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Abstract. Nowadays many seasonal forecasting centres provide dynamical predictions of sea ice. While initializing sea ice

by assimilating sea ice concentration (SIC) is common, constraining initial conditions of sea ice thickness (SIT) is only at its

early stages. Here, we make use of the availability of Arctic-wide winter SIT observations covering 2011-2016 to constrain

SIT in the ECMWF (European Centre for Medium-Range Weather Forecasts) ocean–sea-ice analysis system with the aim of

improving the initial conditions of the coupled forecasts. The impact of the improved initialization on the predictive skill of5

Arctic sea ice for lead times of up to 7 months is investigated in a low-resolution analogue of the currently operational ECMWF

seasonal forecasting system SEAS5.

By using winter SIT information merged from CS2 and SMOS (CS2SMOS: CryoSat2 Soil Moisture and Ocean Salinity),

substantial changes of sea ice volume and thickness are found in the ocean–sea-ice analysis, including damping of the overly

strong seasonal cycle of sea ice volume. Compared with the reference experiment, which does not use SIT information, fore-10

casts initialized using SIT data show a reduction of the excess sea ice bias and an overall reduction of seasonal sea ice area

forecast errors of up to 5% at lead months 2 to 5. Using the Integrated Ice Edge Error (IIEE) metric, we find significant im-

provement of up to 28% in the September sea ice edge forecast started from April. However, sea ice forecasts for September

started in spring still exhibit a positive sea ice bias, which points to too slow melting in the forecast model. A slight degrada-

tion in skill is found in the early freezing season sea ice forecasts initialized in July and August, which is related to degraded15

initial conditions during these months. Both the ocean reanalyses, with and without SIT constraint, show strong melting in the

middle of the melt season compared to the forecasts. This excessive melting related to positive net surface radiation biases in

the atmospheric flux forcing of the ocean reanalyses remains and consequently degrades analysed summer SIC. The impact of

thickness initialization is also visible in the sea surface and near-surface temperature forecasts. While positive forecast impact

is seen in near-surface temperature forecasts of early freezing season initialized in May (when the sea ice initial conditions20

have been observationally constrained in the preceding winter months), negative impact is seen for the same season when ini-

tialised in August month when the sea ice initial conditions are degraded. We conclude that the strong thinning by CS2SMOS

initialization mitigates or enhances seasonally dependent forecast model errors in sea ice and near-surface temperatures in all

seasons.
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The results indicate that the memory of SIT in the spring initial conditions last into autumn, influencing forecasts of the25

peak summer melt and early freezing seasons. Our results demonstrate the usefulness of new sea ice observational products in

both data assimilation and forecasting systems, and strongly suggest that better initialization of SIT is crucial for improving

seasonal sea ice forecasts.

1 Introduction

Sea ice is an integral part of the Earth system as it regulates the heat, moisture and momentum flux exchange between the polar30

oceans and the atmosphere. Decline in Arctic sea ice is a visible indicator of the changing climate. Forecasting Arctic sea ice has

advanced significantly in the last decade, with most forecasting centres using prognostic sea ice models operationally, allowing

us to explore the sea ice forecast skill on long lead times from weeks to months to seasons. Possibilities of economically viable

shorter shipping routes across the Arctic in the summer are constantly being explored. Monthly and seasonal outlooks of sea

ice products are therefore in great demand especially by the Arctic communities, maritime and resource extraction industries.35

Moreover, there is increasing scientific evidence that warming and sea ice loss in the Arctic due to climate change affect

the European weather and climate (Balmaseda et al. (2010), Mori et al. (2014), Overland et al. (2016), Ruggieri et al. (2016)).

Unlike sea ice concentration and extent, long records of satellite observations of sea ice thickness are sorely lacking (Laxon

et al. (2003), Kwok and Rothrock (2009), Haas et al. (2010), Meier et al. (2014), Sallila et al. (2019), Scarlat et al. (2020)).

Since reliable estimates of long-term, basin-wide sea ice extent and volume are needed for understanding climate change and40

for initializing numerical weather forecasts, there is growing interest in using improved and new types of sea ice observations in

data assimilation systems (Lindsay et al. (2008), Blanchard-Wrigglesworth et al. (2011), Tietsche et al. (2013), Sigmond et al.

(2013), Balmaseda et al. (2015)). Earlier studies propose that long-term memory in the winter sea ice thickness can potentially

improve summer sea ice extent forecasts (Guemas et al. (2016), Tietsche et al. (2014), Day et al. (2014)). They concluded that

potential predictability mainly originates from the persistence or advection of sea ice thickness anomalies, interaction with45

ocean and atmosphere and changes in the radiative forcing.

While assimilation of sea ice concentration (SIC) is routinely done in operational sea ice forecasting, assimilation of sea

ice thickness (SIT) is at its early stages (Allard et al. (2018), Xie et al. (2018), Mu et al. (2018), Fritzner et al. (2019)). These

studies have found that SIT initialization improves sea ice forecasts in forced ocean–sea-ice forecasting systems which were

run for short time periods spanning from 3 months up to 3 years. Blockley and Peterson (2018) reported for the first time50

the positive impact of winter SIT initialization on the skill of seasonal forecasts for summer sea ice forecasts using a fully-

coupled atmosphere–ocean–sea-ice model. All of these studies used either European Space Agency’s Cryosat-2 (CS2) radar

altimeter freeboard SIT measurements alone (Laxon et al. (2013), Hendricks et al. (2016)) or merged with SMOS radiometric

measurements (Kaleschke et al. (2012),Tian-Kunze et al. (2014)) in a dataset called CS2SMOS (Ricker et al. (2017)).

Currently SIC is the only sea ice variable assimilated in the ECMWF ocean-sea–ice data assimilation system. Although the55

ECMWF sea ice reanalysis and reforecasts compare well with other systems (Chevallier et al. (2017), Uotila et al. (2018),

Zampieri et al. (2018)), they are affected by noticeable errors (Tietsche et al. (2018)). There are large biases in sea ice forecasts
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from months to seasons, pointing to uncertainties in both the models and observations used in the assimilation and forecasting

systems. Here we explore the pathway to improve the initialization using observations of sea ice thickness which covers both

the thick and thin ice regions of the Arctic. We then assess the impact of the changed sea ice initial condition on the forecast60

skill on long lead times of months to seasons. Compared to Blockley and Peterson (2018), who looked only at summer forecast

skills, our study for the first time assesses the forecast impact of SIT initialization on all seasons using a fully-coupled seasonal

forecasting system. We use the ECMWF coupled ensemble seasonal forecasting system SEAS5 and CS2SMOS thickness

observations.

