the DeepBedMap model, we choose to adapt an Enhanced Super-Resolution Generative Adversarial Network
(ESRGAN;-Wang-et-al;-2008)-(ESRGAN, Wang et al., 2019) that brings together the ideas mentioned above. This approach
produces state of the art perceptual quality and won the 2018 Perceptual Image Restoration and Manipulation Challenge on

Super-Resolution (Third Region) (Blau et al., 2018).
2.2 Network Conditioning

Network conditioning means having a neural network process one source of information in the context of other sources (Du-
moulin et al., 2018). In a geographic context, conditioning is akin to using not just one layer, but also other relevant layers with
meaningful links to provide additional information to the task at hand. Many ways exist to insert extra conditional informa-
tion into a neural network, such as concatenation-based conditioning, conditional biasing, conditional scaling, and conditional
affine transformations (Dumoulin et al., 2018). We choose to use the concatenation-based conditioning approach, whereby
all of the individual raster images are concatenated together channel-wise, much like the individual bands of a multispectral
satellite image. This was deemed the most appropriate conditioning method as all the contextual remote sensing datasets are
raster grid images, and also because this approach aligns with related work in the remote sensing field.

An example similar to this DEM super-resolution problem is the classic problem of pan-sharpening, whereby a blurry low
resolution multispectral image conditioned with a high resolution panchromatic image can be turned into a high resolution
multispectral image. There is ongoing research into the use of deep convolutional neural networks for pan-sharpening (Masi
et al., 2016; Scarpa et al., 2018), sometimes with the incorporation of specific domain-knowledge (Yang et al., 2017), all of
which show promising improvements over classical image processing methods. More recently, generative adversarial networks
(Goodfellow et al., 2014) have been used in the conditional sense for general image-to-image translation tasks (e.g. Isola
et al., 2016; Park et al., 2019), and also for producing more realistic pan-sharpened satellite images (Liu et al., 2018). Our
DeepBedMap model builds upon these ideas and other related DEM super-resolution work (Xu et al., 2015; Chen et al.,
2016), while incorporating extra conditional information specific to the cryospheric domain for resolving the bed elevation of

Antarctica.



3 Data and Methods
3.1 Data Preparation

125 Our convolutional neural network model works on 2D images, so we have-te-ensure all the datasets are in a suitable raster grid
format. Groundtruth bed elevation points picked from radar surveys (see Table 1) are first compiled together onto a common
Antarctic Stereographic Projection (EPSG:3031) using the WGS84 datum, reprojecting where necessary. These points are then
gridded onto a 250 m spatial resolution (pixel-node registered) grid. We preprocess the points first using Generic Mapping Tools
v6.0 (GMT6, Wessel et al., 2019), computing the median elevation for each pixel block in a regular grid. The preprocessed

130 points are then run through an adjustable tension continuous curvature spline function with a tension factor set to 0.35 to
produce a digital elevation model grid. This grid is further post-processed to mask out pixels that are more than 3 pixels (750

m) from the nearest groundtruth point.

Table 1. High Resolution groundtruth datasets from ice-penetrating radar surveys (collectively labelled as y) used to train the DeepBedMap

model. Training site locations can be seen in Figure 2.

Location Citation

Pine Island Glacier Bingham et al. (2017)
Wilkes Subglacial Basin Jordan et al. (2010)
Carlson Inlet King (2011)
Rutford Ice Stream King et al. (2016)
Various locations in Antarctica Shi et al. (2010)

Table 2. Remote Sensing dataset inputs into the DeepBedMap neural network model.

Symbol Name Variable Spatial Resolution Citation
T BEDMAP2 bed elevation (m) 1000 m Fretwell et al. (2013)
w! REMA surface elevation (m) 100 m** Howat et al. (2018)
w? MEaSURE:s Ice Velocity VX,VY (m yr’l)* 500 m*** Mouginot et al. (2019a)
w? Antarctic Snow Accumulation  snow accumulation rate (kg m~Za"l) 1000 m Arthern et al. (2006)

* note that the x and y components of velocity are used here instead of the norm.
** gaps in 100 m mosaic filled in with bilinear resampled 200 m resolution REMA image.

##% originally 450 m, bilinear resampled to 500 m.

