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Response to Martin Siegert’s comments

General comments

I very much enjoyed looking at this paper. Using neural networks (and ai) to better
depict the shape of the Antarctic bed is a great idea, and I applaud this effort.

The authors have done a good job in describing their work, and its potential significance,
and I think it should be published in the Cryosphere with some moderate changes first
necessary.

I like that this paper represents a new approach to studying the bed landscape in
Antarctica and for that reason it should be a valuable asset for future work.

There are a few ways it can be improved, however - and I note my comments in the
attached pdf.

We would like to thank the reviewer for their feedback, and for recognizing the significance of
this work on applying Deep Learning to the Cryospheric domain. Some interesting comments have
been raised on the output and inner workings of the model, and we will respond to each individual
comment in depth below. It is nice to see that we are in agreement on several ideas, and that there
is a clear path towards what is needed in terms of data collection to improve the next generation
model.

Specific comments

1. some discussion on the fact that Deepbed seems to be rougher than the base data.

Correct, the DeepBedMap DEM does appear to be rougher than the base data (groundtruth)
in Fig. 6 of the manuscript, and also in general, but this roughness is also something that can
be adjusted by tweaking the training regime. The DeepBedMap neural network model works by
minimizing the elevation error between the groundtruth DEM and the predicted DeepBedMap
DEM. So the main product is bed elevation, with roughness being a secondary statistic derived
from this generated bed elevation. It is certainly possible to incorporate roughness (or any other
statistical measure) into the loss function, to yield the desired surface, and this will be explored in
future work.

Added note on rougher bed and explanation at lines 297-300.

2. how roughness anisotropy is captured, as this is known to occur and should be
critical to more accurate modelling.

Bed roughness anisotropy is indeed an important consideration, and a good example is shown
by Holschuh et al. (2020) who used swath radar to characterize elongated features (e.g. crag and
tails) at the subglacial landscape of two sites in Thwaites Glacier. We illustrate this over the same
Thwaites Glacier region here in Fig 1, which shows DeepBedMap is able to capture aspects of the
bed anisotropy from the groundtruth grid it was trained on (ice is flowing from top right to bottom
left).

The DeepBedMap model derives bed anisotropy from 1) ice flow direction from the MEaSUREs
ice velocity x and y components (Mouginot et al., 2019), 2) ice surface aspect derived from the
REMA ice surface (Howat et al., 2019), and 3) the BEDMAP2 bed elevation input (Fretwell et
al., 2013). There are therefore inherent assumptions that the topography of the current bed is
associated with the current ice flow direction, surface aspect and existing BEDMAP2 anisotropy.
Provided that the direction of this surface velocity and aspect are the same as bed roughness
anisotropy, as demonstrated in (Holschuh et al., 2020), the neural network will be able to recognize
it and perform accordingly. However, if the ice flow direction and surface aspect is not associated
with bed anisotropy, then this assumption will be violated and the model will not perform well.

Added new paragraph on how bed anisotropy is captured at lines 304-311.
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3. how bed geology influences the roughness.

While geology is linked to roughness, the training dataset does not adequately sample the
distribution of different geology types over the Antarctica, nor is the the geology of Antarctica
particularly well known beneath the ice. Ideally, we would have a training dataset that is trained
on different geological domains, and though the neural network does not currently take geology as
an input, we see that this can be addressed in future work. The main challenge lies in finding a
suitable geological map (or geopotential proxy) with sufficient resolution and an adequate training
dataset that covers the different lithologies.

To have geology as an input variable, we would ideally need to convert it from a lithological
map (categorical/qualitative) to a hardness map with an appropriate erosion law and history
incorporated (quantitative). If the geology is given as a categorical variable (e.g. sedimentary,
igneous or metamorphic), this may be harder to incorporate into neural networks that typically
work with quantitative data. Though it is possible to train Generative Adversarial Networks on
qualitative data, it would require a more elaborate model architecture and loss function.

Expanded section on how geology can be incorported in future studies at lines 328-334.

4. that there appear to be major gaps and to emphasize that radar is the only tool for
solving this.

Indeed, there is only so much we can extrapolate outside of the regions we have data for,
no matter how advanced a technique we use. Radio echo sounding is the best tool to not only
provide the background coarse resolution dataset, but also the high resolution datasets needed for
training. Swath processing of existing datasets would be of great benefit. Targeted acquisition of
high resolution grids over a range of bed and flow types would also be beneficial.

Emphasized importance of radar at lines 339-342.

5. importantly, that the approach could be better trained by working on formerly
glaciated beds, such as the Laurentide ice sheet - or any land surface. Why not demon-
strate the utility of the model in this way??

Thank you for raising this idea. We have actually considered this, though our thought was
to use the swath bathymetry data around Antarctica instead. The current model implementation
does not support using solely ’elevation’ as an input, as it also requires ice elevation, ice surface
velocity and snow accumulation data. To support using these paleo-beds as training data, one
could do one of the following:

1. Have a paleo ice sheet model that provides these ice surface observation parameters. How-
ever, continent scale ice sheet models quite often produce only kilometer scale outputs, and there
are inherent uncertainties with past ice sheet reconstructions that may bias the resulting trained
neural network model.

2. Modularize the neural network model to support different sets of training data. It is
theoretically possible to train one main branch with just the high resolution bed elevation data,
and have the separate conditional inputs as optional branches into the model. In fact, this main
branch would simply be a Single Image Super Resolution problem, where we try to map a low
resolution BEDMAP2 tile to a high resolution groundtruth image (be it from a contemporary bed,
paleo bed, or offshore bathymetry). The supporting conditional branches would then improve on
the result of this naive super resolution method, and in particular, the ice velocity input would
provide information on ice flow direction. This modular neural network design would be more
complicated to set up and train, but it will no doubt increase the available training data by at
least an order of magnitude, and lead to better results.

Added new paragraph on using formerly glaciated beds at lines 346-359.

That said, much of these issues can be addressed in future work. I still think this is a
good piece of work and look forward to seeing the modified version.

We hope this paper lays a foundation, and we too look forward to continuing this work and
collaborating with others in the future.

2



References

Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi,
C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway,
H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R.,
. . . Zirizzotti, A. (2013). Bedmap2: Improved ice bed, surface and thickness datasets for
Antarctica. The Cryosphere, 7 (1), 375–393. https://doi.org/10.5194/tc-7-375-2013

Holschuh, N., Christianson, K., Paden, J., Alley, R., & Anandakrishnan, S. (2020). Linking post-
glacial landscapes to glacier dynamics using swath radar at Thwaites Glacier, Antarctica.
Geology. https://doi.org/10.1130/G46772.1

Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., & Morin, P. (2019). The Reference Elevation
Model of Antarctica. The Cryosphere, 13 (2), 665–674. https://doi.org/10.5194/tc-13-665-
2019

Mouginot, J., Rignot, E., & Scheuchl, B. (2019). MEaSUREs Phase Map of Antarctic Ice Velocity,
Version 1. NASA National Snow and Ice Data Center DAAC. https://doi.org/10.5067/
PZ3NJ5RXRH10

3



KEY
Reviewer comments (blue)
Response (black)
New or changed text (green)

Response to Anonymous Referee #2’s comments

General comments

This paper introduces a new method, based on Machine Learning, namely a Generative
Adversarial Network (GAN), to add short-scale roughness to the bed of Bedmap2. The
paper is well written, easy to follow and well illustrated, I really enjoyed reading it.
I recommend publication after minor revisions. My main problem while reading the
manuscript was that I felt like the authors were overselling their approach and the
performance of the GAN.

What the GAN is doing is to essentially try to reintroduce basal roughness in the
smooth bed of Bedmap2 based on surface features. While the method is different, the
goal of this study is very similar to the paper of Graham et al. 2017 (www.earth-syst-sci-
data.net/9/267/2017/) or Goff et al. 2017 (https://doi.org/10.3189/2014JoG13J200),
papers that are barely mentioned in the text.

We thank the reviewer for their considered review and comments. Thank you for highlighting
the work of Goff et al. (2014) and Graham et al. (2017). In regard to the publication by Graham
et al. (2017), we have actually compared their Synthetic HRES product at some earlier conferences
(see Leong and Horgan (2019b) and Leong and Horgan (2019a)), but decided to focus on the newer
BedMachine Antarctica product for this manuscript. For completeness, we have now reproduced
a 3D image of this Synthetic HRES product here (see Fig 1), using the same Pine Island Glacier
extent in Fig. 3 of the manuscript.

We acknowledge that the goal of this paper is similar to the two aforementioned papers, and
fall in the broad category of using spatial statistics to derive a higher spatial resolution bed.
Specifically, the conditional simulation method applied by Goff et al. (2014) is able to resolve both
fine-scale roughness and channelized morphology over the complex topography of Thwaites Glacier,
and make use of the fact that roughness statistics are different between highland and lowland areas.
Graham et al. (2017) uses a two-step approach to generate their synthetic HRES grid, with the high
frequency roughness component coming from the ICECAP and Bedmap1 compilation radar point
data, and the low frequency component coming from BEDMAP2. In DeepBedMap, we attempt
to capture bed topography directly from gridded pixels, while incorporating extra knowledge from
satellite remote sensing datasets to fill in larger gaps between flightlines, much like in BedMachine
Antarctica (Morlighem et al., 2019). Neither one method is perfect, and we see all of them as
complementary.

Mentioned the spatial statistical papers at lines 49-56.
Specific comments

It is clearly an excellent idea to try to use these methods, established in other fields, to
the mapping of the Antarctic bed. It also seems natural to use surface data (velocity,
SMB, etc) as a “predictor” for the shape of the bed. That being said, it seems like
the surface observations provided to the GAN do not make it possible to recover big
features such as ridges or valleys in the bed that could have a large impact on ice flow
models, but only to add some high-resolution roughness to the overly smooth bed of
Bedmap2.

Being able to capture both long wavelength and short wavelength bed features is the goal. We
do however rely on the BEDMAP2 surface as a reference for this super resolution task, which
limits the generated topography to within a tolerance of the surface. If we don’t use BEDMAP2,
then the modelled bed elevation could diverge significantly from the actual bed elevation. Ideally
we would be able to run the model independent of BEDMAP2, however, this would no longer be
a super resolution model.