The rest of the article is organised as follows. Section 2 describes the methodology of sea ice thickness initialization and65

forecasting, including a brief description of ocean–sea-ice models, the assimilation system, the atmosphere-ocean–sea-ice

coupled forecasting system, observations used and the experimental set-up. Section 3 presents the main results: the impact

of new SIT observations on the analysed sea ice state and the impact of the changed sea ice initialization on seasonal range

forecasts. Finally, Section 4 provides the summary of the findings with concluding remarks.

2 Observations and Methods70

The procedure followed here to assess the impact of SIT information follows a twin experiment approach. Each of the exper-

iments consists of two distinctive steps: 1) the production of a set of ocean and sea ice initial conditions by conducting twin

ocean–sea-ice assimilation experiments (ocean–sea-ice reanalyses; abbreviated as ORA), which only differ in the use of SIT

information ; and 2) the production of a set of twin retrospective seasonal forecast (reforecast) experiments, initialized from the

respective ORA. The ORA twin reanalyses are a low resolution variant of the currently operational ORAS5 (Zuo et al. (2019)).75

The seasonal forecast experiments are also low resolution versions of the operational ECMWF seasonal forecasting system

SEAS5 (Stockdale et al. (2018), Johnson et al. (2018)). The impact of SIT in the ocean initial conditions and seasonal forecast

is then evaluated, using verification against observational datasets and other more specific diagnostics. The verification will

also use fields from ORAS5 and ERA-5 (ECMWF atmospheric Re-Analysis-5); Hersbach et al. 2019) reanalyses. Although

the datasets used for verification are not strictly independent, it is relevant as cross-check variables evaluation, for instance80

between SIC and SIT assimilation. SIT verification is also conducted as a sanity check of the nudging approach compared to

the reference experiment. In this section we first describe the sea ice information used for both initialization and verification,

and then offer a brief description of the experimental set-up.

In addition to the sea ice data sets described below, the initialization step uses ocean observations: sea surface temperature,

sea-level anomalies from altimeter and in-situ temperature and salinity, which are the same as those used in ORAS5, as85

described in Zuo et al. (2019).
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2.1 Sea Ice Observational information

2.1.1 Sea Ice Concentration Product: OSI-401-b

The two ocean–sea-ice reanalysis experiments presented here assimilate the sea ice concentration product of the EUMETSAT

Ocean and Sea Ice Satellite Application Facility (OSI SAF, www.osi-saf.org; product identifier OSI-401-b (Tonboe et al.90

(2017))). These Level-3 OSI SAF SIC product (OSI-401-b) is produced as daily-mean fields with only a few hours latency.

In contrast to the operational ORAS5 system, which uses Level-4 SIC data, experiments presented in this study use Level-3

SIC data. The main difference is that Level-4 products rely on gap-filling, whereas Level-3 products have missing data, for

instance if the satellite has a temporary malfunction, or if certain areas like the North Pole are not observed. The OSI-401-b

SIC observational estimate is based on SSMIS (Special Sensor Microwave Imager / Sounder) measurements. SIC is provided95

as the percentage of an ocean grid point covered by sea ice. The product comes in a polar stereographic grid of 10km horizontal

resolution with varying pole hole size.

The impact of Level-3 SIC observations in the initialization is reported to have neutral forecast impact on seasonal sea ice

forecasts and positive impact on sub-seasonal range (Balan-Sarojini et al. (2019)). The OSISAF OSI-401-b SIC data set is also

used for verification of SIC and sea ice edge.100

2.1.2 Sea Ice Thickness product: CS2SMOS

A recent initiative led by the Alfred Wegener Institute provides a merged product of Arctic-wide winter ice thickness that

combines thick-ice retrievals by CryoSat2 (CS2) satellite and thin-ice retrievals by the Soil Moisture and Ocean Salinity

(SMOS) satellite. This merged sea ice thickness observational product, CS2SMOS (https://spaces.awi.de/display/CS2SMOS,

Ricker et al. (2017)), is the first ever multi-sensor ice thickness product for the Arctic. CS2 (Hendricks et al. (2016)) measures105

freeboard (the height of the ice or snow surface above the water level) using altimetry, whereas SMOS (Tian-Kunze et al.

(2014)) measures brightness temperatures in the L-band microwave frequencies. Both measurements are converted to ice

thickness in metres. Due to their different measurement principles, SMOS retrievals should be reliable for ice thinner than

about 1 m and CS2 retrievals for ice thicker than 1 m. The merged product can hence represent the entire thickness range

covering the whole Arctic with reasonable accuracy (Ricker et al. (2017)). CS2 and SMOS are merged using an optimal110

interpolation scheme to produce the CS2SMOS product, which is available on a weekly basis on an Equal-Area Scalable Earth

Grid version 2 (EASE2) grid with 25km horizontal resolution. Both the CS2 and SMOS retrievals are not possible in the melt

season due to signal contamination owing to the presence of melt ponds, and wet and warm snow and ice surfaces. It is only

available for 5 full months from November to March of the ice growth season every year.

The CS2SMOS SIT information has been assimilated in one of the twin ORA experiments, during the November-March115

period. It has also been used for verification of initialization in those months. We emphasize that this dataset does not provide

SIT information during the period April–October. Nevertheless, there is still substantial impact in the April–October period

from constraining sea ice thickness during the November–March period, as we will see in Section 3 – a truly year-round impact.
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2.2 Methods

2.2.1 Ocean–sea-ice Reanalysis Experiments120

In order to assess the impact of new sea ice thickness observations on the assimilation, we carry out two ORAs as shown in

Table 1. They are 1) a reference experiment with SIC assimilation (ORA-REF), and 2) an experiment with SIC assimilation

and sea ice thickness constraint (ORA-SIT). Experiments ORA-REF and ORA-SIT are run for the time period January 2011 to

December 2016, because these are the full years for which CS2SMOS observations were available at the time of experimenta-

tion. Note that ORA-REF is a continuation of a longer experiment which started in 2005 and ORA-SIT starts from ORA-REF125

on the 1st of January, 2011.

