
Response to the review of tc-2020-73 titled “Year-round Impact of Winter Sea 

Ice Thickness Observations on Seasonal Forecasts” 

We are grateful to the two anonymous reviewers for the thorough review, insightful comments and 

generally positive response to our article titled “Year-round Impact of Winter Sea Ice Thickness 

Observations on Seasonal Forecasts”. All of their remarks are addressed. Please find below our 

responses to the reviewers’ comments and suggestions (in blue italics).  

Response to Anonymous Referee #1 

Balan-Sarojini and co-authors present a study examining the impact of sea ice thickness (SIT) 

assimilation on seasonal forecasts of the northern hemisphere sea ice cover. In its approach and scope 

the study covers new ground; several of the key findings are substantive and represent a significant 

advance in our understanding of sea ice predictability and performance of seasonal-scale forecasts. The 

authors make good use of newly available, state-of-the-art ice thickness fields and strike a nice balance 

between more fundamental questions of prediction system performance, and applied questions related 

to improving forecast skills of Arctic sea ice models. The paper is well structured and makes good use of 

figures to illustrate key points. The scientific approach is well described and appropriate for the problem 

at hand. The first half of the paper (up to and including Section 3.2, Fig. 7) is particularly compelling and 

self-contained. The latter part of the manuscript, while interesting, is less compelling with some of the 

writing lacking clarity and the paper losing focus with respect to the goals laid out in the introduction 

and implicit in the title. If this part of the paper is retained in full, tightening the text and improving 

readability of sections 3.3-3.5 in particular would make the paper more accessible. 

We thank the reviewer for the constructive comments on the article. Regarding sections 3.3-3.4 we 

propose to follow the reviewer’s suggestion on improving the readability of these sections in the revised 

manuscript. We also justify the presence of these sections in the introduction by pointing out that this 

work takes a forecasting system end-to-end perspective, from observations, modelling to forecast 

products. Thus, in the revised version we clarify that the paper has three main foci sections, as the 

reviewer has  noticed:  i) assessing the seasonal forecasting system performance using new sea ice 

thickness (SIT) observational information (sections 3.1 and 3.2) ,  ii) improving Arctic sea-ice forecast skill 

by understanding the errors in the coupled forecast model and the data assimilation system through 

targeted diagnostics (sections 3.3), and iii) quantifying the impact of sea-ice improvements on seasonal 

forecasts of atmospheric variables (section 3.4). We agree with the reviewer that sections 3.3 and 3.4 

were not properly motivated in the introduction, and we intend to do so in the revised manuscript. 

Section 3.3 describes the inconsistency between the errors in the coupled forecast system and the 

analysis, a key result that points out that the dominant source of error lies in the atmospheric forcing 

rather than in the sea-ice model formulation or data assimilation, and indicates that improvement of 

atmospheric fluxes from atmospheric reanalyses is urgently needed to improve the Arctic sea-ice related 

forecasts.  Section 3.4 explores the impact on forecast skill of atmospheric variables. Although seasonal 

predictions of sea ice can be an end by itself, a prime objective of ECMWF is the forecast of atmospheric 

variables. Therefore, a key part of the evaluation methodology for system developments includes the 



verification of impact of atmospheric variables. In a first instance, this acts as a sanity check to make 

sure there are no obvious degradations, which adds robustness to the developments. In a second 

instance, it helps to quantify the impact on forecasts arising from small incremental improvements, 

which helps to put the SIT impact in the context of other model/data assimilation improvements. Hence, 

we would prefer to keep sections 3.3-3.4 in the same article for future reference. Please note that there 

is no section 3.5 in the article, and we believe it is a typo. Please also see our response to Reviewer 2’s 

specific comment on L12-L13. [L115-L116, L120-L127] 

At the same time, a few aspects of the paper can be improved or require further thought, as outlined 

below. First, given the central role the SMOS/Cryosat-2 data set plays in this study, one would like to see 

some discussion of how errors and uncertainties in the ice thickness data set may have impacted forecast 

skill and in particular some of the regional patterns observed in the thickness-assimilation runs. As shown 

in Ricker et al. (2017) uncertainties due to the fundamentally different retrieval approaches for SMOS 

and Cryosat2, and to a lesser extent the optimal interpolation and data merging schemes, vary 

significantly by region. For example, over the Canadian Basin with mostly thick, multiyear ice the data 

product is dominated by bias/errors in Cryosat-2 data whereas in the Bering or Okhotsk Sea thinner ice 

weights errors towards those associated with SMOS thickness retrievals. It would be important to 

establish whether differences in thickness-field uncertainties have any impact on model performance and 

regional or temporal contrasts in forecast bias. This is also relevant for the integrated analyses of 

parameters such as the Integrated Ice Edge Error or ice volume at the pan-Arctic scale which may gloss 

over important regional contrasts in model performance.  

We completely agree with the reviewer that the thickness uncertainties should be considered in 

sophisticated assimilation of SIT. However, in this work we have only taken the very first step in SIT 

assimilation by using a simple nudging method to constrain SIT from the merged Cryosat2-SMOS 

product without considering the observational uncertainties. In a merged product like CS2SMOS, it is 

difficult to represent the sensor-specific errors properly. As the reviewer commented, sensor-specific 

errors could affect regional SITs, i.e., over multiyear thick ice over the Canadian Basin, errors associated 

with Cryosat-2 retrievals dominate whereas in the Bering or Okhotsk Sea with mostly seasonal thin ice, 

errors associated with SMOS retrievals dominate. As reported in Ricker et al. 2017, the relative error is 

maximum in the thickness range of 0.5-1.0 m in the merged product where both CS2 thick ice and SMOS 

thin ice retrieval errors are maximum. We add this point in Section 2.1.2 and in the concluding section 

mentioning it as an area which needs to be explored in future studies of SIT assimilation. For instance, 

the uncertainty in the retrievals could be taken into account by perturbing the observations in the 

ensemble of data assimilations. We add a sentence on this aspect in the revised manuscript. Equally, the 

verification will benefit from having records of SIT with easy-to-use uncertainty estimates. The practice 

followed by HadISST2, which provides an ensemble of SST records to cover different sources of 

uncertainty in SST, is proving very convenient. [L200-L208, L790-L795, L800-L803] 

Second, the paper lacks detail on the representation of ice thickness and key ice growth, melt and 

deformation processes in the LIM2 prognostic thermodynamic-dynamic sea ice model used in this study. 

It would be important to provide more detail, in particular as to whether any of the parameterizations 

that are part of the Fichefet & Morales Maqueda (1997) – FMM97 – model have been updated or 



changed. Of potential concern in FMM97 – based on description in their original paper – would be the 

limited representation of surface melt processes and their impact on ice albedo as well as physically 

unrealistic representation of internal ice melt (with internal “storage” of solar heat up to a 50% 

threshold). These shortcomings, which may have been addressed in updates but if so the paper needs to 

make this explicit, do not necessarily limit applicability of the model in the context of seasonal ice 

forecasts. However, they are problematic in diagnosing some of the linkages between surface forcing, 

energy storage and the seasonal ice cycle explored in Section 3.3, since FMM97 in its original form may 

be ill suited to examine in particular the spring-summer-fall transitions in terms of the surface radiation 

balance or rates of ice thinning and decay. Given these potential concerns, it would be instructive in 

Section 3.3 to examine the proportion of up/downwelling shortwave fluxes (or albedo, for that matter) to 

get a better perspective on the sensitivity of sea ice as represented in FMM97 to variations in 

downwelling shortwave energy. Such a detailed analysis may well be beyond the scope of the present 

paper. If so, this may be an argument to remove the latter parts of the paper as the basis for a separate, 

more detailed study. The first part of the paper (up to Section 3.3) is substantive enough and fully in line 

with the title of the paper.  

We acknowledge that LIM2 is a simple sea ice model, which we have in our current operational system 

since 2017. The original version of FMM97 is used. As the reviewer points out, it has several limitations 

of surface melt processes such as for instance, representation of melt ponds which could affect the 

accurate representation of surface albedo over sea-ice. However, we note that only the ocean reanalysis 

ORAS5 actually makes use of the albedo computed by LIM2 (which is too high in summer), while the 

atmospheric reanalyses and the forecasting system use the same climatological albedo (based on SHEBA 

campaign observations; Beesley et al. 2000). This means that the differences found in Figure 10 cannot 

be attributed to different albedo biases in the atmospheric reanalyses and forecasts.  We would also like 

to point out that a recent comparison study (Pohl et al. 2020) shows that, overall, the broadband albedo 

over Arctic sea-ice derived from MERIS observations is comparable to that in the ERA5 atmospheric 

reanalysis in terms of the seasonal cycle on the large spatial scales. We find that the forecast albedo 

over ice is comparable to that in ERA-5 and ERA-Interim atmospheric reanalyses. Moreover, it has been 

shown that the downwelling short wave radiation has a negative bias over the central Arctic in both the 

atmospheric reanalyses and the reforecasts (Hogan et al. 2017, Balan-Sarojini et al. 2019). We add the 

specific points in the model description part. We also emphasize that, although the manuscript does not 

cover sea-ice model improvements, recent developments in modelling sea-ice processes affecting the 

sea-ice melt/growth 

(https://forge.ipsl.jussieu.fr/nemo/chrome/site/doc/SI3/manual/pdf/SI3_manual.pdf) are being 

considered for inclusion in upcoming versions of the ECMWF forecasting systems. [L245-L246, L255-

L266, L795-L800] 

Third, starting with the discussion of sea ice volume at the pan-Arctic or northern hemisphere scale the 

paper began to veer off-course a bit in terms of the goals laid out in the introduction. While total ice 

volume is a great integrator and a relevant variable in a global context, I was not able to tell whether the 

authors were assuming that it can also serve as an integrated measure of model performance in terms of 

ice concentration/extent and ice thickness. Given the regional contrasts in model performance apparent 

https://forge.ipsl.jussieu.fr/nemo/chrome/site/doc/SI3/manual/pdf/SI3_manual.pdf


in the early figures of the paper the wholesale discussion of ice volume is somewhat problematic. For 

example, the interpretation of the seasonal ice volume cycle in terms of a single “freezing rate” (p. 17, 

top paragraph) is too simplistic since increases in ice volume during fall and winter occur through a 

combination of ice deformation and ice growth inside the ice pack as well as advance of the ice edge in 

marginal seas. Without an in-depth analysis some of the earlier figures and a solid understanding of how 

well the sea ice model is capturing the relevant processes, Figures such as Fig. 8, don’t add that much to 

the paper and could be relegated to supplemental materials or cut completely.    

We agree to the reviewer that an integrated quantity like Arctic sea ice volume is a result of many 

dynamic and thermodynamic sea-ice processes and lacks regional details. However, integrated SIV is a 

key indicator for understanding of the Arctic energy cycle, an important process that needs to be 

represented in reanalyses and seasonal forecast. It is useful to compare the contrasting SIV seasonal 

cycles in coupled and uncoupled mode, and with/without SIT observational constraint in the 

initialization, since this helps to identify the origin of errors in the systems in the specific operational set 

up. As noted in L304-305, SIC increments in the ORAs do affect analyzed SIV. We add a few sentences to 

discuss the benefits and caveats of using pan-Arctic sea-ice volume as a diagnostic for model 

performance in the revised manuscript. [L506-L513] 

Finally, just a few minor points: - Comparing bias in ice thickness (Fig. 1) with bias in ice concentration 

(Fig. 3) it’s striking that regions with near-zero bias in thickness (e.g. East Siberian Sea, Chukchi Sea in 

November) show up as having significant bias in ice concentration; moreover despite substantial 

contrasts in thickness biases between reference and ice thickness runs (Fig. 1c&d) the biases in ice 

concentration are near indistinguishable (Fig. 3 g&h). How can this be explained? 

We thank the reviewer for raising this important question, which we failed to comment in the original 

version.  The sea-ice thickness bias in ORA-SIT in these areas is very small, about 0.1 to 0.05 m (below 

the contour interval). The presence of concentration bias (Figure 3, similar pattern in ORA-SIT and ORA-

REF) in regions with negligible thickness bias in ORA-SIT is suggestive of fast growth processes in the 

forward model, faster than the timescales intrinsic to the assimilation of sea-ice concentration.    We 

add this explanation in the revised manuscript. [L359-L361, L383-L391] 

 - In regards to July ORASIT biases in ice concentration, it was striking to see much larger bias in the ORA-

SIT than in the reference runs. Why would the simulations that performed (understandably) so much 

better in replicating ice thickness in March through assimilation of ice thickness data perform much 

worse in replicating ice concentration in July? 

A very pertinent question, we asked ourselves as well. As noted in L182-L185 of original text, sea-ice 

thickness observations are only available and assimilated for November-March. The ORA-SIT sea ice 

thickness from April-October are not constrained by observations. The fact that ORA-SIT has larger 

errors than ORA-REF in SIC for July is attributed to the overestimation of the melt in the forced model, 

as discussed in the last two paragraphs of section 3.1. The negative summer SIC bias gets worse in ORA-

SIT than that in ORA-REF due to the fact that the ORA-SIT starts from a thinner ice state compared to 

ORA-REF without CS2SMOS thinning. Please also read our response to L208-209 in the Reviewer2’s 



response part. Indeed, the assimilation of sea-ice concentration is trying hard to compensate for this 

excess of sea-ice melt (Figure 4). The reasons for this excess sea-ice melt during this season is further 

investigated in section 3.3 and attributed to errors in forcing fluxes. This is one of the main outcomes of 

this work. We revise the manuscript to bring out the answer to the reviewer’s question more clearly by 

adding the above discussion in Section 4. [L774-L789] 

Note that this finding also seems to contradict your statement in l. 185 that “The non-availability of the 

observations for the melt season in a way provides an opportunity to test the predictability of winter SIT 

from summer initial conditions.”  

Thanks for this point. We agree that the sentence is confusing and we remove it in the revised 

manuscript. [L328-L330] 

You discuss your findings in terms of Arctic ice concentration and thickness but your figures include 

regions outside of the Arctic proper (such as the Okhotsk Sea). Please clarify whether both model output 

and assimilated data cover the entire northern hemisphere sea ice or a subset of that data. This is 

relevant in particular for figures like Fig. 5 which references “nh” in the figure label (for northern 

hemisphere?) but refers to Arctic sea ice area in the caption. 

Thanks for pointing out the confusion on the definition of Arctic domain in the article. We would like to 
clarify that we have used a global model, so its output includes the entire northern hemisphere. And we 
exploit the full spatial coverage of CS2SMOS data set, which covers all the regions where sea ice has 
ever been observed in recent decades, so it can safely be treated as representing the entire northern 
hemisphere. This information is clearly stated in S2.1.2 and S2.2.1 in the revised manuscript. 

We also add a definition of pan-Arctic (as the sea ice area included is of the whole of NH which is 
essentially the Arctic sea ice, the Okhotsk sea ice and the Baltic sea ice) in the beginning of the Results 
section and use the term ‘pan-Arctic’ wherever appropriate except for Figures where we have explicitly 
mentioned the Arctic domain area in the caption. In this work, we are interested in the large-scale 
impact and not in grid-point scale impact. [L194-L195, L340-L342] 

Response to Minor comments & corrections  

l. 2/3: change to “in its early stage”  

thanks, it is done. [L14] 

l. 20 “near-surface temperature forecasts of early freezing season initialized in May”: This phrase is 

confusing and not entirely clear, please revise to clarify what specifically is forecast with respect to 

“freezing season”.  

thanks, it is rephrased as “near-surface temperature forecasts of early freezing season (Sept-Oct-Nov) 

initialized in May”. [L43-L44] 

l. 25: change to “lasts into autumn”  

thanks, it is done. [L52] 



 l. 80: “it is relevant as cross-check variables evaluation” – not entirely clear what’s referenced here – 

should it be “they are relevant because they allow for cross-checking between variables”? Please clarify.  

thanks for pointing it, the reviewer is right. It is rephrased as “Although the datasets used for verification 
are not strictly independent, evaluation using those datasets is relevant as it allows cross-checking 
between variables, for instance between SIC and SIT assimilation.”. [L144-L147] 
 
l. 81: “SIT verification is also conducted as a sanity check of the nudging approach” – You lost me at 

“sanity check” – what exactly are you doing here? Please explain.  

