

Quantifying the impact of synoptic weather types and patterns on energy fluxes of a marginal snowpack

Andrew Schwartz¹, Hamish McGowan¹, Alison Theobald², Nik Callow³

¹Atmospheric Observations Research Group, University of Queensland, Brisbane, 4072, Australia

²Department of Environment and Science, Queensland Government, Brisbane, 4000, Australia

³School of Agriculture and Environment, University of Western Australia, Perth, 6009, Australia

Correspondence to: Andrew J. Schwartz (Andrew.Schwartz@uq.edu.au)

Abstract.

Synoptic weather patterns are investigated for their impact on energy fluxes driving melt of a marginal snowpack in the Snowy Mountains, southeast Australia. K-means clustering applied to ECMWF ERA-Interim data identified common synoptic types and patterns that were then associated with in-situ snowpack energy flux measurements. The analysis showed that the largest contribution of energy to the snowpack occurred immediately prior to the passage of cold fronts through increased sensible heat flux as a result of warm air advection (WAA) ahead of the front. Shortwave radiation was found to be the dominant control on positive energy fluxes when individual synoptic weather types were examined. As a result, cloud cover related to each synoptic type was shown to be highly influential on the energy fluxes to the snowpack through its reduction of shortwave radiation and reflection/emission of longwave fluxes. This research is an important step towards understanding changes in surface energy flux as a result of shifts to the global atmospheric circulation as anthropogenic climate change continues to impact marginal winter snowpacks.

1 Introduction

1.1 Synoptic weather influences on snowpack processes

Water generated in mountainous regions is a commodity that over 50% of the world's population depends on for daily life (Beniston, 2003). Arguably, the most important role in the generation and regulation of these water resources is that of montane snowpacks. These have been referred to as "water towers" (Viviroli et al., 2007) due to their capabilities for storage and slow releases of meltwater. Many snowpacks are undergoing reductions in spatial and temporal extent as a result of anthropogenic climate change (Pachauri et al., 2014). Understanding the physical drivers of snowpack ablation, including synoptic-scale influences, is critical to help assess future water resource availability in mountainous regions as climate change continues.

Snowfall has been related to synoptic weather types in numerous studies globally including in Athens (Prezerakos and Angouridakis, 1984), the central and eastern United States (Goree and Younkin, 1966), the Tibetan Plateau (Ueno, 2005), Budapest (Bednorz, 2008a), and the central European lowlands (Bednorz, 2011). However, work on relationships between snowmelt and synoptic weather types is relatively scarce. Bednorz (2008b) identified increased air temperature and rain-on-snow events as causes for rapid snowmelt ($> 5 \text{ cm day}^{-1}$) in the Polish-German lowlands as a result of west-southwest airflows over Central Europe during positive phases of the North Atlantic Oscillation (NAO). Similar work has been conducted in North America by Grundstein and Leathers (1998) who were able to identify three main synoptic weather types responsible for significant snowmelt events on the northern Great Plains, all of which included cyclonic influence with different low pressure centre locations and warm air advection to the region. While some knowledge exists on synoptic drivers of snowpack ablation,

41 further research is needed to understand synoptic effects on ablation processes over snowpacks with varying
42 characteristics.

43 Marginal snowpacks are characterised by high snow density and internal temperatures, making them susceptible
44 to melt from energy input throughout much of the season and particularly sensitive to even subtle shifts in
45 available energy. Anthropogenic climate change has led to changes in snowpack and precipitation properties
46 globally (Adam et al., 2009; Stewart, 2009) and regions that have been historically categorized as having lower
47 temperatures have begun developing marginal characteristics as temperatures increase. However, research related
48 to synoptic influences on the surface energy balance over marginal snowpacks as defined by Bormann et al. (2013)
49 are rare. Hay and Fitzharris (1988) studied the influence of different synoptic weather types on glacier ablation
50 and snowpack melt, while Neale and Fitzharris (1997) used surface energy flux measurements to determine which
51 synoptic types resulted in highest ablation in the Southern Alps, New Zealand. These studies found net radiation
52 was the dominant term in ablation, but also noted that the contributions made by each term varied largely
53 depending on the synoptic type and its meteorology. A common characteristic between these studies and others
54 in various regions is that they focused primarily on the surface meteorology for synoptic classifications rather
55 than multiple level analysis, which enables insight to the potential influence of mid and upper-level atmospheric
56 conditions on surface – atmosphere energy exchanges. Regardless, no analysis at any level exists on synoptic type
57 influence on snowpack ablation within Australia.

58 **1.2 The Australian snowpack**

59 Characteristics of the snowpack in the Australian Alps have been examined in a number of studies with focus on
60 spatial and temporal snow cover variability (Budin, 1985; Duus, 1992), influence on catchment hydrology (Costin
61 and Gay, 1961), the energetics of snowpack melt (Bilish et al., 2018), and isotopic composition of precipitation
62 (Callow et al., 2014). Given observed declines in snow cover, climate change has become a central focus of this
63 research (Chubb et al., 2011; Hennessy et al., 2008; Nicholls, 2005; Reinfelds et al., 2014; Whetton et al., 1996) as
64 any changes to energy flux over the region will significantly impact the already marginal snowpack. Di Luca et
65 al. (2018) showed that snow cover extent in the Australian Alps is expected to undergo reductions of 15% by 2030
66 and 60% by 2070 due to decreases in snowfall quantity and increases in temperature. Observations indicate that
67 reduction in snow cover is already occurring with shortened annual periods of wintertime precipitation. Nicholls
68 (2005) found reductions of 10% and 40% in the maximum snow depth and snow depth at the first October
69 measurement respectively from 1962 to 2002. In addition, wintertime precipitation was shown to have reduced
70 by an average of 43% in high elevation regions from 1990 to 2009 (Chubb et al., 2011), though much of this could
71 have been due to several severe droughts that occurred during the study period. Fiddes et al. (2015a) showed that
72 snowfall, snow accumulation, and snow depth were highly correlated with temperature and that warming, as a
73 result of climate change, could lead to further reductions in the southeast Australia (SEA) snowpack. The
74 importance of the water generated in the Australian Alps, reduction in wintertime precipitation amounts and
75 frequency, and high spatiotemporal variability of snow accumulation and ablation (Budin, 1985) warrants an
76 understanding of the energetics of Australia's snowpack as they pertain to the influences of shifting synoptic-scale
77 circulations.

78 **1.3 Synoptic weather types and trends in the Australian Alps**

79 The Australian Alps is a marginal snowpack environment (Bilish et al., 2019; Bilish et al., 2018), where
80 precipitation is crucial to agriculture, the generation of hydroelectric energy, and recreation. Water generated in
81 the Australian Alps contributes to agriculture in the Murray Darling Basin that accounts for 62% of Australia's
82 water use for irrigation (Australian Bureau of Statistics, 2020). A maximum in precipitation in the Australian Alps
83 typically occurs during the cooler months of June to September when it falls as snow at elevations above 1400 m,
84 and accounts for twice as much precipitation as during the warmer periods of the year (Chubb et al., 2011). While
85 the snowpack typically exists for relatively short periods compared to those of other regions where winter
86 temperatures are lower and higher snowfall amounts occur such as parts of the European Alps and Rocky
87 Mountains, USA, it is still a vital resource for SEA.

88 Synoptic weather types in SEA have been changing in recent decades in response to the impact of climate change
89 on background climate states (Theobald et al., 2016). Pepler et al. (2019) noted anti-cyclone increases of 20-30%
90 in southern Australia and 31-36% in the Tasman Sea during 1960-1979 and 1979-2014 with higher increases
91 during the cool season (May-October). In addition, atmospheric fronts are expected to shift southward (Catto et
92 al., 2014) and predicted global warming driven increases in Southern Annular Mode (SAM) value will result in
93 the poleward shift of general synoptic systems (Cai et al., 2005). This would likely result in significant reductions
94 to snowpack as SAM has been shown to have the highest impact on snow depth and snow season length at
95 Spencers Creek in the Australian Alps with reductions up to 32% during years where the June-September SAM
96 is greater than 0.7 (Pepler et al., 2015).

