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Abstract. Both ice sheets on Greenland and Antarctica are discharging ice into the ocean. In many regions along the coast of 

the ice sheets, the icebergs calf into a bay. If the addition of icebergs through calving is faster than their transport out of the 

embayment, the icebergs will be frozen into a mélange with surrounding sea ice in winter. In this case, the buttressing effect of 

the ice mélange can be considerably stronger than any buttressing by mere sea ice would be. This in turn stabilizes the glacier 

terminus and leads to a reduction in calving rates. Here we propose a simple but robust buttressing model of ice mélange which 

can be used in numerical and analytical modeling.

1 Introduction

Ice sheets gain mass by snowfall and freezing of sea water and lose mass through calving of icebergs and melting at the surface

and the bed. Currently the ice sheets on Antarctica and Greenland have a net mass loss and contribute increasingly to sea level10

rise (Rignot et al., 2014; Shepherd et al., 2018; WCRP Global Sea Level Budget Group, 2018; Eric Rignot, 2019; Mouginot

et al., 2019). The ice sheet’s future mass loss is important for sea level projections (Church et al., 2013; Ritz et al., 2015;

Golledge et al., 2015; DeConto and Pollard, 2016; Mengel et al., 2016; Kopp et al., 2017; Slangen et al., 2017; Golledge et al.,

2019; Levermann et al., 2019).

For the Greenland ice sheet, calving accounted for two-thirds of the ice loss between 2000 and 2005, while the rest was lost15

due to enhanced surface melting (Rignot and Kanagaratnam, 2006). Because surface melt increased faster than glacier speed,

calving was responsible for a third of the mass loss of the Greenland ice sheet between 2009 and 2012 (Enderlin et al., 2014).

In the future, enhanced warming (Franco et al., 2013) and the melt elevation feedback (Levermann and Winkelmann, 2016)

will further increase surface melt but also intensify the flow of ice into the ocean. Calving accounts for roughly half the ice loss

of the Antarctic ice shelves, the rest is lost by basal melt (Depoorter et al., 2013).20

It is clear that calving plays an important role in future ice loss. However, by just calving off icebergs into the ocean and

considering them eliminated from the stress field of the ice-sheet-ice-shelf system, most studies neglect the buttressing effect
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of a possible ice mélange, which can form within the embayment into which the glacier is calving. This study provides a

simple parametrization that accounts for the buttressing effect of ice mélange on calving on a large spatial scale and that can

be used for continental scale ice sheet modeling. Such simulations are typically run on resolutions of several kilometres and

over decadal to millennial timescales.

Any melange parameterization needs to be combined with a large-scale calving parameterizations of which there are some.5

Benn et al. (2007) proposed a crevasse-depth calving-criterion assuming that once a surface crevasse has reached the water

level, an iceberg calves off. This does not give a calving rate but rather the position of the calving front with the assumption that

ice in front calved off. It has been implemented in a flow-line model by Nick et al. (2010). Levermann et al. (2012) proposed

a strain rate dependent calving rate for ice shelves. Morlighem et al. (2016) proposed a calving rate parametrization based on

von Mises stress and glacier flow veloctiy. Mercenier et al. (2018) derived a calving rate for a grounded glacier based on tensile10

failure.

In addition to calving caused by crevasses, another calving mechanism called cliff calving has first been proposed by Bassis

and Walker (2011), who found that ice cliffs with a freeboard (ice thickness minus water depth) larger than 100m are inher-

ently unstable due to shear failure. Cliff calving was implemented as an almost step-like calving rate by Pollard et al. (2015);

DeConto and Pollard (2016), while Bassis et al. (2017) implemented cliff calving as a criterion for the calving front position.15

Finally, Schlemm and Levermann (2019) derived a cliff calving rate dependent on glacier freeboard and water depth by ana-

lyzing stresses close to the glacier terminus and using a Coulomb failure criterion.