By ‘sanity check’ we meant that SIT verification using CS2SMOS dataset (Figure 1) is a basic test to check 

whether the nudging works in the first place. L81 of the original text is rephrased as “SIT verification 

using CS2SMOS dataset is also conducted as a sanity check of the nudging approach: the approach 

works, the differences with respect to CS2SMOS should be smaller in ORA-SIT than in ORA-REF.”. [L147-

L150] 

l. 91: change to “The Level-3”  

thanks, it is done. [L162] 

l. 145: “LIM2 has a single sea ice category to represent sub-grid scale ice thickness distribution” – this 

needs further clarification. To calculate an effective conductive heat flux through the ice Fichefet and 

Morales Maqueda (1997) assumed a uniform thickness distribution bounded by zero and twice the 

average thickness. This parameterization was only applied in calculating heat fluxes through ice and 

lateral melt rate but did not enter into any of the ice dynamics components of the model. Given that ice 

thickness initialization is central to this manuscript, a clearer description of what exactly was 

implemented is needed. 

The reviewer is right. As we responded earlier in the main comments section, the original version of 

Fichefet and Morales Maqueda (1997) LIM2 version is implemented in our operational system. We 

explicitly mention it in the revised version. [L245-L246] 

l. 168: change to “differ in” 

thanks, it is corrected. [L302] 

l. 233: “These results clearly show. . .” – Some clarification is needed here, since I interpret Fig. 4 as 

indicating that through May (but not the entire melt season), the effects of SIT assimilation are evident, 

beyond that the reference run performs better through the end of melt. In linking SIC increments to SIT 

assimilation please also consider the points raised in the general comments above.  

Thanks for pointing it out. We agree with the reviewer that a positive impact on SIT is seen till May and a 
negative impact is seen till September. As we have already described the nature of impact in the 
preceding paragraph, this is a general summary sentence at the end of the subsection. To avoid 
confusion we rephrase the sentence as “These results clearly show the long-lasting effect of the SIT 
information: the SIT constraint was only applied during the growth season from November to March 



(grey shading), but its impact, whether positive or negative, is evident in sea ice concentration 
throughout the melting season even in the presence of SIC assimilation”. [L416-L420] 
 
l.238: “(units are. . .” – This should be part of the figure legend or caption, and not be buried in the main 

text.  

The caption has it already. We remove it here, thanks. [L424-L425] 

l. 245: change to “melt season forecasts are considerably reduced”  

thanks, it is done. [L437] 

l. 251: The top labels of the figure panels are cut off and it’s not clear that they’re actually needed (“bias 

for sia in area nh” – would need to be explained; also: is nh Northern Hemisphere? If so, what is the 

difference between this data for northern hemisphere and the Arctic sea ice area as indicated in the 

figure caption?); the color scale needs better labeling. 

Thanks, we confirm that the Arctic domain we have considered everywhere, unless it is specifically 

mentioned in the Figure captions, are pan Arctic which is defined in the revised Results section too. We 

remove the confusing term in the figure panel in the revised paper. [L194-L195, L340-L342, P25] 

l. 265: insert “are” in “that are to be expected”  

thanks, it is done. [L472] 

l. 268: Fig. 6 - This figure should be cleaned up a bit as well; there’s no need for two top labels (the upper 

one is more descriptive anyways, but even that’s not needed given the explanation in the caption); the 

color bar needs proper units. Fig 7: Same comments apply – the 1e12 and 1e11 squeezed right next to 

the figure panel label and disjunct from the axis label (with units of square meters) are less than ideal 

and need to be cleaned up.  

thanks for the suggestion, it is done. Please see our response to Reviewer 2’s comment on L250-262 

also. [P28, P29] 

l. 287: Fig. 8: It’s not clear to me how an axis label of 10ˆ1 3 mˆ3 translates into 10ˆ12 mˆ3 as the figure 

caption claims. Why not put an axis label in kmˆ3?  

thanks for spotting the typo, it is done. [P32] 

l. 361, Figure 11: same comments as for Fig 6 apply 

thanks, it is done. [P41] 

l. 369: correct spelling of “Atlantic” 

the typo is corrected. [L683] 

 



Response to Anonymous Referee #2 

Balan-Sarojini et al. study the impact of Cryosat2/SMOS winter ice thickness (SIT) observation nudging on 

a lower-resolution version of the ECMWF ocean/sea-ice reanalysis (ORA) system and on associated 

coupled seasonal forecasts initialized from that reanalysis system. The SIT constraint suppresses an 

otherwise too strong annual SIT/SIV cycle in the ORA and provides overall thinner SIT conditions toward 

the end of the northern winter (except in the perennial ice regions north of Greenland and the CAA), 

which turn into decreased sea-ice extent in the ORA in summer (despite sea-ice concentration 

assimilation). The thinner/less extensive initial ice is benefitial for seasonal forecasts initialized before 

July, but forecasts initialised in late summer tend to be deteriorated. The authors show that this is linked 

to too-strong spring/summer melt in the ORAs (when no SIT constraint is available), leading to low-

biased ice and warm biased sea-surface initial conditions in summer, in combination with a too-late/too-

weak refreeze in the coupled forecast system. Balan-Sarojini et al. show evidence that the latter points 

can be explained at least partly with the surface radiation budget in the atmosphere-forced ORAs and in 

the coupled forecast model. The study is scientifically sound, well-written, contains appropriate graphics 

and references, and provides interesting insights into the impact of ice thickness observations on 

forecasts in the specific system used which might be helpful to understand other systems, too. I do have 

quite a number of remarks, most of which are however minor. The maybe most demanding 

recommendation is to compare against simple climatological benchmark forecasts where appropriate. In 

summary, I recommend publication of this work in The Cryosphere subject to minor(-to-major) revisions 

as detailed in the following.  

We thank the reviewer for the positive remarks on our article. The main suggestion to verify the 

reforecasts against a climatological benchmark forecast is appreciated. Comparison against a 

climatological benchmark forecast is a very useful background information for  evaluating the predictive 

skill of multi-model-ensemble forecasting systems (for example as in Zampieri et al. 2018),  and we add 

it in the revised manuscript, even if benchmarking dynamical seasonal forecast against climatology is not 

the main objective of the paper.[L478-L483, L499-L504, P29] 

Response to Specific comments  

L12-13: "we find significant improvement of up to 28% in the September sea ice edge forecast started 

from April" - From the abstract it does not become clear that the paper is almost completely focussed on 

biases (and how these affected by constraining SIT) and not on interannual anomalies. In the summary 

section you state very clearly that this is the case (L441-442), but I think it should be mentioned in the 

abstract, too. Without that information, the sentence in L12-13 leaves one wondering how such a 

significant forecast improvement can be reconciled with the "May predictability barrier". In this context, 

see also my recommendation below to consider comparing with a climatological benchmark forecast 

where appropriate.  

Thanks for pointing it out. We mention in the revised abstract that change in biases is the main impact. 

[L29] 



L57: Zampieri et al. 2018 - There’s also a follow-on paper demonstrating reasonable skill of ECMWF S2S 

sea-ice forecasts in the Antarctic: Zampieri et al. 2019 "Predictability of Antarctic Sea Ice Edge on 

Subseasonal Time Scales".  

We add here the reference of the suggested paper on the Antarctic sea ice skill too. [L102] 

Eq. 1: It probably doesn’t make a big difference, but can you specify whether this is "floe-thickness" or 

"effective thickness" (thickness when evenly distributed over grid cell)? 

Thanks, we mention that it is the “floe thickness”. [L283-L284] 

L162-164: "We have also tested the sensitivity to different nudging strengths by running variants of ORA-

SIT with a relaxation time scale of 20, 30 and 60 days" - If you mention this, I would expect that you also 

say something about the impact of the relaxation timescale and why you chose 10 days. 

As the relaxation time scale increases from 10 days to 60 days, lesser constraint on SIT is found. We 

chose the time scale of 10 days for 2 reasons: 1) it fits to the length of the assimilation window, and 2) 

we first wanted to look at the forecast impact of the initial conditions with the maximum observational 

constraint. We add a line on this point. [L293-L298] 

L201-205: "slight underestimation over the central Arctic and overestimation over the Canadian 

Archipelago still remain in November. This is probably caused by the lack of SIT observations during the 

months preceeding November" - Given the relaxation timescale of 10 days, I assume that this difference 

goes back almost completely to the first half of November? That would confirm that you could omit the 

word "probably"; that’s a rather obvious link.  

We agree with the reviewer. Please also see our response to the next remark. [L357] 

L208-209: "The largest impact occurs in March, probably because at this month the SIT observations 

have been assimilated during the preceeding 5 months" - similar to what I say in the previous point, I 

assume that the SIT state responds according to the relaxation timescale. This implies that, on a monthly 

scale, the largest impact should occur in the month with the largest bias, no matter for how many 

months relaxation has been active before that month (as long as it’s at least one month).  

Thanks for raising this point. We agree that the relaxation timescale sets the degree of observational 

constraint as expected and that the largest impact occurs in the month with the largest bias. The 

reviewer could be right on the last point. But we can only confirm that statement after conducting 

assimilation experiments with each month observationally constraint as if the observations were only 

available for that particular month. Indeed, this is something we want to experiment in the future. So 

we would prefer to keep the word “probably”. [L380, L367-L369] 

L210: "with a slight clockwise displacement" - you could mention that this is consistent with the mean 

climatological Arctic drift pattern (transpolar drift, Beaufort gyre) and thus likely a consequence of the 

mean advection.  



Thanks, we add this point. [L372-L374] 

L217-218: "In November [...] the SIT constraint has very little impact on SIC biases" - Could the reason be 

that (in addition to the fact that no SIT corrections are applied in the previous months) the thickness 

corrections made in Nov need more time to influence the sea-ice concentration, because that requires a 

"cross-impact" through other processes (dynamics and thermodynamics)?  

As explained in our response to Reviewer 1’s related comment starting with “Finally, a few minor 

comments”, we now explain the seasonal cycle of the differences in SIC bias better in the revised 

manuscript. Firstly, there is no SIT nudging happening in the preceding months. Secondly, the negligible 

changes in SIC bias between ORA-REF and ORA-SIT is suggestive of fast growth processes in the forward 

model which is faster than the timescales intrinsic to the SIC assimilation. We provide this explanation in 

the revised manuscript. [L359-L361, L383-L391] 

L225: "large positive increments from May to October, indicative of strong underestimation of SIC in the 

ORAs" - To be precise, should "in the ORAs" rather be "in the (hypothetical) forced model without SIC 

assimilation"? After all, the SIC assimilation makes sure that the SIC underestimation doesn’t get too 

strong.  

Thanks for the suggestion. Indeed, the assimilation of SIC reduces the errors in concentration, that 

would be otherwise larger. We modify the sentence as “ …indicative of the strong underestimation of 

SIC in the forward model…”. [L403-L404] 

L232-235: Isn’t the even bigger difference in the SIC increments after May (even though these are for the 

worse) even more strongly showing the long-lasting impact of the SIT corrections on the SIC assimilation?  

The reviewer is right. 

L243: "low bias" could be mistaken for "negative bias", maybe better say "weak bias" or "small bias" or 

similar 

That is true, thanks, it is changed to “small bias”. [L433] 

L250-262: To compute the IIEE, do you use the ensemble-median ice edge (50%- contour of sea-ice 

probability where SIC=15% is used to determine "presence" or "absence" of sea-ice in each ensemble 

member) or do you compute it for each member individually and average the IIEEs afterwards? That 

would make a difference, so this should be specified. Related, note that there’s a probabilistic version of 

the IIEE ("Spatial Probability Score", Goessling and Jung 2018 "A probabilistic verification score for 

contours: Methodology and application to Arctic iceâA˘ Redge forecasts") that you ˇ could apply to your 

ensemble forecasts directly, which would have the advantage that changes in uncertainty/reliability 

would be captured, too.  

For simplicity, we compute the IIEE for the ice edge of the ensemble mean. Thanks for the suggestion on 

the SPS metric. We appreciate that different possibilities of computing IIEE give different results, and the 

SPS again can give a different result. However, in light of the large differences between the forecasts in 



the present study, the differences are probably small. We test these other approaches and document in 

the revised paper whether they would lead to noticeable differences in the figures. We regret to note an 

error in the markings of significant changes in the original Figure 6 in the submitted version and we 

replace it with the corrected Figure 6 which doesn’t change the results qualitatively. [L452-L455] 

Fig. 6 caption and throughout the paper: DelSole and Tippett (2016) just apply the sign test (a special 

case of the binomial test with p=0.5), only that they visualize how the outcome develops from forecast 

case to case like a random walk. I would recommend to refer to the test simply as the sign test (which in 

fact dates back to 1710!).  

We thank the reviewer for pointing us to the historical roots of this test.  We would like to keep citing 

DelSole and Tippet (2016) as the most recent and most relevant piece of work in applying and refining 

this long-known test for the field of climate and weather forecasts. We follow the reviewer’s suggestion 

to refer to it as the sign test (also in Figures 7, 11 and 12 captions) and modify the text as “...sign test as 

recommended by DelSole and Tippet (2016)”. [P28, P29, P41, P44] 

Sect. 3.2 and Fig. 7: 1) Can you please explain how the bias correction is performed? Is this simply done 

for each gridcell individually? Do you just subtract the mean concentration bias (difference as a function 

of time of the year and lead time, averaged over 2011-2016/17), possibly with a correction that makes 

sure concentration values remain bound between 0 and 1? Or is quantile normalization involved? 2) 

Related to the bias correction, I would find it very useful if the forecast errors could be compared against 

a climatological benchmark forecast. The latter could be based simply on the same period (2011-

2016/17), or on the preceding decade (to make it more "operational"). I would expect that the 

uncalibrated forecasts are worse than climatology for most lead times (except the first one or two 

months?), but the calibrated might beat the climatology for a few months? In the summary section you 

say very clearly that you are "yet to demonstrate the benefit of interannual varying data on bias-

corrected forecast scores", but I think it would be rather easy and revealing to add a climatological 

reference (even if it reveals clear limitations of current sea-ice forecast skills). 

1) We perform a simple bias correction like so: for each combination of grid cell, start date and forecast 

lead time, we compute the mean forecast error over all forecasts, which is then subtracted from the 

“raw” forecast value in order to obtain the bias-corrected forecast value. We do not clip the bias-

corrected forecast values to make sure they are between 0 and 1. Although this should be done when 

issuing forecasts, Johnson et al. (2018) have shown that it makes negligible difference for forecast skill 

assessment. [L475-L478] 

2) We appreciate the comparison to a climatological reference forecast is an interesting point, and we 

include the climatological reference in Figure 7. However, we  do not plan to dwell on this point, since 

this is not the main point of the work, and  including further discussion on the performance of 

climatology would distract the readers from the main point: to determine whether initialization with 

CS2SMOS improves or deteriorates the forecast. [L478-L483, L499-L504, P29] 

Fig. 8, top: Can you provide an explanation why the SIV in the ORAs converge from May to September, so 

that the large SIT difference in spring is completely "forgotten", whereas the coupled forecasts maintain 



much of the initial offset? Is there some fundamental reason why the forced (vs. coupled) atmosphere 

would cause such a difference, or can it be linked to the continued assimilation of SIC (or ocean 

variables)?  