97 Significant work has been conducted on identification of patterns and trends in Australian synoptic climatology
98 as it pertains to precipitation variability (Theobald et al., 2016; Chubb et al., 2011; Pook et al., 2014; 2010; Pook et
99 al., 2006; 2012; Fiddes et al., 2015b). However, impacts on surface energy fluxes as a result of synoptic types have
100 not been explored as they have in other regions. The objective of this study is to identify the synoptic weather
101 types that contribute the highest amounts of energy to the Pipers Creek catchment headwaters snowpack. This is
102 accomplished through: 1) the identification and classification of common synoptic types during periods of
103 homogeneous snow cover, 2) attribution of snowpack energy flux characteristics to each synoptic type, and 3)
104 construction of energy balance patterns as they pertain to common synoptic patterns/progressions.

105 **2 Methods**

106 **2.1 Study site and climate**

107 Energy flux measurements were made 16 km west of Lake Jindabyne at the Pipers Creek catchment headwaters
108 (36.417°S, 148.422°E) at an elevation of 1828 m in the Snowy Mountains, Kosciuszko National Park, New South
109 Wales (NSW), Australia (Figure 1). The surrounding areas contain a mixture of living and dead *Eucalyptus*
110 *pauciflora* (Snow Gum) trees and open grassland areas with fens and alpine bogs. Many of the Snow Gums were
111 impacted by fire in 2003, and have experienced slow regrowth. The site chosen at the Pipers Creek catchment
112 headwaters contains alpine bog and Eucalypt woodland that are “the two most common types in the broader
113 region, together representing 47% of the total area above 1400-m elevation” (Bilish et al., 2018, p. 3839). Gellie
114 (2005) showed that the *E. pauciflora* woodland was present in five of the fifteen dominant vegetation formations
115 that covers 57% of area within the broader region, while Alpine grassland/bog (including herb fields) accounts
116 for another 8%. The area's mixed characteristics of forested and open grasslands with alpine wetlands within the

117 Pipers Creek study catchment and immediately surrounding the flux tower site used in this study are representative
118 of those found throughout the Australian Alps.

119 The Snowy Mountains are characterized by relatively mild weather conditions compared to other mountain
120 ranges. Winter temperatures are typically around 0°C with mean low temperatures during July (the coldest month)
121 at -5°C and mean high temperatures between 2 to 4°C (Bureau of Meteorology, 2018b) that readily allow for melt
122 of the snowpack. As such, snowpack properties in the catchment are consistent with those of maritime snowpacks
123 that are associated with basal melting, high temperatures, and high wind speeds (Sturm et al., 1995; Bilish et al.,
124 2018).

125 The nature of single-site energy balance studies in complex terrain means that measurements may not be truly
126 representative of the larger area. Terrain-induced flows and aspect/slope at the measurement site can alter radiative
127 exchange and turbulent fluxes resulting in different energy balances over short distances. Therefore, we suggest
128 caution when applying the Pipers Creek catchment headwaters energy balance to the wider area of the Australian
129 Alps. While this is a drawback to single-site studies, this paper aims to take the first step towards broad-scale
130 understanding of synoptic weather on the Snowy Mountains snowpack.

131 **2.2 Instrumentation**

132 The Pipers Creek site (Figure 2) was established on 10 June 2016 and collected data for the 2016 and 2017 winter
133 seasons. The site consisted of a Campbell Scientific eddy covariance (EC) system to measure fluxes of latent (Q_e)
134 and sensible (Q_h) heat at 10 Hz at a height of 3.0 m above ground level (AGL). A Kipp and Zonen CNR4
135 radiometer (3.0 m AGL) was used to measure incoming and outgoing shortwave (K) and longwave (L) radiation
136 to allow for comparisons of all radiation components rather than simply net all-wave radiation (Q^*). Ambient air
137 temperature and relative humidity were measured at the top of the mast by a Vaisala HMP155 probe at ~3.1 m
138 above ground level. A Hukseflux heat flux plate measured ground heat flux (Q_g) at a depth of 5 cm and was placed
139 approximately 0.5 m from the centre of the mast to minimize any influence the mast could have on snow
140 accumulation above the sensor. Surface temperatures were monitored using an Apogee Instruments SI-111
141 infrared radiometer at approximately 2 m from the centre of the mast. Details on the instruments used for each
142 measurement are shown in Table 1.

143 Precipitation data from an ETI Instrument Systems NOAH II weighing gauge located approximately 1 km to the
144 northwest of the energy balance site at elevation of 1761 m was supplied by Snowy Hydro Limited (SHL). A 6 m
145 diameter DFIR shield was used around the gauge in order to prevent wind-related under-catch of snowfall
146 (Rasmussen et al., 2012), and was additionally sheltered by vegetation to the west.

147 **2.3 Identification of snow cover periods**

148 Homogeneous snow cover is crucial to accurate measurement and analysis of snowpack energy balance (Reba et
149 al., 2009). Snow cover was considered to be homogeneous when no grass or bush was protruding from the snow
150 surface with the exception of distant patches of *E. pauciflora* trees. Periods with homogeneous snow cover were
151 determined using data from the Pipers Creek instrumentation site and were cross referenced to manual snow
152 measurements made at the Spencers Creek Snow Course 6.6 km northwest of the Pipers Creek field site (Snowy
153 Hydro Ltd, 2018). Periods with surface temperatures above 1.5°C as measured by the SI-111 infrared radiometer

154 that did not correspond to rain-on-snow events and periods with albedo measurements less than 0.40 (Robock,
155 1980) were considered to have heterogeneous snow cover and were eliminated.

156 **2.4 Synoptic classification of snow cover days**

157 Synoptic weather type classification of homogeneous snow cover days was conducted using synoptic typing
158 methods adapted from Theobald et al. (2015). European Centre for Medium-Range Weather Forecasts (ECMWF)
159 ERA-Interim reanalysis data (Dee et al., 2011) with a $0.75^\circ \times 0.75^\circ$ resolution was obtained for each day from 10
160 June 2016 through 31 October 2017. This date range was chosen to ensure inclusion of all potential dates with
161 snow cover during the 2016 and 2017 snow seasons after the initial instrument tower installation on 10 June 2016.
162 Variables included in the reanalysis data consisted of mean daily values of Mean Sea Level Pressure (MSLP);
163 temperature and relative humidity at 850, 700, 500, and 250 hPa; wind vectors at 10 m AGL, 850, 700, 500, and
164 250 hPa; and 1000-500 hPa geopotential heights. The domain of the included variables was limited to $20^\circ\text{S} - 46^\circ\text{S}$
165 and $120^\circ\text{E} - 160^\circ\text{E}$, ensuring coverage of synoptic scale systems affecting the Australian Alps.

166 Focus was placed on analysis of temperature (T_d) and relative humidity (RH) values because of their impact on
167 Q_e , Q_h , and radiative fluxes (Reba et al., 2009;Ruckstuhl et al., 2007;Allan et al., 1999;Webb et al., 1993). Relative
168 humidity values at 850, 700, and 500 hPa were used to investigate the potential influence of cloud cover. MSLP
169 and wind vector analysis at the 850, 700, 500, and 250 hPa levels allowed for the identification of T_d and RH
170 advection (Pook et al., 2006) into the Australian Alps. Thickness between 1000-500 hPa was used to determine
171 frontal positions relative to the Australian Alps (Pook et al., 2006) and accordingly the Pipers Creek field site.