Melange buttressing is likely to have a stabilizing effect on possible ice sheet instabilities. First the so-called Marine Ice

Sheet Instability (MISI) (Mercer, 1978; Schoof, 2007; Favier et al., 2014) which can unfold if the grounding line is situated on20

a reverse-sloping bed. Secondly, if the ice shelves buttressing the grounding line have disintegrated due to calving or melting

and large ice cliffs become exposed, runaway cliff calving might lead to the Marine Ice Cliff Instability (MICI) (Pollard et al.,

2015). DeConto and Pollard (2016) carried out past and future simulations of the Antarctic ice sheet with cliff calving im-

plemented as a step function with a discussed but rather ad-hoc upper limit of 3km/a as well as an additional hydrofracturing

process that attacks the ice shelves. Edwards et al. (2019) did further analysis with upper limits between 1− 10km/a. The25

simulations were compared to mid-Pliocene ice retreat (about 3 million years ago), where sea level was 5− 20m higher than

present day. Given the uncertainty in many ice sheet parameters as well as uncertainties in air and ocean temperature forcing,

agreement between simulations and observations could be achieved even without MICI. Calving rates larger than 10km/a were

not considered, but it is clear that using one of the recently derived calving parametrisations with calving rates up to at least

65km/a (see fig. 1) would result in too much and too fast ice retreat. An upper limit on the calving rates appears to be necessary.30

So far, the calving rate cutoff has been an ad-hoc assumption. However, this upper limit should correspond to some physical

process that is responsible for limiting calving rates. We propose that ice mélange, a mix of icebergs and sea ice that is found

in many glacial embayments, gives rise to a negative feedback on calving rates.
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Figure 1. Potential shear-failure based calving rates (eq. 9) and tensile-failure based calving rates (eq. 8) in the grounded, marine regions of

the Antarctic ice sheet. Floating ice is shown in white and grounded ice above sea level in grey. In the marine regions, ice is assumed to be

at floatation thickness, which gives a minimal estimate of the potential calving rates. Estimates for shear calving rates go up to 65km/a and

estimates for tensile calving rates go up to 75km/a. If the grounding line retreat is faster than the speed with which the glacier terminus thins

to floatation, calving rates could be even larger. Imposing an upper bound on the calving rates is necessary to prevent unrealistic, runaway

ice loss.

Obeservations in Store glacier and Jakobshavn glacier in Greenland have shown that in the winter, when sea ice is thick,

ice mélange prevents calving (Walter et al., 2012; Xie et al., 2019). This has also been reproduced in modelling studies of

grounded marine glaciers (Krug et al., 2015; Todd et al., 2018, 2019): Backstresses from the mélange reduce the stresses in the

glacier terminus thereby limiting crevasse propagation and reducing calving rates or preventing calving completely. There’s a

large uncertainty in the value of mélange backstresses, values given in the literature range between 0.02−3MPa (Walter et al.,5

2012; Krug et al., 2015; Todd et al., 2018). Burton et al. (2018) have shown that the mélange backstress increases with L/W ,

the ratio of mélange length to the width of confining channel. The presence of pinning points where the mélange grounds can

also increase the backpressure. Seasonality of basal melting and resulting thinning of the ice mélange is another important

parameter for mélange backstress.

In addition to the reduced stresses caused by the backstress of the mélange, the presence of mélange prevents a full-thickness10

ice berg from rotating away from the terminus, even more so if the glacier is thicker than floatation thickness (Amundson et al.,

2010). Tensile-failure based calving (Mercenier et al., 2018) is likely to produce full thickness icebergs and may be hindered
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significantly by mélange. Shear-failure based calving (Schlemm and Levermann, 2019) is more likely to produce many smaller

icebergs (breakup occurs through many small, interacting fractures at the foot of the terminus) and might be less influenced by

mélange.

Ice mélange is also relevant for calving from shelves in Antarctica: the presence of mélange stabilizes rifts in the ice shelf and

can prevent tabular icebergs from separating from the iceshelf (Rignot and MacAyeal, 1998; Khazendar et al., 2009; Jeong5

et al., 2016).

We propose a negative feedback between calving rate and mélange thickness: A glacier terminus with high calving rates

produces a lot of icebergs, which become part of the ice mélange in front of the glacier. The thicker the mélange is, the stronger

it buttresses the glacier terminus leading to reduced calving rates.10

In section 2, we will show that with a few simple assumptions, this negative feedback between calving rate and mélange

thickness leads to an upper limit on the calving rates. Application to two calving parametrizations and possible simplifications

are discussed in section 3. Section 4 applies the mélange buttressed calving rates to an idealized glacier setup.