Experiment

name

SIC constraint SIT

constraint

Time period Description

ORA-REF Yes No 2011-2016 SIC assimilation

ORA-SIT Yes Yes 2011-2016 SIC assimilation and

SIT nudging

Table 1. Specifications of the ocean–sea-ice assimilation experiments

Our reanalysis experiments are forced by near-surface air temperature, humidity and winds as well as surface radiative

fluxes from the atmospheric reanalysis ERA-Interim (ERA-I) (Dee et al. (2011)) until 2015 and from the ECMWF operational

analysis from 2015 to 2016. We use the same set-up of NEMOVAR (Variational data assimilation system for NEMO (Nucleus

for European Modelling of the Ocean) ocean model) used in ORAS5 (Zuo et al. (2019)) – in particular, almost the same130

observations are assimilated. The only differences are the following: a) a coarser model resolution as described below, b)

different assimilated SIC observations compared to the current operational one and, c) a longer assimilation window of 10 days

instead of 5 days.

The ocean general circulation model used in these experiments is NEMO version 3.4 (Madec (2008)) with a horizontal

resolution of approximately 1◦ and 42 vertical layers. The grid is tripolar, with the poles over Northern Canada, Central Asia135

and Antarctica enabling higher resolution across the Arctic than at the equator. The first model layer is 10 m thick, and the

upper 25 levels represent approximately the top 880 m. Both the horizontal and vertical resolution in our setup is lower than

that of the current operational system, which has a horizontal resolution of approximately 0.25◦ and 75 vertical levels. The

time step is one hour.

The prognostic thermodynamic-dynamic sea ice model used is LIM2 (Louvain-la-Neuve Sea Ice Model) (Fichefet and140

Maqueda (1997)). The vertical growth and decay of ice due to thermodynamic processes is modelled according to the three-

layer (one layer for snow and two layers for ice) Semtner scheme (Semtner (1976)). The ice velocity is calculated from a

momentum balance considering sea ice as a two-dimensional continuum in dynamical interaction with the atmosphere and
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ocean. Internal stress within the ice for different states of deformation is computed following the viscous-plastic (VP) rheology

proposed by Hibler III (1979). LIM2 has a single sea ice category to represent sub-grid scale ice thickness distribution, and145

open water areas like leads and polynyas are represented using ice concentration. Melt ponds are not modelled. LIM2 has a

time step of 1 hour and is coupled to the ocean at every time step.

As for ORAS5, both experiments here use the variational data assimilation using NEMOVAR in a 3D-Var FGAT (First

Guess at Appropriate Time) configuration as described in Mogensen et al. (2012). The length of the assimilation window is

10 days in our experiments. Assimilated observations comprise temperature and salinity profiles, altimeter-derived sea level150

anomalies and sea ice concentration. Sea-surface temperature is constrained to observations by a strong relaxation. A global

freshwater correction is added to reproduce the observed global-mean sea-level change. The assimilation of the SIC is done

separately from the ocean variables, and is described in Tietsche et al. (2015) and Zuo et al. (2017).

In addition to the observations assimilated via NEMOVAR, the SIT in experiment ORA-SIT is constrained to the CS2SMOS

via a linear nudging technique (Tietsche et al. (2013), Tang et al. (2013)). The relationship between the modelled and observed155

sea ice thickness in a grid point is described by the following equation:

SITn = SITm− [
∆t
τ

(SITm−SIT o)] (1)

where SITn is the nudged thickness, SITm is the modelled thickness, SIT o is the observed thickness, ∆t is the sea ice

model time step of 1 hour, and τ is the nudging coefficient corresponding to a relaxation time scale of 10 days. The choice

of a 10-day relaxation time scale makes sense as a first trial, since it is consistent with the length of the assimilation window.160

To facilitate the nudging, the CS2SMOS weekly observations in EASE2 grid have been interpolated to daily gridded fields in

ORCA 1◦ grid. The weekly to daily interpolation is done by appropriately weighting two adjacent weekly-mean fields. We

have also tested the sensitivity to different nudging strengths by running variants of ORA-SIT with a relaxation time scale of

20, 30 and 60 days, but in this study we only use the experiment with the strongest constraint (10-day relaxation time) for

initializing the ensemble reforecasts.165

2.2.2 Coupled Reforecast Experiments

In order to assess the impact of CS2SMOS sea ice thickness initialization on sea ice forecasts, we performed 2 sets of twin

coupled ocean–sea-ice-atmosphere reforecast experiments as shown in Table 2, which only differ on the ocean–sea-ice initial

conditions, provided by the data assimilation experiments shown in Table 1. The reference reforecast (FC-REF) is initialized

by ORA-REF, and reforecast experiment FC-SIT is initiailized by ORA-SIT. Comparison of results from these two sets of170

reforecasts allows quantifying the impact of SIT information on the seasonal forecasts.

The reforecast experiments are carried out using a version of the ECMWF coupled seasonal forecasting system. The coupled

model consists of the same ocean and sea ice model (NEMO3.4/LIM2) used for our reanalysis experiments, and is coupled to

the ECMWF atmospheric model, Integrated Forecast System (IFS) version 43r3. It is run with a horizontal resolution of 36 km,

corresponding to a cubic octahedral reduced Gaussian grid at truncation TCo319 and 91 vertical levels (SEAS5 is run with IFS175

cycle 43r1 at the same atmospheric resolution, but with 0.25◦ horizontal resolution and 75 vertical levels in the ocean). The
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Experiment

name

Start years Lead

mon

Ens.

size

Initial

condition

Description

FC-REF 2011–2016 7 25 ORA-REF SIC initialization

FC-SIT 2011–2016 7 25 ORA-SIT SIC and SIT

initialization

Table 2. Overview of the reforecast experiments. For each of the start years, forecasts are started on the 1st of every calendar month.

coupled model also includes the land surface model HTESSEL (Hydrology Tiled ECMWF Scheme for Surface Exchanges

over Land) and the ocean surface wave model WAM. The coupling of the atmosphere and ocean is done using a Gaussian

interpolation method, and the coupling frequency is 1 hour. For more details on SEAS5 see (Stockdale et al. (2018), Johnson

et al. (2018)).180

Both reforecasts are started from the 1st of each month of each year 2011–2016, resulting in 72 forecast start dates overall.

