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S1 Monte Carlo radiative transfer model 

The Monte Carlo method solves the radiative transfer equation (RTE) by simulating large ensembles of photon events 

represented by random samples from probability density functions (Ertürk and Howell, 2017). In this study and others, 

the Monte Carlo method is used to quantify relative uncertainties in imperfect optical measurements that are intractable 

with analytical or numerical solutions to the RTE (Gordon, 1985). We developed a Monte Carlo radiative transfer 

model to estimate the effect of detector interference on our irradiance measurements. The model closely follows 

methods developed to simulate light propagation in biological tissue, ocean waters, and sea ice (Leathers et al., 2004; 

Light et al., 2003; Wang et al., 1995). A general description of the model and particular modifications for this 

investigation are described below. 

S1.1 Probability functions for optical properties 

The fundamental ingredients of this and other Monte Carlo radiative transfer models are the inherent optical properties 

k, ω, and g (see Sect. 2.3 of the main), the geometric boundary conditions, and the probabilistic rules that govern the 

system. The cumulative probability of occurrence for an event x, with probability density function p(x), is: 

P(x) =  ∫ p(x)dx,     0 ≤ P(x) ≤ 1.
x

−∞

(1) 

To solve for x, the left-hand-side (LHS) of (1) is replaced with a random number:  

P(x) = 𝑞 (2) 

where 𝑞 is from the uniform distribution over [0,1]. The right-hand-side (RHS) lower limit of integration −∞ is 

replaced with an appropriate limit (e.g., 0) and analytic or empirical expressions for p(x) are specified.  

 

In this study, x represents optical path length, scattering direction, and photon survival probability. Closed-form 

expressions for each of these terms are given in the following sections.  

S1.1.1 Optical path length 

The probability density function for the optical path length 𝑙 [m-1] is given by the e-folding length:   

p(𝑙) = e−𝑙 , 𝑙 ≥ 0 (3) 

with the cumulative distribution function: 

P(𝑙) = ∫ e−𝑙′
d𝑙′ = 1 − e−𝑙 .

𝑙

0

 (4) 

From Eq. (2), 𝑞 = 1 − e−𝑙  and therefore: 

𝑙 = − ln 𝑞 , 0 ≤ 1. (5) 

In this study, 𝑞 is generated with the MATLAB function rand.  

 

The photon transport length [m] is the optical path length scaled by the extinction coefficient: 



s = 𝑙/σe (6) 

where: 

σe = σs + σa (7) 

is the single-scattering extinction coefficient, σs [m-1] is the scattering coefficient, and σa [m-1] is the absorption 

coefficient.  

S1.1.2 Scattering phase function 

The probability density function for a scattering phase function with azimuthal symmetry is: 

p(θs) = 2πβ̃(θs) sin θ (8)  

where β̃(θs) is the probability that a photon will scatter at polar angle θs. We specify β̃(θs) with the Henyey-

Greenstein scattering phase function, which is appropriate for strongly forward scattering by ice grains and air bubbles 

(Light et al., 2003): 

β̃(g, θs) =
1

4π

1 − g2

(1 + g2 − 2g cos θs)
3
2

, −1 < g < 1. (9)  

where g = 0 reduces Eq. 9 to isotropic scattering and g → 1 is strongly forward scattering. In this study, g = 0.86, as 

given by Mullen & Warren (1988) from Mie theory calculations for scattering by air bubbles in ice. 

 

From Eq. (1):  

P(θs) = −
1 − g2

2
∫

sin θs
′

(1 + g2 − 2g cos θs
′ )

3
2

dθs
′

θs

0

= 𝑞 (10) 

which evaluates to: 

𝑞 =
1 − g2

2g
[

1

1 − g
−

1

√1 + g2 − 2g cos θs

] (11) 

 

yielding the scattering angle:  

cos θs =
1

2g
[1 + g2 − (

1 − g2

1 − g + 2g𝑞
)

2

] , g ≠ 0;  0 ≤ θs ≤ π/2. (12) 

The probability density function for scattering azimuth angle ϕs in a spherical coordinate system with azimuthal 

symmetry is 1/2π. From Eq. (1): 

P(ϕs) =
ϕs

2π
, 0 ≤ ϕs ≤ 2π (13) 

and from Eq. (2): 

ϕs = 2π𝑞. (14) 

S1.1.3 Photon termination 



Monte Carlo simulations are computationally expensive. To improve computational performance, photons are treated 

as packets of photons with initial weight 𝑤 = 1. At each interaction, photons are scattered and absorbed according to 

their respective statistical probabilities, parameterized by 𝜎𝑠 and 𝜎a. Accordingly, at each interaction the weight is 

updated as: 

𝑤 = (1 − 𝜔) ∙ 𝑤 (15) 

where: 