2 Derivation of an upper limit to calving rates due to mélange buttressing

Mélange can prevent calving in two ways: First, in the winter, additional sea ice stiffens and forcifies the mélange and can15

thus inhibit calving for example of Greenland glaciers (Amundson et al., 2010; Todd and Christoffersen, 2014; Krug et al.,

2015). Secondly, a weaker mélange can still prevent a full-thickness iceberg from rotating out (Amundson et al., 2010) and

thus prevent further calving.

Ice sheet models capable of simulating the whole Greenland or Antarctic ice sheet over decadal to millennial timescales cannot

resolve the stresses at individual calving glacier termini and often do not resolve seasonal variations in forcing. Therefore, we20

need a model of mélange buttressed calving that is dependent on the geometries of the embayment and the ice sheet averaged

over the year.

To this end, we start by assuming a linear relationship between mélange thickness and the reduction of the calving rate:

C =
(

1− d

H

)
C∗ , (1)25

where C∗ is a calving rate derived for an unbuttressed glacier terminus (Morlighem et al., 2016; Mercenier et al., 2018;

Schlemm and Levermann, 2019) and C is the reduced calving rate caused by mélange buttressing. H is the ice thickness at the

glacier terminus and d is an effective mélange thickness comprised of the actual mélange thickness and the packing density

and stiffness of the mélange (see Pollard et al. (2018)). In the absence of mélange, d= 0, the calving rate is not affected. As

the effective mélange thickness increases, the calving rate is reduced, and at an effective mélange thickness equal to the ice30

thickness H , calving is completely suppressed. This could mean either that the mélange is very thick because it contains many

large (potentially full-thickness) icebergs, or that it is very stiff due to frozen sea ice.
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Figure 2. Geometry of the glacier terminus, ice mélange and embayment as a side view and a top view. The side view shows the ice thickness

H , the calving front thickness dcf and exit thickness dex of the ice mélange as well as the calving rate C and the mélange exit velocity uex.

The top view shows the embayment width at the calving front Wcf and the embayment exit Wex as well as the length of the embayment

Lem.
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In order to estimate the effective mélange thickness d at the calving front, we assume a glacier terminating in an embayment

already filled with ice mélange. Furthermore, we assume that the mélange properties are constant over the entire embayment

and that the mélange thickness thins linearly along the flow direction (fig. 2).

The embayment area is given by Aem, its width at the calving front by Wcf and its width at the exit by Wex. At the calving

front, the glacier terminus has thickness H and is assumed to remain at a fixed position so that the calving rate C is equal to5

the ice flow ucf . The effective mélange thickness at the calving front is given by dcf . As the mélange thins on its way to the

embayment exit, it has an exit thickness dex and an exit velocity uex at which mélange and icebergs are transported away by

ocean currents.

We consider an effective mélange volume V =Aemd̄, where d̄ is the average effective mélange thickness. Mélange is produced

at the calving front with a rate of dV/dt
∣∣∣
cf

=WcfHC and is lost through melting dV/dt
∣∣∣
melt

=−mAem (assuming constant10

melt rate m throughout the embayment) and by mélange exiting into the ocean dV/dt
∣∣∣
ex

=−Wemdemuex. The overall rate of

mélange volume is given by:

0 =WcfHC −Wemdemuex−mAem (2)

Assuming a steady state of mélange production and loss resulting in a constant mélange geometry, we can solve eq. 2 for dex:

dex =
WcfHC −mAem

Wexuex
(3)15

This equation only has a physical solution if mAem <WcfHC, which implies that melting is small enough that mélange

actually reaches the embayment exit. We assume linear thinning of the mélange along the length of the embayment such that

dcf = βdex with β = bLem where b parametrizes flow properties of the mélange. Then the mélange thickness at the calving

front is given as

dcf = aCH − dm, with a=
Wcf

Wex

bLem

uex
, dm = bLem

mAem

Wexuex
(4)20

Inserting eq. 4 into eq. 1, we get

C =
(

1 +
dm

H

)
C∗

1 + aC∗
(5)

Neglecting melting we get

C =
C∗

1 + aC∗
=

C∗

1 +C∗/Cmax
(6)

This function is linear, C ≈ C∗, for small calving rates (C∗� Cmax = a−1) and the buttressed calving C rate saturates at an25

upper limit Cmax = a−1 for large unbuttressed calving rates (C∗� Cmax = a−1). This means that the parameter a can be

considered as the inverse maximum calving rate, Cmax = a−1, which is dependent on the embayment geometry, mélange flow

properties and the embayment exit velocity. Including melt of the mélange leads to higher calving rates, because melthing thins

the mélange and weakens the buttressing it gives to the calving front.