1



Note that the provided DeepBedMap DEM model is only one ‘possible’ version, generated
from one model training run we deemed best according to our training metric, and we may have
biased our model towards resolving short wavelength features, compared to BedMachine Antarctica
which recovers large scale features like ridges and valleys well. That is not to say we cannot
combine super resolution with inversion techniques, and as mentioned in text, the DeepBedMap
model architecture should be applicable to any reference bed, be it BedMachine Antarctica or the
upcoming BEDMAP3.

Noted these points at lines 319-320, 342-345.

This is a valuable exercise and using machine learning to do this is definitely a good
idea and worth publishing, but I don’t think we are there yet. The training dataset is
extremely small and probably not representative of all the different types of terrains
under the Antarctic ice sheet (as mentioned by the authors).

There is certainly more work to do on both the modelling and data collection side (see our
reply to Reviewer 1). It should be mentioned though that bed interpolation exercises such as ours
and BedMachine Antarctica help tell us where the data gaps are. As more datasets are gathered
from targeted acquisitions, marine swath bathymetry, etc, these method will become even more
powerful.

Mentioned where future efforts of the glaciological community should focus on at lines 336-368.

We see a lot of artifacts in the solution and many of these artifacts are discussed in the
text: dunes and missing mountains around Byrd (4h), Terraces (4i), Speckle (4a), etc.
In the maps of figure 4, I could not find a bed that seemed realistic.

In Figure 4 of the manuscript, we have chosen to highlight different locations, some of which
are unrealistic as acknowledged in the text. The example we provide in our reply to Reviewer 1
(see Fig. 1 there) provides an example of a realistic bed as does Fig 5e over the non-mountainous
areas of Rutford Ice Stream.

If we able to quantify precisely what is wrong with the generated bed topography, this can be
incorporated into the Discriminator component of the Generative Adversarial Network. Currently
we use a basic Discriminator designed for standard computer vision tasks. That is not to say that we
cannot incorporate glaciology specific criteria such as ice flow direction into the Discriminator model
design, which would push the Generator model to produce more realistic results. Alternatively,
we can adjust the loss function weights to dampen the effects of the REMA ice surface elevation
input, as our model may have overfitted to the REMA surface DEM.

Added sentence on how Discriminator model can be improved at lines 319-320.

Even along the flight line of OIB (figure 6) the roughness of DeepBedMap seems ex-
acerbated and not necessarily representative of the actual roughness measured by the
radar. And again, the authors make it clear, I just find the title/abstract and parts of
the paper a bit misleading in the sense that I don’t think this approach achieves the
objectives of this work, and that’s ok! I would not say that the GAN “better resolves”
the bed topography for example.

We may have been overly enthusiastic in some of our language and will do our best to temper
this in revision. In regard to roughness, our neural network model was trained by minimizing the
error between the generated bed elevation and the bed elevation of the groundtruth training data,
rather than the roughness parameter which is a derived statistic. Incorporating roughness into the
loss function would be a useful exercise. ”Better” is indeed a subjective term that is dependent on
the current baseline, and we will consider using another title for the formal publication.

Title and abstract have been tempered.

Another problem is that it is not straightforward to constrain the model with radar
data, and this is not mentioned in the text. The roughness of the bed that is cap-
tured (and known) by the radar data along flightlines cannot be preserved. This is an
important limitation.
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We agree that the pixel-based DeepBedMap model is unable to constrain itself easily to point-
based radar data. The along track resolution of radar bed picks are much smaller than the 250
m pixels, and it it not easy to preserve roughness from radar unless smaller pixels are used. This
may change once we start using swath radar data for training instead of interpolating our own grid
from radar point data collected along flightlines.

Limitation mentioned at lines 313-316.

I also did not understand the paragraph line 204-205: why would we use the inferred
bed under ice shelves when clearly surface features do not reflect the shape of the
bathymetry? It is not because the authors “can” do it that they should do it.

The intention was to provide a means for others to more easily interpolate their own bathymetry
grid with the DeepBedMap grid. There is a choice of different grounding lines, and rather than
enforce one, we would prefer to let others cut and blend it with their own bathymetry dataset,
smoothed out over any selected distance. We now intend to provide a mask file with the final
product, allowing the user to apply this ice shelf mask directly, or use one of their own. We will
also clarify this intention better in text so as not to suggest that we have managed to super resolve
the under ice shelf bathymetry.

Intention clarified at lines 218-224.

That said, much of these issues can be addressed in future work. I still think this is a
good piece of work and look forward to seeing the modified version.

There is always potential to improve this work further, and one that we have faced over the
year developing this methodology, with better techniques and new data coming in all the time.
Hopefully this paper can serve as a good starting point, and we are excited to see what others will
come up with in the future.
Technical corrections

Other than that, the paper is easy to follow and really well written, I only found one
typo: line 297: care has been taking → taken

Once again, thank you very much for your constructive feedback.
Fixed at line 337.
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DeepBedMap: Using a
:::
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Abstract. To better resolve the bed elevation of Antarctica, we present DeepBedMap - a novel machine learning method that

produces realistic
::
can

:::::::
produce

:
Antarctic bed topography

::::
with

:::::::
adequate

:::::::
surface

::::::::
roughness

:
from multiple remote sensing data

inputs. Our
:::
The super-resolution deep convolutional neural network model is trained on scattered regions in Antarctica where

high resolution (250 m) groundtruth bed elevation grids are available. The
:::
This

:
model is then used to generate high resolution

bed topography in less well surveyed areas. DeepBedMap improves on previous interpolation methods by not restricting itself5

to a low spatial resolution (1000 m) BEDMAP2 raster image as its prior. It takes in additional high spatial resolution datasets,

such as ice surface elevation, velocity and snow accumulation to better inform the bed topography even in the absence of

ice-thickness data from direct ice-penetrating radar surveys. Our
:::
The

:
DeepBedMap model is based on an adapted Enhanced

Super Resolution Generative Adversarial Network architecture, chosen to minimize per-pixel elevation errors while producing

realistic topography. The final product is a four times upsampled (250 m) bed elevation model of Antarctica that can be used10

by glaciologists interested in the subglacial terrain, and by ice sheet modellers wanting to run catchment or continent-scale

ice sheet model simulations. We show that DeepBedMap offers a more realistic topographic roughness
:::::::
rougher

::::::::::
topographic

profile compared to a standard bicubic interpolated BEDMAP2 and BedMachine Antarctica, and envision it to be used where

a high resolution bed elevation model is required.

Copyright statement. This work is distributed under the Creative Commons Attribution 4.0 License15

1 Introduction

The bed of the Antarctic ice sheets
::::
sheet is one of the most challenging surfaces on Earth to map due to the thick layer of ice

cover. Knowledge of bed elevation is however essential for estimating the volume of ice currently stored in the ice sheets, and

for input to the numerical models that are used to estimate the contribution ice sheets are to likely to make to sea level in the

coming century. The Antarctic ice sheet is estimated to hold a sea level equivalent (SLE) of 57.9 ± 0.9 m (Morlighem et al.,20

2019). Between 2012 and 2017, the Antarctic Ice Sheet
:::
ice

::::
sheet

:
was losing mass at an average rate of 219 ± 43 Gt yr−1

(0.61 ± 0.12 mm yr−1 SLE), with most of the ice loss attributed to the acceleration, retreat and rapid thinning of major West

Antarctic Ice Sheet outlet glaciers (?)
::::::::::::
(IMBIE, 2018). Bed elevation exerts additional controls on ice flow by routing subglacial
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water, and providing frictional resistance to flow (Siegert et al., 2004). Bed roughness, especially at short-wavelengths, exerts

a frictional force against the flow of ice, making it an important influence on ice velocity (Bingham et al., 2017; Falcini et al.,25

2018). The importance of bed elevation has led to major efforts to compile bed elevation models of Antarctica, notably with the

BEDMAP1 (Lythe and Vaughan, 2001) and BEDMAP2 (Fretwell et al., 2013) products. A need for higher spatial resolution

Digital Elevation Model (DEM) is also apparent, as ice sheet models move to using sub-kilometer
::::::::::::
sub-kilometre grids in order

to quantify glacier ice flow dynamics more accurately (Graham et al., 2017)
::::::::::::::::::::::::::::::::::::
(Le Brocq et al., 2010; Graham et al., 2017). Finer

grids are especially important at the ice sheet’s grounding zone where adaptive mesh refinement schemes have focused on (e.g.30

Cornford et al., 2016), and attention to the bed roughness component is imperative for proper modelling of fast flowing outlet

glaciers (Durand et al., 2011; Nias et al., 2016). Here we address the challenge of producing a high resolution DEM while

preserving a realistic representation of the bed terrain’s roughness.

Estimating bed elevation directly from geophysical observations primarily uses ice penetrating radar methods (e.g. Robin

et al., 1970). Airborne radar methods enable reliable along track estimates with low uncertainty (around the 1% level) intro-35

duced by imperfect knowledge of the firn and ice velocity structure, with some potential uncertainty introduced by picking the

bed return. Radar derived bed estimates remain limited in their geographic coverage (Fretwell et al., 2013), and are typically

anisotropic in their coverage, with higher spatial sampling in the along track direction than between tracks.

To overcome these limitations, indirect methods of estimating bed elevation have been developed, which
:::
and

::::
these

:::::::
include

::::::
inverse

:::::::
methods

:::
and

::::::
spatial

::::::::
statistical

::::::::
methods.