𝜔 = σs/𝜎𝑒 (16) 

is the single-scattering albedo [-]. Each 1 − 𝜔 reduction in photon packet weight is proportional to the probability of 

an individual photon absorption event. After many interactions, if 𝑤 drops below a very small value it contributes 

very little to the solution. The so-called “Russian roulette” technique is used to improve computational performance, 

where photon packet weights below a specified threshold 𝑤 < 𝑤min are increased in proportion to a survival 

probability function and are re-released into the medium, or otherwise terminated: 

𝑤 = {
m ∙ 𝑤, 𝑞 ≤ 1/m

0, 𝑞 > 1/m
(17) 

where 1/m is the probability of photon survival and 𝑞 is a random number as previously defined. This technique 

conserves energy and is unbiased (Wang et al., 1995). In this study, 𝑤min = 10−5 and m = 10. 

 

At each interaction, the absorbed fraction 𝜔 ∙ 𝑤 is scored into an absorption array in a cylindrical coordinate system 

that is used to compute observable quantities of absorption and photon fluence. If a photon packet exits the medium, 

it is scored into a transmittance or reflectance array in an azimuthally independent spherical coordinate system that is 

used to compute observable quantities of irradiance, radiant intensity, and power. These scoring systems follow the 

definitions in Wang et al. (1995) Eq. 4.1–4.32.  

 

The preceding sections describe the fundamental processes of photon transport, scattering direction, and survival 

probability. Similar probability density functions that describe the detector rod interference are described next.  

S1.2 Monte Carlo experiment 

The detector rod interference is estimated with a “backward” Monte Carlo (BMC) simulation, which simulates photon 

trajectories starting from the detector backward to the target (Leathers et al., 2004; Light et al., 2003). Here, the target 

is the ice surface. The simulation domain is a 3-dimensional ice slab with one boundary, the ice surface, and otherwise 

infinite horizontal and vertical extent. A cylinder with dimensions identical to the detector rod is placed at positions 

identical to the measurement depths reported in this paper, and photon packets are released from the irradiance sensor 

(“remote cosine receptor”) located on the detector rod (Fig. S1).  



 

 
Fig. S1: Example Monte Carlo photon tracking simulation from model output used in this study, with interference by 

cylindrical detector rod. (a) ~14,000 random photon interactions are traced within a 3-dimensional ice volume. The 

cylindrical object represents the detector rod, here inserted at 1 m below the ice surface. The photon packet is released 

from the position of the irradiance sensor (“remote cosine receptor”) located on the rod and traced backward to the ice 

surface (“backward Monte Carlo”). (b) Magnified view of the detector rod in the y-z plane shows photon packets 

scattering off of the rod. The color-bar represents the number of cumulative interactions experienced by this photon 

packet. 

As described above, each interaction within the ice volume is defined by absorption and scattering of the photon by 

ice. Absorption reduces the photon energy density by an amount 1 − ωice. Scattering redirects the photon trajectory 

according to the Henyey-Greenstein scattering phase function with asymmetry parameter g and transport distance 𝑙. 

Photon interactions with the detector rod require additional specifications that are described next.   

S1.2.1 Source function for cosine detector 

The scattering phase function for an irradiance sensor with a cosine response is: 

β̃(θ) =
cos θ

π
, 0 ≤ θ ≤

π

2
(18) 

with probability density function: 

p(θ) = 2πβ̃(θ) sin θ (19) 

and cumulative distribution function: 

P(θ) = 2 ∫ cos θ′ sin θ′ dθ′ = 𝑞
θ

0

. (20) 

Substituting μ = cos(θ) the scattering angle is: 

cos θ = √1 − 𝑞. (21) 



For a forward Monte Carlo simulation, Eq. 21 gives the probability of photon receipt by an irradiance sensor with an 

ideal cosine response. For a BMC simulation, the form of Equation 21 that gives the initial launch trajectory of photons 

from the irradiance sensor surface is: 

cos θ = −√𝑞. (22) 

In reality, irradiance sensors do not have an ideal cosine response to radiance. In this experiment, the non-ideal cosine 

response of the irradiance sensor is estimated by replacing Eq. 22 with uniform sampling from an empirical probability 

density function derived from laboratory measurements of the cosine receptor angular response function provided by 

Ocean Optics (Fig. S2). The source azimuth angle ϕ is determined with Eq. (14). 

 

Fig. S2: (a) Comparison of ideal angular response function (ideal cosine) with the empirical angular response function 

used to estimate the non-ideal response of the irradiance sensor used in this study. The empirical angular response 

function was developed by Ocean Optics from laboratory measurements on the same irradiance sensor type used in this 

study. (b) Same as (a) but normalized. The red line in (b) is the empirical probability density function used as the 

irradiance source function for our backward-Monte Carlo simulations (see Eq. 21–22). 

