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Abstract10

Nowadays many seasonal forecasting centres provide dynamical predic-11

tions of sea ice. While initializing sea ice by assimilating sea ice concentra-12

tion (SIC) is common, constraining initial conditions of sea ice thickness13

(SIT) is only in its early stages. Here, we make use of the availability14

of Arctic-wide winter SIT observations covering 2011-2016 to constrain15

SIT in the ECMWF (European Centre for Medium-Range Weather Fore-16

casts) ocean–sea-ice analysis system with the aim of improving the initial17

conditions of the coupled forecasts. The impact of the improved initial-18

ization on the predictive skill of pan-Arctic sea ice for lead times of up19

to 7 months is investigated in a low-resolution analogue of the currently20

operational ECMWF seasonal forecasting system SEAS5.21

By using winter SIT information merged from CS2 and SMOS (CS2SMOS:22

CryoSat2 Soil Moisture and Ocean Salinity), substantial changes of sea ice23

volume and thickness are found in the ocean–sea-ice analysis, including24

damping of the overly strong seasonal cycle of sea ice volume. Compared25

with the reference experiment, which does not use SIT information, fore-26

casts initialized using SIT data show a reduction of the excess sea ice bias27

and an overall reduction of seasonal sea ice area forecast errors of up to28

5% at lead months 2 to 5. Change in biases is the main forecast impact.29

Using the Integrated Ice Edge Error (IIEE) metric, we find significant30

improvement of up to 28% in the September sea ice edge forecast started31

from April. However, sea ice forecasts for September started in spring32

still exhibit a positive sea ice bias, which points to too slow melting in the33

forecast model. A slight degradation in skill is found in the early freezing34
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season sea ice forecasts initialized in July and August, which is related to35

degraded initial conditions during these months. Both the ocean reanaly-36

ses, with and without SIT constraint, show strong melting in the middle of37

the melt season compared to the forecasts. This excessive melting related38

to positive net surface radiation biases in the atmospheric flux forcing of39

the ocean reanalyses remains and consequently degrades analysed summer40

SIC. The impact of thickness initialization is also visible in the sea surface41

and near-surface temperature forecasts. While positive forecast impact is42

seen in near-surface temperature forecasts of early freezing season (Sep-43

Oct-Nov) initialized in May (when the sea ice initial conditions have been44

observationally constrained in the preceding winter months), negative im-45

pact is seen for the same season when initialised in August month when46

the sea ice initial conditions are degraded. We conclude that the strong47

thinning by CS2SMOS initialization mitigates or enhances seasonally de-48

pendent forecast model errors in sea ice and near-surface temperatures in49

all seasons.50

The results indicate that the memory of SIT in the spring initial con-51

ditions lasts into autumn, influencing forecasts of the peak summer melt52

and early freezing seasons. Our results demonstrate the usefulness of new53

sea ice observational products in both data assimilation and forecasting54

systems, and strongly suggest that better initialization of SIT is crucial55

for improving seasonal sea ice forecasts.56
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1 Introduction57

Sea ice is an integral part of the Earth system as it regulates the heat, moisture58

and momentum flux exchange between the polar oceans and the atmosphere.59

Decline in Arctic sea ice is a visible indicator of the changing climate. Fore-60

casting Arctic sea ice has advanced significantly in the last decade, with most61

forecasting centres using prognostic sea ice models operationally, allowing us to62

explore the sea ice forecast skill on long lead times from weeks to months to63

seasons. Possibilities of economically viable shorter shipping routes across the64

Arctic in the summer are constantly being explored. Monthly and seasonal out-65

looks of sea ice products are therefore in great demand especially by the Arctic66

communities, maritime and resource extraction industries.67

Moreover, there is increasing scientific evidence that warming and sea ice loss68

in the Arctic due to climate change affect the European weather and climate69

(Balmaseda et al. (2010), Mori et al. (2014), Overland et al. (2016), Ruggieri70

et al. (2016)). Unlike sea ice concentration and extent, long records of satellite71

observations of sea ice thickness are sorely lacking (Laxon et al. (2003), Kwok72

and Rothrock (2009), Haas et al. (2010), Meier et al. (2014), Sallila et al. (2019),73

Scarlat et al. (2020)).74

Since reliable estimates of long-term, basin-wide sea ice extent and vol-75

ume are needed for understanding climate change and for initializing numer-76

ical weather forecasts, there is growing interest in using improved and new77

types of sea ice observations in data assimilation systems (Lindsay et al. (2008),78

Blanchard-Wrigglesworth et al. (2011), Tietsche et al. (2013), Sigmond et al.79
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(2013), Balmaseda et al. (2015)). Earlier studies propose that long-term mem-80

ory in the winter sea ice thickness can potentially improve summer sea ice extent81

forecasts (Guemas et al. (2016), Tietsche et al. (2014), Day et al. (2014)). They82

concluded that potential predictability mainly originates from the persistence or83

advection of sea ice thickness anomalies, interaction with ocean and atmosphere84

and changes in the radiative forcing.85

While assimilation of sea ice concentration (SIC) is routinely done in oper-86

ational sea ice forecasting, assimilation of sea ice thickness (SIT) is at its early87

stages (Allard et al. (2018), Xie et al. (2018), Mu et al. (2018), Fritzner et al.88

(2019)). These studies have found that SIT initialization improves sea ice fore-89

casts in forced ocean–sea-ice forecasting systems which were run for short time90

periods spanning from 3 months up to 3 years. Blockley and Peterson (2018)91

reported for the first time the positive impact of winter SIT initialization on92

the skill of seasonal forecasts for summer sea ice forecasts using a fully-coupled93

atmosphere–ocean–sea-ice model. All of these studies used either European94

Space Agency’s Cryosat-2 (CS2) radar altimeter freeboard SIT measurements95

alone (Laxon et al. (2013), Hendricks et al. (2016)) or merged with SMOS ra-96

diometric measurements (Kaleschke et al. (2012),Tian-Kunze et al. (2014)) in a97

dataset called CS2SMOS (Ricker et al. (2017)).98

Currently SIC is the only sea ice variable assimilated in the ECMWF ocean-99

sea–ice data assimilation system. Although the ECMWF sea ice reanalysis and100

reforecasts compare well with other systems (Chevallier et al. (2017), Uotila101

et al. (2019), Zampieri et al. (2018), Zampieri et al. (2019)), they are affected102
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by noticeable errors (Tietsche et al. (2018)). There are large biases in sea ice103

forecasts from months to seasons, pointing to uncertainties in both the models104

and observations used in the assimilation and forecasting systems. Here we105

explore the pathway to improve the initialization using observations of sea ice106

thickness which covers both the thick and thin ice regions of the Arctic. We then107

assess the impact of the changed sea ice initial condition on the forecast skill108

on long lead times of months to seasons. Compared to Blockley and Peterson109

(2018), who looked only at summer forecast skills, our study for the first time110

assesses the forecast impact of SIT initialization on all seasons using a fully-111

coupled seasonal forecasting system. We use the ECMWF coupled ensemble112

seasonal forecasting system SEAS5 and CS2SMOS thickness observations.113

Our study takes a forecasting system end-to-end perspective, from obser-114

vations, modelling to forecast products. The rest of the article is organised115

as follows. Section 2 describes the methodology of sea ice thickness initializa-116

tion and forecasting, including a brief description of ocean–sea-ice models, the117

assimilation system, the atmosphere-ocean–sea-ice coupled forecasting system,118

observations used and the experimental set-up. Section 3 presents the main119

results and has three main foci: i) assessing the impact of new SIT observations120

on the analysed sea ice state and the impact of the changed sea ice initialization121

on seasonal range sea-ice forecasts (sections 3.1 and 3.2), ii) improving Arctic122