::::::
Inverse

:::::::
methods

:
use surface observations combined with glaciological process40

knowledge to determine ice thickness (e.g. van Pelt et al., 2013). A non-linear relationship exists between the thickness of

glaciers, ice streams and ice sheets and how they flow (Raymond and Gudmundsson, 2005), meaning one can theoretically use

a well resolved surface to infer bed properties (e.g. Farinotti et al., 2009). Using surface observation inputs, such as the glacier

outline, surface digital elevation models, surface mass balance, surface rate of elevation change, and surface ice flow velocity,

various models have been tested in the Ice Thickness Models Intercomparison eXperiment (ITMIX, Farinotti et al., 2017) to45

determine ice thickness (surface elevation minus bed elevation). While significant inter-model uncertainties do exist, they can

be mitigated by combining several models in an ensemble to provide a better consensus estimate (Farinotti et al., 2019). On a

larger scale, the inverse technique has also been applied to the Greenland (Morlighem et al., 2017) and Antarctic (Morlighem

et al., 2019) ice sheets, specifically using the mass conservation approach (Morlighem et al., 2011).
:::::
Spatial

::::::::
statistical

::::::::
methods

::::
seek

::
to

:::::
derive

::
a
:::::
higher

::::::
spatial

:::::::::
resolution

:::
bed

:::
by

:::::::
applying

::::
the

:::::::::::
topographical

:::::::
likeness

::
of

::::
bed

:::::::
features

::::::
known

::
to

:::::
great

:::::
detail

::
in50

:::
one

::::
area

::
to

::::
other

:::::::
regions.

::::
For

:::::::
example,

:::
the

::::::::::
conditional

:::::::::
simulation

::::::
method

:::::::
applied

::
by

:::::::::::::::
Goff et al. (2014)

:
is
::::
able

::
to
:::::::
resolve

::::
both

::::::::
fine-scale

::::::::
roughness

::::
and

::::::::::
channelized

::::::::::
morphology

::::
over

:::
the

:::::::
complex

::::::::::
topography

::
of

::::::::
Thwaites

:::::::
Glacier,

:::
and

:::::
make

:::
use

::
of

:::
the

::::
fact

:::
that

:::::::::
roughness

:::::::
statistics

:::
are

::::::::
different

:::::::
between

::::::::
highland

:::
and

:::::::
lowland

:::::
areas.

::::::::::::::::::
Graham et al. (2017)

::::
uses

:
a
::::::::
two-step

::::::::
approach

::
to

:::::::
generate

::::
their

::::::::
synthetic

::::::
HRES

::::
grid,

::::
with

:::
the

::::
high

:::::::::
frequency

:::::::::
roughness

:::::::::
component

:::::::
coming

::::
from

:::
the

::::::::
ICECAP

:::
and

:::::::::
Bedmap1

::::::::::
compilation

::::
radar

:::::
point

::::
data,

::::
and

:::
the

:::
low

:::::::::
frequency

:::::::::
component

:::::::
coming

::::
from

::::::::::
BEDMAP2.

:::::::
Neither

:::
one

:::::::
method

::
is

::::::
perfect,

::::
and55

::
we

:::
see

:::
all

::
of

:::
the

:::::
above

:::::::
methods

:::
as

:::::::::::::
complementary.

We present a deep neural network method that belongs to the inverse modelling category and is trained on direct ice-

penetrating radar observations over Antarctica,
::::
and

:::
one

:::::
which

:::
has

:::::::
features

:::::
from

::::
both

::
the

:::::::
indirect

::::::
inverse

:::::::::
modelling

:::
and

::::::
spatial
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::::::::
statistical

::::::::::::
methodologies. An artificial neural network, loosely based on biological neural networks, is a system made up of

neurons. Each neuron comprises of a simple mathematical function that takes an input to produce an output value, and neural60

networks work by combining many of these neurons together. The term deep neural network is used when there is not a

direct function mapping between the input data and final output, but two or more layers that are connected to one another (see

LeCun et al., 2015, for a review). They are trained using backpropagation, a procedure whereby the weights or parameters of

the neurons’ connections are adjusted, so as to minimize the error between the groundtruth and output of the neural network

(Rumelhart et al., 1986). Similar work has been done before using artificial neural networks for estimating bed topography65

(e.g. Clarke et al., 2009; Monnier and Zhu, 2018), but to our knowledge, none so far in the glaciological community have

attempted to use convolutional neural networks that works in a more spatially-aware, 2-dimensional setting. Convolutional

neural networks differ from standard artificial neural networks in that they use kernels or filters in place of regular neurons

(again, see LeCun et al., 2015, for a review). The techniques we employ are prevalent in the computer vision community,

having existed since the 1980s (Fukushima and Miyake, 1982; LeCun et al., 1989) and are commonly used in visual pattern70

recognition tasks (e.g. Lecun et al., 1998; Krizhevsky et al., 2012). Our main contributions are twofold: 1) Present a high

resolution (250 m) bed elevation map of Antarctica that goes beyond the 1 km resolution of BEDMAP2 (Fretwell et al., 2013);

:::
and 2) Design a deep convolutional neural network to integrate as many remote sensing datasets as possible which are relevant

for estimating Antarctica’s bed topography. We name the neural network "DeepBedMap", and the resulting digital elevation

model (DEM) product as "DeepBedMap_DEM".75

2 Related Work

2.1 Super-Resolution

Super-Resolution involves the processing of a low resolution raster image into a higher resolution one (Tsai and Huang,

1984). The idea is similar to the work on enhancing regular photographs to look crisper. The problem is especially ill-posed

because a specific low resolution input can correspond to many possible high resolution outputs, resulting in the development of80

several different algorithms aimed at solving this challenge (see Nasrollahi and Moeslund, 2014, for a review). One promising

approach is to use deep neural networks (LeCun et al., 2015) to learn an end-to-end mapping between the low and high

resolution images, a method coined Super-Resolution Convolutional Neural Network (SRCNN, Dong et al., 2014). Since

the development of SRCNN, multiple advances have been made to improve the perceptual quality of super resolution neural

networks (see Yang et al., 2018, for a review)
:::::::::::::::::::::::::::::
(see Yang et al., 2019, for a review). One way is to use a better loss function, also85

known as a cost function. A loss function is a mathematical function that represents the error between the output of the neural

network and the groundtruth (see also Appendix A). By having an adversarial component in its loss function, the Super-

Resolution Generative Adversarial Network (SRGAN, Ledig et al., 2016)
::::::::::::::::::::::::
(SRGAN, Ledig et al., 2017) manages to produce

super resolution images with finer perceptual details. A Generative Adversarial Network (Goodfellow et al., 2014) consists

of two neural networks, a Generator and a Discriminator. A common analogy used is to treat the Generator as an artist that90

produces imitation paintings, and the Discriminator as an art critic that determines the authenticity of the paintings. The
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artist wants to fool the critic into believing its paintings are real, while the critic tries to identify problems with the painting.

Over time, the artist or generator model learns to improve itself based on the critic’s judgement, producing authentic looking

paintings with high perceptual quality. Perceptual quality is the extent to which an image looks like a valid natural image,

usually as judged by a human. In this case, perceptual quality is quantified mathematically by the Discriminator or critic95

taking into account high level features of an image like contrast, texture, etc. Another way to improve performance is by

reconfiguring the neural network’s architecture, wherein the layout or building blocks of the neural network are changed.

By removing unnecessary model components and adding residual connections (He et al., 2015), the Enhanced Deep Super-

Resolution network (EDSR, Lim et al., 2017) features a deeper neural network model that has better performance than older

models. For the DeepBedMap model, we choose to adapt an Enhanced Super-Resolution Generative Adversarial Network100

(ESRGAN, Wang et al., 2018)
:::::::::::::::::::::::::
(ESRGAN, Wang et al., 2019) that brings together the ideas mentioned above. This approach

produces state of the art perceptual quality and won the 2018 Perceptual Image Restoration and Manipulation Challenge on

Super-Resolution (Third Region) (Blau et al., 2018).

2.2 Network Conditioning

Network conditioning means having a neural network process one source of information in the context of other sources (Du-105

moulin et al., 2018). In a geographic context, conditioning is akin to using not just one layer, but also other relevant layers with

meaningful links to provide additional information to the task at hand. Many ways exist to insert extra conditional informa-

tion into a neural network, such as concatenation-based conditioning, conditional biasing, conditional scaling, and conditional

affine transformations (Dumoulin et al., 2018). We choose to use the concatenation-based conditioning approach, whereby

all of the individual raster images are concatenated together channel-wise, much like the individual bands of a multispectral110

satellite image. This was deemed the most appropriate conditioning method as all the contextual remote sensing datasets are

raster grid images, and also because this approach aligns with related work in the remote sensing field.

An example similar to this DEM super-resolution problem is the classic problem of pan-sharpening, whereby a blurry low

resolution multispectral image conditioned with a high resolution panchromatic image can be turned into a high resolution

multispectral image. There is ongoing research into the use of deep convolutional neural networks for pan-sharpening (Masi115

et al., 2016; Scarpa et al., 2018), sometimes with the incorporation of specific domain-knowledge (Yang et al., 2017), all of

which show promising improvements over classical image processing methods. More recently, generative adversarial networks

(Goodfellow et al., 2014) have been used in the conditional sense for general image-to-image translation tasks (e.g. Isola

et al., 2016; Park et al., 2019), and also for producing more realistic pan-sharpened satellite images (Liu et al., 2018). Our

DeepBedMap model builds upon these ideas and other related DEM super-resolution work (Xu et al., 2015; Chen et al.,120

2016), while incorporating extra conditional information specific to the cryospheric domain for resolving the bed elevation of

Antarctica.
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3 Data and Methods

3.1 Data Preparation

Our convolutional neural network model works on 2D images, so we have to ensure all the datasets are in a suitable raster grid125

format. Groundtruth bed elevation points picked from radar surveys (see Table 1) are first compiled together onto a common

Antarctic Stereographic Projection (EPSG:3031) using the WGS84 datum, reprojecting where necessary. These points are then

gridded onto a 250 m spatial resolution (pixel-node registered) grid. We preprocess the points first using Generic Mapping Tools

v6.0 (GMT6, Wessel et al., 2019), computing the median elevation for each pixel block in a regular grid. The preprocessed

points are then run through an adjustable tension continuous curvature spline function with a tension factor set to 0.35 to130

produce a digital elevation model grid. This grid is further post-processed to mask out pixels that are more than 3 pixels (750

m) from the nearest groundtruth point.

Table 1. High Resolution groundtruth datasets from ice-penetrating radar surveys (collectively labelled as y) used to train the DeepBedMap

model. Training site locations can be seen in Figure 2.

Location Citation

Pine Island Glacier Bingham et al. (2017)

Wilkes Subglacial Basin Jordan et al. (2010)

Carlson Inlet King (2011)

Rutford Ice Stream King et al. (2016)

Various locations in Antarctica Shi et al. (2010)

Table 2. Remote Sensing dataset inputs into the DeepBedMap neural network model.