As the reviewer suspects, the explanation for the different behavior of the ORAs and the forecasts is 

that the ORAs are constrained by the same SIC (but no SIT) information in summer, which leads to the 

convergence of the sea ice state in the ORAs during that time of the year. This effect can also be 

appreciated from Figure 4, which shows that the SIC assimilation increments of ORA-SIT in summer are 

much more positive than those of ORA-REF, suggesting that SIC assimilation needs to work harder to 

keep ORA-SIT on track (compared to ORA-REF), but overall acts to bring the ORAs closer together in the 

absence of ORA-SIT information. 

In contrast, the coupled forecasts do not have a similar constraint and thus tend to keep the offset in 

the initial conditions throughout the forecast. However, Figure 8a shows that FC-SIT and FC-REF tend to 

converge as well, although much more slowly than the ORAs.  This is mentioned in the revised text. 

[L528-L533] 

Eq. 2: The way the melt energy tendency is defined, is seems to be really just the derivative of (area-

averaged) SIT (times a constant factor), right? Also, maybe it’s better to use partial d’s to make clear that 

these are not material (Lagrangian) derivatives. Related, you could also mention that changes in SIT 

through divergence as well as advection are included, implying that the "melt energy tendency" can in 

principle also change through dynamics. I understand that, by averaging over a large area (almost the 

whole Arctic), most of any dynamical effects would be compensating each other, but being clear about 

this would be good.  

Yes, MET is simply proportional to temporal changes in effective sea ice thickness. As the reviewer 

points out, MET can also change dynamically through lateral ice transports, but here we average over all 

ocean north of 70N, which should be a sufficiently large area to average out this effect and should 

mainly leave thermodynamic effects as the drivers of MET. We clarify this point and also use the more 

appropriate partial d’s in the revised manuscript as the reviewer suggested. [L555, L559-L562] 

L314-316 & Fig. 9: The plot caption reveals that for the forecasts you look only at the first-month MET, 

but you do not mention/explain/motivate this in the text. Further, do I understand correctly that, by 

considering just the first month of the respective forecasts instead of a "closed" seasonal cycle, the 

annual integral of MET is not expected to be zero (while it should be zero for the ORAs)? In fact it looks a 

bit like it’s rather negative (average build-up of sea-ice volume), can you confirm this? 

In Figure 9 we want to isolate the changes in MET when switching from forced (=analysis) to coupled (= 

forecast) mode. To avoid seeing mainly the effect of feedbacks arising from the model sea ice state 

drifting away from the analyzed state (most notably the ice-albedo feedback), we decided to compile 

the annual cycle of forecasted MET from lead-month 1 data. This motivation is clarified in the revised 

manuscript. 



The reviewer is also right that the average of the MET annual cycle in the ORAs is close to zero (in fact 

about ~+0.3 Wm-2, in agreement with the long-term sea ice melt), while it is ~-4.8Wm-2 in FC-REF. The 

negative value suggests that lead-month 1 forecasts on average produce too much ice in winter and 

melt too little ice in summer. This point is noted in the revised manuscript. [L565-L570, L572-L576] 

Fig. 10 and corresponding text: I am wondering to what extent turbulent fluxes (in particular sensible) 

could also play a role, for example, with stronger downward spring/summer sensible heat fluxes in the 

forced ORAs compared to the coupled forecasts (acknowledging that there might not be a corresponding 

observational dataset to compare against). Too high near-surface temperatures that could generate too 

strong downward sensible heat flux would be consistent with a positive downwelling longwave bias in 

ERA-I, even if clouds also seem to play a role there. If differences in turbulent fluxes are too small to be 

important, please mention that.  

Sea ice and near-surface air temperature are close to 0°C during the melting season in both our 

reanalyses and forecasts. Because of this weak vertical temperature gradient sensible heat fluxes will be 

generally small over sea ice in summer. Nevertheless, to be sure, we checked mean difference in 

sensible heat fluxes in ERA-Interim and the forecasts and differences over sea ice were uniformly small 

(<2Wm-2 for May and July averages), confirming that differences in this field cannot explain the found 

differences in MET. A short note on this is added to the revised manuscript. [L616-L619] 

L351-352: "Significant cold biases are present in forecasts for most of the start months and lead months" 

- Is this also true over Arctic sea ice in winter? If so, how can it be reconciled with Batrak and Müller 

(2019) "On the warm bias in atmospheric reanalyses induced by the missing snow over Arctic sea-ice"? I 

thought that the surface coupling is similar in the system studied here?  

Yes, cold biases in near-surface temperature (T2m) are present in the forecasts over Arctic sea ice in 

winter when considering ERA5 reanalysis as the truth. Batrak and Mueller’s findings on warm biases in 

sea-ice temperature in a group of atmospheric reanalyses (including ERA5) without realistic 

representations of snow over sea ice, and sea ice thickness, is based on verification against 

observations, and reanalysis products. The reviewer is right that using atmospheric or ocean reanalysis 

for verification of Arctic surface temperature can be misleading, since there is large uncertainty in them, 

as Batrak and Mueller 2019 show in their Figure 3. Verifying against observations is not easy, since due 

to the scarcity of observational campaigns over sea ice, the verification will have large 

representativeness error, and definitively not suitable for seasonal forecasts. So, while it is clear that 

assimilation of SIT has a sizeable and significant impact on T2m forecasts via SIC forecasts, we do not 

have enough information to assess if this contributes to the reduction of the mean error in T2m.  We 

modify the manuscript along these lines.  [L648-L657]  

Fig. 12: I was a few times slightly confused when looking at this figure, intuitively thinking that the lower 

panels show differences between FC-SIT and FC-REF that could be directly combined with the biases 

shown in the upper panels. But the lower panels show the differences in mean absolute error, which is 

alright but easily misleading. I suggest to use a different colourbar for the lower panels so that the 

different flavours of "temperature" (signed vs. unsigned) is more intuitively reflected.  



 We have made bold figure labels (‘t2m bias’, ‘t2m diff in MAE’) next to the top and bottom colour 

panels respectively and also made the figure caption clearer. [P44] 

Response to Minor comments & corrections 

L25: last -> lasts  

thanks, it is done. [L52] 

L80: "as cross-check variables evaluation" - I recommend to reformulate. 

Thanks. As both the reviewers pointed out, it is rephrased as “Although the datasets used for 

verification are not strictly independent, evaluation using those datasets is relevant as it allows cross-

checking between variables, for instance between SIC and SIT assimilation. ” [L144-L147] 

L91: These -> This 

thanks, the grammar is corrected. [L162] 

L168: "differ on" -> "differ in" / "differ regarding" 

thanks, it is replaced with “differ in”. [L302] 

L208: "gradients on" -> "gradient in the" or "gradients of the"  

thanks, it is replaced with “gradients in the”. [L367] 

L212: "end of melt season" -> add "the"  

thanks, it is done. [L376] 

L217: "reduced up to" -> "reduced by up to" 

thanks, it is done. [L383] 

L227: "indicates" -> "indicate" 

thanks, it is done. [L407] 

L228: "at marginal seas" -> "in the marginal seas"  

thanks, it is done. [L409] 

L232: "on an average" -> "on average"  

sorry, “on an average” is correct. [L414] 

L232-233: "in ORA-SIT analysis" -> add "the" 

thanks, it is done. [L415] 



L265: "that to be" -> add "are" 

thanks, it is done. [L472] 

L288: "is smaller" -> "are smaller"  

thanks, it is done. [L535] 

There are a few more such tiny things, please check carefully! 

thanks, we check the revised manuscript and correct where necessary. [L14, L437, L683, L720] 
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Abstract10

Nowadays many seasonal forecasting centres provide dynamical predic-11

tions of sea ice. While initializing sea ice by assimilating sea ice concentra-12

tion (SIC) is common, constraining initial conditions of sea ice thickness13

(SIT) is only at
:
in
:
its early stages. Here, we make use of the availability of14

Arctic-wide winter SIT observations covering 2011-2016 to constrain SIT15

in the ECMWF (European Centre for Medium-Range Weather Forecasts)16

ocean–sea-ice analysis system with the aim of improving the initial condi-17

tions of the coupled forecasts. The impact of the improved initialization18

on the predictive skill of Arctic
::::::::
pan-Arctic

:
sea ice for lead times of up19

to 7 months is investigated in a low-resolution analogue of the currently20

operational ECMWF seasonal forecasting system SEAS5.21

By using winter SIT information merged from CS2 and SMOS (CS2SMOS:22

CryoSat2 Soil Moisture and Ocean Salinity), substantial changes of sea ice23

volume and thickness are found in the ocean–sea-ice analysis, including24

damping of the overly strong seasonal cycle of sea ice volume. Compared25

with the reference experiment, which does not use SIT information, fore-26

casts initialized using SIT data show a reduction of the excess sea ice bias27

and an overall reduction of seasonal sea ice area forecast errors of up to28

5% at lead months 2 to 5.
::::::
Change

::
in

::::::
biases

::
is

:::
the

::::
main

:::::::
forecast

:::::::
impact.29

Using the Integrated Ice Edge Error (IIEE) metric, we find significant30

improvement of up to 28% in the September sea ice edge forecast started31

from April. However, sea ice forecasts for September started in spring32

still exhibit a positive sea ice bias, which points to too slow melting in the33

forecast model. A slight degradation in skill is found in the early freezing34
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season sea ice forecasts initialized in July and August, which is related35

to degraded initial conditions during these months. Both the ocean re-36

analyses, with and without SIT constraint, show strong melting in the37

middle of the melt season compared to the forecasts. This excessive melt-38

ing related to positive net surface radiation biases in the atmospheric flux39

forcing of the ocean reanalyses remains and consequently degrades anal-40

ysed summer SIC. The impact of thickness initialization is also visible41

in the sea surface and near-surface temperature forecasts. While posi-42

tive forecast impact is seen in near-surface temperature forecasts of early43

freezing season
:::::::::::
(Sep-Oct-Nov)

:
initialized in May (when the sea ice initial44

conditions have been observationally constrained in the preceding win-45

ter months), negative impact is seen for the same season when initialised46

in August month when the sea ice initial conditions are degraded. We47

conclude that the strong thinning by CS2SMOS initialization mitigates48

or enhances seasonally dependent forecast model errors in sea ice and49

near-surface temperatures in all seasons.50

The results indicate that the memory of SIT in the spring initial con-51

ditions last
:::
lasts

:
into autumn, influencing forecasts of the peak summer52

melt and early freezing seasons. Our results demonstrate the usefulness53

of new sea ice observational products in both data assimilation and fore-54

casting systems, and strongly suggest that better initialization of SIT is55

crucial for improving seasonal sea ice forecasts.56
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1 Introduction57

Sea ice is an integral part of the Earth system as it regulates the heat, moisture58

and momentum flux exchange between the polar oceans and the atmosphere.59

Decline in Arctic sea ice is a visible indicator of the changing climate. Fore-60

casting Arctic sea ice has advanced significantly in the last decade, with most61

forecasting centres using prognostic sea ice models operationally, allowing us to62

explore the sea ice forecast skill on long lead times from weeks to months to63

seasons. Possibilities of economically viable shorter shipping routes across the64

Arctic in the summer are constantly being explored. Monthly and seasonal out-65

looks of sea ice products are therefore in great demand especially by the Arctic66

communities, maritime and resource extraction industries.67

Moreover, there is increasing scientific evidence that warming and sea ice loss68

in the Arctic due to climate change affect the European weather and climate69

(Balmaseda et al. (2010), Mori et al. (2014), Overland et al. (2016), Ruggieri70

et al. (2016)). Unlike sea ice concentration and extent, long records of satellite71

observations of sea ice thickness are sorely lacking (Laxon et al. (2003), Kwok72

and Rothrock (2009), Haas et al. (2010), Meier et al. (2014), Sallila et al. (2019),73

Scarlat et al. (2020)).74

Since reliable estimates of long-term, basin-wide sea ice extent and vol-75

ume are needed for understanding climate change and for initializing numer-76

ical weather forecasts, there is growing interest in using improved and new77

types of sea ice observations in data assimilation systems (Lindsay et al. (2008),78

Blanchard-Wrigglesworth et al. (2011), Tietsche et al. (2013), Sigmond et al.79
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(2013), Balmaseda et al. (2015)). Earlier studies propose that long-term mem-80

ory in the winter sea ice thickness can potentially improve summer sea ice extent81

forecasts (Guemas et al. (2016), Tietsche et al. (2014), Day et al. (2014)). They82

concluded that potential predictability mainly originates from the persistence or83

advection of sea ice thickness anomalies, interaction with ocean and atmosphere84

and changes in the radiative forcing.85

While assimilation of sea ice concentration (SIC) is routinely done in oper-86

ational sea ice forecasting, assimilation of sea ice thickness (SIT) is at its early87

stages (Allard et al. (2018), Xie et al. (2018), Mu et al. (2018), Fritzner et al.88

(2019)). These studies have found that SIT initialization improves sea ice fore-89

casts in forced ocean–sea-ice forecasting systems which were run for short time90

periods spanning from 3 months up to 3 years. Blockley and Peterson (2018)91

reported for the first time the positive impact of winter SIT initialization on92

the skill of seasonal forecasts for summer sea ice forecasts using a fully-coupled93

atmosphere–ocean–sea-ice model. All of these studies used either European94

Space Agency’s Cryosat-2 (CS2) radar altimeter freeboard SIT measurements95

alone (Laxon et al. (2013), Hendricks et al. (2016)) or merged with SMOS ra-96

diometric measurements (Kaleschke et al. (2012),Tian-Kunze et al. (2014)) in a97

dataset called CS2SMOS (Ricker et al. (2017)).98

Currently SIC is the only sea ice variable assimilated in the ECMWF ocean-99

sea–ice data assimilation system. Although the ECMWF sea ice reanalysis and100

reforecasts compare well with other systems (Chevallier et al. (2017), Uotila et al. (2018) ,101

Zampieri et al. (2018)
::::::::::::::::::
Uotila et al. (2019) ,

:::::::::::::::::::::
Zampieri et al. (2018) ,

::::::::::::::::::::
Zampieri et al. (2019) ),102
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they are affected by noticeable errors (Tietsche et al. (2018)). There are large103

biases in sea ice forecasts from months to seasons, pointing to uncertainties104

in both the models and observations used in the assimilation and forecasting105

systems. Here we explore the pathway to improve the initialization using obser-106

vations of sea ice thickness which covers both the thick and thin ice regions of107

the Arctic. We then assess the impact of the changed sea ice initial condition108

on the forecast skill on long lead times of months to seasons. Compared to109

Blockley and Peterson (2018), who looked only at summer forecast skills, our110

study for the first time assesses the forecast impact of SIT initialization on all111

seasons using a fully-coupled seasonal forecasting system. We use the ECMWF112

coupled ensemble seasonal forecasting system SEAS5 and CS2SMOS thickness113

observations.114

:::
Our

::::::
study

:::::
takes

:
a
::::::::::
forecasting

::::::
system

::::::::::
end-to-end

:::::::::::
perspective,

::::
from

::::::::::::
observations,115

:::::::::
modelling

::
to

::::::::
forecast

::::::::
products.