30
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Rather than imposing an upper bound on the calving rates as an ad hoc cut-off as done by DeConto and Pollard (2016);

Edwards et al. (2019), mélange buttressing gives a natural upper bound on the calving rate which is reached smoothly. The

value of the upper bound can be different for each glacier, depending on the embayment geometry, and may change seasonally

in accord with mélange properties.

5

The upper limit on calving rates is a function of embayment geometry and mélange properties,

Cmax =
Wex

Wcf

uex

β
(7)

Since Cmax is proportional to Wex/Wcf , narrow embayments experience stronger mélange buttressing and consequently have

smaller upper limits than wide open embayments. Also the longer the embayment, the smaller the upper limit, even though

friction between the mélange and the embayment walls has not been taken into account. This means that for example Pine10

island glacier in West Antarctica will have a smaller upper bound on calving rates than neighbouring Thwaites glacier, because

Pine Island lies in a valley and Thwaites glacier terminates in a wide open embayment.

3 Application to stress-based calving parametrizations

Bassis and Walker (2011) showed that ice cliffs with a glacier freeboards (ice thickness minus water depth) exceeding≈ 100m15

are inherently instable due to shear failure. However, smaller ice cliffs calve off icebergs as well. Mercenier et al. (2018) derived

a tensile-failure based calving parametrization for calving fronts with freeboards below this stability limit, while Schlemm and

Levermann (2019) derived a shear-failure based calving parametrization for calving fronts with freeboards exceeding the

stability limit.

3.1 Tensile-failure based calving20

A calving relation based on tensile failure was derived by Mercenier et al. (2018) who used the Hayhurst stress as failure

criterion to determine the position of a large crevasse that would separate an iceberg from the glacier terminus and calculated

the timescale of failure using damage propagation. The resulting tensile calving rate is given by

C∗t =B ·
(
1−w2.8

)
·
(
(0.4− 0.45(w− 0.065)2) · ρigH −σth

)r ·H (8)

with B = 65, σth = 0.17, r = 0.43, ρi = 1020 and g = 9.81. This calving relation was derived for glacier fronts with a glacier25

freeboard smaller than the stability limit.

3.2 Shear-failure based calving

An alternative calving relation based on shear failure of an ice cliff was derived in Schlemm and Levermann (2019), where

shear failure was assumed in the lower part of an ice cliff with a freeboard larger than the stability limit. The resulting shear30
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calving rate is given by:

C∗s = C0 ·
(
F −Fc

Fs

)s

(9)

Fs =
(

114.3(w− 0.3556)4 + 20.94
)

m (10)

Fc = (75.58− 49.18w) m (11)

s= 0.1722 · exp(2.210w) + 1.757 (12)5

with relative water depth w ≡D/H < 0.9 and glacier freeboard F ≡H−D =H · (1−w). The scaling parameter C0 is given

as C0 = 90ma−1, but this value is badly constrained and therefore C0 can be considered a free parameter which parametrizes

the uncertainty in the time to failure. This calving law assumes that there is no calving for freeboards smaller than the critical

freeboard F < Fc.

10

Plugging the calving relation, eq. 9, into the mélange buttressed calving rate given by eq. 6 and expanding, it can be shown

that the value of the upper bound Cmax has a greater influence on the resulting calving rates than the scaling parameter C0:

Let’s call the dimensionless freeboard-dependent part of the cliff calving relation

C̃s =
(
F −Fc

Fs

)s

, (13)

then the buttressed calving rate is15

Cs =
C̃s

1
C0

+ C̃
Cmax

(14)

Then if 1� C̃

Cs = Cmax−
C2

max

C̃C0

(15)

For small C̃ the choice of scaling parameter C0 influences the final calving rate C, but for large C̃, the upper bound Cmax

determines the resulting calving rate. Since the scaling parameter C0 is difficult to constrain and has little influence on the20

mélange buttressed calving rate, it makes sense to use a fixed value, e.g. C0 = 90ma−1, and treat only the upper bound Cmax

as a free parameter (which is dependent on the embayment geometry and mélange properties).