sea-ice forecast skill by understanding the errors in the coupled forecast model123

and the data assimilation system through targeted diagnostics (sections 3.3),124

and iii) quantifying the impact of sea-ice improvements on seasonal forecasts of125
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atmospheric variables (section 3.4). Finally, Section 4 provides the summary of126

the findings with concluding remarks.127

2 Observations and Methods128

The procedure followed here to assess the impact of SIT information follows a129

twin experiment approach. Each of the experiments consists of two distinctive130

steps: 1) the production of a set of ocean and sea ice initial conditions by con-131

ducting twin ocean–sea-ice assimilation experiments (ocean–sea-ice reanalyses;132

abbreviated as ORA), which only differ in the use of SIT information ; and133

2) the production of a set of twin retrospective seasonal forecast (reforecast)134

experiments, initialized from the respective ORA. The ORA twin reanalyses135

are a low resolution variant of the currently operational ORAS5 (Zuo et al.136

(2019)). The seasonal forecast experiments are also low resolution versions of137

the operational ECMWF seasonal forecasting system SEAS5 (Stockdale et al.138

(2018), Johnson et al. (2018)). The impact of SIT in the ocean initial conditions139

and seasonal forecast is then evaluated, using verification against observational140

datasets and other more specific diagnostics. The verification will also use fields141

from ORAS5 and ERA-5 (ECMWF atmospheric Re-Analysis-5); Hersbach et al.142

2019) reanalyses. Although the datasets used for verification are not strictly in-143

dependent, evaluation using those datasets is relevant as it allows cross-checking144

between variables, for instance between SIC and SIT assimilation. SIT verifica-145

tion using CS2SMOS dataset is also conducted as a sanity check of the nudging146
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approach: if the approach works, the difference with respect to CS2SMOS should147

be smaller in ORA-SIT than in ORA-REF. In this section we first describe the148

sea ice information used for both initialization and verification, and then offer149

a brief description of the experimental set-up.150

In addition to the sea ice data sets described below, the initialization step151

uses ocean observations: sea surface temperature, sea-level anomalies from al-152

timeter and in-situ temperature and salinity, which are the same as those used153

in ORAS5, as described in Zuo et al. (2019).154

2.1 Sea Ice Observational Information155

2.1.1 Sea Ice Concentration Product: OSI-401-b156

The two ocean–sea-ice reanalysis experiments presented here assimilate the sea157

ice concentration product of the EUMETSAT Ocean and Sea Ice Satellite Appli-158

cation Facility (OSI SAF, www.osi-saf.org; product identifier OSI-401-b (Tonboe159

et al. (2017))). The Level-3 OSI SAF SIC product (OSI-401-b) is produced as160

daily-mean fields with only a few hours latency. In contrast to the operational161

ORAS5 system, which uses Level-4 SIC data, experiments presented in this162

study use Level-3 SIC data. The main difference is that Level-4 products rely163

on gap-filling, whereas Level-3 products have missing data, for instance if the164

satellite has a temporary malfunction, or if certain areas like the North Pole165

are not observed. The OSI-401-b SIC observational estimate is based on SSMIS166

(Special Sensor Microwave Imager / Sounder) measurements. SIC is provided167

as the percentage of an ocean grid point covered by sea ice. The product comes168
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in a polar stereographic grid of 10km horizontal resolution with varying pole169

hole size.170

The impact of Level-3 SIC observations in the initialization is reported to171

have neutral forecast impact on seasonal sea ice forecasts and positive impact172

on sub-seasonal range (Balan-Sarojini et al. (2019)). The OSISAF OSI-401-b173

SIC data set is also used for verification of SIC and sea ice edge.174

2.1.2 Sea Ice Thickness Product: CS2SMOS175

A recent initiative led by the Alfred Wegener Institute provides a merged prod-176

uct of Arctic-wide winter ice thickness that combines thick-ice retrievals by177

CryoSat2 (CS2) satellite and thin-ice retrievals by the Soil Moisture and Ocean178

Salinity (SMOS) satellite. This merged sea ice thickness observational product,179

CS2SMOS (https://spaces.awi.de/display/CS2SMOS, Ricker et al. (2017)), is180

the first ever multi-sensor ice thickness product for the Arctic. CS2 (Hendricks181

et al. (2016)) measures freeboard (the height of the ice or snow surface above182

the water level) using altimetry, whereas SMOS (Tian-Kunze et al. (2014))183

measures brightness temperatures in the L-band microwave frequencies. Both184

measurements are converted to ice thickness in metres. Due to their different185

measurement principles, SMOS retrievals should be reliable for ice thinner than186

about 1 m and CS2 retrievals for ice thicker than 1 m. The merged product187

can hence represent the entire thickness range covering the whole Arctic with188

reasonable accuracy (Ricker et al. (2017)). CS2 and SMOS are merged using an189

optimal interpolation scheme to produce the CS2SMOS product, which is avail-190
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able on a weekly basis on an Equal-Area Scalable Earth Grid version 2 (EASE2)191

grid with 25 km horizontal resolution covering all regions in the Northern Hemi-192

sphere where sea ice can be expected. Both the CS2 and SMOS retrievals are193

not possible in the melt season due to signal contamination owing to the pres-194

ence of melt ponds, and wet and warm snow and ice surfaces, therefore it is only195

available for 5 full months from November to March of the ice growth season196

every year.197

In a merged product like CS2SMOS it is difficult to appropriately represent198

observational uncertainties. For instance, sensor-specific errors could affect re-199

gional sea ice thickness: over multi-year thick ice in the Canadian Basin, errors200

associated with Cryosat-2 retrievals dominate, whereas in the Bering or Okhotsk201

Sea with mostly seasonal thin ice, errors associated with SMOS retrievals dom-202

inate. As reported in Ricker et al. (2017), the relative error is maximum in the203

thickness range of 0.5-1.0 m in the merged product, where relative uncertainty204

is high for both CS2 and SMOS.205

The CS2SMOS SIT information without observational uncertainties has206

been assimilated in one of the twin ORA experiments, during the November-207

March period. It has also been used for verification of initialization in those208

months. We emphasize that this dataset does not provide SIT information209

during the period April–October. Nevertheless, there is still substantial im-210

pact in the April–October period from constraining sea ice thickness during the211

November–March period, as we will see in Section 3 – a truly year-round impact.212

10



2.2 Methods213

2.2.1 Ocean–Sea-Ice Reanalysis Experiments214

In order to assess the impact of new sea ice thickness observations on the assim-215

ilation, we carry out two ORAs as shown in Table 1. They are 1) a reference216

experiment with SIC assimilation (ORA-REF), and 2) an experiment with SIC217

assimilation and sea ice thickness constraint (ORA-SIT). Experiments ORA-218

REF and ORA-SIT are run for the time period January 2011 to December219

2016, because these are the full years for which CS2SMOS observations were220

available at the time of experimentation. Note that ORA-REF is a continu-221

ation of a longer experiment which started in 2005 and ORA-SIT starts from222

ORA-REF on the 1st of January, 2011.223

Experiment

name

SIC

constraint

SIT

constraint

Time

period

Description

ORA-REF Yes No 2011-2016 SIC assimilation

ORA-SIT Yes Yes 2011-2016 SIC assimilation and

SIT nudging

Table 1: Specifications of the ocean–sea-ice assimilation experiments.