Note that out of all months of each year in the 2011-2016 period only winter (December-April) months are directly constrained

by November-March observations as the CS2SMOS data is only available for those 5 full months. The initial conditions for

the remaining 7 start months (May-November) of each year are indirectly affected by the thickness constraint applied earlier

in the ice growth season in the reanalysis. The non-availability of the observations for the melt season in a way provides an185

opportunity to test the predictability of winter SIT from summer initial conditions. The forecast initialized from each start date

has 25 ensemble members for both sets of reforecasts.

3 Results

Here we first assess the impact of sea ice thickness observations on the estimation of sea ice properties in the ORA initial

conditions, and then we evaluate the impact on the skill of seasonal forecast of sea ice area, sea ice edge, sea ice volume190

and 2m temperature. When possible, we use the observational datasets for verification. However, as mentioned above, sea ice

thickness and volume (SIV) can not be verified properly for the months April-October, due to the lack of sea ice thickness

observations. In those cases, we will describe the impact in terms of differences between experiments.

3.1 Impact of Sea Ice Thickness Initialization on the Sea Ice Reanalysis

Figure 1 shows the SIT bias with respect to the CS2SMOS observations for ORA-REF (Figure 1a, c) and ORA-SIT (Figure 1b,195

d), for March (Figure 1a, b) and November (Figure 1c, d). The ORA-REF suffers from large ice thickness bias of up to

1.4 m. The predominant bias pattern is an underestimation of ice thickness by more than 1 m in the central Arctic, and an

overestimation in the Beaufort Gyre and the Canadian Archipelago of the order of 1 m. This pattern is present for all the

months when CS2SMOS is available. In March, widespread overestimation in the coastal Arctic seas is also present. These

biases are much reduced or absent in ORA-SIT. Most of the large-scale pattern of underestimation and overestimation of sea ice200
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Figure 1. Bias in monthly-mean (2011-2016) sea ice thickness (m) in experiment a) ORA-REF and b) ORA-SIT, for March (a, b) and

November (c, d). The reference is CS2SMOS observations. ORA-REF is the ocean–sea-ice assimilation experiment with no sea ice thickness

constraint. ORA-SIT is the assimilation experiment with a thickness relaxation time scale of 10 days.
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Figure 2. Difference in monthly-mean (2011-2016) sea ice thickness (m) between experiments ORA-SIT and ORA-REF for a) March and

b) July and for c) September and d) November months.
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in ORA-REF is not present in ORA-SIT in March. However, slight underestimation over the central Arctic and overestimation

over the Canadian Archipelago still remain in November. This is probably caused by the lack of SIT observations during

the months preceeding November. In contrast, the estimation of the March conditions benefit from the availability of SIT

information in the preceeding winter.

Figure 2 shows the difference in SIT between ORA-SIT and ORA-REF for March, July, September and November. The205

difference patterns between ORA-SIT and ORA-REF are quite consistent for all the months, characterized by a thickening of

the thick ice over the Central Arctic and North of Greenland, and a thinning of the thin ice area over the Beaufort and Siberian

Seas, thus enhancing the spatial gradients on sea ice thickness distribution. The largest impact occurs in March, probably

because at this month the SIT observations have been assimilated during the preceeding 5 months. The impact of SIT winter

information lasts well into the summer months, with a slight clockwise displacement of the thinning, and a reduction of the210

thickening, which by September has roughly halved. The impact during March and November is consistent with a reduction of

the bias in ORA-REF (Figure 1a and c). Since basin-scale SIT observations are not available for the end of melt season, biases

are unknown.

The thickness constraint also affects the biases in SIC. Figure 3 shows the SIC bias w.r.t. OSI-401-b SIC as well as the

SIC difference between ORA-REF and ORA-SIT. In March, ORA-REF shows mostly an overestimation of SIC all around the215

sea ice edge, over the Davis Strait, northeast of Greenland, Bering Sea and Okhotsk Sea. In ORA-SIT this bias is uniformly

reduced up to 10% . In November (Figure 3g, h and i) ORA-REF has similar SIC overestimation biases over the sea ice edge,

but this time the SIT constraint has very little impact on SIC biases. The ORA-REF biases in July are characterized by a weak

underestimation of SIC. Notably, in ORA-SIT there is an increase of the negative SIC bias of more than 10% over the Pacific

and Siberian Arctic sectors towards the end of melt season, with July and August (not shown) months being the most affected.220

To gain some insight into the degradation of the July SIC bias in ORA-SIT we look at the mean annual cycle of the SIC

assimilation increments. The assimilation increments are indicative of the corrections that the assimilation of SIC observations

exerts to compensate for errors in the sea ice state. Figure 4 shows the mean annual cycle of the area-averaged assimilation

increments in ORA-REF (blue) and ORA-SIT (green). In both experiments, the assimilation increments exhibit a clear seasonal

cycle, with large positive increments from May to October, indicative of strong underestimation of SIC in the ORAs, and weak225

negative increments from December to March. The differences in SIC increments over the Arctic between the two experiments

peaks during July, with ORA-SIT increments about 9% per month higher than in ORA-REF. The results in this figure indicates

that 1) both ORAs melt sea ice too fast during the summer months, as shown by negative SIC biases at marginal seas of the

Arctic Ocean where thin sea ice resides during the summer months (Figure 3d and e) ; and 2) the SIT assimilation exacerbates

the summer SIC biases in ORA-SIT (as seen in eg: Figure 3e) due to corrected but thinner sea ice at the begining of the melt230

season in almost all marginal seas of the Arctic Ocean (Figure 2a).

From January to May and from November to December, on an average less ice is being taken away by the increments in

ORA-SIT (green) analysis than that in ORA-REF (Figure 4). These results clearly show the long-lasting effect of the SIT

information: the SIT constraint was only applied during the growth season from November to March (grey shading), but its

impact is evident in sea ice concentration throughout the melting season even in the presence of SIC assimilation.235
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Bias and change in Sea Ice Concentration

Figure 3. Bias in monthly-mean (2011-2016) sea ice concentration w.r.t. OSI-401-b observations for ORA-REF (a, d, g), ORA-SIT (b, e, h),

and the difference between ORA-SIT and ORA-REF for (c, f, i). Panels (a, b, c) are for March, (d, e, f) for July, and (g, h, i) for November.
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Annual cycle of the mean of Sea Ice Concentration increments

Figure 4. Annual cycle of the mean of the SIC increments in ORA-SIT (green), and ORA-REF (blue), averaged over north of 70◦N during

2011-2016. The grey shading shows months (January to March, and November to December) with CS2SMOS SIT nudging.