172 The method used for synoptic comparison of energy flux characteristics was adopted from the approach of similar
173 types of studies that used “days” as the temporal period for analysis in the Snowy Mountains region (Theobald et
174 al., 2016;Theobald et al., 2015;Chubb et al., 2011;Fiddes et al., 2015b) and glacier/snowpack energy balance (Hay
175 and Fitzharris, 1988;Neale and Fitzharris, 1997). “Days”, periods lasting twenty-four hours from 00Z to 23:59Z,
176 were considered optimal to determine radiative flux characteristics (diurnal radiation cycle) that may be missed
177 on smaller time scales. While the use of UTC days meant that the synoptic characteristics corresponded to local
178 days by an offset by 10 hours (00:00 UTC = 10:00 AEST), the effects of the synoptic conditions on terrain-induced
179 flows would be the same regardless of whether they aligned with the local day. Overall, the use of UTC days
180 allowed for determination of short-term energy fluxes that can also be easily compared over several months, thus
181 being most appropriate for the entire snow season. Examination of higher temporal resolution snowpack energy
182 balance at a collocated site can be found in Bilish et al. (2018).

183 Days within the ERA-Interim data that matched snow cover days were extracted and analysed using the k-means
184 clustering algorithm developed by Theobald et al. (2015). The algorithm was tested for 1-20 clusters and an elbow
185 plot of the cluster distances was used to identify the optimum number of clusters (Theobald et al., 2015), which
186 was seven. The identification of an elbow in the plot at seven clusters indicates a reduction to the benefit of adding
187 additional clusters as the sum of distances for additional clusters fails to yield significant reductions beyond that
188 point (Wilks, 2011).

189 Clustering of the synoptic conditions for each day was verified through manual analysis of MSLP and 500 hPa
190 charts from the Australian Bureau of Meteorology (BOM) (Bureau of Meteorology, 2018a). Cloud cover for each
191 type was investigated and verified through the use of visible and infrared band Himawari-8 satellite data

192 (<https://www.ncdc.noaa.gov/gibbs/>) at three hour increments from 00Z to 21Z, (10:00 AEST to 07:00 AEST) with
193 one of three categories assigned to each day studied; 1) no cloud cover, 2) partial cloud cover, or 3) complete
194 cloud cover. Cloud cover was investigated throughout the days to ensure that all effects of cloud cover on energy
195 balance were represented.

196 Manual verification of the k-means clustering algorithm using BOM synoptic charts identified four days (2.45%)
197 out of the 163 classified during the 2016 and 2017 seasons that had been classified incorrectly and they were
198 subsequently moved to their correct synoptic type. Three of the four misclassified days were early (7 June 2016)
199 or late (19 and 22 September 2016) in the snowpack seasons with the fourth occurring in the middle of winter on
200 31 July 2017. Synoptic characteristics from these days tended to be complicated with no discernible dominant
201 features that matched those of classified types. This is likely due to shifting synoptic conditions between seasons
202 related to poleward or equatorial shifts in westerly winds.

203 **2.5 Snowpack energy accounting**

204 Accurate measurement of snowpack energy balance and associated melt can be difficult due to snowpack
205 heterogeneity (Reba et al., 2009) and problems with energy balance closure (Helgason and Pomeroy, 2012). The
206 basic snowpack energy balance can be expressed as:

207
$$Q_m = Q^* + Q_h + Q_e + Q_g + Q_r \quad (1)$$

208 where the energy available for snow melt (Q_m) is equal to the sum of Q^* , Q_h and Q_e , Q_g , and the energy flux to
209 the snowpack from liquid precipitation (Q_r) (Male and Granger, 1981; McKay and Thurtell, 1978). It's important
210 to note that all terms used in the calculation of the snowpack energy balance are net terms (Marks and Dozier,
211 1992; Stoy et al., 2018; Welch et al., 2016). Using net terms allows for conservation of energy within the (ideally)
212 closed energy balance system of the snowpack and aids in more accurately determining contributions of each term
213 to the energy balance.

214 Internal energy storage and melt processes can make calculation of the snowpack energy balance particularly
215 difficult when internal measurements of the snowpack are not available due to problems closing the energy
216 balance (Helgason and Pomeroy, 2012). This is particularly difficult over Australia's snowpack due to its marginal
217 characteristics that result in nearly constant internal snowpack melt. Therefore, Q_m can be more accurately
218 expressed as a residual energy term (Q_{res}) that is defined as the sum of the measured terms in Eq. (1) plus any
219 error in energy balance closure (Q_{ec}):

220
$$Q_{res} = Q^* + Q_h + Q_e + Q_g + Q_r + Q_{ec} \quad (2)$$

221 While Q^* can be used for basic analysis of the snowpack energy balance, a decomposition into its individual
222 components is necessary to understand the role of short and longwave radiation exchange in snowpack energetics
223 (Bilish et al., 2018). Therefore, net radiation should be broken into its net flux terms:

224
$$Q^* = K^* + L^* \quad (3)$$

225 that quantify the net shortwave (K^*) and net longwave (L^*) components.

226 The approach taken within this paper is to examine net radiative flux components individually, similar to the
227 methods used by Bilish et al. (2018), to be precise in the identification of synoptic-scale effects on snowpack
228 energy fluxes through differences in temperature, relative humidity, cloud cover. Q_{res} calculation and
229 comparisons of snowpack energy flux terms were performed using the terms in Eq. (2), but with the net radiation
230 terms (K^* and L^*) used rather than summed as Q^* only. This research uses the energy flux convention where
231 positive values are flux to the snowpack and negative values are flux away from the snowpack.

232 **2.6 Energy flux measurements of synoptic types**

233 Coordinate rotation for EC systems is typically used to account for errors introduced into flux data due to
234 imprecise instrumentation levelling. However, complex terrain can complicate EC measurements through local
235 scale processes such as thermally induced anabatic and katabatic flows, modification and generation of complex
236 terrain-induced flows, and inhomogeneity of terrain. In these areas, coordinate rotation is used to align the eddy
237 covariance coordinate system with the sloping surface and to identify and remove larger scale motions that may
238 be measured with the microscale flows. The Pipers Creek catchment site is located on predominantly level terrain,
239 however, double coordinate rotation was used to process the EC data to ensure terrain-induced influences on
240 airflow were removed (Stiperski and Rotach, 2016).

241 Frequency corrections were made to the EC data to account for sensor response delay, volume averaging, and the
242 separation distance of the sonic anemometer and gas analyser when calculating fluxes. Finally, WPL air density
243 corrections (Webb et al., 1980) were made to account for vertical velocities that exist as a result of changing air
244 mass density through fluxes of heat and water vapour. Quality flags were calculated for Q_h and Q_e using the
245 methods of Mauder and Foken (2011) that assigned a number from 0-2 based on the quality of the fluxes. High
246 quality data that is able to be used for fundamental research was assigned a 0, fluxes assigned a 1 are less accurate
247 but can still be used for long term observations, and fluxes assigned a 2 needed to be removed and gap-filled.

248 Q_h and Q_e flux were calculated using the EC equations:

$$249 Q_h = -\rho C_p (\overline{w' \theta'}) \quad (4)$$

$$250 Q_e = -\rho L_v (\overline{w' q'}) \quad (5)$$

251 where ρ is air density (kg m^{-3}), C_p is the specific heat of air ($1005 \text{ J kg}^{-1} \text{ deg}^{-1}$), $\overline{w' \theta'}$ is the average covariance
252 between the vertical wind velocity w (ms^{-1}) and potential temperature θ (K), L_v is the latent heat of sublimation
253 or vaporization of water (J kg^{-1}), and $\overline{w' q'}$ is the average covariance between the vertical wind velocity w (ms^{-1})
254 and specific humidity q (kg kg^{-1}) (Reba et al., 2009).

255 The calculation of Q_r followed Bilish et al. (2018) and was determined using three separate calculations to
256 establish approximate wet bulb temperature (T_w) (Stull, 2011), the fraction of precipitation falling as rain ($1 -$
257 P_{snow}) (Michelson, 2004), and total rain heat flux (Q_r) based on precipitation accumulation over a 30-minute
258 period.