Our reanalysis experiments are forced by near-surface air temperature, hu-224

midity and winds as well as surface radiative fluxes from the atmospheric reanal-225

ysis ERA-Interim (ERA-I) (Dee et al. (2011)) until 2015 and from the ECMWF226

operational analysis from 2015 to 2016. We use the same set-up of NEMOVAR227
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(Variational data assimilation system for NEMO (Nucleus for European Mod-228

elling of the Ocean) ocean model) used in ORAS5 (Zuo et al. (2019)) – in229

particular, almost the same observations are assimilated. The only differences230

are the following: a) a coarser model resolution as described below, b) different231

assimilated SIC observations compared to the current operational one and, c) a232

longer assimilation window of 10 days instead of 5 days.233

The ocean general circulation model used in these experiments is NEMO234

version 3.4 (Madec (2008)) with a horizontal resolution of approximately 1◦ and235

42 vertical layers. The grid is tripolar, with the poles over Northern Canada,236

Central Asia and Antarctica enabling higher resolution across the Arctic than at237

the equator. The first model layer is 10 m thick, and the upper 25 levels represent238

approximately the top 880 m. Both the horizontal and vertical resolution in our239

setup is lower than that of the current operational system, which has a horizontal240

resolution of approximately 0.25◦ and 75 vertical levels. The time step is one241

hour.242

The prognostic thermodynamic-dynamic sea ice model used is LIM2 (Louvain-243

la-Neuve Sea Ice Model) in its original version (Fichefet and Maqueda (1997)).244

The vertical growth and decay of ice due to thermodynamic processes is mod-245

elled according to the three-layer (one layer for snow and two layers for ice)246

Semtner scheme (Semtner (1976)). The ice velocity is calculated from a momen-247

tum balance considering sea ice as a two-dimensional continuum in dynamical248

interaction with the atmosphere and ocean. Internal stress within the ice for249

different states of deformation is computed following the viscous-plastic (VP)250
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rheology proposed by Hibler III (1979). LIM2 has a single sea ice category to251

represent sub-grid scale ice thickness distribution, and open water areas like252

leads and polynyas are represented using ice concentration. Melt ponds are not253

modelled which could affect the accurate representation of surface albedo over254

sea-ice. However, we note that only the ocean reanalysis ORAS5 actually makes255

use of the albedo computed by LIM2 (which is too high in summer), while the256

atmospheric reanalyses used for verification and the forecasting system use the257

same climatological albedo (based on SHEBA campaign observations; Beesley258

et al. (2000)). Moreover, a recent comparison study (Pohl et al. (2020)) shows259

that, overall, the broadband albedo over Arctic sea-ice derived from MERIS ob-260

servations is comparable to that in the ERA5 atmospheric reanalysis in terms261

of the seasonal cycle on large spatial scales. The forecast albedo over ice is262

comparable to that in ERA-5 and ERA-Interim atmospheric reanalyses. LIM2263

has a time step of 1 hour and is coupled to the ocean at every time step.264

As for ORAS5, both experiments here use the variational data assimila-265

tion using NEMOVAR in a 3D-Var FGAT (First Guess at Appropriate Time)266

configuration as described in Mogensen et al. (2012). The length of the assimi-267

lation window is 10 days in our experiments. Assimilated observations comprise268

temperature and salinity profiles, altimeter-derived sea level anomalies and sea269

ice concentration. Sea-surface temperature is constrained to observations by270

a strong relaxation. A global freshwater correction is added to reproduce the271

observed global-mean sea-level change. The assimilation of the SIC is done sep-272

arately from the ocean variables, and is described in Tietsche et al. (2015) and273
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Zuo et al. (2017).274

In addition to the observations assimilated via NEMOVAR, the SIT in exper-275

iment ORA-SIT is constrained to the CS2SMOS via a linear nudging technique276

(Tietsche et al. (2013), Tang et al. (2013)). The relationship between the mod-277

elled and observed sea ice thickness in a grid point is described by the following278

equation:279

SITn = SITm − [
∆t

τ
(SITm − SIT o)] (1)

where SITn is the nudged thickness, SITm is the modelled floe thickness,280

SIT o is the observed floe thickness, ∆t is the sea ice model time step of 1281

hour, and τ is the nudging coefficient corresponding to a relaxation time scale282

of 10 days. The choice of a 10-day relaxation time scale makes sense as a283

first trial, since it is consistent with the length of the assimilation window.284

To facilitate the nudging, the CS2SMOS weekly observations in EASE2 grid285

have been interpolated to daily gridded fields in ORCA 1◦ grid. The weekly286

to daily interpolation is done by appropriately weighting two adjacent weekly-287

mean fields. We have also tested the sensitivity to different nudging strengths288

by running variants of ORA-SIT with a relaxation time scale of 20, 30 and 60289

days. By construction, as the relaxation time scale increases from 10 days to290

60 days, SIT is less constrained to CS2SMOS. In this study, we only use the291

experiment with the strongest constraint (10-day relaxation time) for initializing292

the ensemble reforecasts, because this time scale fits with the length of the293

assimilation window, and we aimed for a strong observational constraint in294

order to obtain a strong forecast impact.295
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2.2.2 Coupled Reforecast Experiments296

In order to assess the impact of CS2SMOS sea ice thickness initialization on297

sea ice forecasts, we performed 2 sets of twin coupled ocean–sea-ice-atmosphere298

reforecast experiments as shown in Table 2, which only differ in the ocean–299

sea-ice initial conditions, provided by the data assimilation experiments shown300

in Table 1. The reference reforecast (FC-REF) is initialized by ORA-REF,301

and reforecast experiment FC-SIT is initiailized by ORA-SIT. Comparison of302

results from these two sets of reforecasts allows quantifying the impact of SIT303

information on the seasonal forecasts.304

Experiment

name

Start years Lead

mon

Ens.

size

Initial

condition

Description

FC-REF 2011–2016 7 25 ORA-REF SIC initialization

FC-SIT 2011–2016 7 25 ORA-SIT SIC and SIT

initialization

Table 2: Overview of the reforecast experiments. For each of the start years,

forecasts are started on the 1st of every calendar month.

The reforecast experiments are carried out using a version of the ECMWF305

coupled seasonal forecasting system. The coupled model consists of the same306

ocean and sea ice model (NEMO3.4/LIM2) used for our reanalysis experiments,307

and is coupled to the ECMWF atmospheric model, Integrated Forecast System308

(IFS) version 43r3. It is run with a horizontal resolution of 36 km, correspond-309
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ing to a cubic octahedral reduced Gaussian grid at truncation TCo319 and 91310

vertical levels (SEAS5 is run with IFS cycle 43r1 at the same atmospheric reso-311

lution, but with 0.25◦ horizontal resolution and 75 vertical levels in the ocean).312

The coupled model also includes the land surface model HTESSEL (Hydrology313

Tiled ECMWF Scheme for Surface Exchanges over Land) and the ocean surface314

wave model WAM. The coupling of the atmosphere and ocean is done using a315

Gaussian interpolation method, and the coupling frequency is 1 hour. For more316

details on SEAS5 see (Stockdale et al. (2018), Johnson et al. (2018)).317

Both reforecasts are started from the 1st of each month of each year 2011–318

2016, resulting in 72 forecast start dates overall. Note that out of all months319

of each year in the 2011-2016 period only winter (December-April) months are320

directly constrained by November-March observations as the CS2SMOS data is321

only available for those 5 full months. The initial conditions for the remaining322

7 start months (May-November) of each year are indirectly affected by the323

thickness constraint applied earlier in the ice growth season in the reanalysis.324