To create the training dataset, we use a sliding window to obtain square tiles cropped from the high resolution (250 m)
groundtruth bed elevation grids, with each tile required to be completely filled with data (i.e. no NaN values). Besides these

135 groundtruth bed elevation tiles, we also obtain other tiled inputs (see Table 2) corresponding to the same spatial bounding box
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area. To reduce border edge artifacts in the prediction, the neural network model’s input convolutional layers (see Figure 1) use
no padding (also known as ‘valid’ padding) when performing the initial convolution operation. This means that the model input

2 w3) have to cover a larger spatial area than the groundtruth grids (7). More specifically, the model inputs cover

grids (z, wh,w
an area of 11x11 km (e.g. 11x11 pixels for BEDMAP2) while the groundtruth grids cover an area of 9x9 km (36x36 pixels).
As the pixels of the groundtruth grids may not align perfectly with that of the model’s input grids, we use bilinear interpolation
to ensure that all the input grids cover the same spatial bounds as that of the reference groundtruth tiles. The general location

of these training tiles are shown as orange boxes in Figure 2.
3.2 Model Design

Our DeepBedMap model is a Generative Adversarial Network (Goodfellow et al., 2014) composed of two convolutional
neural network models, a Generator Gy that produces the bed elevation prediction, and a Discriminator D, critic that will
judge the quality of this output. The two models are trained to compete against each other, with the Generator trying to produce
images that are misclassified as real by the Discriminator, and the Discriminator learning to spot problems with the Generator’s
prediction in relation to the groundtruth. Following this is a mathematical definition of the neural network models and their
architecture.

The objective of the main super-resolution Generator model Gy is to produce a high resolution (250 m) grid of Antarctica’s
bed elevation g given a low resolution (1000 m) BEDMAP?2 (Fretwell et al., 2013) image x. However, the information contained
in BEDMAP?2 is insufficient for this regular super-resolution task, so we provide the neural network with more context through
network conditioning (see Section 2.2). Specifically, the model is conditioned at the input block stage with three raster grids
(see Table 2): 1) ice surface elevation w?, 2) ice surface velocity w?, and 3) snow accumulation w?. This can be formulated as

follows:

§=Go(z,w',w? w?) (D

where Gy is the Generator (see Figure 1) that produces high resolution image candidates ¢. For brevity in the following

2

equations, we simplify Equation (1) to hide conditional inputs w!,w?,w?, so that all input images are represented using . To

train the Generative Adversarial Network, we update the parameters of the Generator 6 and Discriminator 7 as follows:

N
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where new estimates of the parameters 6 and 7 are produced by minimizing the total loss functions L and Lp respectively

for the Generator G and Discriminator D. ¢, y,, are the set of predicted and groundtruth high resolution images over N training



samples. The generator network’s loss L is a custom perceptual loss function with four weighted components - content,

165 adversarial, topographic and structural loss. The discriminator network’s loss Lp is designed to maximize the likelihood that

predicted images are classified as fake (0) and groundtruth images are classified as real (1). Details of these loss functions are
described in Appendix A.

Noting that the objective of the Generator G is opposite to that of the Discriminator D, we formulate the adversarial min-max

problem following Goodfellow et al. (2014) as so:

170 minmaxV(G, D) = By py,(y) [ D(Y)] + Eon Py, [In(1 = D(G(2)))] )

where for the Discriminator D, we maximize the expectation E, or the likelihood that the probability distribution of the
Discriminator’s output fits D(y) =1 when y ~ Pyaa(y), i.e. we want the Discriminator to classify the high resolution image
as real (1) when the image y is in the distribution of the groundtruth images Pyu,(y). For the Generator G, we minimize
the likelihood that the Discriminator classifies the Generator output D(G(z)) =0 when x ~ Pg(,), i.e. we do not want the
175 Discriminator to classify the super resolution image as fake (0) when the inputs x is in the distribution of generated images
P (). The overall goal of the entire network is to make the distribution of generated images G/(x) as similar as possible to the
groundtruth y through optimizing the value function V.
DeepBedMap’s model architecture is adapted from the Enhanced Super Resolution Generative Adversarial Network (ESRGAN;-Wang-et
(ESRGAN, Wang et al., 2019). The Generator model G (see Figure 1) consists of an input, core, and upsampling module.
180 The input module is made up of four sub-networks, each one composed of a convolutional neural network that processes
the input image into a consistent 9x9 shaped tensor. Note that the MEaSUREs Ice Velocity (Mouginot et al., 2019b) in-
put has two channels, one each for the x and y velocity components. All the processed inputs are then concatenated to-
gether channel-wise before being fed into the core module. The core module is based on the ESRGAN architecture with 12
Residual-in-Residual Dense Blocks {see-Wang-et-al;2018;for-details)(see Wang et al., 2019, for details), saddled in between
185 a pre-residual and post-residual convolutional layer. A skip connection runs from the pre-residual layer’s output to the post-
residual layer’s output before being fed into the upsampling module. This skip connection (He et al., 2016) helps with the
neural network training process by allowing the model to also consider minimally processed information from the input mod-
ule, instead of solely relying on derived information from the residual block layers when performing the upsampling. The
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