3.3 Comparison of the calving parametrizations

A comparison of the two stress-based calving rates can be divided into four parts: Glacier fronts with very small freeboards25

(<≈ 20m) do not calve. For glacier freeboards below the stability limit of ≈ 100m, there is only tensile calving with calving

rates up to ≈ 10km/a and no shear calving. Above the stability limit, shear calving rates increase slowly at first but speed up

exponentially and equal the tensile calving rates at freeboards between 200 − 300m and calving rates between 15 − 60km/a.
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There is a spread in these values because both calving rates depend on the water depth as well as the freeboard. For even larger

freeboards, shear calving rates have a larger spread than tensile calving rates and much larger values for cliffs at floatation.

A comparison of the buttressed calving rates can be classified in the same way where the only difference is that large calving

rates converge to a value just below the upper limit Cmax and hence the difference between tensile and shear calving rates for

large freeboards is smaller.5

Summarizing, there are two different calving parametrizations, based on tensile and shear failure and derived for glacier

freeboards below and above the stability limit, respectively. It might seem obvious that one should simply use each calving

law in the range for which it was derived. However, that would lead to a large discontinuity in the resulting calving rate be-

cause the tensile calving rate is much larger at the stability limit than the shear calving rate. Another possibility is to use each10

parametrization in the range for which it gives the larger calving rate. Since it is likely that in nature large ice cliffs fail due to

a combination of failure modes, it also seems reasonable to use a combination of tensile and shear calving rates.

In the context of the Marine Ice Cliff Instability (MICI) hypothesis, one would expect a sudden and large increase in calving

rates for ice cliffs higher than the stability limit. Despite a nonlinear increase of calving rates in the unbuttressed case, neither15

of the two stress-based calving parametrizations (Mercenier et al., 2018; Schlemm and Levermann, 2019) nor a combination

of them shows discontinuous behaviour at the stability limit.

3.4 Simplified calving relations

There are uncertainties in both calving laws: a dominating failure mode is assumed (shear and tensile failure, respectively),20

while in real calving it is likely that failure modes interact. Also, ice is assumed to be previously undamaged, whereas a glacier

is usually heavily crevassed near the terminus. In addition, shear calving has a large uncertainty with respect to the time to

failure which leads to uncertainty in the scaling parameter C0. These uncertainties together with the observation that the upper

limit Cmax seems to have a stronger influence on resulting calving rates than the choice of calving law provide a good reason

to consider simplifying these calving laws:25

The important distinction between shear and tensile calving is that shear calving has a much larger critical freeboard: for small

freeboards (F < 100m), we have tensile calving but no cliff calving. Since the mélange buttressed calving rate is linear in the

calving rates for small calving rates, this distinction remains in the buttressed calving rates (see fig. 3). However, for larger

freeboards the calving rates approach the upper limit no matter which calving law was chosen. This distinction should be

conserved in the simplified calving relations.30

The dependence of the calving rate on water depth is important in the unbuttressed case (see fig. 3 on the left): there’s a large

range between calving rates for the same freeboard and different relative water depths – that’s because larger relative water

depth correlates to larger overall depth and hence larger ice thickness and therefore larger calving rate. But in the mélange

buttressed case, the large calving rates are strongly buttressed and the large range is transformed into a much smaller range, so

9
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Figure 3. Calving rates as a function of glacier freeboard (ice thickness - water depth) in the unbuttressed case and for a range of upper

bounds Cmax. Shear calving and tensile calving rates depend also on the water depth: Two lines are shown for each configuration, the lower

line for a dry cliff (w = 0.0) and the upper line for a cliff at floatatione (w = 0.8). This spans the range of possiible calving rates for a given

freeboard. Also shown are the nonlinear (dotted line) and linear (dashed lines) approximations to these calving laws. In the tensile case,

calving commences with freeboard F=0, while shear calving only happens for freeboards larger Fc ≈ 50m.

that water depth becomes less important.