259 **2.7 Energy flux data quality control and gap-filling**

260 In addition to removing EC measurements assigned a quality flag of 2, Q_e and Q_h values were also removed
261 when water vapour signal strength, a unit-less number calculated from the fraction of beam received compared to

262 that emitted, from the gas analyser was < 0.70 in order to remove erroneous readings during periods of
263 precipitation (Campbell Scientific, 2018;Gray et al., 2018). A seven point moving-median filter was implemented
264 over three iterations to de-spike the data and remove values more than 3.0 standard deviations away from the
265 median values.

266 Pre-existing gaps and gaps introduced into the data by the quality control procedures were filled using linear
267 interpolation described by (Falge et al., 2001a;2001b) and the Random Forest regression technique (Breiman,
268 2001). Linear interpolation of missing Q_e and Q_h values was used for gaps up to 90 minutes in length.
269 Traditionally, mean diurnal variation values are also used for gap filling procedures (Falge et al.,
270 2001a;2001b;Bilish et al., 2018). However, it was determined that using mean values would likely obscure any
271 unique energy balance characteristics of the synoptic types being investigated and, therefore, was not included as
272 a gap-fill strategy for the data.

273 The R programming package randomForest (Liaw and Wiener, 2002) was used to fill gaps in Q_e and Q_h longer
274 than 90 minutes in length. The random forest regression trained to determine Q_e and Q_h flux values was developed
275 using twenty-six atmospheric and soil variables collected in addition to EC measurements. Mean squared errors
276 (MSE)'s were examined for forests with 1-500 trees and it was determined that 150 trees were sufficient to build
277 an accurate model for both Q_e and Q_h . Tests were then conducted to determine the optimal number of variables
278 to be randomly selected at each node that showed 13 variables was optimal for determination of Q_h and 14
279 variables should be used for Q_e . The Q_e and Q_h random forest regression models were tested for their ability to
280 predict values that had been used to train the models by comparing the measured Q_e and Q_h values with the
281 predicted values. Root Mean Squared Error (RMSE) and the Coefficient of Determination (R^2) were determined
282 for each advective flux. Predicted values showed high correlation to measured values with both variables showing
283 R^2 values higher than 0.97. The Q_e regression had a RMSE of 2.56 Wm^{-2} and had lower uncertainty than the Q_h
284 regression that had a RMSE of 4.67 Wm^{-2} .

285 Following quality control procedures, 2571 of the initial 7756 records (33%) remained in the Q_e data and 4019
286 records (52%) remained in the Q_h data. Linear interpolation yielded an addition of 910 Q_e values (12%) and 928
287 Q_h values (12%). The Random Forest regression models were the largest source of gap-filled data with the
288 contribution of an additional 4275 Q_e values (55%) and 2809 Q_h values (36%).

289 **3 Results**

290 Identification of homogeneous snow cover days for the 2016 and 2017 snow seasons (June to October) resulted
291 in 163 total days with 90 days occurring in the 2016 and 73 days in 2017. July, August, and September had the
292 highest number of classifiable days during the period. June and October still had periods with homogenous snow
293 cover, but they became intermittent and fewer classifiable days were in each of the months. This led to fewer
294 periods of study at the beginning and end of the snow seasons when the snowpack was variable, with more in the
295 late winter and early spring months when snow cover was more consistent. Mean surface and cloud characteristics
296 and median daily energy flux characteristics of synoptic types identified during the two seasons are presented in
297 Table 2.

298 **3.1 Synoptic types**

299 **3.1.1 Surface characteristics**

300 The dominance of the subtropical ridge in Australia's mid-latitudes is evident in the synoptic types. Four of the
301 types (T1, T2, T5 and T7) display dominant surface high pressure systems, each with slightly different orientation
302 and pressure centre locations (Figure 3a) resulting in different energy flux characteristics. Dominant south-
303 southwesterly winds from T1 are the result of the high pressure centre being located to the northwest of the study
304 area. T2 has a predominantly zonal flow resulting from an elongated high to the north-northeast. T5 and T7 are
305 characterized by north-northwesterly flow from high pressure centres over the New South Wales
306 (NSW)/Queensland (QLD) coast and directly over the Snowy Mountains region, respectively.

307 T3 is characterized as having dominant northwest winds along a trough axis that is positioned over SEA with a
308 secondary coastal trough extending from southern NSW to the NSW/QLD border. T4 shows a transition from a
309 surface trough that has moved to the east of the study region to a high pressure system that is moving into the area
310 with winds from both features that converge over the Snowy Mountains region. The only synoptic type to have
311 dominant influence from a surface low was T6 that had weak south-southwesterly flow over the region from a
312 weak cut-off low to the east. For the purposes of this research, the identification of cut-off lows follows the
313 characteristics outlined by Chubb et al. (2011) that omits the presence of a closed circulation, but includes a cold
314 anomaly aloft that was cut off from the westerly wind belt.

315 Though characterization of synoptic types is purely statistical, T1, T4, T5, and T6 are considered to be 'transition
316 types' as they have surface pressure characteristics that indicate a change in pressure regime (low – high or high
317 – low) in the upcoming days. T1, T4, and T6 are post-frontal transition types that show high pressure ridging into
318 the region following the passage of a trough that has either moved to the east (T1 and T4) or developed into a
319 weak lee-side cut-off low (T6). T5 shows the approach of a trough from the west and an associated transition to
320 a low pressure system. T2 and T7 show the area under the influence of zonal flow as a result of high pressure
321 systems centred over the area, while T3 shows SEA under the influence of a trough at the time of observations.

322 **3.1.2 Relative humidity and cloud cover**

323 Understanding RH values associated with different synoptic types provides the ability to track types that are
324 favourable for high Q_e exchange with the snowpack. In addition, RH values at all tropospheric levels can have
325 impacts on snowpack energy flux through influences on K^* and L^* exchange via changes to insolation and the
326 absorption and emission of L . The identification of RH characteristics and associated cloud cover is necessary to
327 fully develop energy flux characteristics for each type.

328 Many of the synoptic types display local RH maxima in the Snowy Mountains region at 850 hPa (Figure 3b) and,
329 while T5 has the lowest RH values of all types, it still has slightly higher RH values over the area. The elevation
330 in RH values in the region is most likely caused by changes of airmass thermodynamic properties due to
331 orographic forcing of the mountains (Ahrens, 2012). T4 and T6 had the highest RH values over the region at 850
332 hPa with both being widespread and higher than 90%. T6 shows strong southerly advection of elevated RH values
333 from the tropics along the NSW and QLD coast ahead of troughs at 700 and 500 hPa that are associated with the
334 surface cut-off low.

335 Identification of cloud cover, conducted following the procedures outlined in section 2.4, agreed with the mean
336 RH characteristics of T4 and T6 with both types having 100% cloud cover between partial and complete cloud
337 cover days (Table 2). However, T1, T3, and T5 also had 100% cloud cover occurrence and two of the three (T1
338 and T3) had RH values above 80%. T5 was the only synoptic type with 100% cloud cover and RH value below
339 80%. T6 showed the highest RH values of any type with values greater than 90% over the region at the 700 and
340 500 hPa levels. While not definitive, this would suggest that T6 has deeper or more cloud layers than T4, which
341 likely only has clouds at lower altitudes. T2 and T7 had the lowest percentage of days with any cloud cover, which
342 is confirmed by their low RH values at 700 hPa (<20% & <30%) and 500 hPa (<30% & <40%), respectively. In
343 addition, they were the only two types with cloud-free days with T2 clear sky 25% of the time and T7 having 16%
344 of its days without cloud.