Symbol Name Variable Spatial Resolution Citation

x BEDMAP2 bed elevation (m) 1000 m Fretwell et al. (2013)

w1 REMA surface elevation (m) 100 m** Howat et al. (2018)

w2 MEaSUREs Ice Velocity VX,VY (m yr−1)* 500 m*** Mouginot et al. (2019a)

w3 Antarctic Snow Accumulation snow accumulation rate (kg m−2 a−1) 1000 m Arthern et al. (2006)

* note that the x and y components of velocity are used here instead of the norm.

** gaps in 100 m mosaic filled in with bilinear resampled 200 m resolution REMA image.

*** originally 450 m, bilinear resampled to 500 m.

To create the training dataset, we use a sliding window to obtain square tiles cropped from the high resolution (250 m)

groundtruth bed elevation grids, with each tile required to be completely filled with data (i.e. no NaN values). Besides these

groundtruth bed elevation tiles, we also obtain other tiled inputs (see Table 2) corresponding to the same spatial bounding box135
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area. To reduce border edge artifacts in the prediction, the neural network model’s input convolutional layers (see Figure 1) use

no padding (also known as ‘valid’ padding) when performing the initial convolution operation. This means that the model input

grids (x,w1,w2,w3) have to cover a larger spatial area than the groundtruth grids (y). More specifically, the model inputs cover

an area of 11x11 km (e.g. 11x11 pixels for BEDMAP2) while the groundtruth grids cover an area of 9x9 km (36x36 pixels).

As the pixels of the groundtruth grids may not align perfectly with that of the model’s input grids, we use bilinear interpolation140

to ensure that all the input grids cover the same spatial bounds as that of the reference groundtruth tiles. The general location

of these training tiles are shown as orange boxes in Figure 2.

3.2 Model Design

Our DeepBedMap model is a Generative Adversarial Network (Goodfellow et al., 2014) composed of two convolutional

neural network models, a Generator Gθ that produces the bed elevation prediction, and a Discriminator Dη critic that will145

judge the quality of this output. The two models are trained to compete against each other, with the Generator trying to produce

images that are misclassified as real by the Discriminator, and the Discriminator learning to spot problems with the Generator’s

prediction in relation to the groundtruth. Following this is a mathematical definition of the neural network models and their

architecture.

The objective of the main super-resolution Generator model Gθ is to produce a high resolution (250 m) grid of Antarctica’s150

bed elevation ŷ given a low resolution (1000 m) BEDMAP2 (Fretwell et al., 2013) image x. However, the information contained

in BEDMAP2 is insufficient for this regular super-resolution task, so we provide the neural network with more context through

network conditioning (see Section 2.2). Specifically, the model is conditioned at the input block stage with three raster grids

(see Table 2): 1) ice surface elevation w1, 2) ice surface velocity w2, and 3) snow accumulation w3. This can be formulated as

follows:155

ŷ =Gθ(x,w
1,w2,w3) (1)

where Gθ is the Generator (see Figure 1) that produces high resolution image candidates ŷ. For brevity in the following

equations, we simplify Equation (1) to hide conditional inputs w1,w2,w3, so that all input images are represented using x. To

train the Generative Adversarial Network, we update the parameters of the Generator θ and Discriminator η as follows:

θ̂ = argmin
θ

1

N

N∑
n=1

LG(ŷn,yn) (2)160

η̂ = argmin
η

1

N

N∑
n=1

LD(ŷn,yn) (3)

where new estimates of the parameters θ̂ and η̂ are produced by minimizing the total loss functions LG and LD respectively

for the GeneratorG and DiscriminatorD. ŷn, yn are the set of predicted and groundtruth high resolution images overN training
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samples. The generator network’s loss LG is a custom perceptual loss function with four weighted components - content,

adversarial, topographic and structural loss. The discriminator network’s loss LD is designed to maximize the likelihood that165

predicted images are classified as fake (0) and groundtruth images are classified as real (1). Details of these loss functions are

described in Appendix A.

Noting that the objective of the GeneratorG is opposite to that of the DiscriminatorD, we formulate the adversarial min-max

problem following Goodfellow et al. (2014) as so:

min
G

max
D

V (G,D) = Ey∼Pdata(y)[lnD(y)] +Ex∼PG(x)
[ln(1−D(G(x)))] (4)170

where for the Discriminator D, we maximize the expectation E, or the likelihood that the probability distribution of the

Discriminator’s output fits D(y) = 1 when y ∼ Pdata(y), i.e. we want the Discriminator to classify the high resolution image

as real (1) when the image y is in the distribution of the groundtruth images Pdata(y). For the Generator G, we minimize

the likelihood that the Discriminator classifies the Generator output D(G(x)) = 0 when x∼ PG(x), i.e. we do not want the

Discriminator to classify the super resolution image as fake (0) when the inputs x is in the distribution of generated images175

PG(x). The overall goal of the entire network is to make the distribution of generated images G(x) as similar as possible to the

groundtruth y through optimizing the value function V .

DeepBedMap’s model architecture is adapted from the Enhanced Super Resolution Generative Adversarial Network (ESRGAN, Wang et al., 2018)

::::::::::::::::::::::::
(ESRGAN, Wang et al., 2019). The Generator model G (see Figure 1) consists of an input, core, and upsampling module.

The input module is made up of four sub-networks, each one composed of a convolutional neural network that processes180

the input image into a consistent 9x9 shaped tensor. Note that the MEaSUREs Ice Velocity (Mouginot et al., 2019b) in-

put has two channels, one each for the x and y velocity components. All the processed inputs are then concatenated to-

gether channel-wise before being fed into the core module. The core module is based on the ESRGAN architecture with 12

Residual-in-Residual Dense Blocks (see Wang et al., 2018, for details)
:::::::::::::::::::::::::::
(see Wang et al., 2019, for details), saddled in between

a pre-residual and post-residual convolutional layer. A skip connection runs from the pre-residual layer’s output to the post-185

residual layer’s output before being fed into the upsampling module. This skip connection (He et al., 2016) helps with the

neural network training process by allowing the model to also consider minimally processed information from the input mod-

ule, instead of solely relying on derived information from the residual block layers when performing the upsampling. The

upsampling module is composed of two upsampling blocks, specifically a nearest neighbour upsampling followed by a convo-

lutional layer and Leaky Rectified Linear Unit (LeakyReLU, Maas et al., 2013) activation, that progressively scales the tensors190

by 2x each time. Following this are two Deformable Convolutional layers (Dai et al., 2017) which produces the final output

super resolution DeepBedMap_DEM. This Generator model is trained to gradually improve its prediction by comparing the

predicted output with groundtruth images in the training regions (see Figure 2), using the total loss function defined in Equation

(A9).

The main differences between the DeepBedMap Generator model and ESRGAN are the custom input block at the begin-195

ning, and the Deformable Convolutional layers at the end. The custom input block is designed to handle the prior low resolution
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Figure 1. DeepBedMap Generator model architecture composed of three modules. The input module processes each of the four inputs (see

Table 2) into a consistent tensor. The core module processes the rich information contained within the concatenated inputs. The upsampling

module scales the tensor up by four times and does some extra processing to produce the output DeepBedMap_DEM.

BEDMAP2 image and conditional inputs (see Table 2). Deformable Convolution was chosen in place of the standard Convo-

lution so as to enhance the model’s predictive capability by having it learn dense spatial transformations.

Besides the Generator model, there is a separate adversarial Discriminator model D (not shown in paper). Again, we follow

ESRGAN’s (Wang et al., 2018)
:::::::::::::::
(Wang et al., 2019) lead by implementing the adversarial Discriminator network in the style of200

the Visual Geometry Group convolutional neural network model (VGG, Simonyan and Zisserman, 2014). The Discriminator

model consists of 10 blocks made up of a Convolutional, Batch Normalization (Ioffe and Szegedy, 2015) and LeakyReLU

(Maas et al., 2013) layer, followed by two fully-connected layers comprised of 100 and 1 neurons respectively. For numerical

stability, we omit the final fully-connected layer’s sigmoid activation function from the Discriminator model’s construction,

integrating it instead into the binary cross entropy loss functions at Equation (A2) and Equation (A3) using the log-sum-205

exp function. The output of this Discriminator model is a value ranging from 0 (fake) to 1 (real) that scores the Generator

model’s output image. This score is used by both the Discriminator and Generator in the training process, and helps to push the
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predictions towards more realistic bed elevations. More details of the neural network training setup can be found in Appendix

B.

4 Results210

4.1 DeepBedMap_DEM Topography
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Figure 2. DeepBedMap_DEM over the entire Antarctic continent. Plotted on an Antarctic Stereographic Projection (EPSG:3031) with

elevation referenced to the WGS84 datum. Grounding line is plotted as thin black line. Purple box shows Pine Island Glacier extent used in

Figure 3. Yellow box shows Thwaites Glacier extent used in Figure 5. Orange areas show locations of training tiles (see Table 1).

Here we present the output Digital Elevation Model (DEM) of the super-resolution DeepBedMap neural network model, and

compare it with bed topography produced by other methods. The resulting DEM has a 250 m spatial resolution, therefore a four-

times upsampled bed elevation grid product of BEDMAP2 (Fretwell et al., 2013). In Figure 2, we show that the full Antarctic-

wide DeepBedMap_DEM manages to capture general topographical features across the whole continent. The model is only215

valid for grounded ice regions, but we have produced predictions extending outside of the grounding zone area (including ice

shelf cavities) using the same bed elevation, surface elevation, ice velocity and snow accumulation inputs where such data
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is available up to the ice shelf front. The predicted
:::
We

:::::::::
emphasize

::::
that

:::
the bed elevation under ice shelves is only intended

to be used for visualization purposes. Alternatively, areas of
:::
the

:::
ice

::::::
shelves

::::
has

:::
not

::::
been

:::::
super

:::::::
resolved

::::::::
properly,

::::
and

::
is

:::
not

:::::::
intended

:::
for

::
ice

:::::
sheet

:::::::::
modelling

:::
use.