::
The rest of the article is organised as follows.116

Section 2 describes the methodology of sea ice thickness initialization and fore-117

casting, including a brief description of ocean–sea-ice models, the assimilation118

system, the atmosphere-ocean–sea-ice coupled forecasting system, observations119

used and the experimental set-up. Section 3 presents the main results :
:::
and120

:::
has

:::::
three

:::::
main

:::::
foci:

:::
i)

::::::::
assessing

:
the impact of new SIT observations on the121

analysed sea ice state and the impact of the changed sea ice initialization on sea-122

sonal range forecasts
::::::
sea-ice

::::::::
forecasts

::::::::
(sections

:::
3.1

::::
and

::::
3.2),

:::
ii)

:::::::::
improving

::::::
Arctic123

::::::
sea-ice

:::::::
forecast

::::
skill

:::
by

:::::::::::::
understanding

::::
the

:::::
errors

:::
in

:::
the

::::::::
coupled

:::::::
forecast

::::::
model124

:::
and

::::
the

:::::
data

:::::::::::
assimilation

:::::::
system

:::::::
through

::::::::
targeted

:::::::::::
diagnostics

::::::::
(sections

:::::
3.3),125
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:::
and

:::
iii)

:::::::::::
quantifying

:::
the

:::::::
impact

::
of

::::::
sea-ice

:::::::::::::
improvements

:::
on

::::::::
seasonal

::::::::
forecasts

::
of126

:::::::::::
atmospheric

::::::::
variables

:::::::
(section

::::
3.4). Finally, Section 4 provides the summary of127

the findings with concluding remarks.128

2 Observations and Methods129

The procedure followed here to assess the impact of SIT information follows a130

twin experiment approach. Each of the experiments consists of two distinctive131

steps: 1) the production of a set of ocean and sea ice initial conditions by con-132

ducting twin ocean–sea-ice assimilation experiments (ocean–sea-ice reanalyses;133

abbreviated as ORA), which only differ in the use of SIT information ; and 2)134

the production of a set of twin retrospective seasonal forecast (reforecast) exper-135

iments, initialized from the respective ORA. The ORA twin reanalyses are a low136

resolution variant of the currently operational ORAS5 (Zuo et al. (2019)). The137

seasonal forecast experiments are also low resolution versions of the operational138

ECMWF seasonal forecasting system SEAS5 (Stockdale et al. (2018), Johnson139

et al. (2018)). The impact of SIT in the ocean initial conditions and seasonal140

forecast is then evaluated, using verification against observational datasets and141

other more specific diagnostics. The verification will also use fields from ORAS5142

and ERA-5 (ECMWF atmospheric Re-Analysis-5); Hersbach et al. 2019) reanal-143

yses. Although the datasets used for verification are not strictly independent, it144

:::::::::
evaluation

:::::
using

::::::
those

::::::::
datasets is relevant as cross-check variablesevaluation

:
it145

:::::
allows

:::::::::::::
cross-checking

::::::::
between

::::::::
variables, for instance between SIC and SIT as-146
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similation. SIT verification
::::
using

::::::::::
CS2SMOS

::::::::
dataset

:
is also conducted as a147

sanity check of the nudging approachcompared to the reference experiment
:
:
::
if148

:::
the

::::::::
approach

:::::::
works,

:::
the

:::::::::
difference

::::
with

:::::::
respect

::
to

::::::::::
CS2SMOS

::::::
should

:::
be

:::::::
smaller149

::
in

:::::::::
ORA-SIT

:::::
than

::
in
:::::::::::

ORA-REF. In this section we first describe the sea ice150

information used for both initialization and verification, and then offer a brief151

description of the experimental set-up.152

In addition to the sea ice data sets described below, the initialization step153

uses ocean observations: sea surface temperature, sea-level anomalies from al-154

timeter and in-situ temperature and salinity, which are the same as those used155

in ORAS5, as described in Zuo et al. (2019).156

2.1 Sea Ice Observational information
::::::::::::::
Information157

2.1.1 Sea Ice Concentration Product: OSI-401-b158

The two ocean–sea-ice reanalysis experiments presented here assimilate the sea159

ice concentration product of the EUMETSAT Ocean and Sea Ice Satellite Appli-160

cation Facility (OSI SAF, www.osi-saf.org; product identifier OSI-401-b (Ton-161

boe et al. (2017))). These
::::
The

:
Level-3 OSI SAF SIC product (OSI-401-b) is162

produced as daily-mean fields with only a few hours latency. In contrast to the163

operational ORAS5 system, which uses Level-4 SIC data, experiments presented164

in this study use Level-3 SIC data. The main difference is that Level-4 products165

rely on gap-filling, whereas Level-3 products have missing data, for instance if166

the satellite has a temporary malfunction, or if certain areas like the North Pole167

are not observed. The OSI-401-b SIC observational estimate is based on SSMIS168
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(Special Sensor Microwave Imager / Sounder) measurements. SIC is provided169

as the percentage of an ocean grid point covered by sea ice. The product comes170

in a polar stereographic grid of 10km horizontal resolution with varying pole171

hole size.172

The impact of Level-3 SIC observations in the initialization is reported to173

have neutral forecast impact on seasonal sea ice forecasts and positive impact174

on sub-seasonal range (Balan-Sarojini et al. (2019)). The OSISAF OSI-401-b175

SIC data set is also used for verification of SIC and sea ice edge.176

2.1.2 Sea Ice Thickness product
:::::::::
Product: CS2SMOS177

A recent initiative led by the Alfred Wegener Institute provides a merged prod-178

uct of Arctic-wide winter ice thickness that combines thick-ice retrievals by179

CryoSat2 (CS2) satellite and thin-ice retrievals by the Soil Moisture and Ocean180

Salinity (SMOS) satellite. This merged sea ice thickness observational product,181

CS2SMOS (https://spaces.awi.de/display/CS2SMOS, Ricker et al. (2017)), is182

the first ever multi-sensor ice thickness product for the Arctic. CS2 (Hendricks183

et al. (2016)) measures freeboard (the height of the ice or snow surface above the184

water level) using altimetry, whereas SMOS (Tian-Kunze et al. (2014)) measures185

brightness temperatures in the L-band microwave frequencies. Both measure-186

ments are converted to ice thickness in metres. Due to their different measure-187

ment principles, SMOS retrievals should be reliable for ice thinner than about188

1 m and CS2 retrievals for ice thicker than 1 m. The merged product can hence189

represent the entire thickness range covering the whole Arctic with reasonable190
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accuracy (Ricker et al. (2017)). CS2 and SMOS are merged using an optimal191

interpolation scheme to produce the CS2SMOS product, which is available on192

a weekly basis on an Equal-Area Scalable Earth Grid version 2 (EASE2) grid193

with 25km horizontal resolution
::
25

::
km

::::::::::
horizontal

:::::::::
resolution

::::::::
covering

::
all

:::::::
regions194

::
in

:::
the

:::::::::
Northern

:::::::::::
Hemisphere

:::::
where

::::
sea

:::
ice

:::
can

:::
be

:::::::::
expected. Both the CS2 and195

SMOS retrievals are not possible in the melt season due to signal contamination196

owing to the presence of melt ponds, and wet and warm snow and ice surfaces.197

It
:
,
::::::::
therefore

::
it
:
is only available for 5 full months from November to March of198

the ice growth season every year.199

::
In

:
a
:::::::
merged

::::::::
product

::::
like

:::::::::
CS2SMOS

::
it
::
is
::::::::
difficult

::
to

::::::::::::
appropriately

:::::::::
represent200

::::::::::::
observational

::::::::::::
uncertainties.

:::::
For

:::::::::
instance,

:::::::::::::
sensor-specific

:::::::
errors

:::::
could

::::::
affect201

:::::::
regional

::::
sea

:::
ice

:::::::::
thickness:

:::::
over

::::::::::
multi-year

::::::
thick

:::
ice

:::
in

:::
the

::::::::::
Canadian

::::::
Basin,202

:::::
errors

::::::::::
associated

:::::
with

:::::::::
Cryosat-2

:::::::::
retrievals

::::::::::
dominate,

::::::::
whereas

::
in
::::

the
:::::::

Bering203

::
or

::::::::
Okhotsk

::::
Sea

:::::
with

:::::::
mostly

::::::::
seasonal

::::
thin

::::
ice,

::::::
errors

::::::::::
associated

::::
with

:::::::
SMOS204

::::::::
retrievals

:::::::::
dominate.

::::
As

::::::::
reported

:::
in

:::::::::::::::::::
Ricker et al. (2017) ,

:::
the

::::::::
relative

:::::
error

::
is205

:::::::::
maximum

::
in

::::
the

:::::::::
thickness

:::::
range

:::
of

:::::::
0.5-1.0

::
m

:::
in

:::
the

::::::::
merged

::::::::
product,

::::::
where206

::::::
relative

:::::::::::
uncertainty

::
is

:::::
high

:::
for

::::
both

:::::
CS2

:::
and

:::::::
SMOS.

:
207

The CS2SMOS SIT information
:::::::
without

:::::::::::::
observational

::::::::::::
uncertainties

:
has208

been assimilated in one of the twin ORA experiments, during the November-209

March period. It has also been used for verification of initialization in those210

months. We emphasize that this dataset does not provide SIT information211

during the period April–October. Nevertheless, there is still substantial im-212

pact in the April–October period from constraining sea ice thickness during the213
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November–March period, as we will see in Section 3 – a truly year-round impact.214

2.2 Methods215

2.2.1 Ocean–sea-ice
::::::::::::::
Ocean–Sea-Ice

:
Reanalysis Experiments216

In order to assess the impact of new sea ice thickness observations on the assim-217

ilation, we carry out two ORAs as shown in Table 1. They are 1) a reference218

experiment with SIC assimilation (ORA-REF), and 2) an experiment with SIC219

assimilation and sea ice thickness constraint (ORA-SIT). Experiments ORA-220

REF and ORA-SIT are run for the time period January 2011 to December221

2016, because these are the full years for which CS2SMOS observations were222

available at the time of experimentation. Note that ORA-REF is a continu-223

ation of a longer experiment which started in 2005 and ORA-SIT starts from224

ORA-REF on the 1st of January, 2011.225

Experiment

name

SIC

constraint

SIT

constraint

Time

period

Description

ORA-REF Yes No 2011-2016 SIC assimilation

ORA-SIT Yes Yes 2011-2016 SIC assimilation and

SIT nudging

Table 1: Specifications of the ocean–sea-ice assimilation experiments
:
.

Our reanalysis experiments are forced by near-surface air temperature, hu-226

midity and winds as well as surface radiative fluxes from the atmospheric reanal-227
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ysis ERA-Interim (ERA-I) (Dee et al. (2011)) until 2015 and from the ECMWF228

operational analysis from 2015 to 2016. We use the same set-up of NEMOVAR229

(Variational data assimilation system for NEMO (Nucleus for European Mod-230

elling of the Ocean) ocean model) used in ORAS5 (Zuo et al. (2019)) – in231

particular, almost the same observations are assimilated. The only differences232

are the following: a) a coarser model resolution as described below, b) different233

assimilated SIC observations compared to the current operational one and, c) a234

longer assimilation window of 10 days instead of 5 days.235

The ocean general circulation model used in these experiments is NEMO236

version 3.4 (Madec (2008)) with a horizontal resolution of approximately 1◦ and237

42 vertical layers. The grid is tripolar, with the poles over Northern Canada,238

Central Asia and Antarctica enabling higher resolution across the Arctic than at239

the equator. The first model layer is 10 m thick, and the upper 25 levels represent240

approximately the top 880 m. Both the horizontal and vertical resolution in our241

setup is lower than that of the current operational system, which has a horizontal242

resolution of approximately 0.25◦ and 75 vertical levels. The time step is one243

hour.244

The prognostic thermodynamic-dynamic sea ice model used is LIM2 (Louvain-245

la-Neuve Sea Ice Model)
::
in

::
its

::::::::
original

::::::
version

:
(Fichefet and Maqueda (1997)).246

The vertical growth and decay of ice due to thermodynamic processes is mod-247

elled according to the three-layer (one layer for snow and two layers for ice)248

Semtner scheme (Semtner (1976)). The ice velocity is calculated from a mo-249

mentum balance considering sea ice as a two-dimensional continuum in dy-250
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namical interaction with the atmosphere and ocean. Internal stress within the251

ice for different states of deformation is computed following the viscous-plastic252

(VP) rheology proposed by Hibler III (1979). LIM2 has a single sea ice cat-253

egory to represent sub-grid scale ice thickness distribution, and open water254

areas like leads and polynyas are represented using ice concentration. Melt255

ponds are not modelled .
:::::
which

:::::
could

::::::
affect

::::
the

::::::::
accurate

:::::::::::::
representation

:::
of256

::::::
surface

:::::::
albedo

::::
over

:::::::
sea-ice.

:::::::::
However,

::::
we

::::
note

:::::
that

::::
only

::::
the

::::::
ocean

:::::::::
reanalysis257

:::::::
ORAS5

::::::::
actually

::::::
makes

::::
use

::
of

::::
the

:::::::
albedo

:::::::::
computed

:::
by

:
LIM2

::::::
(which

::
is
::::

too258

::::
high

::
in

::::::::::
summer),

:::::
while

::::
the

:::::::::::
atmospheric

::::::::::
reanalyses

:::::
used

:::
for

:::::::::::
verification

::::
and259

:::
the

::::::::::
forecasting

:::::::
system

::::
use

:::
the

:::::
same

:::::::::::::
climatological

:::::::
albedo

::::::
(based

:::
on

::::::::
SHEBA260

::::::::
campaign

::::::::::::
observations;

:::::::::::::::::::::
Beesley et al. (2000) ).

::::::::::
Moreover,

:
a
::::::
recent

:::::::::::
comparison261

:::::
study

::::::::::::::::::
(Pohl et al. (2020) )

:::::
shows

:::::
that,

:::::::
overall,

:::
the

::::::::::
broadband

::::::
albedo

::::
over

::::::
Arctic262

::::::
sea-ice

:::::::
derived

:::::
from

:::::::
MERIS

::::::::::::
observations

::
is

:::::::::::
comparable

::
to

:::::
that

::
in

::::
the

::::::
ERA5263

:::::::::::
atmospheric

:::::::::
reanalysis

:::
in

:::::
terms

:::
of

::::
the

::::::::
seasonal

:::::
cycle

:::
on

:::::
large

:::::::
spatial

::::::
scales.264

:::
The

::::::::
forecast

::::::
albedo

:::::
over

:::
ice

::
is

::::::::::
comparable

:::
to

::::
that

::
in

:::::::
ERA-5

::::
and

::::::::::::
ERA-Interim265

:::::::::::
atmospheric

::::::::::
reanalyses.

::::::
LIM2 has a time step of 1 hour and is coupled to the266

ocean at every time step.267

As for ORAS5, both experiments here use the variational data assimila-268

tion using NEMOVAR in a 3D-Var FGAT (First Guess at Appropriate Time)269

configuration as described in Mogensen et al. (2012). The length of the assimi-270

lation window is 10 days in our experiments. Assimilated observations comprise271

temperature and salinity profiles, altimeter-derived sea level anomalies and sea272

ice concentration. Sea-surface temperature is constrained to observations by273
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a strong relaxation. A global freshwater correction is added to reproduce the274

observed global-mean sea-level change. The assimilation of the SIC is done sep-275

arately from the ocean variables, and is described in Tietsche et al. (2015) and276

Zuo et al. (2017).277

In addition to the observations assimilated via NEMOVAR, the SIT in exper-278

iment ORA-SIT is constrained to the CS2SMOS via a linear nudging technique279

(Tietsche et al. (2013), Tang et al. (2013)). The relationship between the mod-280

elled and observed sea ice thickness in a grid point is described by the following281

equation:282

SITn = SITm − [
∆t

τ
(SITm − SIT o)] (1)

where SITn is the nudged thickness, SITm is the modelled
:::
floe

:
thickness,283

SIT o is the observed
:::
floe

:
thickness, ∆t is the sea ice model time step of 1284

hour, and τ is the nudging coefficient corresponding to a relaxation time scale285

of 10 days. The choice of a 10-day relaxation time scale makes sense as a286

first trial, since it is consistent with the length of the assimilation window.287

To facilitate the nudging, the CS2SMOS weekly observations in EASE2 grid288

have been interpolated to daily gridded fields in ORCA 1◦ grid. The weekly289

to daily interpolation is done by appropriately weighting two adjacent weekly-290

mean fields. We have also tested the sensitivity to different nudging strengths by291

running variants of ORA-SIT with a relaxation time scale of 20, 30 and 60 days
:
.292

::
By

::::::::::::
construction,

:::
as

:::
the

::::::::::
relaxation

::::
time

:::::
scale

::::::::
increases

:::::
from

::
10

:::::
days

::
to

:::
60

:::::
days,293

:::
SIT

::
is
::::

less
:::::::::::
constrained

:::
to

::::::::::
CS2SMOS.