3.2 Impact of ice thickness initialization on sea ice forecasts

Figure 5a gives an overview of bias in sea ice area in the FC-REF reforecast w.r.t. ORAS5 reanalysis as a function of forecast

start and lead months (units are 106 km2). ORAS5 is preferred to OSISAF for the verification of integrated sea ice area because

of its complete spatial coverage. The figure shows the forecast bias for different forecast lead times (y-axis) as a function

of forecast starting month (x-axis). Errors at lead month 1 are generally small throughout the year. However, for longer lead240

times, there is a strong over-prediction of sea ice area in summer months, and a moderate under-prediction of autumn sea ice

conditions, consistent with too slow melting and refreeze respectively. The forecast biases are generally small in winter months.

These three bias regimes, in general – low bias in winter, positive bias in summer and negative bias in autumn – seem to be

mostly independent of start months. These biases shown in FC-REF are quite similar to those in SEAS5 (not shown) which

are discussed in more detail in Stockdale et al. (2018). The positive biases in the melt season forecasts is considerably reduced245

with the SIT initialisation in FC-SIT started in January to June and the negative biases in the forecasts is worsened in FC-SIT

started in July to October (Figure 5b). The forecasts for winter months remain unbiased in FC-SIT. Note that the bias regimes

in the forecasts are very different from the bias regimes in the reanalysis (Section 3.1), which tends to have too much ice in

winter and too little ice in summer.

Impact of thickness initialization has not only improved the biases in summer SIC forecasts, but it has also improved the sea250

ice extent forecasts as measured by the Integrated Ice Edge Error (IIEE) (Figure 6). Seasonal forecasts of ice edge are in great
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Bias in the Sea Ice Area forecasts

Figure 5. Bias in the forecast of Arctic sea ice area (×1012m2) w.r.t. ORAS5 as a function of start and lead month for 2011–2016, a) in the

reference reforecast FC-REF and b) in the SIT-initialised reforecast FC-SIT. Red colour denotes over-prediction of sea ice area, and blue

colour denotes under-prediction.

demand for exploring economically viable Arctic shipping routes. IIEE is one of the recent user-relevant sea ice metrics on ice

extent or ice edge (Goessling et al. (2016), Bunzel et al. (2017)). Since it can be decomposed into over- and under-prediction,

it is more useful than the traditional basin-wide sea ice extent error. It is calculated using uncalibrated SIC forecasts.

IIEE for all lead months and start months verified against OSI-401-b suggests reduced error in sea ice edge (blue colours)255

in FC-SIT overall. The most striking feature is the significant improvement in summer forecast error for lead months 2–7 in

FC-SIT compared to FC-REF. The main contribution to the error reduction of up to 30% in summer forecasts comes from

the reduction of the model bias leading to consistent over-prediction (not shown). For the traditional September sea ice extent

forecast starting in April, an improvement of 28% is found. Forecast verification in October and November from July and

August starts show a slight degradation, caused by under-prediction (not shown). This could again be due to the indirect effect260

of a thinner starting point in FC-SIT (Figure 2b) and a lower, degraded SIC in the ORA-SIT reanalysis (Figure 3e), combined

with the already existing slow refreeze nature of the model.

Figures 5 and 6 point out that the impact of ice thickness initialization on the forecast bias and errors is strongly dependent on

season and lead time. Most seasons and lead times are improved but some are, perhaps inevitably, deteriorated. To measure the

overall impact on forecast error and make a statement about potential skill improvements that to be expected for operational265

forecasts, we aggregate FC-SIT and FC-REF for all start months from January 2011 to December 2016 and compute the

area-integrated mean absolute forecast error (MAE) of sea ice concentration for each lead month.
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Difference in Integrated Ice Edge Error

Figure 6. Difference in Integrated Ice Edge Error in 1011 m2 between FC-SIT and FC-REF reforecasts 2011–2016 w.r.t. OSI-401-b observa-

tions. Blue colour denotes reduced error in sea ice edge in FC-SIT and red colour denotes increased error in FC-SIT. Black triangles represent

statistically significant (DelSole and Tippett (2016)) changes at 5% level.
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Mean Absolute Error in Integrated SIC forecasts

Figure 7. Spatially integrated SIC mean absolute error over lead month for all FC-REF and FC-SIT forecasts (no. of forecast start months,

n = 72; January 2011 to December 2016) w.r.t OSI-401-b observations. Panel a) shows the error without bias correction, panel b) the error

after bias correction. Lead months for which the reduction of forecast error in FC-SIT passes the DelSole and Tippett (2016) significance test

at the 5% level are marked by filled circles, insignificant changes are marked by crosses.

Averaged over all start dates and grid points, Figure 7 shows that the MAE of sea ice area is substantially improved in

FC-SIT. When no bias correction is applied prior to computing the MAE (Figure 7a), FC-SIT forecasts are significantly better

in each lead month, with maximum error reduction of about 10%.270

However, skill assessments of seasonal forecasts are conventionally made after a forecast calibration where the impact of

the forecast bias is removed. By this measure, a reduction of forecast bias does not by itself count as an improvement. As

Figure 7b shows, removing the respective bias of FC-SIT and FC-REF prior to computing the MAE results in a smaller error

reduction: errors in FC-SIT are significantly lower only in lead months 2–5, by up to 5%. Figure 7 demonstrates that, although

the thickness initialization predominantly reduces the bias, it also leads to an improvement in the skill of sea ice area forecasts275

that is relevant for operational forecasting systems.

Finally, we analyse the impact of SIT initialization on forecasts of pan-Arctic sea ice volume. Figure 8 shows the sea ice

volume forecast climate at different lead month for the forecasts starting in May (top) and August (bottom). The forecast

climate is computed by averaging the reforecast starting at a given calendar month for the years 2011-2015. Seven months

forecasts started in August lead to February of the following year. Since the ORAs are not available in January and February,280

2017, the year 2016 is not accounted for in this figure. For reference, the sea ice volume estimates of ORA-REF and ORA-SIT

reanalyses are also shown. It is remarkable that the shape of the seasonal cycle is largely preserved between FC-REF and FC-

SIT, maintaining the initial offset during the whole forecast range. The figure clearly shows that FC-SIT starts from a thinner

ice state than FC-REF in both initial months.