Therefore we consider simplifications of the calving relations where we average over the water depth and further simplify:

Take the shear calving relation:

C∗s = C0 ·
(
F −Fc

Fs

)s

(16)5

where C0 = 90m/a, s(w) ∈ [1.93,3.00], Fc(w) ∈ [30.9,75.0]m and Fs(w) ∈ [21.0,31.1]m. In choosing round values within

these intervals, we can simplify the relation.

C∗s,nonlin = 90m/a ·
(
F − 50m

20m

)2

(17)
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Because the exponent s is on the smaller end of the possible values we chose a smaller value for Fs to get an approximation

that lies well within the range of the full cliff calving relation, though it lies at the lower end (see fig. 3). An even simpler linear

approximation

C∗s,lin = 75a−1 · (F − 50m) (18)

overestimates the calving rates for small freeboards (F < 200m) and underestimates for large freeboards (F > 600m).5

The tensile calving relation can be written as

C∗t = a(w)(b(w)F −σth)0.43 ·F ≈ c ·F 1.5 (19)

and can be fitted with a power function

C∗t,nonlin = 7m−0.5a−1 ·F 1.5 (20)10

or a linear function

C∗t,lin = 150a−1 ·F (21)

Here we neglect the small offset in freeboard that tensile calving has. This gives us two kinds of simplified calving relations

to compare: one that begins calving immediately and one that only calves off cliffs larger than a certain critical freeboard. For

both we have a linear approximation that overestimates small calving rates, and a nonlinear approximation that lies well within15

the original spread of calving rates.

4 Mélange buttressed calving in an idealized glacier setup

We consider a MISMIP3D-like glacier setup (Pattyn et al., 2013), that is symmetric at x= 0 and has periodic boundary condi-

tions on the mountain sides. The glacial valley has an average bedrock depth of 200m and a width of 40km and experiences

a constant accumulation of 1.5m/a (see fig. 4). Since there is no ice reservoir at the top of the glacier, this setup can also be20

considered as a model for a mountain glacier.

The experiments were done with the Parallel Ice Sheet Model (PISM) (Bueler and Brown, 2009; Winkelmann et al., 2011)

which uses the shallow ice approximation (Hutter, 1983) and the shallow shelf approximation (Weis et al., 1999). We use

Glen’s flow law in the isothermal case and a pseudoplastic basal friction law (the PISM authors, 2018).

A spin-up simulation was run until it reached a stable configuration with an attached shelf. During the experiment phase25

of the simulation all floating ice is removed in each timestep. When the shelf is removed, the marine ice sheet instabil-

ity (MISI) kicks in because of the slightly retrograde bed topography and the glacier retreats. Calving accelerates this re-

treat. Experiments were made with no calving (MISI only), mélange buttressed shear calving and its nonlinear and lin-

ear approximation as well as mélange buttressed tensile calving and its two approximations. The upper bound was varied
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Figure 4. Setup of the idealized glacier experiments. Only one half of the setup is shown, the glacier is connected to an identical copy at the

left to ensure periodic boundary conditions at the ice divide.

Cmax = [2.5,20.0,50.0,500.0]km/a where the last upper bound was chosen to be large enough that the calving rates nearly

match the unbuttressed calving rates.

Even without calving in the MISI only experiment, there is a significant retreat after removing the ice shelves because of the

buttressing loss and slightly retrograde bed of the glacier (fig 5). The glacier retreats from a front position at 440km to 200km5

in the first 100 years, after which the retreat decelerates and the glacier stabilizes at a length of about 130km.

Adding calving leads to additional retreat: the higher the upper bound on the calving rates, the faster the retreat.

Shear calving causes less additional retreat than tensile calving because it has small calving rates for freeboards below 150m.

Since the channel is rather shallow the freeboards are generally small. Only the linear approximation of cliff calving has a

significant ice retreat because even though it starts only with a freeboard of 50m, it grows much faster than the actual cliff10

calving or the nonlinear approximation. But it also reaches a stable glacier position when the ice thickness is smaller than the

critical freeboard condition.