:::
In

::::
this

::::::
study, but in this studywe only294

use the experiment with the strongest constraint (10-day relaxation time) for295
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initializing the ensemble reforecasts,
::::::::
because

::::
this

::::
time

:::::
scale

:::
fits

:::::
with

:::
the

::::::
length296

::
of

:::
the

:::::::::::
assimilation

::::::::
window,

::::
and

:::
we

::::::
aimed

:::
for

:
a
::::::
strong

:::::::::::::
observational

:::::::::
constraint297

::
in

:::::
order

::
to

:::::::
obtain

:
a
::::::
strong

::::::::
forecast

::::::
impact.298

2.2.2 Coupled Reforecast Experiments299

In order to assess the impact of CS2SMOS sea ice thickness initialization on300

sea ice forecasts, we performed 2 sets of twin coupled ocean–sea-ice-atmosphere301

reforecast experiments as shown in Table 2, which only differ on
::
in

:
the ocean–302

sea-ice initial conditions, provided by the data assimilation experiments shown303

in Table 1. The reference reforecast (FC-REF) is initialized by ORA-REF,304

and reforecast experiment FC-SIT is initiailized by ORA-SIT. Comparison of305

results from these two sets of reforecasts allows quantifying the impact of SIT306

information on the seasonal forecasts.307

Experiment

name

Start years Lead

mon

Ens.

size

Initial

condition

Description

FC-REF 2011–2016 7 25 ORA-REF SIC initialization

FC-SIT 2011–2016 7 25 ORA-SIT SIC and SIT

initialization

Table 2: Overview of the reforecast experiments. For each of the start years,

forecasts are started on the 1st of every calendar month.

The reforecast experiments are carried out using a version of the ECMWF308

coupled seasonal forecasting system. The coupled model consists of the same309
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ocean and sea ice model (NEMO3.4/LIM2) used for our reanalysis experiments,310

and is coupled to the ECMWF atmospheric model, Integrated Forecast System311

(IFS) version 43r3. It is run with a horizontal resolution of 36 km, correspond-312

ing to a cubic octahedral reduced Gaussian grid at truncation TCo319 and 91313

vertical levels (SEAS5 is run with IFS cycle 43r1 at the same atmospheric reso-314

lution, but with 0.25◦ horizontal resolution and 75 vertical levels in the ocean).315

The coupled model also includes the land surface model HTESSEL (Hydrology316

Tiled ECMWF Scheme for Surface Exchanges over Land) and the ocean surface317

wave model WAM. The coupling of the atmosphere and ocean is done using a318

Gaussian interpolation method, and the coupling frequency is 1 hour. For more319

details on SEAS5 see (Stockdale et al. (2018), Johnson et al. (2018)).320

Both reforecasts are started from the 1st of each month of each year 2011–321

2016, resulting in 72 forecast start dates overall. Note that out of all months322

of each year in the 2011-2016 period only winter (December-April) months are323

directly constrained by November-March observations as the CS2SMOS data324

is only available for those 5 full months. The initial conditions for the re-325

maining 7 start months (May-November) of each year are indirectly affected326

by the thickness constraint applied earlier in the ice growth season in the re-327

analysis. The non-availability of the observations for the melt season in a way328

provides an opportunity to test the predictability of winter SIT from summer329

initial conditions. The forecast initialized from each start date has 25 ensemble330

members for both sets of reforecasts.331
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3 Results332

Here we first assess the impact of sea ice thickness observations on the estimation333

of sea ice properties in the ORA initial conditions, and then we evaluate the334

impact on the skill of seasonal forecast of sea ice area, sea ice edge, sea ice335

volume and 2m temperature. When possible, we use the observational datasets336

for verification. However, as mentioned above, sea ice thickness and volume337

(SIV) can not be verified properly for the months April-October, due to the lack338

of sea ice thickness observations. In those cases, we will describe the impact in339

terms of differences between experiments.
:::
We

::::
use

:::
the

:::::
term

::::::::::
pan-Arctic

::
to

:::::
refer340

::
to

:::
all

:::::::
regions

::
of

::::
the

::::::::
Northern

:::::::::::
Hemisphere

:::::
that

:::
are

::::::::::
potentially

::::::::
covered

:::
by

:::
sea341

:::
ice.

:
342

3.1 Impact of Sea Ice Thickness Initialization on the Sea343

Ice Reanalysis344

Figure 1 shows the SIT bias with respect to the CS2SMOS observations for345

ORA-REF (Figure 1a, c) and ORA-SIT (Figure 1b, d), for March (Figure 1a,346

b) and November (Figure 1c, d). The ORA-REF suffers from large ice thickness347

bias of up to 1.4 m. The predominant bias pattern is an underestimation of ice348

thickness by more than 1 m in the central Arctic, and an overestimation in349

the Beaufort Gyre and the Canadian Archipelago of the order of 1 m. This350

pattern is present for all the months when CS2SMOS is available. In March,351

widespread overestimation in the coastal Arctic seas is also present. These352
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biases are much reduced or absent in ORA-SIT. Most of the large-scale pattern353

of underestimation and overestimation of sea ice in ORA-REF is not present in354

ORA-SIT in March. However, slight underestimation over the central Arctic and355

overestimation over the Canadian Archipelago still remain in November. This is356

probably caused by the lack of SIT observations during the months preceeding357

November. In contrast, the estimation of the March conditions benefit from the358

availability of SIT information in the preceeding winter.
:::
We

::::
note

::::
that

::::
the

::::
bias359

::
in

:::::::::
ORA-SIT

::::
over

::::
the

::::::::
Laptev,

::::
East

:::::::::
Siberian

::::
and

::::::::
Chukchi

::::
Seas

::
is
:::::

very
::::::
small,360

:::::
about

:::
0.1

:::
to

::::
0.05

::
m

:::
of

:::::::::
magnitude

:::::::
(below

:::
the

::::::::
contour

::::::::
interval).

:
361

Figure 2 shows the difference in SIT between ORA-SIT and ORA-REF for362

March, July, September and November. The difference patterns between ORA-363

SIT and ORA-REF are quite consistent for all the months, characterized by364

a thickening of the thick ice over the Central Arctic and North of Greenland,365

and a thinning of the thin ice area over the Beaufort and Siberian Seas, thus366

enhancing the spatial gradients on
:
in

::::
the

:
sea ice thickness distribution. The367

largest impact occurs in March, probably because at this month the SIT obser-368

vations have been assimilated during the preceeding 5 months. The impact of369

SIT winter information lasts well into the summer months, with a slight clock-370

wise displacement of the thinning, and a reduction of the thickening, which by371

September has roughly halved. The
::::
shift

:::
in

:::
the

::::::::
thinning

::::::::
pattern

::
is

:::::::::
consistent372

::::
with

:::
the

::::::
mean

::::::::::::
climatological

::::::::::
transpolar

::::::
Arctic

::::
drift

:::::::
pattern

::::
and

::
is

::::
thus

:::::
likely

::
a373

:::::::::::
consequence

::
of

:::
the

::::::
mean

::::::::::
advection.

::::
The

:
impact during March and November374

is consistent with a reduction of the bias in ORA-REF (Figure 1a and c). Since375
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Figure 1: Bias in monthly-mean (2011-2016) sea ice thickness (m) in experiment

a) ORA-REF and b) ORA-SIT, for March (a, b) and November (c, d). The

reference is CS2SMOS observations. ORA-REF is the ocean–sea-ice assimilation

experiment with no sea ice thickness constraint. ORA-SIT is the assimilation

experiment with a thickness relaxation time scale of 10 days.
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Figure 2: Difference in monthly-mean (2011-2016) sea ice thickness (m) between

experiments ORA-SIT and ORA-REF for a) March and b) July and for c)

September and d) November months.
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basin-scale SIT observations are not available for the end of
::
the

:
melt season,376

biases are unknown.377

The thickness constraint also affects the biases in SIC. Figure 3 shows the378

SIC bias w.r.t. OSI-401-b SIC as well as the SIC difference between ORA-REF379

and ORA-SIT. In March,
:::
the

::::::
month

:::
of

:::
sea

::::
ice

::::::::::
maximum,

:
ORA-REF shows380

mostly an overestimation of SIC all around the sea ice edge, over the Davis381

Strait, northeast of Greenland, Bering Sea and Okhotsk Sea. In ORA-SIT382

this bias is uniformly reduced
::
by

:
up to 10% . In November (Figure 3g, h and383

i)
:
,
:::::
when

::::
the

::::
sea

:::
ice

::::
edge

:::
is

:::::::::
expanding

:::::
with

::::::
newly

::::::
frozen

::::
ice,

:
ORA-REF has384

similar SIC overestimation biases over the sea ice edge, but this time the SIT385

constraint has very little impact on SIC biases.
::::
This

::
is
::::::::

because
:::
of

:::
no

::::
SIT386

:::::::
nudging

::::::::::
happening

::
in

::::
the

:::::::::
preceding

::::::::
months.

:::::
Also,

::::
the

:::::
very

:::::
small

::::::::
changes

::
in387

:::
SIC

::::
bias

::::::::
between

::::::::::
ORA-REF

::::
and

:::::::::
ORA-SIT

::::
over

:::::::
Chukchi

::::
and

:::::
East

:::::::
Siberian

::::
Sea388

::::::
regions

::
of
:::::::::
negligible

:::
ice

:::::::::
thickness

::::
bias

::
in

::::::::::
ORA-SIT

:::::::
(Figure

:::
1d)

::
is
::::::::::
suggestive

::
of389

:::
fast

:::::::
growth

:::::::::
processes

::
in

::::
the

:::::::
forward

::::::
model

::::::
which

::
is

:::::
faster

:::::
than

:::
the

::::::::::
timescales390

:::::::
intrinsic

::
to

::::
the

:::
SIC

::::::::::::
assimilation.

:
The ORA-REF biases in July are characterized391

by a weak underestimation of SIC. Notably, in ORA-SIT there is an increase392

of the negative SIC bias of more than 10% over the Pacific and Siberian Arctic393

sectors towards the end of melt season, with July and August (not shown)394

months being the most affected.395

To gain some insight into the degradation of the July SIC bias in ORA-SIT396

we look at the mean annual cycle of the SIC assimilation increments. The assim-397

ilation increments are indicative of the corrections that the assimilation of SIC398
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Bias and change
::::::::
Change

:
in Sea Ice Concentration

Figure 3: Bias in monthly-mean (2011-2016) sea ice concentration w.r.t. OSI-

401-b observations for ORA-REF (a, d, g), ORA-SIT (b, e, h), and the difference

between ORA-SIT and ORA-REF for (c, f, i). Panels (a, b, c) are for March,

(d, e, f) for July, and (g, h, i) for November.
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observations exerts to compensate for errors in the sea ice state. Figure 4 shows399

the mean annual cycle of the area-averaged assimilation increments in ORA-400

REF (blue) and ORA-SIT (green). In both experiments, the assimilation incre-401

ments exhibit a clear seasonal cycle, with large positive increments from May402

to October, indicative of strong underestimation of SIC in the ORAs
:::::::
forward403

:::::
model, and weak negative increments from December to March. The differ-404

ences in SIC increments over the Arctic between the two experiments peaks405

during July, with ORA-SIT increments about 9% per month higher than in406

ORA-REF. The results in this figure indicates
::::::
indicate

:
that 1) both ORAs melt407

sea ice too fast during the summer months, as shown by negative SIC biases at408

::
in

:::
the

:
marginal seas of the Arctic Ocean where thin sea ice resides during the409

summer months (Figure 3d and e) ; and 2) the SIT assimilation exacerbates the410

summer SIC biases in ORA-SIT (as seen in eg: Figure 3e) due to corrected but411

thinner sea ice at the begining of the melt season in almost all marginal seas of412

the Arctic Ocean (Figure 2a).413

From January to May and from November to December, on an average less414

ice is being taken away by the increments in
:::
the

:
ORA-SIT (green) analysis than415

that in ORA-REF (Figure 4). These results clearly show the long-lasting effect416

of the SIT information: the SIT constraint was only applied during the growth417

season from November to March (grey shading), but its impact
::::::::
,whether

:::::::
positive418

::
or

::::::::
negative,

:
is evident in sea ice concentration throughout the melting season419

even in the presence of SIC assimilation.420
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Annual cycle
::::::
Cycle

:
of the mean

::::::
Mean

:
of Sea Ice Concentration

increments
::::::::::::
Increments

Figure 4: Annual cycle of the mean of the SIC increments in ORA-SIT (green),

and ORA-REF (blue), averaged over north of 70◦N during 2011-2016. The grey

shading shows months (January to March, and November to December) with

CS2SMOS SIT nudging.
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Bias in the Sea Ice Area forecasts
:::::::::
Forecasts

Figure 5: Bias in the forecast of Arctic
::::::::::
pan-Arctic

::
sea ice area

(×1012m2
::::::::
×106km2) w.r.t. ORAS5 as a function of start and lead month for

2011–2016, a) in the reference reforecast FC-REF and b) in the SIT-initialised

reforecast FC-SIT. Red colour denotes over-prediction of sea ice area, and blue

colour denotes under-prediction.

3.2 Impact of ice thickness initialization
:::
Ice

:::::::::::::
Thickness421

:::::::::::::::
Initialization

:
on sea ice forecasts

:::::
Sea

::::
Ice

::::::::::::
Forecasts422

Figure 5a gives an overview of bias in sea ice area in the FC-REF reforecast423

w.r.t. ORAS5 reanalysis as a function of forecast start and lead months(units424

are 106 km2). ORAS5 is preferred to OSISAF for the verification of integrated425

sea ice area because of its complete spatial coverage. The figure shows the426

forecast bias for different forecast lead times (y-axis) as a function of forecast427

starting month (x-axis). Errors at lead month 1 are generally small throughout428

the year. However, for longer lead times, there is a strong over-prediction of429
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sea ice area in summer months, and a moderate under-prediction of autumn sea430

ice conditions, consistent with too slow melting and refreeze respectively. The431

forecast biases are generally small in winter months.432

These three bias regimes, in general – low
:::::
small bias in winter, positive bias433

in summer and negative bias in autumn – seem to be mostly independent of start434

months. These biases shown in FC-REF are quite similar to those in SEAS5435

(not shown) which are discussed in more detail in Stockdale et al. (2018). The436

positive biases in the melt season forecasts is
::
are

:
considerably reduced with the437

SIT initialisation in FC-SIT started in January to June and the negative biases438

in the forecasts is worsened in FC-SIT started in July to October (Figure 5b).439

The forecasts for winter months remain unbiased in FC-SIT. Note that the bias440

regimes in the forecasts are very different from the bias regimes in the reanalysis441

(Section 3.1), which tends to have too much ice in winter and too little ice in442

summer.443

Impact of thickness initialization has not only improved the biases in summer444

SIC forecasts, but it has also improved the sea ice extent
::::
edge

:
forecasts as445

measured by the Integrated Ice Edge Error (IIEE) (Figure 6). Seasonal forecasts446

of ice edge are in great demand for exploring economically viable Arctic shipping447

routes. IIEE is one of the recent user-relevant sea ice metrics on ice extent or ice448

edge (Goessling et al. (2016), Bunzel et al. (2017)). Since it can be decomposed449

into over- and under-prediction, it is more useful than the traditional basin-wide450

sea ice extent error. It is calculated using uncalibrated451

:::
For

::::::::::
simplicity,

:::
we

:::::
assess

:::
ice

:::::
edge

::::::::
forecasts

:::
by

:::::
using

::::
the

::::::::::::
deterministic

:::::
IIEE452
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::::::
metric

:::::::::
calculated

::::
from

::::
the

::
ice

:::::
edge

::
of

:::
the

::::::::
ensemble

::::::
mean SIC forecasts.