345 **3.1.3 Temperature**

346 Temperature characteristics of synoptic types at low and mid-levels in the atmosphere are crucial to identify those
347 with the highest surface sensible heat flux characteristics. The highest mean temperatures and strongest warm air
348 advection (WAA) in the Snowy Mountains region at 850 hPa (Figure 3c) was found to be from T5 that is driven
349 by converging winds on the back of a high pressure circulation to the east and the leading edge of a trough to the
350 west. T2 and T3 have the second and third highest temperatures, respectively, but have different advection
351 characteristics. T2 shows relatively weak WAA into the Snowy Mountains region associated with zonal flows at
352 850 hPa resulting from the high pressure circulations located to the north (similar to T7). However, T3 shows cold
353 air advection (CAA) associated with dominant winds from the west-northwest.

354 Overall, CAA at 850 hPa can be identified in four of the seven types (T1, T3, T4, and T6) and warm air advection
355 exists in the other three synoptic types (T2, T5, and T7). Of the four CAA types, T1 and T4 advection is being
356 generated through south-southwest and west-southwest winds, respectively, related to high pressure centres to the
357 northwest. Despite a stronger southerly component of dominant CAA winds in T1, temperatures are lower in T4
358 which has a higher westerly component to the wind. T6 shows CAA related to converging winds on the back of a
359 trough to the east and a high to the northwest.

360 **3.1.4 Frequency and duration**

361 The frequency of each synoptic type during the 2016 and 2017 snowpack seasons is shown in Table 2. T3 and T7
362 occurred most frequently with 26.99% (44 days) and 19.02% (31 days) respectively. The higher number of days
363 in T3 and T7 is reflected in the mean type duration that shows these types with the longest duration. This is likely
364 due to these synoptic types occurring in a slower progressing synoptic pattern over multiple days as seen in the
365 mean type duration data (Table 2).

366 Identification of common synoptic circulations, that are comprised of a progression of several synoptic types, and
367 their impact on surface energy balance can aid in the understanding and forecasting of snowpack ablation based
368 on synoptic conditions. In order to identify common synoptic circulations, analysis on common transitions
369 between synoptic types was conducted. Transition probabilities for the 2016 and 2017 seasons were developed
370 similar to those used by Kidson (2000) that detail the likelihood of a synoptic type occurring on the following day
371 given an initial type. The highest transition probabilities were identified for each type and a flowchart was
372 developed based on the most likely synoptic type progressions (Figure 4a). If the highest transition probabilities

373 were within < 0.05 of each other, two paths were plotted. The flowchart shows what would be expected for a basic
374 synoptic-scale circulation at mid-latitudes; a trough propagating eastward into the Snowy Mountains region in T7,
375 T5, and T3; either continued eastward movement of the surface trough (T4) or the development of a weak cut-off
376 low (T6); then transitioning to dominant high pressure over the region again (T2, T1, or T7).

377 **3.2 Energy flux characteristics of synoptic types**

378 It is important to consider the effects of synoptic type frequency when determining primary sources of energy
379 fluxes over long periods, as synoptic types that contribute the most to snowpack ablation may simply have a higher
380 rate of occurrence and lower daily energy flux values than other types. In order to obtain a more detailed
381 understanding of each type's energy flux, median daily energy flux calculated for each type was determined to be
382 a better method of comparison. Therefore, both median daily and total snowpack fluxes over the two seasons
383 (Figures 5 & 6) are presented in MJ m⁻² to show synoptic type energy flux contributions made at short and longer
384 temporal scales. While initial measurements were made in Wm⁻², the use of MJ m⁻² in this paper allows for easier
385 comparison to other energy balance works conducted on this region (Bilish et al., 2018) as well as research on
386 synoptic weather and energy fluxes in other locations (Welch et al., 2016; Burles and Boon, 2011; Ellis et al.,
387 2011; Hay and Fitzharris, 1988; McGregor and Gellatly, 1996; Granger and Gray, 1990; Neale and Fitzharris, 1997).

388 **3.2.1 Latent and sensible heat flux**

389 Daily Q_e was negative for each of the seven synoptic types (Figure 5a) and the magnitude of the values was shown
390 to correspond to the mean 850 hPa RH values for each type reflecting the site elevation of 1828 m asl. Two of the
391 three types with the lowest RH values (T2 and T5) showed the greatest negative Q_e values and those with the
392 higher RH values (T1 and T6) showed the least amount of Q_e , which is consistent with conditions needed for
393 evaporation from the snowpack. T5 had the second largest negative Q_e values of any type with a median value
394 of -1.00 MJ m⁻² day⁻¹ which corresponds to its low 850 hPa RH values, the highest observed surface mean daily
395 ambient temperature of 3.5 °C, and the second lowest observed surface mean RH value of 65% with only T2 being
396 lower (60%). T3 showed the largest release of Q_e from the snowpack with a median value of -1.11 MJ m⁻² day⁻¹.

397 Overall, negative Q_e was offset by positive Q_h for most synoptic types with the exception of T3 that had mean
398 surface temperatures below zero (-0.83°C) and a measured surface RH value below 90% resulting in more Q_e
399 loss than Q_h gain by the snowpack. Similar to trends seen in Q_e , the highest daily median Q_h values (Figure 5b)
400 were associated with synoptic types with the highest temperatures at 850 hPa (T5, T7, & T2), which coincided
401 with observed temperatures from the energy flux tower (3.48°C, 1.46°C, & 1.89°C). T5 showed the highest daily
402 Q_h values as a result of having the highest temperatures and also has the second lowest Q_e value that is associated
403 with having the lowest RH of any type (60%). Ultimately, when both turbulent terms are considered, T5 had the
404 highest amount of energy flux into the snowpack (1.49 MJ m⁻² day⁻¹) followed by T7 (1.40 MJ m⁻² day⁻¹) and T1
405 (1.00 MJ m⁻² day⁻¹).

406 **3.2.2 Radiation flux**

407 The largest contribution of radiative energy to the snowpack from all synoptic types was K^* which accounted for
408 53-97% of total positive flux (Figure 5c). By comparison, L^* accounted for 61-95% of negative energy flux from
409 the snowpack (Figure 5d) with the highest amounts of loss belonging to the types with the lowest percentage of
410 cloud cover (T1, T2, and T7). Total radiation flux varied largely by synoptic type and was found to be positive in

411 types T3 and T6 and negative for the rest of the types. The two types with positive net radiation had the highest
412 incoming longwave radiation flux values mostly balancing outgoing longwave values. This meant that incoming
413 shortwave radiation was able to dominate Q^* for these types, which resulted in the positive values. The largest
414 loss in Q^* was exhibited by T1, that was 31% higher than the next closest type (T4). The types with net radiation
415 loss (T1, T2, T4, T5, and T7) had values that ranged from $-0.67 \text{ MJ m}^{-2} \text{ day}^{-1}$ (T5) to $-2.78 \text{ MJ m}^{-2} \text{ day}^{-1}$ (T1).
416 However, T4 had dissimilar cloud and RH characteristics to T2 and T7, which had the two lowest cloud cover
417 percentages and two of the lowest RH values. T4 had 100% cloud cover and had an associated reduction in
418 incoming shortwave radiation that allowed the outgoing longwave radiation term to become more dominant than
419 in T2 or T7 and, therefore, gave it the highest Q^* loss of the three.

420 **3.2.3 Ground and precipitation heat flux**

421 Energy flux from ground and Q_r (Figure 5e & 5f) were the smallest of any term for all synoptic types, with Q_g
422 and Q_r accounting for less than one percent of median daily energy fluxes for all synoptic types. Ground heat flux
423 characteristics were similar between all synoptic types and varied little. While Q_r was small when examined as a
424 daily median value, it does show a high degree of variation primarily associated with T5 and T3. This is due to
425 several large rain events that occurred during 2016 (18 July; 21 and 22 July; and 31 August) and one during 2017
426 (15 August). Despite relatively low energy flux contributions by rainfall, it is interesting to note that the ten days
427 with the highest rainfall fluxes ($>0.05 \text{ MJ m}^{-2} \text{ day}^{-1}$) consisted of four T5 days, three T3 days, two T7 days, and
428 one T6 day showing a significant clustering of high precipitation days in types T5 and T3.