The May starts show large differences between the forecasts and the ORAs: Both FC-SIT and FC-REF show a slower SIV285

decrease (lower melt rate) than the ORAs from June to September, and also a slower refreeze during October and November.
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Time evolution of mean Sea Ice Volume forecasts

Figure 8. Time series of ensemble-mean sea ice volume (units are 1012 m3) forecasts averaged over 2011–2015, for May start date (a) and

August start date (b) in reference reforecast (FC-REF, dashed blue line) and reforecast with thickness initialization (FC-SIT, dashed green

line) compared to their own reanalyses, ORA-REF (solid blue line), and ORA-SIT (solid green line).
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The melt rate of the ORAs here are consistent with those in ORAS5 (see Uotila et al. (2018) or Mayer et al. (2019)). Compared

to the May starts, differences between FC-SIT and FC-REF is smaller in the August start, and so is their agreement with the

ORAs. Again, the FC-SIT shows smaller values than FC-REF from the begining, and both forecast sets exhibit a parallel SIV

evolution. The shape of the seasonal cycle in the forecasts is different from the ORAs; the forecasts initialized in August show290

a slower refreeze during October than the ORAs. However, after October, the SIV increases faster in the forecasts than in

ORA-SIT, and it continues increasing more or less at the same rate until the end of January in the forecasts, while in ORA-SIT

(solid green line) the freezing rate slows down after November. As a result by the end of January the forecast SIV is higher

than in ORA-SIT. ORA-REF without the thickness constraint has the highest SIV in the ice growth season. In the next section

we examine the discrepancies in SIV changes between ORAs and FCs in more detail.295

3.3 Linking sea ice analysis and forecast errors to the Arctic surface energy budget

In order to investigate the physical causes of sea ice errors in the ORAs and forecasts, the Arctic surface energy budget is

considered. We estimate melt energy tendency (MET), which is the energy used to melt sea ice and energy released in the

process of freezing, and is proportional to SIV changes. It is defined as in Mayer et al. (2019):

MET = Lfρ(
dSIT

dt
) (2)300

where Lf denotes latent heat of fusion (-0.3337x106 J kg−1), ρ represents sea ice density (assumed constant at 928 kg

m−3), and SIT , the grid-point averaged sea ice thickness. Thickness changes are computed as exact monthly differences.

Figure 9 shows the MET mean annual cycle (2011-2015) north of 70◦N for ORA-REF, ORA-SIT, FC-REF, and FC-SIT. The

values for the forecasts are compiled from one-month forecasts from every calendar month. Assimilation increments of SIC

proportionally affect SIV in the ORAs (Tietsche et al. (2013), Tietsche et al. (2015)). The resulting MET increments are shown305

for both ORA-REF and ORA-SIT as well. We note that the MET annual cycle of ORA-REF is very similar to that of ORAS5

(not shown).

Figure 9 clearly shows that ORA-REF exhibits the most pronounced annual cycle of MET, with strongest melting in summer

and strongest freezing in winter. Earlier studies have shown that the MET annual cycle is exaggerated in ORAS5 (Uotila et al.

2019; Mayer et al. 2019) and hence also in ORA-REF. ORA-SIT has a damped MET annual cycle, as the thickness constraint310

during winter prevents overly strong SIV accumulation. Lower SIV at the end of winter consequently leads to weaker melting

in summer. However, summer melt in ORA-SIT is likely still too strong, as this experiment features a negative SIC bias in

summer despite realistic SIT and SIC earlier in the year, when CS2SMOS data is available (see Figure 3e).

Both FC-REF and FC-SIT agree very well with each other and exhibit a much weaker MET annual cycle than the ORAs

(Figure 9). The difference between the forecasts and the ORAs in May and June melting cannot be explained by the MET315

increments (neutral impact at that time), which points to differences in energy fluxes into the sea ice as a cause.

We therefore compare the mean annual cycle of surface net radiation (RadS) over ocean north of 70◦N . Figure 10a shows

the 2011-2015 annual cycle of RadS from FC-REF, FC-SIT, ERA-I, ERA5, and the satellite-based product Clouds and Earth’s
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Mean annual cycle of melting energy

Figure 9. Mean annual cycle of MET over ocean area north of 70◦N in ORA-REF, ORA-SIT, FC-REF (lead month 1), FC-SIT (lead month

1). MET increments for ORA-REF and ORA-SIT are shown as well.

Radiant System – Energy-Balanced and Filled Surface edition 4.0 (CERES-EBAF; Kato et al. (2018)), which we use as

reference.320

We consider RadS from ERA-I as a good proxy for RadS seen by the ORAs, due to two reasons: 1) ORAs use ERA-I

forcing during most of the study period, and 2) ORAs does not output RadS term; although it is not exactly identical e.g. due

to different albedo in the ORAs. ERA-I exhibits a positive RadS bias in summer, peaking in June at 15 W/m2, while FC-REF

and FC-SIT agree quite well with CERES-EBAF, especially in May and June, when MET discrepancies with the ORAs are

large (Figure 9). Thus the RadS bias of ERA-I can explain a large fraction of the overly strong MET in the ORAs during May325

and June, and the discrepancy between the ORAs and the forecasts.

The mean deviation ofRadS from CERES-EBAF (Figure 10b) clearly indicates that forecasts are closer to the observational

product than the atmospheric reanalyses in May and June. This positive RadS bias of ERA-I should be considered alongside
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Mean annual cycle of surface net radiation

Figure 10. a) Mean annual cycle of surface net radiation, RadS (W/m2) over ocean area north of 70◦N from ERA-I, ERA5, FC-REF (lead

month 1), FC-SIT (lead month 1), and CERES-EBAF, and b) Mean deviation of RadS from CERES-EBAF for FC-REF, FC-SIT, ERA-I and

ERA5.
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the results by Hogan et al. (2017), who found a negative bias in downwelling shortwave radiation in ERA-I due to excessive

low-level clouds. Our results can be explained by the positive bias in downwelling longwave radiation in ERA-I outweighing330

the shortwave flux bias. Figure 10 also shows results for ERA5, which is closer to CERES-EBAF than ERA-I, which indicates

a reduced cloud bias in this more recent atmospheric reanalysis and gives rise to the expectation of improved MET in future

ocean reanalyses forced by this product.