:::
We

::::
have453

:::
also

::::::
tested

::::::::::::
probabilistic

:::::::
metrics

:::
like

::::
the

::::::
Spatial

:::::::::::
Probability

:::::
Score

:::::::::
suggested

:::
by454

:::::::::::::::::::::::::::
Goessling and Jung (2018) and

::::::
found

::::
that

:::::
they

::::
give

::::
very

:::::::
similar

:::::::
results.

:
455

IIEE for all lead months and start months verified against OSI-401-b sug-456

gests reduced error in sea ice edge (blue colours) in FC-SIT overall. The most457

striking feature is the significant improvement in summer forecast error for lead458

months 2–7 in FC-SIT compared to FC-REF. The main contribution to the er-459

ror reduction of up to 30% in summer forecasts comes from the reduction of the460

model bias leading to consistent over-prediction (not shown). For the traditional461

September sea ice extent forecast starting in April, an improvement of 28% is462

found. Forecast verification in October and November from July and August463

starts show a slight degradation, caused by under-prediction (not shown). This464

could again be due to the indirect effect of a thinner starting point in FC-SIT465

(Figure 2b) and a lower, degraded SIC in the ORA-SIT reanalysis (Figure 3e),466

combined with the already existing slow refreeze nature of the model.467

Figures 5 and 6 point out that the impact of ice thickness initialization on468

the forecast bias and errors is strongly dependent on season and lead time.469

Most seasons and lead times are improved but some are, perhaps inevitably,470

deteriorated. To measure the overall impact on forecast error and make a state-471

ment about potential skill improvements that
:::
are to be expected for operational472

forecasts, we aggregate FC-SIT and FC-REF for all start months from January473

2011 to December 2016 and compute the area-integrated mean absolute forecast474

error (MAE) of sea ice concentration for each lead month.
::
In

:::::
order

:::
to

::::::
obtain475
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Difference in Integrated Ice Edge Error

Figure 6: Difference in Integrated Ice Edge Error in 1011 m2
:::::::
105 km2

:
between

FC-SIT and FC-REF reforecasts 2011–2016 w.r.t. OSI-401-b observations. Blue

colour denotes reduced error in sea ice edge in FC-SIT and red colour denotes

increased error in FC-SIT. Black triangles represent statistically significant

(DelSole and Tippett (2016) ) changes
::::::::
statistical

:::::::::::
significance

:
at

:::
the

:
5% level

.
::::::::
according

::
to

::::
the

::::
sign

::::
test

::::::::::::::::::::::::::
(DelSole and Tippett, 2016)

.
:
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Mean Absolute Error in Integrated SIC forecasts
:::::::::
Forecasts

Figure 7: Spatially integrated SIC mean absolute error over lead month for

all FC-REF and FC-SIT forecasts (no.
::
72

:::::::::
forecasts

::::
each

::::
first

:
of forecast start

months, n = 72;
:::
the

::::::
month

:::::
from

:
January 2011 to December 2016) w.r.t OSI-

401-b observations. Panel a) shows the error
::
in

:::::::
106 km2 without bias correction,

panel b) the error
::
in

::::::::
105 km2 after bias correction. Lead months for which the

reduction of forecast error in FC-SIT passes the DelSole and Tippett (2016)
:
a

::::::::
statistical

:
significance test at the 5% level

::::::::::::::::::::::::::
((DelSole and Tippett, 2016) )

:
are

marked by filled circles, insignificant changes are marked by crosses.
:::
The

:::::
error

::
of

:
a
:::::::
simple

::::::::::::
climatological

:::::::::
reference

:::::::
forecast

::
is

::::
also

::::::
shown

:::
as

::::::::
FC-clim.
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:::
the

:::::::::::::
bias-corrected

:::::::
forecast

::::::
value,

:::
for

:::::
each

::::::::::::
combination

::
of

::::
grid

::::
cell,

:::::
start

:::::
date476

:::
and

::::::::
forecast

::::
lead

:::::
time,

:::
we

::::::::
compute

::::
the

:::::
mean

::::::::
forecast

:::::
error

::::
over

:::
all

:::::::::
forecasts,477

:::
and

:::::
then

::::::::
subtract

:::
it

:::::
from

:::
the

:::::::
“raw”

:::::::
forecast

::::::
value.

:::::::::::::
Comparison

:::::::
against

::
a478

::::::::::::
climatological

::::::::::
benchmark

::::::::
forecast

::
is

::
a

::::
very

::::::
useful

:::::::::::
background

:::::::::::
information

:::
for479

:::::::::
evaluating

:::
the

:::::::::
predictive

::::
skill

::
of

::::::::
ensemble

::::::::::
forecasting

::::::::
systems

::::
(e.g.

::::::::::::::::::::::
Zampieri et al. (2018) ).480

:::
The

:::::::::::::
climatological

::::::::
reference

:::::::
forecast

:::
for

::
a

:::::
given

:::::
target

::::::
month

::::
and

::::
year

::
is

::::::::::
constructed481

::
by

:::::
using

::::
the

::::::::::
verification

:::::
data

:::::
valid

:::
for

::::
the

:::::
same

::::::::
calendar

::::::
month

::::
but

::::::::
different482

::::
years

:::::
from

::::
the

:::::
range

::
of

::::::
target

:::::::
months

::::::::::
considered

::::::::
(January

:::::
2011

::
to

:::::
June

::::::
2017).483

484

Averaged over all start dates and grid points, Figure 7 shows that the MAE485

of sea ice area is substantially improved in FC-SIT. When no bias correction486

is applied prior to computing the MAE (Figure 7a), FC-SIT forecasts are sig-487

nificantly better in each lead month, with maximum error reduction of about488

10%.489

However, skill assessments of seasonal forecasts are conventionally made after490

a forecast calibration where the impact of the forecast bias is removed. By this491

measure, a reduction of forecast bias does not by itself count as an improvement.492

As Figure 7b shows, removing the respective bias of FC-SIT and FC-REF prior493

to computing the MAE results in a smaller error reduction: errors in FC-SIT are494

significantly lower only in lead months 2–5, by up to 5%. Figure 7 demonstrates495

that, although the thickness initialization predominantly reduces the bias, it also496

leads to an improvement in the skill of sea ice area forecasts that is relevant for497

operational forecasting systems.498
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:::
The

:::::::::::
importance

::
of

:::::::
forecast

::::::
biases

:
is
::::::::::
illustrated

::
by

:::::::::::::
benchmarking

:::
the

::::::
errors

::
of499

:::
the

:::::::::
dynamical

::::::::::
forecasting

:::::::
system

:::::::
against

:
a
:::::::
simple

:::::::::
statistical

::::::::
reference

::::::::
forecast:500

::::::
Figure

:
7
::::
also

::::::
shows

::::
the

:::::
errors

:::
of

::
a

::::::::::::
climatological

:::::::::
reference

:::::::
forecast

::::::::::
(FC-clim).501

:::::::
Without

:::::
bias

::::::::::
correction,

::::::
errors

::
of

:::::
both

::::::::
FC-REF

::::
and

::::::::
FC-SIT

:::
are

::::::
larger

:::::
than502

:::::
those

::::
from

::::::::
FC-clim

:::::::
already

:::::
after

::::
one

:::::::
month,

:::::
while

:::::
after

::::
bias

::::::::::
correction,

:::::
both503

::::::::
FC-REF

:::
and

::::::::
FC-SIT

::::
have

::::::
lower

:::::
errors

:::::
than

::::::::
FC-clim

:::
for

::
all

:::::
lead

:::::::
months.

:
504

Finally, we analyse the impact of SIT initialization on forecasts of pan-Arctic505

sea ice volume.
:::::::
Though

:::
an

::::::::::
integrated

::::::::
quantity

:::
like

:::::::::::
pan-Arctic

:::
sea

:::
ice

:::::::
volume506

:
is
::

a
::::::

result
:::
of

:::::
many

:::::::::
dynamic

::::
and

::::::::::::::
thermodynamic

:::::::
sea-ice

:::::::::
processes

::::
and

:::::
lacks507

:::::::
regional

:::::::
details,

:
it
::
is
::
a

:::
key

::::::::
indicator

:::
for

:::::::::::::
understanding

::
of

::::
the

:::::
Arctic

:::::::
energy

:::::
cycle,508

::
an

:::::::::
important

:::::::
process

::::
that

::::::
needs

::
to

:::
be

::::::::::
realistically

:::::::::::
represented

::
in

:::::::::
reanalyses

::::
and509

:::::::
seasonal

:::::::::
forecasts.

::
It

::
is

::::::
useful

::
to

::::::::
compare

:::
the

:::::::::::
contrasting

:::
SIV

::::::::
seasonal

::::::
cycles

::
in510

:::::::
coupled

:::
and

::::::::::
uncoupled

::::::
mode,

:::
and

:::::::::::::
with/without

:::
SIT

:::::::::::::
observational

:::::::::
constraint

::
in511

:::
the

::::::::::::
initialization,

:::::
since

::::
this

:::::
helps

::
to

::::::::
identify

:::
the

::::::
origin

::
of

::::::
errors

::
in

::::
the

:::::::
systems512

::
in

:::
the

:::::::
specific

:::::::::::
operational

:::
set

::::
up.

:
Figure 8 shows the sea ice volume forecast513

climate at different lead month for the forecasts starting in May (top) and514

August (bottom). The forecast climate is computed by averaging the reforecast515

starting at a given calendar month for the years 2011-2015. Seven months516

forecasts started in August lead to February of the following year. Since the517

ORAs are not available in January and February, 2017, the year 2016 is not518

accounted for in this figure. For reference, the sea ice volume estimates of519

ORA-REF and ORA-SIT reanalyses are also shown. It is remarkable that the520

shape of the seasonal cycle is largely preserved between FC-REF and FC-SIT,521
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Time evolution
::::::::::
Evolution of mean

::::::
Mean

:
Sea Ice Volume

forecasts
:::::::::
Forecasts

Figure 8: Time series of ensemble-mean sea ice volume (units are

1012 m3
:::::::
104 km3) forecasts averaged over 2011–2015, for May start date (a) and

August start date (b) in reference reforecast (FC-REF, dashed blue line) and

reforecast with thickness initialization (FC-SIT, dashed green line) compared

to their own reanalyses, ORA-REF (solid blue line), and ORA-SIT (solid green

line).
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maintaining the initial offset during the whole forecast range. The figure clearly522

shows that FC-SIT starts from a thinner ice state than FC-REF in both initial523

months.524

The May starts show large differences between the forecasts and the ORAs:525

Both FC-SIT and FC-REF show a slower SIV decrease (lower melt rate) than526

the ORAs from June to September, and also a slower refreeze during October527

and November. The
::::::::::
explanation

::::
for

:::
the

::::::::
different

:::::::::
behavior

::
of

::::
the

::::::
ORAs

::::
and528

:::
the

::::::::
forecasts

::
is
:::::
that

:::
the

::::::
ORAs

::::
are

:::::::::::
constrained

::
by

::::
the

:::::
same

::::
SIC

:::::
(but

:::
not

::::
the529

::::
same

:::::
SIT)

:::::::::::
information

:::
in

::::::::
summer,

::::::
which

:::::
leads

:::
to

:::
the

:::::::::::
convergence

:::
of

::::
the

:::
sea530

::
ice

:::::
state

:::
in

:::
the

::::::
ORAs

:::::::
during

::::
that

:::::
time

::
of

::::
the

::::
year

:::::
(also

::::
seen

:::
in

::::::
Figure

:::
4).

:::
In531

:::
the

:::::::
coupled

:::::::::
forecasts,

:::::
there

::
is
:::
no

:::::::
similar

:::::::::
constraint

::::
and

:::::
they

::::
tend

:::
to

::::::::
converge532

:::::
slower

:::::
than

:::
the

::::::
ORAs.

:::::
The melt rate of the ORAs here are consistent with those533

in ORAS5 (see Uotila et al. (2018)
:::::::::::::::::
Uotila et al. (2019) or Mayer et al. (2019)).534

Compared to the May starts, differences between FC-SIT and FC-REF is
:::
are535

smaller in the August start
::::
starts, and so is their agreement with the ORAs.536

Again, the FC-SIT shows smaller values than FC-REF from the begining, and537

both forecast sets exhibit a parallel SIV evolution. The shape of the seasonal538

cycle in the forecasts is different from the ORAs; the forecasts initialized in539

August show a slower refreeze during October than the ORAs. However, after540

October, the SIV increases faster in the forecasts than in ORA-SIT, and it541

continues increasing more or less at the same rate until the end of January in542

the forecasts, while in ORA-SIT (solid green line) the freezing rate slows down543

after November. As a result by the end of January the forecast SIV is higher544
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than in ORA-SIT. ORA-REF without the thickness constraint has the highest545

SIV in the ice growth season. In the next section we examine the discrepancies546

in SIV changes between ORAs and FCs in more detail.547

3.3 Linking sea ice analysis
::::
Sea

::::
Ice

:::::::::::
Analysis

:
and forecast548

errors
::::::::::
Forecast

:::::::::
Errors

:
to the Arctic surface energy549

budget
:::::::::
Surface

:::::::::
Energy

::::::::::
Budget550

In order to investigate the physical causes of sea ice errors in the ORAs and551

forecasts, the Arctic surface energy budget is considered. We estimate melt552

energy tendency (MET), which is the energy used to melt sea ice and energy553

released in the process of freezing, and is proportional to SIV changes. It is554

defined as in Mayer et al. (2019):555

MET = Lfρ(
dSIT

dt

∂SIT

∂t
:::::

) (2)

where Lf denotes latent heat of fusion (-0.3337x106 J kg−1), ρ represents556

sea ice density (assumed constant at 928 kg m−3), and SIT , the grid-point557

averaged sea ice thickness. Thickness changes are computed as exact monthly558

differences.
:::::
MET

:::
can

::::
also

:::::::
change

::::::::::::
dynamically

:::::::
through

:::::::
lateral

:::
ice

::::::::::
transports,559

:::
but

:::::
here

:::
we

:::::::
average

:::::
over

:::
the

::::::
ocean

:::::
area

::::::
north

::
of

::::::
70◦N ,

::::::
which

:::::::
should

:::
be

::
a560

:::::::::
sufficiently

:::::
large

:::::
area

::
to

::::::::
average

:::
out

::::
any

::::::::::
dynamical

::::::
effects

::::
and

::::::
should

:::::::
mainly561

::::
leave

:::::::::::::::
thermodynamic

::::::
effects

::
as

::::
the

:::::::
drivers

::
of

::::::
MET.