S1.2.2 Scattering and absorption by detector rod 

If a photon trajectory crosses the 3-dimensional position of the detector rod, the photon energy density is reduced by 

an amount 1 − ωrod and the photon is scattered away from the rod (Fig. S1) with an isotropic scattering phase 

function: 

𝜃𝑠 = 1 − 2𝑞, (23) 

𝜙𝑠 = 2𝜋𝑞. (24) 

The collision point is determined with ray tracing formulas that equate the vector equation of the photon trajectory 

with the parametric equation for the cylindrical detector rod surface following Ertürk and Howell (2017) Sect. 7.1 Eq. 

59–66. 

 

The polyvinyl chloride (PVC) detector rod albedo ωrod is estimated from values for the complex refractive index of 

PVC (Zhang et al., 2020). Let μ = cos θ be the cosine zenith angle of incident radiation with μ = +1 vertically 



downward. Following Modest (2013) Section 2.5 Eq. 2.89–2.98, the Fresnel reflectivity and transmissivity to incident 

(downward) radiation are: 

𝑅F(μ) =
1

2
[(

μ − nμn

μ + nμn
)

2

+ (
nμ − μn

nμ + μn
)

2

 ] (25) 

𝑇F(μ) = 1 − 𝑅F(μ) (26) 

where n + ik and n0 + ik0 are the complex refractive indices of PVC and air, respectively, and:   

μn = √1 − (1 − μ2)/n2 (27) 

is the refracted cosine zenith angle in the PVC pipe. Radiation transmitted into the PVC is attenuated exponentially: 

a(μn) = e−τ/μn (28) 

where:

𝜏 = 4𝜋𝑘𝐿/𝜆 (29) 

is the optical thickness of the PVC pipe with wall thickness 𝐿 =  0.004 m. Radiation that transmits through 𝐿 is 

internally reflected upward from the inner wall in the direction μn and attenuated exponentially along path length τ. 

Radiation that reaches the outer wall at μn < μc is transmitted across the outer wall according to 𝑇F(μn) and reflected 

back into the PVC according to 𝑅F(μn), where μc is the critical angle given by Snell’s law: 

μc = √1 − 1/n2. (30) 

Formulas for 𝑇F(μn) and 𝑅F(μn) are similar to Eq. 25 and Eq. 26 with modifications for total internal reflection about 

μc and are given elsewhere (Briegleb and Light, 2007; Liou, 2002).  

 

The total reflectivity is estimated with the successive-order-of-scattering method (van de Hulst, 1980), which accounts 

for the multiple internal reflections and absorption within the PVC described by Eq. 25–30. We model the PVC pipe 

as a plane, which is justified because the radius of curvature is much larger than all wavelengths of light considered 

here. For the geometry and optical properties of the detector rod, the total reflectivity has the closed-form solution: 

𝑅d = 𝑅𝐹,μ +
𝑇𝐹,𝜇𝑅𝐹,𝜇n

𝑇𝐹,𝜇n a𝜇n
2

1 − 𝑅𝐹,μn
𝑎𝜇n

2
(31) 

where the subscripts μ and μn on 𝑅, 𝑇, and a indicate the direction of incident radiance.  

S2 Model validation  

The Monte Carlo model described above is verified by comparison with benchmark values for total diffuse reflectance 

𝑅d [W m-2], total transmittance 𝑇t [W m-2], diffuse angular reflectance 𝑅d(𝛼) [W sr-1] and diffuse angular 

transmittance 𝑇d(𝛼) [W sr-1] tabulated by van de Hulst (1980). The angular quantities, which have units of radiant 

intensity, are defined with respect to the exiting angle normal to the surface 𝛼 [rad]. For a plane-parallel slab with 

optical properties σs = 0.9 m-1, σa = 0.1 m-1, g = 0.75, and optical thickness τ = 2, the van de Hulst (1980) solutions 

are 𝑅d = 0.09739 and 𝑇t = 0.66096. For an ensemble of 𝑁 = 100 simulations, the Monte Carlo model described 



above gives 𝑅d = 0.09740 ± 0.00034 and 𝑇t = 0.66098 ± 0.00049 (𝜇 ± 1𝜎). The model closely reproduces the 

benchmark solutions for 𝑅d(𝛼) and 𝑇d(𝛼) (Fig. S3).  

 

Fig. S3: Values of diffuse angular reflectance (radiant intensity), 𝐑𝐝(𝛂) and transmittance 𝐓𝐝(𝛂) vs. the photon exiting 

angle with respect to the surface normal 𝛂 (after Wang et al. 1995 Fig. 3). Solid circles are benchmark solutions from 

Table 35 in van de Hulst (1980), obtained with the doubling method of solution to the radiative transfer equation.  