Additional information on the realism of summer MET in the forecasts can be obtained from the sea ice area forecast bias

of FC-SIT, as displayed in Figure 5b. It shows that FC-SIT May starts exhibit a strongly reduced positive bias compared to335

FC-REF. The bias reduction can be attributed to the improved initial conditions in FC-SIT, but the fact that the sea ice area

bias remains positive from July onward indicates that MET in the forecasts is too low in summer. Figure 10b suggests that

RadS is too low in the forecasts in July and August, which probably contributes to the positive SIA bias remaining in FC-SIT

(Figure 5b).

The October MET (Figure 9) indicates stronger refreeze in the ORAs (lower MET values) compared to the forecasts. This340

is consistent with negative MET increments present in the ORAs, which act to speed up refreeze in the reanalyses (see Fig-

ure 9). The less negative MET values of the forecasts in October are consistent with the too weak freezing and consequent

underestimation of sea ice in autumn in the August starts.

Area-averaged net radiation of all considered products agrees well with CERES-EBAF in October (see Figure 10), and

also difference maps show only a weakly positive RadS bias of the reanalyses and forecasts compared to CERES-EBAF (not345

shown). Hence, errors in other physical terms such as ocean-ice fluxes must play an important role in fall, but more detailed

investigations are beyond the scope of this paper.

3.4 Impact of ice thickness initialization on forecasts of atmospheric variables

To discuss the impact of the sea ice thickness constraint on the atmosphere, we first assess the differences in the forecast means

(or biases) between FC-SIT and FC-REF. Figure 11a shows the bias in 2m temperature (t2m) (averaged over 50−90◦N ) in FC-350

REF as a function of start dates and lead months. Significant cold biases are present in forecasts for most of the start months

and lead months except for non-significant warm biases in November forecasts started in August, September and October

months. Mean differences in t2m (Figure 11b) are generally positive with very few and non-significant exceptions, which is

expected from the generally reduced sea ice cover in FC-SIT. Strongest warming with area averages of 0.5K can be found

during fall for forecasts started between March and September. February and March start dates show a moderate but significant355

warming at short lead times, but otherwise changes are relatively small for October to February start dates. Also, changes in

summer temperatures are small compared to those in fall. Inspection of temperature difference patterns between FC-SIT and

FC-REF indicates that differences in summer are confined to areas around the sea ice edge (not shown), while changes in fall

are more widespread (see Figure 11c). The warming pattern in fall appears as a diagonal feature in Figure 11b, which suggests

that changes depend more on season than on forecast lead time. Therefore, to gain more insight into the spatial structure of the360

changes, Figure 11c and d show forecast differences in 2m temperature and mean sea level pressure in SON, respectively. To
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Difference in mean t2m and mean sea level pressure forecasts

Figure 11. Mean forecast differences between FC-SIT and FC-REF 2011-2016: a) bias in mean 2m temperature north of 50◦N w.r.t. ERA5,

as a function of start dates and lead months, in FC-REF, b) similar to a), but difference in mean 2m temperature between FC-SIT and FC-

REF. Triangles denote significant changes according to DelSole and Tippett (2016) test at the 5% level. Mean forecast difference (FC-SIT -

FC-REF) for SON aggregated from May, June, July, August start dates of c) 2m temperature and d) mean sea level pressure. Dots indicate

areas of significant changes on the 95% level according to Komolgorov-Smirnov test.
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find robust changes, the differences are aggregated from forecasts started between May and August, yielding samples of 600

forecasts. Moreover, aggregation along the diagonal maximizes the signal (compare to Figure 11b).

Widespread temperature differences >1K can be seen over the Arctic Ocean and the Canadian Achipelago in SON (Fig-

ure 11c), but significant warming spreads also south to North America and Eurasia. Solar radiation in the Arctic is very weak365

for SON. Hence, the warming in FC-SIT must stem from enhanced fluxes of heat from the ocean to the atmosphere, with a

possible positive feedback from increased atmospheric water vapour. The fluxes are enhanced in FC-SIT due to larger areas

of open waters and increased SSTs, both a result of reduced sea ice concentration. Furthermore, we find warming over the

Northwest Atantic, which is related to the warmer SSTs present already in the initial conditions from ORA-SIT (not shown).

Another area of significant warming in FC-SIT relative to FC-REF can be seen over Eastern Europe and Western Russia.370

This warming seems consistent with patterns of mean sea level pressure differences shown in Figure 11d. They show lower

pressure in FC-SIT over Scandinavia and higher pressure over central Russia, which together suggest more southerly winds

in the region of warmer temperatures. Furthermore, mean sea level pressure changes indicate lower pressure over the Arctic

Ocean and the Canadian Archipelago, i.e. in areas of maximum warming. In addition, there are positive pressure differences

southeast of Greenland. Altogether, the patterns in sea level pressure difference resemble a wave-like response, but it should be375

kept in mind that only some parts of these changes are statistically significant. Nevertheless, we note that qualitatively similar

and significant changes are also found in 500hPa geopotential forecasts for SON (not shown), suggesting that the features seen

in Figure 11d are indeed robust.

We now turn to the question whether changes in the forecast mean constitute a forecast improvement or a forecast deterio-

ration in the sense that they lead to an overall reduction of model biases. Since forecast bias is strongly dependent on region,380

season and lead time, aggregating over many seasons and lead months hampers physical understanding of the impact of thick-

ness initialization. We therefore focus only on forecasts for the September–November (SON) season, where the impact on 2m

temperature is strongest.

As Figure 12a and b show, the 2m-temperature forecast bias for the SON season have a strong dependence on the start and

lead month. Cold biases are clearly dominating the entire hemisphere in May forecasts, whereas a mixture of warm and cold385

biases is visible in August forecasts, with predominantly warm biases over the ice edge. As discussed previously, the thickness

initialization leads to a homogeneous warming of 2m temperature (Figure 11c), which is not very sensitive to the time of

initialization.