The forecast initialized from each start date has 25 ensemble members for both325

sets of reforecasts.326

3 Results327

Here we first assess the impact of sea ice thickness observations on the estimation328

of sea ice properties in the ORA initial conditions, and then we evaluate the329

impact on the skill of seasonal forecast of sea ice area, sea ice edge, sea ice330
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volume and 2m temperature. When possible, we use the observational datasets331

for verification. However, as mentioned above, sea ice thickness and volume332

(SIV) can not be verified properly for the months April-October, due to the lack333

of sea ice thickness observations. In those cases, we will describe the impact in334

terms of differences between experiments. We use the term pan-Arctic to refer335

to all regions of the Northern Hemisphere that are potentially covered by sea336

ice.337

3.1 Impact of Sea Ice Thickness Initialization on the Sea338

Ice Reanalysis339

Figure 1 shows the SIT bias with respect to the CS2SMOS observations for340

ORA-REF (Figure 1a, c) and ORA-SIT (Figure 1b, d), for March (Figure 1a,341

b) and November (Figure 1c, d). The ORA-REF suffers from large ice thickness342

bias of up to 1.4 m. The predominant bias pattern is an underestimation of ice343

thickness by more than 1 m in the central Arctic, and an overestimation in344

the Beaufort Gyre and the Canadian Archipelago of the order of 1 m. This345

pattern is present for all the months when CS2SMOS is available. In March,346

widespread overestimation in the coastal Arctic seas is also present. These347

biases are much reduced or absent in ORA-SIT. Most of the large-scale pattern348

of underestimation and overestimation of sea ice in ORA-REF is not present349

in ORA-SIT in March. However, slight underestimation over the central Arctic350

and overestimation over the Canadian Archipelago still remain in November.351

This is caused by the lack of SIT observations during the months preceeding352
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November. In contrast, the estimation of the March conditions benefit from the353

availability of SIT information in the preceeding winter. We note that the bias354

in ORA-SIT over the Laptev, East Siberian and Chukchi Seas is very small,355

about 0.1 to 0.05 m of magnitude (below the contour interval).356

Figure 2 shows the difference in SIT between ORA-SIT and ORA-REF for357

March, July, September and November. The difference patterns between ORA-358

SIT and ORA-REF are quite consistent for all the months, characterized by a359

thickening of the thick ice over the Central Arctic and North of Greenland, and a360

thinning of the thin ice area over the Beaufort and Siberian Seas, thus enhancing361

the spatial gradients in the sea ice thickness distribution. The largest impact362

occurs in March, probably because at this month the SIT observations have363

been assimilated during the preceeding 5 months. The impact of SIT winter364

information lasts well into the summer months, with a slight clockwise displace-365

ment of the thinning, and a reduction of the thickening, which by September has366

roughly halved. The shift in the thinning pattern is consistent with the mean367

climatological transpolar Arctic drift pattern and is thus likely a consequence368

of the mean advection. The impact during March and November is consistent369

with a reduction of the bias in ORA-REF (Figure 1a and c). Since basin-scale370

SIT observations are not available for the end of the melt season, biases are371

unknown.372

The thickness constraint also affects the biases in SIC. Figure 3 shows the373

SIC bias w.r.t. OSI-401-b SIC as well as the SIC difference between ORA-REF374

and ORA-SIT. In March, the month of sea ice maximum, ORA-REF shows375
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Figure 1: Bias in monthly-mean (2011-2016) sea ice thickness (m) in experiment

a) ORA-REF and b) ORA-SIT, for March (a, b) and November (c, d). The

reference is CS2SMOS observations. ORA-REF is the ocean–sea-ice assimilation

experiment with no sea ice thickness constraint. ORA-SIT is the assimilation

experiment with a thickness relaxation time scale of 10 days.
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Figure 2: Difference in monthly-mean (2011-2016) sea ice thickness (m) between

experiments ORA-SIT and ORA-REF for a) March and b) July and for c)

September and d) November months.
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Bias and Change in Sea Ice Concentration

Figure 3: Bias in monthly-mean (2011-2016) sea ice concentration w.r.t. OSI-

401-b observations for ORA-REF (a, d, g), ORA-SIT (b, e, h), and the difference

between ORA-SIT and ORA-REF for (c, f, i). Panels (a, b, c) are for March,

(d, e, f) for July, and (g, h, i) for November.
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mostly an overestimation of SIC all around the sea ice edge, over the Davis376

Strait, northeast of Greenland, Bering Sea and Okhotsk Sea. In ORA-SIT377

this bias is uniformly reduced by up to 10% . In November (Figure 3g, h378

and i), when the sea ice edge is expanding with newly frozen ice, ORA-REF379

has similar SIC overestimation biases over the ice edge, but this time the SIT380

constraint has very little impact on SIC biases. This is because of no SIT381

nudging happening in the preceding months. Also, the very small changes in382

SIC bias between ORA-REF and ORA-SIT over Chukchi and East Siberian Sea383

regions of negligible ice thickness bias in ORA-SIT (Figure 1d) is suggestive of384

fast growth processes in the forward model which is faster than the timescales385

intrinsic to the SIC assimilation. The ORA-REF biases in July are characterized386

by a weak underestimation of SIC. Notably, in ORA-SIT there is an increase387

of the negative SIC bias of more than 10% over the Pacific and Siberian Arctic388

sectors towards the end of melt season, with July and August (not shown)389

months being the most affected.390

To gain some insight into the degradation of the July SIC bias in ORA-391

SIT we look at the mean annual cycle of the SIC assimilation increments. The392

assimilation increments are indicative of the corrections that the assimilation of393

SIC observations exerts to compensate for errors in the sea ice state. Figure 4394

shows the mean annual cycle of the area-averaged assimilation increments in395

ORA-REF (blue) and ORA-SIT (green). In both experiments, the assimilation396

increments exhibit a clear seasonal cycle, with large positive increments from397

May to October, indicative of strong underestimation of SIC in the forward398
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Annual Cycle of the Mean of Sea Ice Concentration Increments

Figure 4: Annual cycle of the mean of the SIC increments in ORA-SIT (green),

and ORA-REF (blue), averaged over north of 70◦N during 2011-2016. The grey

shading shows months (January to March, and November to December) with

CS2SMOS SIT nudging.

model, and weak negative increments from December to March. The differences399

in SIC increments over the Arctic between the two experiments peaks during400

July, with ORA-SIT increments about 9% per month higher than in ORA-REF.401

The results in this figure indicate that 1) both ORAs melt sea ice too fast during402

the summer months, as shown by negative SIC biases in the marginal seas of the403

Arctic Ocean where thin sea ice resides during the summer months (Figure 3d404

and e) ; and 2) the SIT assimilation exacerbates the summer SIC biases in405

ORA-SIT (as seen in eg: Figure 3e) due to corrected but thinner sea ice at406

the begining of the melt season in almost all marginal seas of the Arctic Ocean407

(Figure 2a).408
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Bias in the Sea Ice Area Forecasts

Figure 5: Bias in the forecast of pan-Arctic sea ice area (×106km2) w.r.t. ORAS5

as a function of start and lead month for 2011–2016, a) in the reference reforecast

FC-REF and b) in the SIT-initialised reforecast FC-SIT. Red colour denotes

over-prediction of sea ice area, and blue colour denotes under-prediction.