429 **3.2.4 Total daily net energy flux**

430 Overall, two synoptic types (T5 and T6) had positive median daily net energy flux to the snowpack (Figure 6a).
431 Of these, T5 had the largest energy flux that was related to its relatively high temperatures that contributed to the
432 highest Q_h value of any synoptic type and increased solar radiation from less cloud cover. Contrary to the reduction
433 in cloud cover that aided T5 in having the highest total energy flux contributions, T6 had the highest cloud cover
434 and yet had the second highest energy flux to the snowpack that was primarily due to increased incoming
435 longwave radiation. T7 was close to having neutral energy fluxes with a median value of only $-0.04 \text{ MJ m}^{-2} \text{ day}^{-1}$
436 as a result of relatively low percentage of cloud cover resulting in strongly negative L^* as well as the second
437 highest Q_h term of any type.

438 T1 and T4 showed the greatest negative median daily net energy flux of all synoptic types (Figure 6a), which
439 could be attributed to their negative L^* and to having low K^* terms. T3 has a similar net energy flux to T4, but is
440 negative primarily due to having the only negative Q_h of any type. T2 also had a net negative median daily energy
441 flux but to a lesser extent than either T1, T3, or T4. Relative humidity values lower than any other type were the
442 primary driver behind T2's negative net value as it resulted in the highest longwave radiation loss from the
443 snowpack through having the lowest cloud cover, as well as Q_e loss.

444 The synoptic type T5 contributed the most energy to the snowpack during the two seasons (Figure 6b) due to a
445 moderate number of occurrences (22), an IQR that was higher than the other synoptic types, higher maximum
446 values, and having the largest positive fluxes from high Q_h values. Much of the energy flux of T5 was associated
447 with strong WAA ahead of the passage of cold fronts. While T6 was the only other type to have positive median
448 daily energy flux contributions to snowpack energy flux, T7 contributed a higher amount of energy flux during

449 the two winter periods. This occurred because it had the second highest number of occurrences, and the
450 distribution of occurrences around the median show that events were either near-neutral or positive in their energy
451 fluxes. T6 was the only other type to have a positive energy flux contribution to the snowpack over the two seasons
452 and it was smaller than that of T5 or T7. Similar magnitude was seen in the negative flux contributions of T1, T2,
453 and T4 with T2 having the most significant negative flux. T1 and T4 also showed negative fluxes, but T3 showed
454 a nearly neutral contribution to snowpack energy flux over the two winter seasons. As T3 is associated with a
455 surface trough, it's possible that pre-frontal and post-frontal characteristics are both incorporated in the energy
456 balance of T3 and act to cancel each other out when averaged over a longer period.

457 All synoptic types had variation in median daily net energy that can be attributed to the classification conducted
458 by the k-means clustering technique. Each type consisted of classified days that had similar synoptic
459 characteristics, but differences in system strength and position affected energy fluxes for individual days.
460 Therefore, it is important to remember that each synoptic type is associated with a range of daily energy flux
461 values in addition to the median daily energy flux for each type.

462 **3.2.5 Energy balance closure**

463 Daily site energy balance closure was determined by calculating snow water equivalent (SWE) from automated
464 snow depth measurements and median snowpack density and comparing the energy flux required for measured
465 decreases in SWE to the Q_{res} value for the same period. Closure was calculated for days where 50% or more
466 daytime periods had snowmelt and outliers were removed. A drawback of this method is that it does not distinguish
467 between types of ablation (melt, evaporation/sublimation, wind-scour) and any removal of snow through a process
468 other than melt will result in higher error in calculation of closure. Evaporation/sublimation is already included in
469 the calculation of energy balance closure as it is represented by measured latent heat flux. Therefore, the only
470 process that needs to be acknowledged as a potential source of snow removal in addition to melt when interpreting
471 the results of the closure calculations is wind-scour.

472 Mean energy balance closure for all periods and synoptic types was 0.62 ± 0.72 and, as Q_{ec} is a measure of error
473 in energy balance closure, it represented approximately 38% of total fluxes during the study. T4 had the only
474 negative closure (-0.24 ± 0.30) (Table 3) that was likely the result of strong winds scouring fresh snow from T3,
475 however, only one day of analysis existed for T4 and the results may not be applicable to the broader number of
476 days. T6 had the highest closure of any type (0.92 ± 1.13), but also showed one of the largest variations in closure
477 with only T2 (0.83 ± 1.33) having a larger standard deviation. Overall, mean values of wind speed and energy
478 balance closure of each synoptic type showed significant correlation ($r = -0.73, R^2 = 0.54$), suggesting that
479 wind-scour of the snowpack did have an impact on the calculation of energy balance closure.

480 **4 Discussion**

481 **4.1 Properties of synoptic type energy balance**

482 Net shortwave radiation flux contributed the largest amount of energy to the snowpack for all synoptic types
483 ranging from 53-97% of median daily energy flux with T5 being the only synoptic type below 60% contribution
484 (53%) of K^* to the snowpack. These results agree with Fayad et al. (2017) who noted that radiative fluxes are the
485 dominant source of snowpack melt energy in mountain ranges with Mediterranean climates. Net Q_h contributed
486 the second highest percentage of median daily energy flux to the snowpack accounting for 16-44% of positive

487 fluxes with the exception of T3 that had a Q_h term that accounted for 4% of its negative fluxes. The largest
488 contributions of Q_h to the snowpack are associated with synoptic types T2, T4, T5, and T7 that are characterised
489 by high pressure and northwesterly or westerly winds that are associated with WAA. Hay and Fitzharris (1988)
490 noted that, while radiative terms were responsible for the majority of energy contributions to glacier melt in New
491 Zealand's Southern Alps, turbulent fluxes contributed significant amounts of energy to melt. Similarly, despite
492 Q_h not being the dominant energy flux to the snowpack for any synoptic type, it does account for nearly half of
493 the energy flux to the snowpack for T5 (44%) and over a third for T7 (35%), and is still a significant source of
494 energy flux to the snowpack for nearly all synoptic types.

495 Median daily energy loss from the snowpack was from Q_e and Q^* , which dominated T1, T2, and T4 resulting in
496 negative median daily energy fluxes from the snowpack. Net longwave radiation was the most influential term in
497 the emission of energy from the snowpack accounting for 61-95% of energy loss with net Q_e flux accounting for
498 5-39% of outgoing energy flux. Though the methodology of this paper distinguishes between shortwave and
499 longwave fluxes in order to better examine the effects of synoptic-scale features such as RH or cloud cover on
500 radiative transfers similar to that of more recent works such as Cullen and Conway (2015), many historical works
501 have not made the same distinction in terms (Moore and Owens, 1984; Hay and Fitzharris, 1988; Neale and
502 Fitzharris, 1997; Stoy et al., 2018). It should be noted that had Q^* been used for comparison, the results of this
503 paper agree with several studies (Sade et al., 2014; Moore and Owens, 1984; Bednorz, 2008b) that found that
504 turbulent fluxes were the dominant fluxes when examining the energy flux characteristics on snowpacks in
505 climates similar to that of the Snowy Mountains in the Australian Alps.

506 Median daily Q_g values were found to account for only a small fraction of total energy flux to the snowpack
507 consisting of 1-5% of daily positive energy fluxes. Similarly, energy flux to the snowpack from Q_r has been
508 shown to only contribute < 1% of total seasonal energy flux for five of the seven synoptic types which agrees with
509 the findings of other studies (Bilish et al., 2018; Mazurkiewicz et al., 2008). However, precipitation was
510 responsible for > 1% of the daily median energy flux of the two synoptic types primarily associated with rain-on-
511 snow events, T5 and T3. Although fluxes imparted on the snowpack from rainfall are relatively small when
512 compared to all positive fluxes, the accompanying energy flux characteristics of T5 associated with rain-on-snow
513 events are responsible for two of the three largest contributions of overall snowpack energy fluxes.