Assuming tensile calving, the glacier retreats much faster. The linear approximation, which has higher calving rates for small

freeboards, leads to a faster retreat. For the nonlinear approximation the glacier is close to floatation for most of its retreat

which corresponds to the upper half of the tensile calving range. This approximation gives smaller calving rates and hence15

slower retreat. None of the tensile calving relations allow the glacier to stabilize. That is to say the minimum freeboard below

which an ice front is stable for shear calving is ultimately the stabilizing factor in these simulations.
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Fig. 6 shows that the effect of mélange buttressing becomes relevant for small values of the export of ice out of the embay-

ment, i.e. for small values of Cmax. In this limit of strong buttressing, i.e. where the parameterization of equation 6 is relevant,

the glacier retreat becomes almost independent of the specific calving parameterization.
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Figure 5. Glacier length timeseries. Upper left panel shows runs with an upper limit of Cmax = 500km/a which is essentially equivalent to

the unbuttressed calving rates. Then we have decreasing upper limits and consequently the glacier retreat slows down.

5 Conclusions

We considered mélange buttressing of calving glaciers as a complement to previously derived calving relations. The approach5

here is to provide an equation that uses simple and transparent assumptions to yield a non-trivial relation. Comparison with

observations are required to support or falsify the assumption made and to calibrate the few model parameters.

The buttressing is described in form of a reduced calving rate which is a functional of the maximum calving rate as it is derived

for the ice front without melange buttressing. First, we assumed that calving rates decrease linearly with the effective mélange
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Figure 6. Timeseries of glacier retreat additional to the MISI retreat, i.e. retreat caused by calving.

thickness. The effective thickness includes stiffness and packing density of the mélange and could capture seasonal effects of

increased sea ice making the mélange stiffer. Secondly, we assume a steady state between mélange production through calving

and mélange loss through melting and exit from the embayment. This implies a fixed calving front position. Using these two

assumptions, we derived a mélange buttressed calving rate, eq. 6, that is linear for small calving rates and converges to an upper

limit, which depends on he embayment geometry, mélange flow properties and the embayment exit velocity.5

This framework can be applied to any calving parametrization that gives a calving rate rather than the position of the calving

front. We investigated its application to a tensile-failure based calving rate and to a shear-failure based calving rate. For small

calving rates, the differences between the parametrizations persist in the buttressed case. However, large calving rates converge

to the upper limit and the choice of calving parametrization becomes less important. This suggest that it is possible to simplify10

the calving parametrizations further, but we show that the simplifications differ for small calving rates and those differences

persist.
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We illustrated this with a simulation of an idealized glacier. Choice of calving parametrization and choice of upper limit deter-

mine the retreat velocity.

Ocean temperatures off the coast of Antarctica are mostly sub-zero with 0.5−0.6◦C warming expected until 2200, while the

ocean temperatures off the coast of Greenland are sub-zero in the north but up to 4◦C in the south with an expected 1.7−2.0◦C5

warming until 2200 (Yin et al., 2011). This leads to increased mélange melting in Greenland compared to Antarctica and there-

fore higher upper limits on calving rates in Greenland glaciers that have geometries comparable to Antarctic glaciers.

Future ocean warming and intrusion of warm ocean water under the ice mélange increases melting rates and the upper limit on

calving rates. This could be another mechanism by which ocean warming increases calving rates.

10

The concept of cliff calving and a cliff calving instability is not without criticism. According to Clerc et al. (2019), the lower

part of the glacier terminus where shear failure is assumed to occur (Bassis and Walker, 2011; Schlemm and Levermann, 2019)

is actually in a regime of thermal softening with a much higher critical stress and thus remains stable for large ice thicknesses.

Tensile failure may occur in the shallow upper part of the cliff and initiate failure in the lower part of the cliff. The critical

subaerial cliff height at which failure occurs depends on the timescale of the ice shelf collapse: for collapse times larger than 115

day, the critical cliff height lies between (170− 700m).

The mélange buttressing model proposed here does not depend on the specific calving mechanism and is not comprehensive

especially since it is not derived from first principles but from a macroscopic perspective. The advantage of the equation

proposed here is the very limited number of parameters that can be calibrated using large scale observations. Eventually a20

microscopic investigation of the proposed parameterization would be desirable.
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