To determine whether the mean change leads to an increase or a reduction in the bias, we compute changes in mean absolute

error (MAE) of 2m-temperature forecasts without the usual calibration. This is shown in Figure 12c and d. Mean absolute390

forecast errors are substantially reduced in SON (by more than 1K) over the entire ice cover and some adjacent regions

(Figure 12c). In this case, the thickness initialization helps to mitigate the model bias. Conversely, when initializing forecasts

in August mean absolute forecast errors are increased over the marginal Seas of the Arctic Ocean and the Canadian Archipelago

(Figure 12d). This points to an excacerbation of the model biases by the thickness initialization. However, the negative impact

for August start dates is not as significant as the positive impact for May start dates.395
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Bias and difference in MAE in t2m forecasts

Figure 12. Verification of 2m temperature against ERA5 for SON forecasts started in May (a,c) and August (b,d): Bias (in K) of FC-REF is

shown on the top (a,b), and MAE difference (in K) between FC-SIT and FC-REF at the bottom (c,d). Differences significant at the 5% level

according to the test by DelSole and Tippett (2016) are stippled. The homogeneous warming of FC-SIT w.r.t. FC-REF shown in Figure 11c

results in MAE for SON t2m being reduced for May start dates c) and increased for August start dates d).
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Forecast skill changes on other atmospheric fields have been explored as well. The picture for circulation-related fields

such as mean sea-level pressure and 500 hPa, geopotential height (not shown) is less clear compared to 2m-temperature,

indicating that much of the statistically significant changes found at the near-surface temperature in the Arctic are due to local

thermodynamic effects.

4 Summary and Concluding Remarks400

In this paper we use 6 years of Arctic-wide sea ice thickness observations of January, February, March, November and De-

cember months during 2011 to 2016 to constrain the modelled sea ice thickness, and study the impact on the ocean–sea-ice

reanalysis. Coupled forecasts of the ocean–sea-ice-wave-land-atmosphere are initialized using these data assimilation exper-

iments, and the forecast skill of Arctic sea ice for lead times up to 7 months is investigated. To our knowledge this study

provides the first comprehensive assessment of coupled seasonal sea ice forecasts with thickness initialization for all the sea-405

sons. It complements to the study by Blockley and Peterson (2018), who reported the positive forecast impact on summer

season only. This paper does not delve into the technical implementation of sea ice observational information in the ECMWF

systems as reported in Balan-Sarojini et al. (2019), but instead it focuses on 1) collating the relevant scientific results on the

impact of sea ice thickness information alone on seasonal forecasts, 2) conducting targeted diagnostics to gain understanding

of the results, and 3) providing a more thorough discussion on the impact.410

Constraining initial conditions by nudging to CS2SMOS ice thickness results in a substantial reduction of sea ice volume

and thickness in the ocean–sea-ice analysis. This reduces some of the existing forecast biases in SEAS5 and improves forecast

skill in the melt season, but in turn increases the errors during autumn, when the existing sea ice forecast bias is negative.

The impact of sea ice thickness initialization on seasonal forecast skill for Arctic sea ice variables, namely sea ice cover, sea

ice thickness, sea ice volume and sea ice edge, is mostly positive for seasonal forecasts started from January to June start dates.415

We find significant improvement of up to 28% in the traditional September sea ice edge forecasts started from April start dates

as shown by Integrated Ice Edge Error. However, sea ice forecasts for September started in spring still exhibit a positive sea ice

bias, which points to too slow melting in the forecast model. Neutral forecast impact for November and December start dates

is found. However, a slight degradation is seen in autumn forecasts started from July and August start dates, which is shown

to be due to errors in the sea ice initial conditions. Both the ocean reanalyses, with and without SIT constraint, show strong420

melting in the middle of the melt season compared to the forecasts. This excessive melting is shown to be due to positive net

surface radiation biases in the atmospheric flux forcings of the ocean reanalyses. Compared to the forecasts, strong freezing is

seen throughout the freeze season in the ocean reanalysis without SIT constraint. With SIT constraint applied from November

to March, the existing strong freezing is somewhat damped in the late freeze season. The exact causes of the differences in

freezing between the reanalyses and forecasts require further investigation. Aggregating all the forecasts started in January to425

December, positive forecast impact of up to 5% skill improvement for integrated SIC is found at 2-5 lead months. Thinning of

sea ice by CS2SMOS mitigates or enhances seasonally dependent forecast model error.
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The impact of sea ice thickness initialization on atmospheric variables has also been investigated. Changes in ensemble

mean 2m-temperature over the Arctic region are significant for SON forecasts initialized from May to August start dates. The

impact is also seen in mean sea level pressure and to certain extent in 500hPa geopotential height and is mostly local and430

thermodynamically driven, except for some remote impact over the north west Atlantic ocean. Similar to the sea ice edge

forecasts, positive forecast impact is seen for 2m-temperature forecasts for the early freezing season, SON, started in May

and negative impact for the same season is seen when started in August when the initial conditions are degraded. Statistically

significant changes in 2m-temperature mean absolute error are predominantly due to corresponding local changes in errors in

the sea surface temperature and sea ice variables. There is no clear change in forecast skill of upper atmospheric circulation435

in our experiments. Our results illustrate that information on sea ice thickness is relevant for identifying model errors and

for exploiting the long-term memory present in ice thickness for seasonal forecasts of sea ice and near-surface temperatures.

Constraining SIT in the initialisation alters biases arising due to both errors in the forcing and the sea-ice model. Though the

SIT assimilation is not expected to solve these underlying problems per se, by moving the model state closer to reality, it helps

us to better understand the errors in our system, as well as improving forecast skill scores in the meantime. As atmospheric440

forecast errors are dominated by biases, we are yet to demonstrate the benefit of interannual varying data on bias-corrected

forecast scores. Robustness of impact on upper atmospheric variables and possible teleconnections need to be further assessed

which would require a longer study period and larger sample size.

These findings demonstrate that making use of recently-available, spatially and temporally rich sea ice thickness observations

from satellites for the ice growth season has the potential to significantly improve 1) the sea ice state in currently operational445

ocean–sea-ice reanalyses and, 2) the seasonal forecasts in operational forecasting systems. Our study also emphasizes the

potential of future sea ice satellite missions for Earth System reanalysis and forecasts.
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