514 The results show a significant agreement with previous research conducted in this region by Bilish et al. (2018)
515 when methods from that work are used to calculate relative contributions of positive energy fluxes to the
516 snowpack. Overall, incoming longwave radiation was shown to be the highest positive flux to the snowpack
517 accounting for 75-86% of incoming energy flux. Shortwave radiation was responsible for an additional 8-14% of
518 incoming energy flux with Q_h accounting for 0-9% of incoming fluxes, Q_e generating 0-4%, Q_g attributing 0.3%,
519 and Q_r accounting for 0.1%. Despite methodological differences that can be attributed to the need to highlight
520 different processes within atmosphere – snowpack interaction, results from both papers show similar overall
521 energy fluxes.

522 Energy balance closure at the site was similar to other research into snowpack energy balance (Welch et al., 2016)
523 and total error in closure was 38% during the entirety of the study. Though the method used to calculate energy
524 balance closure offered a good approximation, wind-scour is a significant source of error with this method.

525 Therefore, energy balance closure methods that incorporate internal measurements of snowpack energy are
526 preferable when possible.

527 **4.2 Synoptic patterns and energy flux**

528 Snowpack energy flux characteristics recorded at the Pipers Creek catchment headwaters have been related to
529 synoptic weather types that occurred during the 2016 and 2017 snow seasons. The resulting analysis reveals a
530 maximum in positive energy flux as pre-frontal troughs approach the Snowy Mountains, followed by cold front
531 conditions during the T7→T5→T3 common progression pattern identified here. Several factors cause high
532 positive energy flux during these periods that include: an increase in temperatures due to WAA and the associated
533 increase in positive Q_h ; decrease in negative L^* due to an increase in cloud cover; a decrease in Q_e following
534 frontal passage and associated increase in RH; and progressively increasing Q_r as the trough approaches and
535 immediately after passage.

536 Synoptic types characterized by surface high pressure as their primary influence (T1, T2, T4, and T7) had four of
537 the five negative daily contributions to snowpack energy flux. In T1 and T7, net shortwave radiation terms (K^*)
538 were positive and varied by ~4-10% for these types, however, low RH and cloud cover allowed for highly negative
539 L^* terms that were not compensated by change in K^* . In contrast, T4 had higher cloud cover and increased RH
540 that were due to advection of moisture from the Tasman Sea. The higher RH in T4 and low mean air temperature
541 (-2.06°C) resulted in Q_e and Q_h terms of similar magnitudes, but opposite signs that nearly cancelled out. This
542 resulted in a L^* term that was of lesser magnitude than those of T1, T2, and T7, but still the dominant term in its
543 energy exchange.

544 Four primary synoptic circulation patterns were identified during the study period. Each of the four patterns and
545 their associated energy flux values calculated from median daily flux and mean type duration can be seen in
546 Figures 4a and 4b. While each pattern differs towards the end of the cycle, each one has the T7→T5→T3
547 progression in common. Unsurprisingly, the highest contribution of median energy flux to the snowpack (0.75 MJ
548 m^{-2}) is from Pattern 1, which has only two synoptic types with negative flux (T3 and T7) whereas the others all
549 contain three or four negative flux types. Pattern 3 had the largest negative snowpack energy flux (-2.44 MJ m^{-2})
550 due to it containing types with the highest net energy loss (T1 and T4).

551 Changing synoptic regimes in the Snowy Mountains suggest an increase in anti-cyclonic conditions (Hendon et
552 al., 2007;Pepler et al., 2019), such as types T1, T2, T4, and T7, as a result of poleward shift in the subtropical
553 ridge (Cai et al., 2005). Under these conditions, snowpack energy exchange in the Australian Alps would be
554 expected to decrease as synoptic types related to anti-cyclonic conditions have negative energy fluxes to the
555 snowpack. While these results may seem counterintuitive regarding a generally warming climate, they agree with
556 the findings of Theobald et al. (2016) who showed reductions in cool-season precipitation amounts and frequency
557 due, in part, to reductions in the occurrence of dominant cold front systems. The reduction in cold-frontal systems
558 in the Australian Alps region is associated with declines in the pre-frontal WAA that has been shown to be the
559 primary driver of positive snowpack energy flux. However, potential reductions in energy fluxes to the snowpack
560 will not likely lead to increases in snowpack duration or depth, as reductions in precipitation are associated with
561 the shifts to anti-cyclonic synoptic patterns (Theobald et al., 2016;Theobald et al., 2015).

562 The synoptic effects on snowpack energy balance identified in this paper represent those experienced within the
563 Pipers Creek catchment headwaters and are an important first step towards a more comprehensive understanding
564 of synoptic influences on the energy balance of the Snowy Mountains snowpack. As synoptic-scale effects on the
565 wider region likely differ from those described here, caution should be exercised before upscaling the Pipers Creek
566 catchment headwaters measurements to the broader Snowy Mountains region. Pomeroy et al. (2003) noted that
567 differing slope and aspect of three proximal energy balance sites showed significant control on whether daily net
568 radiation was positive or negative and that daily incoming solar radiation varied by as much as 26% as a result.
569 Similar effects of complex terrain on turbulent fluxes exist, as terrain-induced flows will contribute to
570 measurements of turbulent fluxes in addition to measured effects of synoptic patterns. Therefore, consideration of
571 an area's slope, aspect, and surrounding terrain is crucial to understanding synoptic-scale effects on its energy
572 balance.

573 **4.3 Distribution of gap-filled eddy covariance fluxes**

574 One of the disadvantages of the Random Forest regression method to gap-fill missing EC data is that exact results
575 aren't reproducible due to the method's random handling and sub-setting of predictor variables. Methods of
576 developing models and predicting values were evaluated over twenty iterations to determine the amount of
577 variability in RMSE when generating a random forest from the same dataset. Some variability in RMSE was noted
578 between tests for Q_e and Q_h but was small with a standard deviation of 0.01 Wm⁻² in Q_e and 0.03 Wm⁻² in Q_h .
579 Small differences in RMSEs between model development runs and data filling indicate that RMSE values for gap-
580 filled data would be best represented as 2.56 ± 0.01 Wm⁻² for Q_e and 4.67 ± 0.03 Wm⁻² for Q_h

581 Gap-filling of Q_h and Q_e can introduce uncertainty into measurements that may affect the ability to thoroughly
582 compare datasets such as those pertaining to the different synoptic types compared within this work. As such, it
583 is important to note that not all synoptic types had equal amounts of gap-filling for their Q_e and Q_h fluxes.
584 Distribution of gap-filled data within synoptic types depended largely on the quantity of precipitation associated
585 with each type. The most significant concentrations of gap-filled data were in T3 (Q_e : 74%, Q_h : 55%) T5 (Q_e :
586 57%, Q_h : 39%), and T6 (Q_e : 81%, Q_h : 73%). Differences in the quantity of gap-filled data between synoptic types
587 can create uncertainty when making comparisons between fluxes in each. However, uncertainty introduced
588 through gap-filling procedures is relatively low and should have a minimal impact during comparison of fluxes.

589 **5 Conclusions**

590 Overall, periods of pre-cold frontal passage contribute the most energy fluxes to snowpack melt due to WAA
591 ahead of the front, a reduction in cloud cover allowing for higher incoming shortwave radiation, and the gradual
592 development of precipitation that often contributes to rain-on-snow events. While this work was conducted solely
593 on the Australian snowpack, snowpacks in other regions such as New Zealand (Hay and Fitzharris, 1988;Neale
594 and Fitzharris, 1997), Canada (Romolo et al., 2006a;2006b), the Spanish Pyrenees (Lopez-Moreno and Vicente-
595 Serrano, 2007), and the Arctic (Drobot and Anderson, 2001) see similar synoptic-scale effects on snowpack
596 energy to those presented here. Snowpack energy fluxes in the Australian Alps would likely decrease under
597 climate change progression as a result of reductions to primary cold-frontal systems and associated pre-frontal
598 WAA.