From January to May and from November to December, on an average less409

ice is being taken away by the increments in the ORA-SIT (green) analysis than410

that in ORA-REF (Figure 4). These results clearly show the long-lasting effect411

of the SIT information: the SIT constraint was only applied during the growth412

season from November to March (grey shading), but its impact,whether positive413

or negative, is evident in sea ice concentration throughout the melting season414

even in the presence of SIC assimilation.415

24



3.2 Impact of Ice Thickness Initialization on Sea Ice Fore-416

casts417

Figure 5a gives an overview of bias in sea ice area in the FC-REF reforecast w.r.t.418

ORAS5 reanalysis as a function of forecast start and lead months. ORAS5 is419

preferred to OSISAF for the verification of integrated sea ice area because of its420

complete spatial coverage. The figure shows the forecast bias for different fore-421

cast lead times (y-axis) as a function of forecast starting month (x-axis). Errors422

at lead month 1 are generally small throughout the year. However, for longer423

lead times, there is a strong over-prediction of sea ice area in summer months,424

and a moderate under-prediction of autumn sea ice conditions, consistent with425

too slow melting and refreeze respectively. The forecast biases are generally426

small in winter months.427

These three bias regimes, in general – small bias in winter, positive bias in428

summer and negative bias in autumn – seem to be mostly independent of start429

months. These biases shown in FC-REF are quite similar to those in SEAS5430

(not shown) which are discussed in more detail in Stockdale et al. (2018). The431

positive biases in the melt season forecasts are considerably reduced with the432

SIT initialisation in FC-SIT started in January to June and the negative biases433

in the forecasts is worsened in FC-SIT started in July to October (Figure 5b).434

The forecasts for winter months remain unbiased in FC-SIT. Note that the bias435

regimes in the forecasts are very different from the bias regimes in the reanalysis436

(Section 3.1), which tends to have too much ice in winter and too little ice in437

summer.438
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Impact of thickness initialization has not only improved the biases in summer439

SIC forecasts, but it has also improved the sea ice edge forecasts as measured by440

the Integrated Ice Edge Error (IIEE) (Figure 6). Seasonal forecasts of ice edge441

are in great demand for exploring economically viable Arctic shipping routes.442

IIEE is one of the recent user-relevant sea ice metrics on ice extent or ice edge443

(Goessling et al. (2016), Bunzel et al. (2017)). Since it can be decomposed into444

over- and under-prediction, it is more useful than the traditional basin-wide sea445

ice extent error.446

For simplicity, we assess ice edge forecasts by using the deterministic IIEE447

metric calculated from the ice edge of the ensemble mean SIC forecasts. We have448

also tested probabilistic metrics like the Spatial Probability Score suggested by449

Goessling and Jung (2018) and found that they give very similar results.450

IIEE for all lead months and start months verified against OSI-401-b sug-451

gests reduced error in sea ice edge (blue colours) in FC-SIT overall. The most452

striking feature is the significant improvement in summer forecast error for lead453

months 2–7 in FC-SIT compared to FC-REF. The main contribution to the er-454

ror reduction of up to 30% in summer forecasts comes from the reduction of the455

model bias leading to consistent over-prediction (not shown). For the traditional456

September sea ice extent forecast starting in April, an improvement of 28% is457

found. Forecast verification in October and November from July and August458

starts show a slight degradation, caused by under-prediction (not shown). This459

could again be due to the indirect effect of a thinner starting point in FC-SIT460

(Figure 2b) and a lower, degraded SIC in the ORA-SIT reanalysis (Figure 3e),461
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Difference in Integrated Ice Edge Error

Figure 6: Difference in Integrated Ice Edge Error in 105 km2 between FC-SIT

and FC-REF reforecasts 2011–2016 w.r.t. OSI-401-b observations. Blue colour

denotes reduced error in sea ice edge in FC-SIT and red colour denotes increased

error in FC-SIT. Black triangles represent statistical significance at the 5% level

according to the sign test (DelSole and Tippett, 2016)

.
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Mean Absolute Error in SIC Forecasts

Figure 7: Spatially integrated SIC mean absolute error over lead month for

all FC-REF and FC-SIT forecasts (72 forecasts each first of the month from

January 2011 to December 2016) w.r.t OSI-401-b observations. Panel a) shows

the error in 106 km2 without bias correction, panel b) the error in 105 km2 after

bias correction. Lead months for which the reduction of forecast error in FC-

SIT passes a statistical significance test at the 5% level ((DelSole and Tippett,

2016)) are marked by filled circles, insignificant changes are marked by crosses.

The error of a simple climatological reference forecast is also shown as FC-clim.

combined with the already existing slow refreeze nature of the model.462

Figures 5 and 6 point out that the impact of ice thickness initialization on463

the forecast bias and errors is strongly dependent on season and lead time. Most464

seasons and lead times are improved but some are, perhaps inevitably, deterio-465

rated. To measure the overall impact on forecast error and make a statement466

about potential skill improvements that are to be expected for operational fore-467

casts, we aggregate FC-SIT and FC-REF for all start months from January468

2011 to December 2016 and compute the area-integrated mean absolute fore-469

cast error (MAE) of sea ice concentration for each lead month. In order to470
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obtain the bias-corrected forecast value, for each combination of grid cell, start471

date and forecast lead time, we compute the mean forecast error over all fore-472

casts, and then subtract it from the “raw” forecast value. Comparison against473

a climatological benchmark forecast is a very useful background information for474

evaluating the predictive skill of ensemble forecasting systems (e.g. Zampieri475

et al. (2018)). The climatological reference forecast for a given target month and476

year is constructed by using the verification data valid for the same calendar477

month but different years from the range of target months considered (January478

2011 to June 2017).479

Averaged over all start dates and grid points, Figure 7 shows that the MAE480

of sea ice area is substantially improved in FC-SIT. When no bias correction481

is applied prior to computing the MAE (Figure 7a), FC-SIT forecasts are sig-482

nificantly better in each lead month, with maximum error reduction of about483

10%.484

However, skill assessments of seasonal forecasts are conventionally made after485

a forecast calibration where the impact of the forecast bias is removed. By this486

measure, a reduction of forecast bias does not by itself count as an improvement.487

As Figure 7b shows, removing the respective bias of FC-SIT and FC-REF prior488

to computing the MAE results in a smaller error reduction: errors in FC-SIT are489

significantly lower only in lead months 2–5, by up to 5%. Figure 7 demonstrates490

that, although the thickness initialization predominantly reduces the bias, it also491

leads to an improvement in the skill of sea ice area forecasts that is relevant for492

operational forecasting systems.493
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The importance of forecast biases is illustrated by benchmarking the errors of494

the dynamical forecasting system against a simple statistical reference forecast:495

Figure 7 also shows the errors of a climatological reference forecast (FC-clim).496

Without bias correction, errors of both FC-REF and FC-SIT are larger than497

those from FC-clim already after one month, while after bias correction, both498

FC-REF and FC-SIT have lower errors than FC-clim for all lead months.499

Finally, we analyse the impact of SIT initialization on forecasts of pan-Arctic500

sea ice volume. Though an integrated quantity like pan-Arctic sea ice volume501

is a result of many dynamic and thermodynamic sea-ice processes and lacks502

regional details, it is a key indicator for understanding of the Arctic energy cycle,503

an important process that needs to be realistically represented in reanalyses and504

seasonal forecasts. It is useful to compare the contrasting SIV seasonal cycles in505

coupled and uncoupled mode, and with/without SIT observational constraint in506

the initialization, since this helps to identify the origin of errors in the systems507

in the specific operational set up. Figure 8 shows the sea ice volume forecast508

climate at different lead month for the forecasts starting in May (top) and509

August (bottom). The forecast climate is computed by averaging the reforecast510

starting at a given calendar month for the years 2011-2015. Seven months511

forecasts started in August lead to February of the following year. Since the512

ORAs are not available in January and February, 2017, the year 2016 is not513

accounted for in this figure. For reference, the sea ice volume estimates of514

ORA-REF and ORA-SIT reanalyses are also shown. It is remarkable that the515

shape of the seasonal cycle is largely preserved between FC-REF and FC-SIT,516
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Time Evolution of Mean Sea Ice Volume Forecasts