:::::
Users

:::
are

::::::::::
encouraged

::
to

:::
cut

:::
the

:::::::::::::::::
DeepBedMap_DEM

:::::
using

::::
their

::::::::
preferred

::::::::
grounding

::::
line220

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Bindschadler et al., 2011; Rignot et al., 2011; Mouginot et al., 2017),

::::
and

::::::
replace

:::
the

::::::
under

:::
ice

::::
shelf

:::::
areas

::::
with

:::::::
another

:::::::::
bathymetry

::::
grid

::::::
product

::::::::::::::::
(e.g. Group, 2020).

::::
The

::::::::
transition

::::
from

:::
the

:
DeepBedMap_DEM extending beyond

:
to

:::
the

::::::::::
bathymetry

::::::
product

::::::
across the grounding zone can be cut out and replaced with other bathymetry grid products, using interpolation to

smooth out the edges
:::
then

:::
be

::::::::
smoothed

:::::
using

::::::
inverse

:::::::
distance

:::::::::
weighting

::
or

::
an

:::::::::
alternative

:::::::::::
interpolation

::::::
method.

We now highlight some qualitative observations of DeepBedMap_DEM’s bed topography beneath Pine Island Glacier (Fig-225

ure 3) and other parts of Antarctica (Figure 4). DeepBedMap_DEM shows a terrain with realistic topographical features, having

fine-scale bumps and troughs that makes it rougher than that of BEDMAP2 (Fretwell et al., 2013) and BedMachine Antarctica

(Morlighem, 2019) while still preserving the general topography of the area (Figure 3). Over steep topographical areas such

as the Transantarctic Mountains (Figure 4a, 4h), DeepBedMap produced speckle (S) texture patterns. Along fast flowing ice

streams and glaciers (Figure 4b, 4c, 4d, 4e, 4f, 4g, 4h), we can see ridges (R) aligned parallel to the sides of the valley, i.e.230

along flow. In some cases, the ridges are also oriented perpendicular to the flow direction such at Whillans Ice Stream (Figure

4b), Bindschadler Ice Stream (Figure 4c) and Totten Glacier (Figure 4g), resulting in intersecting ridges that creates a box-like,

honeycomb structure. Over relatively flat regions in both West and East Antarctica (e.g. Figure 4g), there are some hummocky,

wave-like (W) patterns occasionally represented in the terrain. Terrace (T) features can occasionally be found winding along

the side of hills such as at the Gamburtsev Subglacial Mountains (Figure 4i).235

4.2 Surface Roughness

We compare the roughness of DeepBedMap_DEM versus BedMachine Antarctica with groundtruth grids from processed

Operation IceBridge data (Shi et al., 2010) using standard deviation as a simple measure of roughness (Rippin et al., 2014).

We calculate the surface roughness for a single 250 m pixel from the standard deviation of elevation values over a square

1250x1250 m area (i.e. 5x5 pixels) surrounding the central pixel. Focusing on Thwaites Glacier, the spatial 2D view of the240

DeepBedMap_DEM (Figure 5a) shows a range of typical topographic features such as hills and canyons. The calculated 2D

roughness for both DeepBedMap_DEM (Figure 5b) and the Groundtruth (Figure 5c) lie in a similar range from 0 m to 400 m

whereas the roughness of BedMachine Antarctica (Figure 5d) is mostly in the 0 m to 200 m range (hence the different colour

scale). Also, the roughness pattern for both DeepBedMap_DEM and the Groundtruth has a more distributed cluster pattern

made up of little pockets (especially towards the coastal region on the left, see Figure 5b and 5c), whereas the BedMachine245

Antarctica roughness pattern shows larger cluster pockets in isolated regions (see Figure 5d).

Taking a 1D transect over the 250 m resolution DeepBedMap_DEM, BedMachine Antarctica and groundtruth grids, we

illustrate the differences in bed topography and roughness from the coast towards the inland area of Thwaites Glacier with

a flight trace from Operation IceBridge (see Figure 6). For better comparison, we have calculated the Operation IceBridge

groundtruth bed elevation and roughness values from a resampled 250 m grid instead of using its native along-track resolution.250

All three elevation profiles are shown to follow the same general trend from the relatively rough coastal region (Figure 6a from
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Figure 3. Comparison of interpolated bed elevation grid products over Pine Island Glacier (see extent in Figure 2). a DeepBedMap (ours)

at 250 m resolution. b BEDMAP2 (Fretwell et al., 2013), originally 1000 m, bicubic interpolated to 250 m. c Elevation Difference between

DeepBedMap and BEDMAP2. d BedMachine Antarctica (Morlighem, 2019), originally 500 m, bicubic interpolated to 250 m.
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Figure 4. Closeup views of DeepBedMap_DEM around Antarctica. Top row shows Siple Coast locations. Middle row shows Weddell Sea

region locations. Bottom row shows East Antarctica locations. Features of interest are annotated as black text against a white background:

Ridges R, Speckle patterns S, Terraces T, Wave patterns W.
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Figure 5. Spatial 2D view of grids over Thwaites Glacier, West Antarctica. Plotted on an Antarctic Stereographic Projection (EPSG:3031)

with elevation and standard deviation values in metres referenced to the WGS84 datum. a DeepBedMap Digital Elevation Model. b 2D

roughness from the DeepBedMap_DEM grid. c 2D roughness from interpolated Operation IceBridge grid. d 2D roughness from bicubic

interpolated BedMachine Antarctica grid. Orange points in a correspond to transect sampling locations used in Figure 6. Note that color

scale of b and c is two times that of d.
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-1550 to -1500 km on x-scale), along the retrograde slope (Figure 6a from -1500 to -1450 km on x-scale), and into the interior

region. DeepBedMap_DEM features a relatively noisy elevation profile with multiple fine-scale (<10 km) bumps and throughs

similar to the groundtruth, while BedMachine Antarctica shows a smoother profile that is almost a moving average of the

groundtruth elevation (Figure 6a). Looking at the roughness statistic (Figure 6b), both the DeepBedMap_DEM and Operation255

IceBridge groundtruth grids have a mean standard deviation of about 40 m whereas BedMachine Antarctica has a mean of

about 10 m and rarely exceeds a standard deviation value of 20 m along the transect.

5 Discussion

5.1 Interpretation
:::
Bed

::::::::
Features

In Section 4.1, we show that the DeepBedMap model has produced a high resolution (250 m) result (see Figure 3) that can260

capture a detailed and realistic picture of the underlying bed topography. The fine scale bumps and troughs are the result of the

DeepBedMap Generator model learning to produce features that are similar to those found in the high resolution groundtruth

datasets it was trained on. However, there are also artifacts produced by the model. For example, the winding terrace (T, Figure

4) features are hard to explain, and though they resemble eskers (Drews et al., 2017), their placement along the sides of hills

does not support this view. Similarly, we are not sure why speckle (S, Figure 4) texture patterns are found over steep mountains,265

but the lack of high resolution training datasets likely leads the model to perform worse over these high gradient areas.

Another issue is that DeepBedMap will often pick up details from the high resolution ice surface elevation model (Howat

et al., 2019) input dataset, which may not be representative of the true bed topography. For example, the ridges (R, Figure

4) found along fast flowing ice streams and glaciers are likely to be the imprints of crevasses or flowstripes (Glasser and

Gudmundsson, 2012) observable from the surface. An alternative explanation is that the ridges, especially the honeycomb-270

shaped ones, are rhombohedral moraine deposits formed by soft sediment squeezed up into basal crevasses that are sometimes

found at stagnant surging glaciers (Dowdeswell et al., 2016a, b; Solheim and Louise Pfirman, 1985). We favour the first

intepretation as the positions of these bed features coincide with the surface features, and also because these ridges are more

likely to be eroded away in these fast flowing ice stream areas.

The hummocky wave-like (W) patterns we observe over the relatively flat and slower flowing areas are likely to result from275

surface megadune structures (Scambos, 2014). Alternatively, they may be ribbed or rogen morraine features that are formed in

an orientation transverse to the ice flow direction (Hättestrand, 1997; Hättestrand and Kleman, 1999). While any one of these

two explanations may be valid in different regions of Antarctica, we lean towards the conservative interpretation that these

features are the result of the DeepBedMap model overfitting to the ice surface elevation data.

5.2
:::::::::

Roughness280

In Section 4.2, we quantify that a well trained DeepBedMap neural network model can produce high roughness values more

comparable to the groundtruth than BedMachine Antarctica. While the mass conservation technique used by BedMachine
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Figure 6. Comparing bed elevation a and surface roughness b (standard deviation of elevation values) of each interpolated grid product (250

m resolution) over a transect (see Figure 5 for location of transect line). Purple values are from the super resolution DeepBedMap_DEM;

Orange values are from tension spline interpolated Operation IceBridge groundtruth points; Green values are from bicubic interpolated

BedMachine Antarctica.
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Antarctica (Morlighem et al., 2019) improves upon ordinary interpolation techniques such as bicubic interpolation and kriging,

their results are still inherently smooth by nature. The groundtruth grids show that rough areas do exist on a fine scale, and so

the high resolution models we produce should reflect that.285

DeepBedMap_DEM manages to capture much of the rough topography found in the Operation IceBridge groundtruth data,

especially near the coast (see Figure 6a, from -1550 to -1500 km on x-scale) where the terrain tends to be rougher. Along the

retrograde slope (see Figure 6a, from -1500 to -1450 km on x-scale), several of the fine-scale (<10 km) bumps and troughs

in DeepBedMap_DEM can be seen to correlate well in position with the groundtruth. In contrast, the cubic interpolated Bed-

Machine Antarctica product lacks such fine-scale (<10 km) bumps and troughs, appearing as a relatively smooth terrain over290

much of the transect. Previous studies that estimated basal shear stress over Thwaites Glacier have found a band of strong

bed extending about 80-100 km from the grounding line, with pockets of weak bed interspersed between bands of strong

bed further upstream (Joughin et al., 2009; Sergienko and Hindmarsh, 2013), a pattern that is broadly consistent with the

DeepBedMap_DEM roughness results (see Figure 5b).