:
Figure 9 shows the MET562

mean annual cycle (2011-2015) north of 70◦N for ORA-REF, ORA-SIT, FC-563

REF, and FC-SIT. The values for the forecasts are compiled from one-month564
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forecasts from every calendar month
::
In

:::::
order

::
to

::::::
isolate

:::
the

::::::::
changes

::
in

:::::
MET

:::::
when565

::::::::
switching

:::::
from

::::::
forced

:::::
ORA

:::::
mode

:::
to

:::::::
coupled

:::::::
forecast

::::::
mode

::::
and

::
to

:::::
avoid

::::::
seeing566

::::::
mainly

:::
the

::::::
effect

::
of

:::::::::
feedbacks

::::::
arising

:::::
from

:::
the

::::::
model

:::
sea

:::
ice

:::::
state

:::::::
drifting

:::::
away567

::::
from

::::
the

::::::::
analyzed

:::::
state

::::::
(most

::::::::
notably

::::
the

:::::::::
ice-albedo

::::::::::
feedback),

:::
we

::::::::
compile568

:::
the

::::::
annual

::::::
cycle

::
of

::::::::::
forecasted

:::::
MET

:::::
from

:::::::::::
lead-month

::
1

::::
data

:::::
from

:::::
each

:::::
start569

::::
date. Assimilation increments of SIC proportionally affect SIV in the ORAs570

(Tietsche et al. (2013), Tietsche et al. (2015)). The resulting MET increments571

are shown for both ORA-REF and ORA-SIT as well. We note that the MET572

annual cycle of ORA-REF is very similar to that of ORAS5 (not shown)
:::
and573

::::
that

:::
the

:::::::
average

:::
of

:::
the

:::::
MET

:::::::
annual

:::::
cycle

::
in

::::
the

:::::
ORAs

::
is
:::::

close
:::
to

::::
zero

:::
(in

::::
fact574

:::::
about

::::::
+0.3

::::::
W/m2

::::::::::::::::::::
(Mayer et al. (2016) ,

::::::::::::::::::::
Mayer et al. (2019) ),

::
in

::::::::::
agreement575

::::
with

:::
the

:::::::::
long-term

::::
sea

:::
ice

::::::
melt),

:::::
while

::
it

::
is

::::
-4.8

:::::::
W/m2

::
in

::::::::
FC-REF.576

Figure 9 clearly shows that ORA-REF exhibits the most pronounced annual577

cycle of MET, with strongest melting in summer and strongest freezing in win-578

ter. Earlier studies have shown that the MET annual cycle is exaggerated in579

ORAS5 (Uotila et al. 2019; Mayer et al. 2019) and hence also in ORA-REF.580

ORA-SIT has a damped MET annual cycle, as the thickness constraint during581

winter prevents overly strong SIV accumulation. Lower SIV at the end of win-582

ter consequently leads to weaker melting in summer. However, summer melt in583

ORA-SIT is likely still too strong, as this experiment features a negative SIC584

bias in summer despite realistic SIT and SIC earlier in the year, when CS2SMOS585

data is available (see Figure 3e).586

Both FC-REF and FC-SIT agree very well with each other and exhibit a587
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Mean annual cycle
::::::::
Annual

::::::
Cycle

:
of melting energy

::::::::
Melting

::::::::
Energy

Figure 9: Mean annual cycle of MET over ocean area north of 70◦N in ORA-

REF, ORA-SIT, FC-REF (lead month 1), FC-SIT (lead month 1). MET incre-

ments for ORA-REF and ORA-SIT are shown as well.
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Mean annual cycle
::::::::
Annual

::::::
Cycle

:
of surface net radiation

::::::::
Surface

::::
Net

:::::::::
Radiation

Figure 10: a) Mean annual cycle of surface net radiation, RadS (W/m2) over

ocean area north of 70◦N from ERA-I, ERA5, FC-REF (lead month 1), FC-

SIT (lead month 1), and CERES-EBAF, and b) Mean deviation of RadS from

CERES-EBAF for FC-REF, FC-SIT, ERA-I and ERA5.37



much weaker MET annual cycle than the ORAs (Figure 9). The difference588

between the forecasts and the ORAs in May and June melting cannot be ex-589

plained by the MET increments (neutral impact at that time), which points to590

differences in energy fluxes into the sea ice as a cause.591

We therefore compare the mean annual cycle of surface net radiation (RadS)592

over ocean north of 70◦N . Figure 10a shows the 2011-2015 annual cycle of RadS593

from FC-REF, FC-SIT, ERA-I, ERA5, and the satellite-based product Clouds594

and Earth’s Radiant System – Energy-Balanced and Filled Surface edition 4.0595

(CERES-EBAF; Kato et al. (2018)), which we use as reference.596

We consider RadS from ERA-I as a good proxy for RadS seen by the ORAs,597

due to two reasons: 1) ORAs use ERA-I forcing during most of the study period,598

and 2) ORAs does not output RadS term; although it is not exactly identical599

e.g. due to different albedo in the ORAs. ERA-I exhibits a positive RadS bias in600

summer, peaking in June at 15 W/m2, while FC-REF and FC-SIT agree quite601

well with CERES-EBAF, especially in May and June, when MET discrepancies602

with the ORAs are large (Figure 9). Thus the RadS bias of ERA-I can explain603

a large fraction of the overly strong MET in the ORAs during May and June,604

and the discrepancy between the ORAs and the forecasts.605

The mean deviation of RadS from CERES-EBAF (Figure 10b) clearly indi-606

cates that forecasts are closer to the observational product than the atmospheric607

reanalyses in May and June. This positive RadS bias of ERA-I should be con-608

sidered alongside the results by Hogan et al. (2017), who found a negative bias609

in downwelling shortwave radiation in ERA-I due to excessive low-level clouds.610
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Our results can be explained by the positive bias in downwelling longwave ra-611

diation in ERA-I outweighing the shortwave flux bias. Figure 10 also shows612

results for ERA5, which is closer to CERES-EBAF than ERA-I, which indi-613

cates a reduced cloud bias in this more recent atmospheric reanalysis and gives614

rise to the expectation of improved MET in future ocean reanalyses forced by615

this product.
::
We

::::
also

:::::
note

::::
that

::::
the

:::::
mean

:::::::::
difference

:::
in

:::::::
sensible

:::::
heat

::::::
fluxes

::
in616

:::::::::::
ERA-Interim

::::
and

::::
the

::::::::
forecasts

:::
and

::::::::::
differences

::::
over

:::
sea

:::
ice

:::::
were

:::::::::
uniformly

:::::
small617

:::::::::
(generally

:::
<2

::::::
W/m2

::
in

::::::::
summer;

::::
not

:::::::
shown),

::::::::::
confirming

::::
that

::::::::::
differences

::
in

::::
this618

::::
field

::::::
cannot

:::::::
explain

::::
the

:::::
found

::::::::::
differences

::
in

::::::
MET.

:
619

Additional information on the realism of summer MET in the forecasts can620

be obtained from the sea ice area forecast bias of FC-SIT, as displayed in Fig-621

ure 5b. It shows that FC-SIT May starts exhibit a strongly reduced positive bias622

compared to FC-REF. The bias reduction can be attributed to the improved623

initial conditions in FC-SIT, but the fact that the sea ice area bias remains624

positive from July onward indicates that MET in the forecasts is too low in625

summer. Figure 10b suggests that RadS is too low in the forecasts in July626

and August, which probably contributes to the positive SIA bias remaining in627

FC-SIT (Figure 5b).628

The October MET (Figure 9) indicates stronger refreeze in the ORAs (lower629

MET values) compared to the forecasts. This is consistent with negative MET630

increments present in the ORAs, which act to speed up refreeze in the reanalyses631

(see Figure 9). The less negative MET values of the forecasts in October are632

consistent with the too weak freezing and consequent underestimation of sea ice633
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in autumn in the August starts.634

Area-averaged net radiation of all considered products agrees well with635

CERES-EBAF in October (see Figure 10), and also difference maps show only a636

weakly positive RadS bias of the reanalyses and forecasts compared to CERES-637

EBAF (not shown). Hence, errors in other physical terms such as ocean-ice638

fluxes must play an important role in fall, but more detailed investigations are639

beyond the scope of this paper.640

3.4 Impact of ice thickness initialization
:::
Ice

:::::::::::::
Thickness641

:::::::::::::::
Initialization

:
on forecasts

:::::::::::
Forecasts of atmospheric variables

:::::::::::::::
Atmospheric642

:::::::::::
Variables643

To discuss the impact of the sea ice thickness constraint on the atmosphere,644

we first assess the differences in the forecast means (or biases) between FC-645

SIT and FC-REF. Figure 11a shows the bias in 2m temperature (t2m) (av-646

eraged over 50 − 90◦N) in FC-REF as a function of start dates and lead647

months. Significant
:::::
When

:::::::
verified

:::::::
against

:::::::
ERA5,

::::::::::
significant

:
cold biases are648

present in forecasts for most of the start months and lead months except for649

non-significant warm biases in November forecasts started in August, Septem-650

ber and October months.
:::
We

:::::
note

::::
that

:::::
using

::::::::::::
atmospheric

::
or

::::::
ocean

:::::::::
reanalysis651

:::::::
without

:::::::
realistic

:::::::::::::
representation

:::
of

:::::
snow

::::
over

::::
sea

:::
ice,

::::
and

::::
sea

:::
ice

:::::::::
thickness,

:::
for652

:::
the

::::::::::
verification

::
of

::::::::::
pan-Arctic

:::::::
surface

:::::::::::
temperature

:::
can

:::
be

::::::::::
misleading,

:::::
since

:::::
there653

:
is
:::::
large

::::::::::
uncertainty

::::::::::
associated

::::
with

:::::
these

::::::::
products

::::::::::::::::::::::::::
(Batrak and Müller (2019) ).654

::::::::
Verifying

:::::::
against

:::::::::::
observations

::
is

:::
not

::::
easy,

:::::
since

::::
due

::
to

:::
the

:::::::
scarcity

::
of

::::::::::::
observational655
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Difference in mean t2m
:::::
Mean

::::::
T2m

:
and mean sea level pressure

forecasts
::::::
Mean

::::
Sea

::::::
Level

::::::::::
Pressure

::::::::::
Forecasts

Figure 11: Mean forecast differences between FC-SIT and FC-REF 2011-2016:

a) bias in mean 2m temperature
::
(in

:::
K)

:
north of 50◦N w.r.t. ERA5, as a func-

tion of start dates and lead months, in FC-REF, b) similar to a), but difference

in mean 2m temperature
::
(in

::::
K) between FC-SIT and FC-REF. Triangles de-

note significant changes according to DelSole and Tippett (2016)
:::
the

::::
sign

:
test

::
as

::::::::::::
recommended

:::
by

:::::::::::::::::::::::::
DelSole and Tippett (2016) at the 5% level. Mean forecast

difference (FC-SIT - FC-REF) for SON aggregated from May, June, July, Au-

gust start dates of c) 2m temperature and d) mean sea level pressure. Dots

indicate areas of significant changes on the 95% level according to Komolgorov-

Smirnov test.
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:::::::::
campaigns

::::
over

::::
sea

:::
ice,

::::
the

::::::::::
verification

::::
will

::::
have

:::::
large

:::::::::::::::::
representativeness

:::::
error,656

:::
and

::::::
hence

::
is

::::
not

:::::::
suitable

::::
for

::::::::
seasonal

::::::::
forecasts

:::::::::::
verification.

:
Mean differences657

in t2m (Figure 11b) are generally positive with very few and non-significant658

exceptions, which is expected from the generally reduced sea ice cover in FC-659

SIT. Strongest warming with area averages of 0.5K can be found during fall660

for forecasts started between March and September. February and March start661

dates show a moderate but significant warming at short lead times, but oth-662

erwise changes are relatively small for October to February start dates. Also,663

changes in summer temperatures are small compared to those in fall. Inspection664

of temperature difference patterns between FC-SIT and FC-REF indicates that665

differences in summer are confined to areas around the sea ice edge (not shown),666

while changes in fall are more widespread (see Figure 11c). The warming pat-667

tern in fall appears as a diagonal feature in Figure 11b, which suggests that668

changes depend more on season than on forecast lead time. Therefore, to gain669

more insight into the spatial structure of the changes, Figure 11c and d show670

forecast differences in 2m temperature and mean sea level pressure in SON, re-671

spectively. To find robust changes, the differences are aggregated from forecasts672

started between May and August, yielding samples of 600 forecasts. Moreover,673

aggregation along the diagonal maximizes the signal (compare to Figure 11b).674

Widespread temperature differences >1K can be seen over the Arctic Ocean675

and the Canadian Achipelago in SON (Figure 11c), but significant warming676

spreads also south to North America and Eurasia. Solar radiation in the Arctic677

is very weak for SON. Hence, the warming in FC-SIT must stem from enhanced678
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fluxes of heat from the ocean to the atmosphere, with a possible positive feed-679

back from increased atmospheric water vapour. The fluxes are enhanced in680

FC-SIT due to larger areas of open waters and increased SSTs, both a result of681

reduced sea ice concentration. Furthermore, we find warming over the North-682

west Atantic
:::::::
Atlantic, which is related to the warmer SSTs present already in683

the initial conditions from ORA-SIT (not shown). Another area of significant684

warming in FC-SIT relative to FC-REF can be seen over Eastern Europe and685

Western Russia. This warming seems consistent with patterns of mean sea level686

pressure differences shown in Figure 11d. They show lower pressure in FC-SIT687

over Scandinavia and higher pressure over central Russia, which together sug-688

gest more southerly winds in the region of warmer temperatures. Furthermore,689

mean sea level pressure changes indicate lower pressure over the Arctic Ocean690

and the Canadian Archipelago, i.e. in areas of maximum warming. In addi-691

tion, there are positive pressure differences southeast of Greenland. Altogether,692

the patterns in sea level pressure difference resemble a wave-like response, but693

it should be kept in mind that only some parts of these changes are statisti-694

cally significant. Nevertheless, we note that qualitatively similar and significant695

changes are also found in 500hPa geopotential forecasts for SON (not shown),696

suggesting that the features seen in Figure 11d are indeed robust.697

We now turn to the question whether changes in the forecast mean constitute698

a forecast improvement or a forecast deterioration in the sense that they lead to699

an overall reduction of model biases. Since forecast bias is strongly dependent700

on region, season and lead time, aggregating over many seasons and lead months701
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Bias and difference
::::::::::
Difference

:
in MAE in t2m forecasts

:::::
T2m

:::::::::
Forecasts

Figure 12: Verification
:::
Bias

::::
and

:::::::::
difference

:::
in

:::::
MAE

:
of 2m temperature against

ERA5 for SON forecasts started in May (a,c) and August (b,d)
::::::::::
respectively:

Bias (in K) of FC-REF is shown on the top (a,b), and MAE difference (in K)

between FC-SIT and FC-REF at the bottom (c,d). Differences significant at

the 5% level according to the
:::
sign

:
test

:
as

:::::::::::::
recommended

:
by DelSole and Tippett

(2016) are stippled. The homogeneous warming of FC-SIT w.r.t. FC-REF

shown in Figure 11c results in MAE for SON t2m being reduced for May start

dates c) and increased for August start dates d).44



hampers physical understanding of the impact of thickness initialization. We702

therefore focus only on forecasts for the September–November (SON) season,703

where the impact on 2m temperature is strongest.704

As Figure 12a and b show, the 2m-temperature forecast bias for the SON705

season have a strong dependence on the start and lead month. Cold biases are706

clearly dominating the entire hemisphere in May forecasts, whereas a mixture of707

warm and cold biases is visible in August forecasts, with predominantly warm708

biases over the ice edge. As discussed previously, the thickness initialization709

leads to a homogeneous warming of 2m temperature (Figure 11c), which is not710

very sensitive to the time of initialization.711

To determine whether the mean change leads to an increase or a reduction in712

the bias, we compute changes in mean absolute error (MAE) of 2m-temperature713

forecasts without the usual calibration. This is shown in Figure 12c and d. Mean714

absolute forecast errors are substantially reduced in SON (by more than 1K)715

over the entire ice cover and some adjacent regions (Figure 12c). In this case,716

the thickness initialization helps to mitigate the model bias. Conversely, when717

initializing forecasts in August
:
,
:
mean absolute forecast errors are increased over718

the marginal Seas of the Arctic Ocean and the Canadian Archipelago (Fig-719

ure 12d). This points to an excacerbation
:::::::::::
exacerbation of the model biases by720

the thickness initialization. However, the negative impact for August start dates721

is not as significant as the positive impact for May start dates.722

Forecast skill changes on other atmospheric fields have been explored as723

well. The picture for circulation-related fields such as mean sea-level pressure724
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and 500 hPa, geopotential height (not shown) is less clear compared to 2m-725

temperature, indicating that much of the statistically significant changes found726

at the near-surface temperature in the Arctic are due to local thermodynamic727

effects.728

4 Summary and Concluding Remarks729

In this paper we use 6 years of Arctic-wide sea ice thickness observations of Jan-730

uary, February, March, November and December months during 2011 to 2016731

to constrain the modelled sea ice thickness, and study the impact on the ocean–732

sea-ice reanalysis. Coupled forecasts of the ocean–sea-ice-wave-land-atmosphere733

are initialized using these data assimilation experiments, and the forecast skill734

of Arctic
:::::::::
pan-Arctic

:
sea ice for lead times up to 7 months is investigated. To735

our knowledge this study provides the first comprehensive assessment of cou-736

pled seasonal sea ice forecasts with thickness initialization for all the seasons.737