Figure 8: Time series of ensemble-mean sea ice volume (units are 104 km3)

forecasts averaged over 2011–2015, for May start date (a) and August start

date (b) in reference reforecast (FC-REF, dashed blue line) and reforecast with

thickness initialization (FC-SIT, dashed green line) compared to their own re-

analyses, ORA-REF (solid blue line), and ORA-SIT (solid green line).
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maintaining the initial offset during the whole forecast range. The figure clearly517

shows that FC-SIT starts from a thinner ice state than FC-REF in both initial518

months.519

The May starts show large differences between the forecasts and the ORAs:520

Both FC-SIT and FC-REF show a slower SIV decrease (lower melt rate) than521

the ORAs from June to September, and also a slower refreeze during October522

and November. The explanation for the different behavior of the ORAs and the523

forecasts is that the ORAs are constrained by the same SIC (but not the same524

SIT) information in summer, which leads to the convergence of the sea ice state525

in the ORAs during that time of the year (also seen in Figure 4). In the coupled526

forecasts, there is no similar constraint and they tend to converge slower than527

the ORAs. The melt rate of the ORAs here are consistent with those in ORAS5528

(see Uotila et al. (2019) or Mayer et al. (2019)). Compared to the May starts,529

differences between FC-SIT and FC-REF are smaller in the August starts, and530

so is their agreement with the ORAs. Again, the FC-SIT shows smaller values531

than FC-REF from the begining, and both forecast sets exhibit a parallel SIV532

evolution. The shape of the seasonal cycle in the forecasts is different from533

the ORAs; the forecasts initialized in August show a slower refreeze during534

October than the ORAs. However, after October, the SIV increases faster in535

the forecasts than in ORA-SIT, and it continues increasing more or less at the536

same rate until the end of January in the forecasts, while in ORA-SIT (solid537

green line) the freezing rate slows down after November. As a result by the end538

of January the forecast SIV is higher than in ORA-SIT. ORA-REF without the539
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thickness constraint has the highest SIV in the ice growth season. In the next540

section we examine the discrepancies in SIV changes between ORAs and FCs541

in more detail.542

3.3 Linking Sea Ice Analysis and Forecast Errors to the543

Arctic Surface Energy Budget544

In order to investigate the physical causes of sea ice errors in the ORAs and545

forecasts, the Arctic surface energy budget is considered. We estimate melt546

energy tendency (MET), which is the energy used to melt sea ice and energy547

released in the process of freezing, and is proportional to SIV changes. It is548

defined as in Mayer et al. (2019):549

MET = Lfρ(
∂SIT

∂t
) (2)

where Lf denotes latent heat of fusion (-0.3337x106 J kg−1), ρ represents550

sea ice density (assumed constant at 928 kg m−3), and SIT , the grid-point551

averaged sea ice thickness. Thickness changes are computed as exact monthly552

differences. MET can also change dynamically through lateral ice transports,553

but here we average over the ocean area north of 70◦N , which should be a554

sufficiently large area to average out any dynamical effects and should mainly555

leave thermodynamic effects as the drivers of MET. Figure 9 shows the MET556

mean annual cycle (2011-2015) north of 70◦N for ORA-REF, ORA-SIT, FC-557

REF, and FC-SIT. In order to isolate the changes in MET when switching from558

forced ORA mode to coupled forecast mode and to avoid seeing mainly the effect559
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of feedbacks arising from the model sea ice state drifting away from the analyzed560

state (most notably the ice-albedo feedback), we compile the annual cycle of561

forecasted MET from lead-month 1 data from each start date. Assimilation562

increments of SIC proportionally affect SIV in the ORAs (Tietsche et al. (2013),563

Tietsche et al. (2015)). The resulting MET increments are shown for both ORA-564

REF and ORA-SIT as well. We note that the MET annual cycle of ORA-REF565

is very similar to that of ORAS5 (not shown) and that the average of the MET566

annual cycle in the ORAs is close to zero (in fact about +0.3 W/m2 (Mayer567

et al. (2016), Mayer et al. (2019)), in agreement with the long-term sea ice melt),568

while it is -4.8 W/m2 in FC-REF.569

Figure 9 clearly shows that ORA-REF exhibits the most pronounced annual570

cycle of MET, with strongest melting in summer and strongest freezing in win-571

ter. Earlier studies have shown that the MET annual cycle is exaggerated in572

ORAS5 (Uotila et al. 2019; Mayer et al. 2019) and hence also in ORA-REF.573

ORA-SIT has a damped MET annual cycle, as the thickness constraint during574

winter prevents overly strong SIV accumulation. Lower SIV at the end of win-575

ter consequently leads to weaker melting in summer. However, summer melt in576

ORA-SIT is likely still too strong, as this experiment features a negative SIC577

bias in summer despite realistic SIT and SIC earlier in the year, when CS2SMOS578

data is available (see Figure 3e).579

Both FC-REF and FC-SIT agree very well with each other and exhibit a580

much weaker MET annual cycle than the ORAs (Figure 9). The difference581

between the forecasts and the ORAs in May and June melting cannot be ex-582
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Mean Annual Cycle of Melting Energy

Figure 9: Mean annual cycle of MET over ocean area north of 70◦N in ORA-

REF, ORA-SIT, FC-REF (lead month 1), FC-SIT (lead month 1). MET incre-

ments for ORA-REF and ORA-SIT are shown as well.
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Mean Annual Cycle of Surface Net Radiation

Figure 10: a) Mean annual cycle of surface net radiation, RadS (W/m2) over

ocean area north of 70◦N from ERA-I, ERA5, FC-REF (lead month 1), FC-

SIT (lead month 1), and CERES-EBAF, and b) Mean deviation of RadS from

CERES-EBAF for FC-REF, FC-SIT, ERA-I and ERA5.
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plained by the MET increments (neutral impact at that time), which points to583

differences in energy fluxes into the sea ice as a cause.584

We therefore compare the mean annual cycle of surface net radiation (RadS)585

over ocean north of 70◦N . Figure 10a shows the 2011-2015 annual cycle of RadS586

from FC-REF, FC-SIT, ERA-I, ERA5, and the satellite-based product Clouds587

and Earth’s Radiant System – Energy-Balanced and Filled Surface edition 4.0588

(CERES-EBAF; Kato et al. (2018)), which we use as reference.589

We consider RadS from ERA-I as a good proxy for RadS seen by the ORAs,590

due to two reasons: 1) ORAs use ERA-I forcing during most of the study period,591

and 2) ORAs does not output RadS term; although it is not exactly identical592

e.g. due to different albedo in the ORAs. ERA-I exhibits a positive RadS bias in593

summer, peaking in June at 15 W/m2, while FC-REF and FC-SIT agree quite594

well with CERES-EBAF, especially in May and June, when MET discrepancies595

with the ORAs are large (Figure 9). Thus the RadS bias of ERA-I can explain596

a large fraction of the overly strong MET in the ORAs during May and June,597

and the discrepancy between the ORAs and the forecasts.598

The mean deviation of RadS from CERES-EBAF (Figure 10b) clearly indi-599

cates that forecasts are closer to the observational product than the atmospheric600

reanalyses in May and June. This positive RadS bias of ERA-I should be con-601

sidered alongside the results by Hogan et al. (2017), who found a negative bias602

in downwelling shortwave radiation in ERA-I due to excessive low-level clouds.603

Our results can be explained by the positive bias in downwelling longwave ra-604

diation in ERA-I outweighing the shortwave flux bias. Figure 10 also shows605
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results for ERA5, which is closer to CERES-EBAF than ERA-I, which indi-606

cates a reduced cloud bias in this more recent atmospheric reanalysis and gives607

rise to the expectation of improved MET in future ocean reanalyses forced by608

this product. We also note that the mean difference in sensible heat fluxes in609

ERA-Interim and the forecasts and differences over sea ice were uniformly small610