In general, DeepBedMap_DEM produces a topography that is much more rougher, with standard deviation values more in295

line with those observed in the groundtruth (see Figure 6b). The roughness values for BedMachine Antarctica are consistently

lower throughout the transect, a consequence of the mass conservation technique using regularization parameters that yields

smooth results.
::
We

::::
note

::::
that

:::
the

:::::::::::::::::
DeepBedMap_DEM

::::
does

::::::
appear

:::::::
rougher

::::
than

:::
the

::::::::::
groundtruth

::
in

::::::
certain

:::::
areas.

::
It

::
is

:::::::
possible

::
to

:::::
tweak

:::
the

:::::::
training

::::::
regime

::
to

::::::::::
incorporate

::::::::
roughness

:::
(or

::::
any

::::::::
statistical

::::::::
measure)

::::
into

:::
the

:::
loss

::::::::
function

:::
(see

:::::::::
Appendix

:::
A)

::
to

::::
yield

:::
the

::::::
desired

:::::::
surface,

:::
and

:::
this

::::
will

::
be

::::::::
explored

::
in

:::::
future

::::
work

::::
(see

::::::
Section

:::::
5.4). Recent studies have stressed the importance300

of form drag (basal drag due to bed topography) over skin drag (or basal friction) on the basal traction of Pine Island Glacier

(Bingham et al., 2017; Kyrke-Smith et al., 2018), and the DeepBedMap super-resolution work here shows strong potential in

meeting that demand as a realistic high resolution bed topography dataset for ice sheet modelling studies.

::
In

:::::
terms

::
of

:::
bed

:::::::::
roughness

:::::::::
anisotropy,

::::::::::::
DeepBedMap

:
is
::::
able

::
to

:::::::
capture

::::::
aspects

::
of

::
it

::::
from

:::
the

::::::::::
groundtruth

::::
grids

:::
by

:::::::::
combining

::
1)

:::
ice

::::
flow

::::::::
direction

:::
via

:::
the

:::
ice

:::::::
velocity

::::::
grid’s

:
x
::::
and

::
y

::::::::::
components

::::::::::::::::::::
(Mouginot et al., 2019b)

:
,
::
2)

:::
ice

:::::::
surface

:::::
aspect

::::
via

:::
the305

::
ice

:::::::
surface

:::::::
elevation

::::
grid

:::::::::::::::::
(Howat et al., 2019),

::::
and

::
3)

:::
the

::::
low

::::::::
resolution

::::
bed

:::::::
elevation

:::::
input

::::::::::::::::::
(Fretwell et al., 2013).

::::::
There

:::
are

:::::::
therefore

:::::::
inherent

:::::::::::
assumptions

:::
that

:::
the

::::::::::
topography

::
of

:::
the

::::::
current

::::
bed

:
is
:::::::::
associated

::::
with

:::
the

::::::
current

:::
ice

::::
flow

::::::::
direction,

:::::::
surface

:::::
aspect

:::
and

:::::::
existing

::::
low

::::::::
resolution

::::::::::
BEDMAP2

:::::::::
anisotropy.

::::::::
Provided

:::
that

:::
the

::::::::
direction

::
of

:::
this

::::::
surface

:::::::
velocity

:::
and

::::::
aspect

:::
are

:::
the

::::
same

::
as

::::
bed

:::::::::
roughness

:::::::::
anisotropy,

::
as

::::::::::::
demonstrated

::
in

::::::::::::::::::
Holschuh et al. (2020)

:
,
:::
the

:::::
neural

:::::::
network

::::
will

:::
be

::::
able

::
to

::::::::
recognize

::
it

:::
and

:::::::
perform

::::::::::
accordingly.

::::::::
However,

::
if
:::
the

:::
ice

::::
flow

::::::::
direction

:::
and

::::::
surface

::::::
aspect

::
is

:::
not

:::::::::
associated

::::
with

:::
bed

:::::::::
anisotropy,

::::
then

::::
this310

:::::::::
assumption

::::
will

::
be

:::::::
violated

:::
and

:::
the

::::::
model

:::
will

::::
not

::::::
perform

:::::
well.

5.3 Limitations

The DeepBedMap model is trained only on a small fraction of the area of Antarctica, simply because the .
::::
This

::
is

:::::::
because

:::
the

:::::::::
pixel-based

:
convolutional neural network cannot be trained on sparse survey point measurements

:
,
:::
nor

::
is

::
it

::::
able

::
to

::::::::
constrain

::::
itself

::::
with

::::::::::
track-based

:::::
radar

::::
data.

:::
As

:::
the

:::::
along

:::::
track

:::::::::
resolution

::
of

:::::
radar

:::
bed

:::::
picks

:::
are

:::::
much

:::::::
smaller

::::
than

:::
the

::::
250

::
m

::::::
pixels,315

:
it
::
is

::::
also

:::
not

::::
easy

:::
to

:::::::
preserve

:::::::::
roughness

::::
from

:::::
radar

::::::
unless

::::::
smaller

::::::
pixels

:::
are

::::
used. The topography generated by the model
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is quite sensitive to the accuracy of its data inputs (see Table 1 and 2), and though this is a problem faced by many other

inverse methods, neural network models like ours
:::
the

:::
one

:::::::::
presented can be particularly biased towards the training dataset.

::::::::::
Specifically,

:::
the

::::::::::::
DeepBedMap

:::::
model

:::::::
focuses

::
on

::::::::
resolving

:::::
short

::::::::::
wavelength

:::::::
features

::::::::
important

:::
for

::::::::::::
sub-kilometre

:::::::::
roughness,

::::::::
compared

::
to

:::::::::::
BedMachine

::::::::
Antarctica

:::::::::::::::::::::
(Morlighem et al., 2019)

:::::
which

:::::::
recovers

:::::
large

::::
scale

:::::::
features

:::
like

::::::
ridges

:::
and

::::::
valleys

:::::
well.320

An inherent assumption in this methodology is that the training data sets have sampled the variable bed lithology of Antarc-

tica (Cox et al., 2018) sufficiently. This is unlikely to be true, introducing uncertainty in the result as different lithologies may

cause the same macro-scale bed landscapes to result in a range of surface features. In particular, the experimental model’s

topography is likely skewed towards the distribution of the training regions that tend to reside in coastal regions, especially325

over ice streams in West Antarctica (see Figure 2). Besides collecting more radio-echo sounding datasets to sample these

regions more densely, swath reprocessing of old datasets that have that capability (Holschuh et al., 2019) may be another

useful addition to the training set
:::::
While

:::
bed

::::::::
lithology

:::::
could

::
be

::::
used

:::
as

::
an

::::
input

:::
to

:::::
inform

:::
the

::::::::::::
DeepBedMap

:::::::
model’s

:::::::::
prediction,

:
it
::
is

::::::::::
challenging

::
to

:::
find

::
a
::::::
suitable

:::::::::
geological

::::
map

:::
(or

::::::::::
geopotential

::::::
proxy)

:::::::::::::::::::::::::::::::::::::
(see e.g. Aitken et al., 2014; Cox et al., 2018)

:::
for

:::
the

:::::
entire

::::::::
Antarctic

::::::::
continent

:::
that

::::
has

:
a
::::::::::
sufficiently

::::
high

::::::
spatial

:::::::::
resolution.

::::::
Ideally,

:::
the

::::::::::
lithological

::::
map

::::::::::::::::::::
(categorical/qualitative)330

:::::
would

::::
first

::
be

:::::::::
converted

::
to

::
a

:::::::
hardness

::::
map

:::::
with

::
an

::::::::::
appropriate

:::::::
erosion

:::
law

::::
and

::::::
history

:::::::::::
incorporated

:::::::::::
(quantitative).

:::::
This

::
is

::::::
because

::
it
::
is
::::::

easier
::
to

:::::
train

:::::::::
Generative

::::::::::
Adversarial

:::::::::
Networks

::
on

::::::::::
quantitative

:::::
data

::::
(e.g.

::::::::
hardness

::
as

::
a
:::::
scale

::::
from

::
0
::
to

::::
10)

:::::
rather

::::
than

:::::::::
categorical

::::
data

:::::::
variables

::::
(e.g.

:::::::::::
sedimentary,

:::::::
igneous

::
or

:::::::::::
metamorphic

::::::
rocks),

:::
the

:::::
latter

:::::
which

::::::
would

::::::
require

:
a
:::::
more

:::::::
elaborate

::::::
model

::::::::::
architecture

:::
and

::::
loss

:::::::
function

::::::
design.

5.4 Future directions335

:::
The

::::
way

:::::::
forward

:::
for

:::::::::::
DeepBedMap

::
is

::
to

::::::::
combine

::::::
quality

:::::::
datasets

:::::::
gathered

::
by

:::::::::::::
radioglaciology

::::
and

::::::
remote

::::::
sensing

::::::::::
specialists,

::::
with

:::
new

::::::::::::
advancements

:::::
made

:::
by

:::
the

::
ice

:::::
sheet

:::::::::
modelling

:::
and

:::::::
machine

::::::::
learning

::::::::::
community. While care has been taking

:::::
taken

to source the best possible datasets (see Table 1 and 2), we note that there is still room to improve the DeepBedMap_DEM

’s results.
::
are

::::
still

:::::
areas

:::::
where

:::::
more

::::
data

::
is

:::::::
needed.

::::::::::
Radio-echo

::::::::
sounding

::
is

:::
the

::::
best

::::
tool

::::::::
available

::
to

:::
fill

::
in
::::

the
::::
data

::::
gap,

::
as

:
it
::::
not

::::
only

:::::::
provides

:::
the

::::
high

:::::::::
resolution

:::::::
datasets

::::::
needed

:::
for

:::::::
training,

::::
but

:::
also

:::
the

::::::::::
background

::::::
coarse

:::::::::
resolution

:::::::::
BEDMAP340

::::::
dataset.

:::::::
Besides

::::::::
targetting

:::::::::
radio-echo

::::::::
sounding

:::::::::::
acquisitions

::::
over

:
a
:::::::
diverse

:::::
range

::
of

::::
bed

:::
and

::::
flow

::::::
types,

:::::
swath

:::::::::::
reprocessing

::
of

:::
old

:::::::
datasets

:::
that

:::::
have

:::
that

:::::::::
capability

:::::::::::::::::::
(Holschuh et al., 2020)

::::
may

::
be

:::::::
another

:::::
useful

::::::::
addition

::
to

:::
the

:::::::
training

:::
set.