It complements to the study by Blockley and Peterson (2018), who reported738

the positive forecast impact on summer season only. This paper does not delve739

into the technical implementation of sea ice observational information in the740

ECMWF systems as reported in Balan-Sarojini et al. (2019), but instead it741

focuses on 1) collating the relevant scientific results on the impact of sea ice742

thickness information alone on seasonal forecasts, 2) conducting targeted diag-743

nostics to gain understanding of the results, and 3) providing a more thorough744

discussion on the impact.745
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Constraining initial conditions by nudging to CS2SMOS ice thickness results746

in a substantial reduction of sea ice volume and thickness in the ocean–sea-747

ice analysis. This reduces some of the existing forecast biases in SEAS5 and748

improves forecast skill in the melt season, but in turn increases the errors during749

autumn, when the existing sea ice forecast bias is negative.750

The impact of sea ice thickness initialization on seasonal forecast skill for751

Arctic sea ice variables, namely sea ice cover, sea ice thickness, sea ice volume752

and sea ice edge, is mostly positive for seasonal forecasts started from January to753

June start dates. We find significant improvement of up to 28% in the traditional754

September sea ice edge forecasts started from April start dates as shown by755

Integrated Ice Edge Error. However, sea ice forecasts for September started756

in spring still exhibit a positive sea ice bias, which points to too slow melting757

in the forecast model. Neutral forecast impact for November and December758

start dates is found. However, a slight degradation is seen in autumn forecasts759

started from July and August start dates, which is shown to be due to errors760

in the sea ice initial conditions. Both the ocean reanalyses, with and without761

SIT constraint, show strong melting in the middle of the melt season compared762

to the forecasts. This excessive melting is shown to be due to positive net763

surface radiation biases in the atmospheric flux forcings of the ocean reanalyses.764

Compared to the forecasts, strong freezing is seen throughout the freeze season765

in the ocean reanalysis without SIT constraint. With SIT constraint applied766

from November to March, the existing strong freezing is somewhat damped in767

the late freeze season. The exact causes of the differences in freezing between768
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the reanalyses and forecasts require further investigation. Aggregating all the769

forecasts started in January to December, positive forecast impact of up to 5%770

skill improvement for integrated SIC is found at 2-5 lead months. Thinning of771

sea ice by CS2SMOS mitigates or enhances seasonally dependent forecast model772

error.773

:::
We

::::::::
reiterate

::::
that

::::
the

::::::
sea-ice

:::::::::
thickness

::::::::::::
observations

:::
are

:::::
only

::::::::
available

::::
and774

::::::::::
assimilated

:::
for

::::::::::::::::
November-March.

::::
The

:::::::::
ORA-SIT

:::
sea

:::
ice

::::::::
thickness

::::
from

:::::::::::::
April-October775

:
is
::::

not
:::::::::::
constrained

:::
by

::::::::::::
observations.

:::::
The

::::
fact

::::
that

::::::::::
ORA-SIT

:::
has

::::::
larger

::::::
errors776

::::
than

::::::::::
ORA-REF

::
in

::::
SIC

:::
for

:::::
July

::
is

:::::::::
attributed

:::
to

:::
the

::::::::::::::
overestimation

::
of

:::
the

:::::
melt777

::
in

:::
the

::::::
forced

:::::::
model.

:::::
The

::::::::
negative

::::::::
summer

::::
SIC

::::
bias

::::
gets

::::::
worse

:::
in

:::::::::
ORA-SIT778

::::
than

::::
that

::
in
::::::::::
ORA-REF

::::
due

::
to

::::
the

::::
fact

::::
that

:::
the

:::::::::
ORA-SIT

::::::
starts

::::
from

::
a
:::::::
thinner779

::
ice

::::::
state

:::::::::
compared

:::
to

::::::::::
ORA-REF

::::::::
without

::::::::::
CS2SMOS

:::::::::
thinning.

::::::::
Indeed,

::::
the780

::::::::::
assimilation

:::
of

::::::
sea-ice

::::::::::::
concentration

::
is

::::::
trying

::::
hard

:::
to

::::::::::
compensate

:::
for

::::
this

::::::
excess781

::
of

::::::
sea-ice

:::::
melt

::
as

::::
seen

:::
in

:::
the

:::::::
annual

:::::
cycle

::
of

::::
the

::::::::::
pan-Arctic

:::
sea

:::
ice

::::::::::
increments782

:::
and

:::::::
melting

:::::::
energy

::::::::::
tendencies.

:::::
The

:::::::
reasons

:::
for

::::
this

::::::
excess

::::::
sea-ice

:::::
melt

::::::
during783

:::
the

:::::::
summer

:::::::
season

::
is

:::::::::::
investigated

::::
and

::
is
::::::::::
attributed

::
to

::::::
errors

:::
in

::::::
forcing

::::::
fluxes784

::
in

:::
the

::::::
ORAs

::
as

::::
just

::::::::::::
summarised.

:::::
This

:::
key

::::::
result

::::::
points

:::
out

:::::
that

:::
the

:::::::::
dominant785

:::::
source

:::
of

:::::
error

:::
lies

:::
in

:::
the

:::::::::::
atmospheric

:::::::
forcing

::::::
rather

:::::
than

::
in

::::
the

::::::
sea-ice

::::::
model786

::::::::::
formulation

::
or

:::::
data

:::::::::::
assimilation

::
in

:::
our

::::::::::::
experiments,

:::
and

::::::::
indicates

::::
that

:::::::::
improved787

:::::::::::
atmospheric

:::::
fluxes

:::::
from

:::::::::::
atmospheric

::::::::::
reanalyses

::
is

::::::::
urgently

:::::::
needed

::
to

::::::::
improve788

:::
the

::::::
Arctic

::::::
sea-ice

:::::::
related

:::::::::
forecasts.789

::
In

::::
this

:::::
work

::::
we

:::::
have

::::
only

::::::
taken

::::
the

:::::
very

::::
first

:::::
step

::
in

:::::
SIT

:::::::::::
assimilation790

::
by

::::::
using

:
a
:::::::

simple
::::::::
nudging

:::::::
method

:::
to

:::::::::
constrain

::::
SIT

::::::::
without

::::::::::
considering

::::
the791
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::::::::::::
observational

::::::::::::
uncertainties.

:::::
An

:::::
area

::::::
which

::::::
needs

::
to

::::
be

::::::::
explored

:::
in

::::::
future792

::::::
studies

::
of

::::
SIT

:::::::::::
assimilation

:::
is

:::
the

::::
use

::
of

:::::::::
thickness

:::::::::::::
uncertainities.

::::
For

::::::::
instance,793

:::
the

:::::::::::
uncertainty

::
in

::::
the

:::::::::
retrievals

::::::
could

:::
be

::::::
taken

::::
into

::::::::
account

:::
by

::::::::::
perturbing794

:::
the

::::::::::::
observations

::
in

::::
the

:::::::::
ensemble

:::
of

:::::
data

::::::::::::
assimilations.

:::::
We

::::
also

:::::
note

:::::
that795

:::
this

::::::
study

::::
does

::::
not

:::::
cover

::::::
recent

::::::
sea-ice

::::::
model

:::::::::::::
improvements

::::
such

:::
as

:::::::::
modelling796

::::::
sea-ice

::::::::
processes

::::::::
affecting

::::
the

::::::
sea-ice

:::::::::::::
melt/growth,

:::::
which

::::
are

:::::
being

::::::::::
considered797

::
for

:::::::::
inclusion

::
in
::::::::::

upcoming
::::::::
versions

::
of

::::
the

:::::::::
ECMWF

::::::::::
forecasting

::::::::
systems.

:::::
The798

:::
use

::
of

::::::::::::::
multi-category

:::
sea

:::
ice

:::::::
models

::
in

::::::::
coupled

::::::::::
forecasting

:::::::
systems

:::
is

:::::::
another799

::::
step

:::::::
forward

:::
in

::::
this

:::::::::
direction.

:::::::
Since

:::::::::::
uncertainty

::
of
:::::::

Arctic
::::::::
seasonal

::::
sea

:::
ice800

::::::::
forecasts

::
is

::::::::
reported

:::
to

:::::
grow

::
at

::
a
::::::
higher

:::::
rate

::::
over

:::::
thin

:::
ice

:::::::
regions

:::::
than

::::
over801

:::
the

::::::
central

::::::
Arctic

::::
(e.g.

:::::::::::::::::::::::::::::::::::::
Blanchard-Wrigglesworth et al. (2017) ),

::
we

:::::::::::
recommend802

::::::::::::
observational

:::::::::
constraint

::
of

::::
SIT

:::
for

::::
both

::::
the

:::::
thick

::::
and

::::
thin

:::
ice

::::::
regions

:::
in

::::::
ORAs.803

804

The impact of sea ice thickness initialization on atmospheric variables has805

also been investigated. Changes in ensemble mean 2m-temperature over the806

Arctic
:::::::::
pan-Arctic

:
region are significant for SON forecasts initialized from May807

to August start dates. The impact is also seen in mean sea level pressure808

and to certain extent in 500hPa geopotential height and is mostly local and809

thermodynamically driven, except for some remote impact over the north west810

Atlantic ocean. Similar to the sea ice edge forecasts, positive forecast impact is811

seen for 2m-temperature forecasts for the early freezing season, SON, started in812

May and negative impact for the same season is seen when started in August813

when the initial conditions are degraded. Statistically significant changes in 2m-814
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temperature mean absolute error are predominantly due to corresponding local815

changes in errors in the sea surface temperature and sea ice variables. There is816

no clear change in forecast skill of upper atmospheric circulation in our exper-817

iments. Our results illustrate that information on sea ice thickness is relevant818

for identifying model errors and for exploiting the long-term memory present819

in ice thickness for seasonal forecasts of sea ice and near-surface temperatures.820

Constraining SIT in the initialisation alters biases arising due to both errors in821

the forcing and the sea-ice model. Though the SIT assimilation is not expected822

to solve these underlying problems per se, by moving the model state closer823

to reality, it helps us to better understand the errors in our system, as well as824

improving forecast skill scores in the meantime. As atmospheric forecast errors825

are dominated by biases, we are yet to demonstrate the benefit of interannual826

varying data on bias-corrected forecast scores. Robustness of impact on upper827

atmospheric variables and possible teleconnections need to be further assessed828

which would require a longer study period and larger sample size.829

These findings demonstrate that making use of recently-available, spatially830

and temporally rich sea ice thickness observations from satellites for the ice831

growth season has the potential to significantly improve 1) the sea ice state832

in currently operational ocean–sea-ice reanalyses and, 2) the seasonal forecasts833

in operational forecasting systems. Our study also emphasizes the potential of834

future sea ice satellite missions for Earth System reanalysis and forecasts.835
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E. V., Isaksen, L., K̊allberg, P., Köhler, M., Matricardi, M., McNally, A. P.,910

Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P.,911

Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:912

configuration and performance of the data assimilation system, Quarterly913

Journal of the Royal Meteorological Society, 137, 553–597, https://doi.org/914

10.1002/qj.828, URL http://doi.wiley.com/10.1002/qj.828, 2011.915

DelSole, T. and Tippett, M. K.: Forecast Comparison916

Based on Random Walks, Monthly Weather Review, 144,917

615–626, https://doi.org/10.1175/MWR-D-15-0218.1, URL918

http://journals.ametsoc.org/doi/10.1175/MWR-D-15-0218.1, 2016.919

Fichefet, T. and Maqueda, M. A. M.: Sensitivity of a global sea ice model to920

the treatment of ice thermodynamics and dynamics, Journal of Geophysi-921

54



cal Research, 102, 12 609–12 646, https://doi.org/10.1029/97JC00480, URL922

http://doi.wiley.com/10.1029/97JC00480, 1997.923

Fritzner, S. M., Graversen, R., Christensen, K. H., Rostosky, P., and Wang, K.:924

Impact of assimilating sea ice concentration, sea ice thickness and snow depth925

in a coupled ocean-sea ice modelling system, 2019.926

Goessling, H. F. and Jung, T.: A probabilistic verification score for con-927

tours: Methodology and application to Arctic ice-edge forecasts, Quarterly928

Journal of the Royal Meteorological Society, 144, 735–743, https://doi.org/929

10.1002/qj.3242, URL http://doi.wiley.com/10.1002/qj.3242, 2018.930

Goessling, H. F., Tietsche, S., Day, J. J., Hawkins, E., and Jung,931

T.: Predictability of the Arctic sea ice edge, Geophysical Research932

Letters, 43, 1642–1650, https://doi.org/10.1002/2015GL067232, URL933

http://doi.wiley.com/10.1002/2015GL067232, 2016.934

Guemas, V., Blanchard-Wrigglesworth, E., Chevallier, M., Day, J. J., Déqué,935
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C., Carton, J., Fučkar, N., Garric, G., Iovino, D., Kauker, F., Korhonen,1086

M., Lien, V. S., Marnela, M., Massonnet, F., Mignac, D., Peterson, K. A.,1087

Sadikni, R., Shi, L., Tietsche, S., Toyoda, T., Xie, J., and Zhang, Z.: An1088

assessment of ten ocean reanalyses in the polar regions, Climate Dynamics,1089

52, 1613–1650, 2019.1090

Xie, J., Counillon, F., and Bertino, L.: Impact of assimilating a merged sea-ice1091

thickness from CryoSat-2 and SMOS in the Arctic reanalysis, The Cryosphere,1092

12, 3671–3691, 2018.1093

Zampieri, L., Goessling, H. F., and Jung, T.: Bright prospects for Arctic sea1094

ice prediction on subseasonal time scales, Geophysical Research Letters, 45,1095

9731–9738, 2018.1096

62



Zampieri, L., Goessling, H. F., and Jung, T.: Predictability of Antarctic sea ice1097

edge on subseasonal time scales, Geophysical Research Letters, 46, 9719–9727,1098

2019.1099

Zuo, H., Balmaseda, M. A., and Mogensen, K.: The new1100

eddy-permitting ORAP5 ocean reanalysis: description, eval-1101

uation and uncertainties in climate signals, Climate Dynam-1102

ics, 49, 791–811, https://doi.org/10.1007/s00382-015-2675-1, URL1103

http://link.springer.com/article/10.1007%2Fs00382-015-2675-1,1104

2017.1105

Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer,1106

M.: The ECMWF operational ensemble reanalysis-analysis system for1107

ocean and sea-ice: a description of the system and assessment, Ocean1108

Science, 2019, 779–808, https://doi.org/10.5194/os–15-779-2019, URL1109

https://doi.org/10.5194/os-15-779-2019/, 2019.1110

63