(generally <2 W/m2 in summer; not shown), confirming that differences in this611

field cannot explain the found differences in MET.612

Additional information on the realism of summer MET in the forecasts can613

be obtained from the sea ice area forecast bias of FC-SIT, as displayed in Fig-614

ure 5b. It shows that FC-SIT May starts exhibit a strongly reduced positive bias615

compared to FC-REF. The bias reduction can be attributed to the improved616

initial conditions in FC-SIT, but the fact that the sea ice area bias remains617

positive from July onward indicates that MET in the forecasts is too low in618

summer. Figure 10b suggests that RadS is too low in the forecasts in July619

and August, which probably contributes to the positive SIA bias remaining in620

FC-SIT (Figure 5b).621

The October MET (Figure 9) indicates stronger refreeze in the ORAs (lower622

MET values) compared to the forecasts. This is consistent with negative MET623

increments present in the ORAs, which act to speed up refreeze in the reanalyses624

(see Figure 9). The less negative MET values of the forecasts in October are625

consistent with the too weak freezing and consequent underestimation of sea ice626

in autumn in the August starts.627

Area-averaged net radiation of all considered products agrees well with628
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CERES-EBAF in October (see Figure 10), and also difference maps show only a629

weakly positive RadS bias of the reanalyses and forecasts compared to CERES-630

EBAF (not shown). Hence, errors in other physical terms such as ocean-ice631

fluxes must play an important role in fall, but more detailed investigations are632

beyond the scope of this paper.633

3.4 Impact of Ice Thickness Initialization on Forecasts of634

Atmospheric Variables635

To discuss the impact of the sea ice thickness constraint on the atmosphere, we636

first assess the differences in the forecast means (or biases) between FC-SIT and637

FC-REF. Figure 11a shows the bias in 2m temperature (t2m) (averaged over638

50 − 90◦N) in FC-REF as a function of start dates and lead months. When639

verified against ERA5, significant cold biases are present in forecasts for most640

of the start months and lead months except for non-significant warm biases in641

November forecasts started in August, September and October months. We642

note that using atmospheric or ocean reanalysis without realistic representation643

of snow over sea ice, and sea ice thickness, for the verification of pan-Arctic sur-644

face temperature can be misleading, since there is large uncertainty associated645

with these products (Batrak and Müller (2019)). Verifying against observations646

is not easy, since due to the scarcity of observational campaigns over sea ice, the647

verification will have large representativeness error, and hence is not suitable for648

seasonal forecasts verification. Mean differences in t2m (Figure 11b) are gen-649

erally positive with very few and non-significant exceptions, which is expected650
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Difference in Mean T2m and Mean Sea Level Pressure Forecasts

Figure 11: Mean forecast differences between FC-SIT and FC-REF 2011-2016:

a) bias in mean 2m temperature (in K) north of 50◦N w.r.t. ERA5, as a function

of start dates and lead months, in FC-REF, b) similar to a), but difference in

mean 2m temperature (in K) between FC-SIT and FC-REF. Triangles denote

significant changes according to the sign test as recommended by DelSole and

Tippett (2016) at the 5% level. Mean forecast difference (FC-SIT - FC-REF) for

SON aggregated from May, June, July, August start dates of c) 2m temperature

and d) mean sea level pressure. Dots indicate areas of significant changes on

the 95% level according to Komolgorov-Smirnov test.
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from the generally reduced sea ice cover in FC-SIT. Strongest warming with651

area averages of 0.5K can be found during fall for forecasts started between652

March and September. February and March start dates show a moderate but653

significant warming at short lead times, but otherwise changes are relatively654

small for October to February start dates. Also, changes in summer tempera-655

tures are small compared to those in fall. Inspection of temperature difference656

patterns between FC-SIT and FC-REF indicates that differences in summer are657

confined to areas around the sea ice edge (not shown), while changes in fall658

are more widespread (see Figure 11c). The warming pattern in fall appears659

as a diagonal feature in Figure 11b, which suggests that changes depend more660

on season than on forecast lead time. Therefore, to gain more insight into the661

spatial structure of the changes, Figure 11c and d show forecast differences in662

2m temperature and mean sea level pressure in SON, respectively. To find ro-663

bust changes, the differences are aggregated from forecasts started between May664

and August, yielding samples of 600 forecasts. Moreover, aggregation along the665

diagonal maximizes the signal (compare to Figure 11b).666

Widespread temperature differences >1K can be seen over the Arctic Ocean667

and the Canadian Achipelago in SON (Figure 11c), but significant warming668

spreads also south to North America and Eurasia. Solar radiation in the Arctic669

is very weak for SON. Hence, the warming in FC-SIT must stem from enhanced670

fluxes of heat from the ocean to the atmosphere, with a possible positive feed-671

back from increased atmospheric water vapour. The fluxes are enhanced in672

FC-SIT due to larger areas of open waters and increased SSTs, both a result of673
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reduced sea ice concentration. Furthermore, we find warming over the North-674

west Atlantic, which is related to the warmer SSTs present already in the initial675

conditions from ORA-SIT (not shown). Another area of significant warming676

in FC-SIT relative to FC-REF can be seen over Eastern Europe and Western677

Russia. This warming seems consistent with patterns of mean sea level pressure678

differences shown in Figure 11d. They show lower pressure in FC-SIT over Scan-679

dinavia and higher pressure over central Russia, which together suggest more680

southerly winds in the region of warmer temperatures. Furthermore, mean sea681

level pressure changes indicate lower pressure over the Arctic Ocean and the682

Canadian Archipelago, i.e. in areas of maximum warming. In addition, there683

are positive pressure differences southeast of Greenland. Altogether, the pat-684

terns in sea level pressure difference resemble a wave-like response, but it should685

be kept in mind that only some parts of these changes are statistically signif-686

icant. Nevertheless, we note that qualitatively similar and significant changes687

are also found in 500hPa geopotential forecasts for SON (not shown), suggesting688

that the features seen in Figure 11d are indeed robust.689

We now turn to the question whether changes in the forecast mean constitute690

a forecast improvement or a forecast deterioration in the sense that they lead to691

an overall reduction of model biases. Since forecast bias is strongly dependent692

on region, season and lead time, aggregating over many seasons and lead months693

hampers physical understanding of the impact of thickness initialization. We694

therefore focus only on forecasts for the September–November (SON) season,695

where the impact on 2m temperature is strongest.696
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Bias and Difference in MAE in T2m Forecasts

Figure 12: Bias and difference in MAE of 2m temperature against ERA5 for

SON forecasts started in May (a,c) and August (b,d) respectively: Bias (in

K) of FC-REF is shown on the top (a,b), and MAE difference (in K) between

FC-SIT and FC-REF at the bottom (c,d). Differences significant at the 5%

level according to the sign test as recommended by DelSole and Tippett (2016)

are stippled. The homogeneous warming of FC-SIT w.r.t. FC-REF shown in

Figure 11c results in MAE for SON t2m being reduced for May start dates c)

and increased for August start dates d).
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As Figure 12a and b show, the 2m-temperature forecast bias for the SON697

season have a strong dependence on the start and lead month. Cold biases are698

clearly dominating the entire hemisphere in May forecasts, whereas a mixture of699

warm and cold biases is visible in August forecasts, with predominantly warm700

biases over the ice edge. As discussed previously, the thickness initialization701

leads to a homogeneous warming of 2m temperature (Figure 11c), which is not702

very sensitive to the time of initialization.703

To determine whether the mean change leads to an increase or a reduction in704

the bias, we compute changes in mean absolute error (MAE) of 2m-temperature705

forecasts without the usual calibration. This is shown in Figure 12c and d. Mean706

absolute forecast errors are substantially reduced in SON (by more than 1K)707

over the entire ice cover and some adjacent regions (Figure 12c). In this case,708

the thickness initialization helps to mitigate the model bias. Conversely, when709

initializing forecasts in August, mean absolute forecast errors are increased over710

the marginal Seas of the Arctic Ocean and the Canadian Archipelago (Fig-711

ure 12d). This points to an exacerbation of the model biases by the thickness712

initialization. However, the negative impact for August start dates is not as713

significant as the positive impact for May start dates.714

Forecast skill changes on other atmospheric fields have been explored as715

well. The picture for circulation-related fields such as mean sea-level pressure716

and 500 hPa, geopotential height (not shown) is less clear compared to 2m-717

temperature, indicating that much of the statistically significant changes found718

at the near-surface temperature in the Arctic are due to local thermodynamic719
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effects.720