::::
The

:::::
super

::::::::
resolution

::::::::::::
DeepBedMap

::::::::
technique

:::
can

::::
also

::
be

:::::::
applied

::
on

::::
bed

::::::::
elevation

:::::
inputs

:::::
newer

::::
than

::::::::::
BEDMAP2

::::::::::::::::::
(Fretwell et al., 2013)

:
,

::::
such

::
as

:::
the

:::::
1000

::
m

::::::::
resolution

:::::
DEM

::::
over

:::
the

::::::::
Weddell

:::
Sea

::::::::::::::::
(Jeofry et al., 2017)

:
,
:::
the

:::
500

:::
m

::::::::
resolution

:::::::::::
Bedmachine

:::::::::
Antarctica

::::::
dataset

:::::::::::::::
(Morlighem, 2019)

:
,
::
or

:::
the

::::::::
upcoming

:::::::::::
BEDMAP3.345

:
A
::::

way
:::

to
:::::::
increase

:::
the

:::::::
amount

::
of

::::
high

:::::::::
resolution

::::::::::
groundtruth

:::::::
training

::::
data

::::::
further

:::
is

::
to

::::
look

::
at

::::::::
formerly

::::::::
glaciated

:::::
beds.

:::::
There

:
is
::
a
::::::
wealth

::
of

::::
data

::::::
around

:::
the

:::::::
margins

::
of

:::::::::
Antarctica

::
in

:::
the

::::
form

::
of

:::::
swath

::::::::::
bathymetry

::::
data,

:::
and

::::
also

:::
on

::::
land

::
in

::::
areas

::::
like

::
the

::::::
former

::::::::::
Laurentide

::
ice

::::::
sheet.

:::
The

::::::
current

::::::
model

::::::::::
architecture

::::
does

:::
not

:::::::
support

:::::
using

:::::
solely

:::::::::
‘elevation’

::
as

:::
an

:::::
input,

:::::::
because

:
it
::::
also

:::::::
requires

:::
ice

::::::::
elevation,

:::
ice

:::::::
surface

:::::::
velocity

:::
and

:::::
snow

:::::::::::
accumulation

:::::
data.

::
In

:::::
order

::
to

:::::::
support

::::
using

:::::
these

:::::::::
paleo-beds

:::
as

::::::
training

:::::
data,

:::
one

:::::
could

:::::
either:

:
350
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::
1.

::::
Have

::
a

:::::
paleo

::
ice

:::::
sheet

::::::
model

:::
that

::::::::
provides

::::
these

:::
ice

:::::::
surface

::::::::::
observation

:::::::::
parameters.

:::::::::
However,

::::::::
continent

::::
scale

:::
ice

:::::
sheet

::::::
models

::::
quite

:::::
often

:::::::
produce

::::
only

::::::::
kilometre

::::
scale

:::::::
outputs,

:::
and

:::::
there

:::
are

:::::::
inherent

::::::::::
uncertainties

::::
with

::::
past

:::
ice

::::
sheet

:::::::::::::
reconstructions

:::
that

::::
may

::::
bias

:::
the

:::::::
resulting

::::::
trained

::::::
neural

:::::::
network

::::::
model.

::
2.

:::::::::
Modularize

:::
the

::::::
neural

:::::::
network

:::::
model

:::
to

::::::
support

:::::::
different

::::
sets

::
of

:::::::
training

::::
data.

::::
One

:::::
main

::::::
branch

:::::
would

:::
be

::::::
trained

:::
like

::
a

:::::
Single

::::::
Image

:::::
Super

:::::::::
Resolution

::::::::
problem

:::::::::::::::
(Yang et al., 2019)

:
,
:::::
where

:::
we

:::
try

::
to

::::
map

::
a

:::
low

:::::::::
resolution

::::::::::
BEDMAP2

:::
tile

::
to

::
a

::::
high355

::::::::
resolution

::::::::::
groundtruth

::::::
image

:::
(be

::
it

::::
from

::
a
:::::::::::
contemporary

:::::
bed,

:::::
paleo

::::
bed,

::
or

:::::::
offshore

:::::::::::
bathymetry).

::::
The

:::::::
optional

::::::::::
conditional

:::::::
branches

::::::
would

::::
then

:::
act

::
to
:::::::

support
::::
and

:::::::
improve

:::
on

:::
the

:::::
result

:::
of

:::
this

:::::
naive

:::::
super

:::::::::
resolution

:::::::
method.

:::::
This

::::::
design

::
is

:::::
more

::::::::::
complicated

::
to

:::
set

::
up

::::
and

:::::
train,

:::
but

::
it

:::
can

:::::::
increase

:::
the

::::::::
available

:::::::
training

::::
data

::
by

:::
at

::::
least

::
an

:::::
order

::
of
::::::::::

magnitude,
::::
and

::::
lead

::
to

:::::
better

::::::
results.

::::
From

::
a

::::::
satellite

::::::
remote

:::::::
sensing

:::::::::
perspective,

::
it
::
is

::::::::
important

::
to

:::::::
continue

:::
the

::::
work

:::
on

::::::::
increasing

::::::
spatial

:::::::
coverage

::::
and

:::::::::::
measurement360

::::::::
precision.

:
Some of the conditional datasets we use

::::
used

:
such as REMA (Howat et al., 2019) and MEaSUREs Ice Velocity

(Mouginot et al., 2019b) contain data gaps which introduce artifacts in the DeepBedMap_DEM, and those holes need to be

patched up for proper continent-wide prediction.
:
A

::::::::::::
sub-kilometre

::::::
spatial

:::::::::
resolution

::::::
surface

:::::
mass

:::::::
balance

::::::
dataset

::::
will

::::
also

::::
prove

::::::
useful

::
to

:::::::
replace

:::
the

:::::
snow

:::::::::::
accumulation

::::::
dataset

:::::::::::::::::::
(Arthern et al., 2006)

:::
used

::
in
::::

this
:::::
work.

:
As the DeepBedMap model

relies on data from multiple sources which are collected over different epochs, it has no proper sense of time. Ice elevation365

change captured using satellite altimeters (e.g. from
:::
such

:::
as

:::::
from

::::::::
Cryosat-2

::::::::::::::::
(Helm et al., 2014)

:
, ICESat-2 (Markus et al.,

2017)) ,
:::

or
:::
the

:::::::::
upcoming

::::::::
CRISTAL

::::::::::::::::
(Kern et al., 2020) could be added as an additional input to better account for temporal

factors. It is possible to apply the super resolution DeepBedMap technique on bed elevation inputs newer than BEDMAP2

(Fretwell et al., 2013), such as the 1000 m resolution DEM over the Weddell Sea (Jeofry et al., 2017) or the 500 m resolution

Bedmachine Antarctica dataset (Morlighem, 2019).370

Our DeepBedMap modelis modular by design , and
:::
The

::::::::::::
DeepBedMap

:::::::
model’s

::::::::
modular

:::::
design

::::
(see

:::::::
Section

::::
3.2)

::::::
means

the different modules (see Figure 1) can be improved on and adapted for future use cases. The architecture of the
::::::::
Generator

:::::
model

:::::::::::
architecture’s

:
input module can be modified to handle new datasets such as the ones suggested above, or redesigned to

extract a greater amount of information for better performance. Similarly, the core and upsampling modules which are based

on ESRGAN (Wang et al., 2018)
::::::::::::::::
(Wang et al., 2019) can be replaced with newer, better architectures as the need arises. The375

:::::::::::
Discriminator

::::::
model

:::::
which

::
is

::::::::
currently

:::
one

::::::::
designed

:::
for

:::::::
standard

::::::::
computer

::::::
vision

:::::
tasks

:::
can

::::
also

::
be

::::::::
modified

::
to

::::::::::
incorporate

::::::::
glaciology

:::::::
specific

:::::::
criteria.

:::
For

::::::::
example,

:::
the

::::::::
generated

:::
bed

::::::::
elevation

::::::
image

::::
could

:::
be

::::::::::
scruntinized

:::
by

:::
the

:::::::::::
Discriminator

::::::
model

::
to

::::
have

::::
valid

:::::::::
properties

::::
such

::
as

::::::::::
topographic

::::::
features

::::
that

:::
are

::::::
aligned

::::
with

:::
the

:::
ice

::::
flow

::::::::
direction.

:::
The

:
redesigned neural network

model can be retrained from scratch or fine-tuned using the trained weights from DeepBedMap to further improve the predictive

performance. Taken together, these advances will lead to an even more accurate and higher resolution bed elevation model.380

6 Conclusions

The DeepBedMap convolutional neural network method presents a data-driven approach to better resolve the bed topography

of Antarctica using existing data. It is an improvement beyond simple interpolation techniques, generating realistic high spatial
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resolution (250 m) topography that preserves detail in bed roughness and is adaptable for catchment to continent-scale studies

on ice sheets. Unlike other inverse methods that rely on some explicit parameterization of ice-flow physics, the model uses385

deep learning to find suitable neural network parameters via an iterative error minimization approach. This makes the resulting

model particularly sensitive to the training data set, emphasizing the value of densely spaced bed elevation datasets and the

need for such sampling over a more diverse range of Antarctic substrate types. The use of Graphical Processing Units (GPUs)

for training and inference allows the neural network method to scale easily, and the addition of more training datasets will

allow it to perform better.390

The work here is not intended to discourage the usage of other inverse modelling
:
or

::::::
spatial

:::::::::
statistical techniques, but to

introduce an independent methodology, with an outlook towards combining the strengths of the two
::::
each

::
of

::::
their

::::::::
strengths.

Once properly trained, the DeepBedMap model runs quickly
:::::
(about

:
3
:::::::
minutes

:::
for

:::
the

:::::
whole

::::::::
Antarctic

:::::::::
continent) and produces

realistic rough topography, which when merged
:
.
:::::::::
Combining

:::
the

::::::::::::
DeepBedMap

:::::
model

:
with more physically based mass con-

servation inverse approaches (e.g. Morlighem et al., 2019) will likely result in more efficient ways of generating accurate bed395

elevation maps of Antarctica. One side product resulting from this work is a test-driven development framework that can be

used to measure and compare the performance of upcoming bed terrain models. The radioglaciology community has already

begun to compile a new comprehensive bed elevation/ice thickness dataset for Antarctica, and there has been discussions to

combine various terrain interpolation techniques in an ensemble to collaboratively create the new BEDMAP3.