S3 Monte Carlo uncertainty estimate 

The Monte Carlo model is used to estimate the effect of detector interference on our irradiance measurements and, in 

turn, the asymptotic flux attenuation coefficients 𝑘att that are estimated from them. To this end, we designed four 

experiments that isolate two forms of detector interference: 1) the non-ideal cosine response of the irradiance detector, 

and 2) absorption and scattering by the PVC detector rod. The four experiments, including a base simulation with no 

detector interference, are summarized in Table S1.  

Table S1: Summary of four Monte Carlo experiments that simulate the effect of the detector rod interference on in-ice 

irradiance measurements. The baseline simulation (ideal diffusion, no rod) has no detector interference.    

Experiment Source function Detector absorption Detector scattering 

Ideal Diffusion, No Rod Eq. 23-24 - - 

Ideal Cosine, No Rod Eq. 22 - - 

Ideal Cosine, With Rod Eq. 22 ωrod  Eq. 23-24 

Non-ideal Cosine, With Rod Empirical (Fig. S2) ωrod  Eq. 23-24 

    

 

For each experimental setup, the Monte Carlo is integrated across 10,000 interactions at four wavelengths (400 nm, 

500 nm, 600 nm, and 700 nm) with detector rod positions that are identical to the measurement depths reported in this 

paper (c.f. Fig. S1). For the 20 July experiment, these depths are 9.35 cm, 30.0 cm, 50.45 cm, and 68.60 cm, in units 

of solid-ice equivalent (i.e., physical thickness scaled by measured ice density). For the 21 July experiment, these 



depths are 45.93 cm, 58.98 cm, 73.40 cm, and 114.5 cm. Monte Carlo 𝑘att values are estimated for each wavelength 

with the same method used for the field-estimates, i.e., by least-squares linear regression: 

− log 𝑇(z, 𝜆) = 𝑇0 + 𝑘att(𝜆)z + 𝜀 (32) 

where 𝑇 is the total diffuse transmittance from Monte Carlo simulation (see Section S2), 𝑇0 is a parameter (y-intercept) 

that represents 𝑇(z = 0) and 𝜀 is an error term.  

 

These simulations provide two measures of 𝑘att uncertainty: 1) the difference between the average Monte Carlo 𝑘att 

value 𝜇MC and the field-estimated 𝑘att value at each wavelength, and 2) the spread among Monte Carlo 𝑘att values at 

each wavelength. The spread among Monte Carlo 𝑘att values is an estimate of uncertainty due to the irradiance sensor 

angular response function and the detector rod interference. The spectrometer dark-light sensitivity is an additional 

source of instrumental uncertainty that is estimated from field measurements as described in Sect. X. These 

instrumental uncertainties (irradiance sensor angular response, detector rod interference, and dark-light sensitivity) 

are compared with the statistical variations in the high-frequency irradiance measurements and with the statistical 

uncertainty in the 𝑘att linear regression model (Eq. 32).  

 

If we take the spread among the Monte Carlo 𝑘att values as independent of the uncertainty estimates obtained from 

analysis of field datasets and the uncertainty in the linear regression model, a combined uncertainty is estimated as: 

𝜀 = √𝜀𝑀𝐶
2 + 𝜀𝐷

2 + 𝜀2𝜎
2 + 𝜀𝐿𝑀

2 (33) 

where 𝜀𝑀𝐶 , 𝜀𝐷, 𝜀2𝜎, and 𝜀𝐿𝑀  are the uncertainty from Monte Carlo, dark-current sensitivity, high-frequency statistical 

variability, and linear model statistical uncertainty, defined as one standard error in the 𝑘att linear regression (Fig. S4). 



 

Fig S4: Attenuation coefficient 𝒌𝐚𝐭𝐭 spectra from measurements of light transmission collected on 20 July, 2018, compared 

with average 𝒌𝐚𝐭𝐭 values from four simulations with a 3-dimensional Monte Carlo radiative transfer model (𝝁𝑴𝑪) and 

with two measures of uncertainty: 1) statistical linear model uncertainty 𝜺𝑳𝑴 (shaded uncertainty bounds; ±𝟏 standard 

error in the linear regression) and, 2) 𝜺𝑳𝑴 combined with instrumental and measurement uncertainty (error bars; 𝝁𝑴𝑪 ±
𝜺). The combined estimate combines 𝜺𝑳𝑴 with uncertainty due to spectrometer dark-light sensitivity, non-ideal cosine 

response of the irradiance sensor, detector rod interference, and statistical variations in the high-frequency raw data (±𝟐 

standard deviations). 
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