4 Summary and Concluding Remarks721

In this paper we use 6 years of Arctic-wide sea ice thickness observations of Jan-722

uary, February, March, November and December months during 2011 to 2016723

to constrain the modelled sea ice thickness, and study the impact on the ocean–724

sea-ice reanalysis. Coupled forecasts of the ocean–sea-ice-wave-land-atmosphere725

are initialized using these data assimilation experiments, and the forecast skill of726

pan-Arctic sea ice for lead times up to 7 months is investigated. To our knowl-727

edge this study provides the first comprehensive assessment of coupled seasonal728

sea ice forecasts with thickness initialization for all the seasons. It complements729

to the study by Blockley and Peterson (2018), who reported the positive forecast730

impact on summer season only. This paper does not delve into the technical731

implementation of sea ice observational information in the ECMWF systems as732

reported in Balan-Sarojini et al. (2019), but instead it focuses on 1) collating the733

relevant scientific results on the impact of sea ice thickness information alone734

on seasonal forecasts, 2) conducting targeted diagnostics to gain understanding735

of the results, and 3) providing a more thorough discussion on the impact.736

Constraining initial conditions by nudging to CS2SMOS ice thickness results737

in a substantial reduction of sea ice volume and thickness in the ocean–sea-738

ice analysis. This reduces some of the existing forecast biases in SEAS5 and739

improves forecast skill in the melt season, but in turn increases the errors during740
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autumn, when the existing sea ice forecast bias is negative.741

The impact of sea ice thickness initialization on seasonal forecast skill for742

Arctic sea ice variables, namely sea ice cover, sea ice thickness, sea ice volume743

and sea ice edge, is mostly positive for seasonal forecasts started from January to744

June start dates. We find significant improvement of up to 28% in the traditional745

September sea ice edge forecasts started from April start dates as shown by746

Integrated Ice Edge Error. However, sea ice forecasts for September started747

in spring still exhibit a positive sea ice bias, which points to too slow melting748

in the forecast model. Neutral forecast impact for November and December749

start dates is found. However, a slight degradation is seen in autumn forecasts750

started from July and August start dates, which is shown to be due to errors751

in the sea ice initial conditions. Both the ocean reanalyses, with and without752

SIT constraint, show strong melting in the middle of the melt season compared753

to the forecasts. This excessive melting is shown to be due to positive net754

surface radiation biases in the atmospheric flux forcings of the ocean reanalyses.755

Compared to the forecasts, strong freezing is seen throughout the freeze season756

in the ocean reanalysis without SIT constraint. With SIT constraint applied757

from November to March, the existing strong freezing is somewhat damped in758

the late freeze season. The exact causes of the differences in freezing between759

the reanalyses and forecasts require further investigation. Aggregating all the760

forecasts started in January to December, positive forecast impact of up to 5%761

skill improvement for integrated SIC is found at 2-5 lead months. Thinning of762

sea ice by CS2SMOS mitigates or enhances seasonally dependent forecast model763
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error.764

We reiterate that the sea-ice thickness observations are only available and765

assimilated for November-March. The ORA-SIT sea ice thickness from April-766

October is not constrained by observations. The fact that ORA-SIT has larger767

errors than ORA-REF in SIC for July is attributed to the overestimation of the768

melt in the forced model. The negative summer SIC bias gets worse in ORA-SIT769

than that in ORA-REF due to the fact that the ORA-SIT starts from a thinner770

ice state compared to ORA-REF without CS2SMOS thinning. Indeed, the771

assimilation of sea-ice concentration is trying hard to compensate for this excess772

of sea-ice melt as seen in the annual cycle of the pan-Arctic sea ice increments773

and melting energy tendencies. The reasons for this excess sea-ice melt during774

the summer season is investigated and is attributed to errors in forcing fluxes775

in the ORAs as just summarised. This key result points out that the dominant776

source of error lies in the atmospheric forcing rather than in the sea-ice model777

formulation or data assimilation in our experiments, and indicates that improved778

atmospheric fluxes from atmospheric reanalyses is urgently needed to improve779

the Arctic sea-ice related forecasts.780

In this work we have only taken the very first step in SIT assimilation by us-781

ing a simple nudging method to constrain SIT without considering the observa-782

tional uncertainties. An area which needs to be explored in future studies of SIT783

assimilation is the use of thickness uncertainities. For instance, the uncertainty784

in the retrievals could be taken into account by perturbing the observations in785

the ensemble of data assimilations. We also note that this study does not cover786
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recent sea-ice model improvements such as modelling sea-ice processes affecting787

the sea-ice melt/growth, which are being considered for inclusion in upcoming788

versions of the ECMWF forecasting systems. The use of multi-category sea ice789

models in coupled forecasting systems is another step forward in this direction.790

Since uncertainty of Arctic seasonal sea ice forecasts is reported to grow at a791

higher rate over thin ice regions than over the central Arctic (e.g. Blanchard-792

Wrigglesworth et al. (2017)), we recommend observational constraint of SIT for793

both the thick and thin ice regions in ORAs.794

The impact of sea ice thickness initialization on atmospheric variables has795

also been investigated. Changes in ensemble mean 2m-temperature over the796

pan-Arctic region are significant for SON forecasts initialized from May to Au-797

gust start dates. The impact is also seen in mean sea level pressure and to798

certain extent in 500hPa geopotential height and is mostly local and thermody-799

namically driven, except for some remote impact over the north west Atlantic800

ocean. Similar to the sea ice edge forecasts, positive forecast impact is seen for801

2m-temperature forecasts for the early freezing season, SON, started in May and802

negative impact for the same season is seen when started in August when the ini-803

tial conditions are degraded. Statistically significant changes in 2m-temperature804

mean absolute error are predominantly due to corresponding local changes in805

errors in the sea surface temperature and sea ice variables. There is no clear806

change in forecast skill of upper atmospheric circulation in our experiments. Our807

results illustrate that information on sea ice thickness is relevant for identifying808

model errors and for exploiting the long-term memory present in ice thickness809
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for seasonal forecasts of sea ice and near-surface temperatures. Constraining810

SIT in the initialisation alters biases arising due to both errors in the forcing811

and the sea-ice model. Though the SIT assimilation is not expected to solve812

these underlying problems per se, by moving the model state closer to reality, it813

helps us to better understand the errors in our system, as well as improving fore-814

cast skill scores in the meantime. As atmospheric forecast errors are dominated815

by biases, we are yet to demonstrate the benefit of interannual varying data816

on bias-corrected forecast scores. Robustness of impact on upper atmospheric817

variables and possible teleconnections need to be further assessed which would818

require a longer study period and larger sample size.819

These findings demonstrate that making use of recently-available, spatially820

and temporally rich sea ice thickness observations from satellites for the ice821

growth season has the potential to significantly improve 1) the sea ice state822

in currently operational ocean–sea-ice reanalyses and, 2) the seasonal forecasts823

in operational forecasting systems. Our study also emphasizes the potential of824

future sea ice satellite missions for Earth System reanalysis and forecasts.825
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