Code availability. Python code for data preparation, neural network model training and visualization of model outputs are freely available at400

https://github.com/weiji14/deepbedmap. Neural network model training experiment runs are also recorded at https://www.comet.ml/weiji14/deepbedmap.

Data availability. DeepBedMap_DEM available through the Open Science Framework platform at https://doi.org/10.17605/OSF.IO/96APW.

Pine Island Glacier dataset (Bingham et al., 2017) available on request from Robert Bingham. Carlson Inlet dataset (King, 2011) avail-

able on request from Edward King. Bed elevation datasets from Wilkes Subglacial Basin (Ferraccioli et al., 2018) and Rutford Ice Stream

(King et al., 2016) available from British Antarctic Survey’s Polar Data Centre (https://ramadda.data.bas.ac.uk). Other Antarctic bed el-405

evation datasets available from Center for Remote Sensing of Ice Sheets (https://data.cresis.ku.edu/data/rds) or from National Snow and

Ice Data Center (https://nsidc.org/data/IRMCR2/versions/1). BEDMAP2 (Fretwell et al., 2013) and REMA (Howat et al., 2018) available

from Polar Geospatial Center (http://data.pgc.umn.edu). MEaSUREs ice velocity data (Mouginot et al., 2019b) available from NSIDC

(https://nsidc.org/data/nsidc-0754/versions/1). Antarctic Snow Accumulation data (Arthern et al., 2006) available from British Antarctic

Survey (https://secure.antarctica.ac.uk/data/bedmap2/resources/Arthern_accumulation).410

Appendix A: Details of loss function components

The loss function, or cost function, is a mathematical function that maps a set of input variables to an output loss value. The loss

value can be thought of as a weighted sum of several error metrics between the neural network’s prediction and the expected
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output or groundtruth. It is this loss value which we want to minimize so as to train the neural network model to perform better,

and we do this by iteratively optimizing the parameters in the loss function. Following this are the details of the various loss415

functions that make up the total loss function of the DeepBedMap Generative Adversarial Network model.

A1 Content Loss

To bring the pixel values of the generated images closer to that of the groundtruth, we first define the Content Loss function

L1. Following ESRGAN (Wang et al., 2018)
:::::::::::::::
(Wang et al., 2019), we have:

L1 =
1

n

n∑
i=1

||ŷi− yi||1 (A1)420

where we take the mean absolute error between the Generator Network’s predicted value ŷi and the groundtruth value yi,

respectively over every pixel i.

A2 Adversarial Loss

Next, we define an Adversarial Loss to encourage the production of high resolution images ŷ closer to the manifold of natural

looking digital elevation model images. To do so, we introduce the standard discriminator in the form of D(y) = σ(C(y))425

where σ is the sigmoid activation function and C(y) is the raw, non-transformed output from a discriminator neural network

acting on high resolution image y. The ESRGAN model (Wang et al., 2018)
::::::::::::::::
(Wang et al., 2019) however, employs an im-

proved Relativistic-average Discriminator (Jolicoeur-Martineau, 2018) denoted byDRa. It is defined asDRa(y, ŷ) = σ(C(y)−
Eŷ[C(ŷ)]), where Eŷ[·] is the arithmetic mean operation carried out over every generated image ŷ in a mini-batch. We use a

binary cross entropy loss as the discriminator’s loss function defined as follows:430

LRaD =−Ey[ln(D(y, ŷ))]−Eŷ[ln(1−D(ŷ,y))] (A2)

The generator network’s adversarial loss is in a symmetrical form:

LRaG =−Ey[ln(1−D(y, ŷ))]−Eŷ[ln(D(ŷ,y))] (A3)

A3 Topographic Loss

We further define a Topographic Loss so that the elevation values in the super resolved image make topographic sense with435

respect to the original low resolution image. Specifically, we want the mean value of each 4x4 grid on the predicted super

resolution (DeepBedMap) image to closely match its spatially corresponding 1x1 pixel on the low resolution (BEDMAP2)

image.
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First, we apply a 4x4 Mean Pooling operation on the Generator Network’s predicted super resolution image:

¯̂yj =
1

n

n∑
i=1

ŷi (A4)440

where ¯̂yj is the mean of all predicted values ŷi across the 16 super-resolved pixels i within a 4x4 grid corresponding to the

spatial location of one low resolution pixel at position j. Following this, we can compute the Topographic Loss as follows:

LT =
1

m

m∑
i=1

||¯̂yj −xj ||1 (A5)

where we take the mean absolute error between the mean of the 4x4 super-resolved pixels calculated in Equation (A4) ¯̂yj

and that of the spatially corresponding low resolution pixel xj , respectively over every low resolution pixel j.445

A4 Structural Loss

Lastly, we define a Structural Loss that takes into account luminance, contrast and structural information between the predicted

and groundtruth images. This is based on the Structural Similarity Index (SSIM, Wang et al., 2004) and is calculated over a

single window patch as so:

SSIM(ŷ,y) =
(2µŷµy + c1)(2σŷy + c2)

(µ2
ŷ +µ2

y + c1)(σ2
ŷ +σ2

y + c2)
(A6)450

where µŷ and µy are the arithmetic mean of predicted image ŷ and groundtruth image y respectively over a single window

that we set to 9x9 pixels, σŷy is the covariance of ŷ and y, σ2
ŷ and σ2

y are the variance of ŷ and y respectively, and c1 and c2 are

two variables set to 0.012 and 0.032 to stabilize division with a weak denominator. Thus, we can formulate the Structural Loss

as follows:

LS = 1− 1

p

p∑
i=1

SSIM(ŷ,y)p (A7)455

where we do 1 minus the mean of all structural similarity values SSIM(ŷ,y) calculated over every patch p obtained via a

sliding window over the predicted image ŷ and groundtruth image y.

A5 Total Loss Function

Finally, we compile the loss functions for the discriminator and generator networks as follows:

LD = LRaD (A8)460

LG = ηL1 +λLRaG + θLT + ζLS (A9)
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where η, λ, θ, and ζ are the scaled weights for the content L1, adversarial LD, topographic LT and structural losses LS

respectively (see Table B1 for values used). The loss functions LD and LG are minimized in an alternate 1:1 manner so as to

solve the entire Generative Adversarial Network’s objective function defined in Equation (4).

Appendix B: Neural Network Training Details465

The neural networks were developed using Chainer v7.0.0 b2 (Tokui et al., 2019), and trained using full precision (floating

point 32) arithmetic. Experiments were carried out on 4 Graphical Processing Units (GPUs), specifically 2 Tesla P100 GPUs

and 2 Tesla V100 GPUs. On the Tesla V100 GPU setup, one training run with about 150 epochs takes about 30 minutes.

This is using a batch size of 128 on a total of 3826 training image tiles, with 202 tiles reserved for validation, i.e. a 95/5

training/validation split. We next describe the method used to evaluate each DeepBedMap candidate model, as well as the470

high-level way in which we semi-automatically arrived at a good model via semi-automatic hyperparameter tuning.

Table B1. Optimized Hyperparameter Settings.

Hyperparameter Setting Tuning Range

Learning rate (for both Generator and Discriminator) 1.7e-4 2e-4 to 1e-4

Number of Residual-in-Residual Blocks 12 8 to 14

Mini-batch size 128 64 or 128

Number of epochs 140 90 to 150

Residual scaling 0.2 0.1 to 0.5

Content Loss Weighting η 1e-2 Fixed

Adversarial Loss Weighting λ 2e-2 Fixed

Topographic Loss Weighting θ 2e-3 Fixed

Structural Loss Weighting ζ 5.25 Fixed

He Normal Initialization Scaling 0.1 Fixed

Adam optimizer epsilon 0.1 Fixed

Adam optimizer beta1 0.9 Fixed

Adam optimizer beta2 0.99 Fixed

To check for overfitting, we evaluate the Generative Adversarial Network model on the validation dataset after each epoch

using two performance metrics - a peak signal-to-noise ratio (PSNR) metric for the Generator, and an accuracy metric for the

Discriminator. Training stops when these validation performance metrics show little improvement, roughly at 120
:::
140

:
epochs.

Next, we conduct a full evaluation on an independent test dataset, comparing the model’s predicted grid output against actual475

groundtruth xyz points. Using the ‘grdtrack’ function in Generic Mapping Tools v6.0 (Wessel et al., 2019), we obtain the grid

elevation at each groundtruth point and use it to calculate the elevation error on a point-to-point basis. All of these elevation
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errors are then used to compute a Root Mean Squared Error (RMSE) statistic over this independent test site. This RMSE value

is used to judge the model’s performance in relation to baseline bicubic interpolation, and
:
is

:
also the metric minimized by a

hyperparameter optimization algorithm which we will describe next.480

Neural networks contain a lot of hyperparameter settings that need to be decided upon, and Generative Adversarial Networks

are particularly sensitive to different hyperparameter settings. To stabilize model training and obtain better performance, we

tune the hyperparameters (see Table B1) using a Bayesian approach. Specifically, we employ the Tree-structured Parzen Esti-

mator (Bergstra et al., 2011) from the Optuna v0.14
::::
v2.0.0 (Akiba et al., 2019) library with default settings as per the Hyperopt

library (Bergstra et al., 2015). Given that we have 4 GPUs, we choose to parallelize the hyperparameter tuning experiments485

asynchronously between all four devices. The estimator first conducts 20 random experimental trials to scan the hyperparame-

ter space, gradually narrowing down to a few candidate hyperparameters in subsequent experiments. We set each GPU to run

a target of 30
::
60 experimental trials (i.e. a total of 120

:::
240), though unpromising trials that have exploding/vanishing gradi-

ents are pruned prematurely
::::
using

:::
the

:::::::::
Hyperband

:::::::::
algorithm

:::::::::::::
(Li et al., 2018) to save on time and computational resources. The

top models from these experiments undergo further visual evaluation, and we continue to conduct further experiments until a490

suitable candidate model is found.
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