599 The understanding of synoptic-scale processes on snowpack energy balances will likely become applicable to
600 broader regions as climate change continues and snowpacks develop warmer properties (Stewart, 2009; Adam et
601 al., 2009). An increased burden on freshwater systems for agriculture, drinking water, and energy production will
602 continue as these changes occur (Parry et al., 2007). Therefore, continued work on marginal snowpack ablation
603 processes, such as those within the forested regions of Australia's Snowy Mountains, will be important to resource
604 management and should be explored.

605 **Data Availability**

606 Energy flux data used in this study is available at <https://doi.org/10.14264/uql.2019.691>. ERA-Interim reanalysis
607 data are freely available from the European Centre for Medium-Range Weather Forecasts
608 (<https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim>). Precipitation data used in this
609 study was supplied by Snowy Hydro Limited via restricted access, this data can be obtained by contacting Snowy
610 Hydro Ltd.

611 **Author Contributions**

612 AS, HM, AT, and NC designed the experiments and AS conducted them. AT developed the k-means clustering
613 and synoptic typing code. AS developed the code related to energy balance and eddy covariance measurements.
614 AS wrote the manuscript with input from all authors.

615 **Competing Interests**

616 The authors declare that they have no competing interests.

617 **Acknowledgements**

618 The authors would like to thank Shane Bilish for establishment of the Pipers Creek snowpack research catchment,
619 Michael Gray for installation and maintenance of the energy balance tower, and the Weather and Water team at
620 Snowy Hydro Limited for their contributions of data and field support during the data collection and analysis
621 process. AS was supported by an Australian Government Research Training Program Scholarship.

622

623

624

625

626 **References**

627 Adam, J. C., Hamlet, A. F., and Lettenmaier, D. P.: Implications of global climate change for snowmelt hydrology
628 in the twenty-first century, *Hydrological Processes: An International Journal*, 23, 962-972, 2009.

629 Ahrens, C. D.: *Meteorology today: an introduction to weather, climate, and the environment*, Cengage Learning,
630 2012.

631 Allan, R. P., Shine, K. P., Slingo, A., and Pamment, J.: The dependence of clear-sky outgoing long-wave radiation
632 on surface temperature and relative humidity, *Quarterly Journal of the Royal Meteorological Society*
633 125, 2103-2126, 1999.

634 Australian Bureau of Statistics, Water Use on Australian Farms, 2018-19:
635 <https://www.abs.gov.au/ausstats/abs@.nsf/mf/4618.0>, access: June 4, 2020.

636 Bednorz, E.: Synoptic conditions of snow occurrence in Budapest, *Meteorologische Zeitschrift*, 17, 39-45,
637 10.1127/0941-2948/2008/0262, 2008a.

638 Bednorz, E.: Synoptic reasons for heavy snowfalls in the Polish-German lowlands, 92, 133-140, 2008b.

639 Bednorz, E.: Synoptic conditions of the occurrence of snow cover in central European lowlands, 31, 1108-1118,
640 2011.

641 Beniston, M.: Climatic Change in Mountain Regions: A Review of Possible Impacts, *Climatic Change*, 59, 5-31,
642 10.1023/a:1024458411589, 2003.

643 Bilish, S. P., McGowan, H. A., and Callow, J. N.: Energy balance and snowmelt drivers of a marginal subalpine
644 snowpack, *Hydrol Process*, 32, 3837-3851, 2018.

645 Bilish, S. P., Callow, J. N., McGrath, G. S., and McGowan, H. A.: Spatial controls on the distribution and
646 dynamics of a marginal snowpack in the Australian Alps, *Hydrol Process*, 33, 1739-1755, 10.1002/hyp.13435,
647 2019.

648 Bormann, K. J., Westra, S., Evans, J. P., and McCabe, M. F.: Spatial and temporal variability in seasonal snow
649 density, *J Hydrol*, 484, 63-73, 2013.

650 Breiman, L.: Random Forests, *Machine Learning*, 45, 5-32, 10.1023/a:1010933404324, 2001.

651 Budin, G.: Interannual variability of Australian snowfall, *Aust. Met. Mag*, 33, 145-159, 1985.

652 BOM: Analysis Chart Archive: <http://www.bom.gov.au/australia/charts/archive/>, access: 15.09.2018, 2018a.

653 BOM: Climate Statistics for Australian Locations: <http://www.bom.gov.au/climate/data/>, access: 13.12.2018,
654 2018b.

655 Burles, K., and Boon, S.: Snowmelt energy balance in a burned forest plot, Crowsnest Pass, Alberta, Canada,
656 Hydrol Process, 25, 3012-3029, 10.1002/hyp.8067, 2011.

657 Cai, W., Shi, G., Cowan, T., Bi, D., and Ribbe, J.: The response of the Southern Annular Mode, the East Australian
658 Current, and the southern mid-latitude ocean circulation to global warming, 32, doi:10.1029/2005GL024701,
659 2005.

660 Callow, N., McGowan, H., Warren, L., and Speirs, J.: Drivers of precipitation stable oxygen isotope variability in
661 an alpine setting, Snowy Mountains, Australia, Journal of Geophysical Research: Atmospheres, 119, 3016-3031,
662 10.1002/2013JD020710, 2014.

663 Campbell Scientific EC150 CO₂/H₂O Open-Path Gas Analyzer: <https://www.campbellsci.com/manuals>, access:
664 24.10.2018, 2018.

665 Catto, J. L., Nicholls, N., Jakob, C., and Shelton, K. L.: Atmospheric fronts in current and future climates, Geophys
666 Res Lett, 41, 7642-7650, 10.1002/2014gl061943, 2014.

667 Chubb, T. H., Siems, S. T., and Manton, M. J.: On the Decline of Wintertime Precipitation in the Snowy
668 Mountains of Southeastern Australia, J Hydrometeorol, 12, 1483-1497, 10.1175/Jhm-D-10-05021.1, 2011.

669 Costin, A. B., and Gay, D.: Studies in Catchment Hydrology in the Australian Alps, MPKV; Maharastra, 1961.

670 Cullen, N. J., and Conway, J. P.: A 22 month record of surface meteorology and energy balance from the ablation
671 zone of Brewster Glacier, New Zealand, J Glaciol, 61, 931-946, 2015.

672 Dee, D. P., Uppala, S. M., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.,
673 Balsamo, G., and Bauer, d. P.: The ERA-Interim reanalysis: Configuration and performance of the data
674 assimilation system, Quarterly Journal of the royal meteorological society, 137, 553-597, 2011.

675 Di Luca, A., Evans, J. P., and Ji, F.: Australian snowpack in the NARCliM ensemble: evaluation, bias correction
676 and future projections, Climate Dynamics, 51, 639-666, 10.1007/s00382-017-3946-9, 2018.

677 Drobot, S. D., and Anderson, M. R.: Comparison of interannual snowmelt-onset dates with atmospheric
678 conditions, Annals of Glaciology, 33, 79-84, 2001.

679 Duus, A. L.: Estimation and analysis of snow cover in the Snowy Mountains between 1910 and 1991, Aust
680 Meteorol Mag, 40, 195-204, 1992.

681 Ellis, C. R., Pomeroy, J. W., Essery, R. L. H., and Link, T. E.: Effects of needleleaf forest cover on radiation and
682 snowmelt dynamics in the Canadian Rocky Mountains, Can J Forest Res, 41, 608-620, 10.1139/X10-227, 2011.

683 Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, G., Clement,
684 Dolman, H., Granier, A., Gross, P., Grunwald, T., Hollinger, D., Jensen, N. O., Katul, G., Keronen, P.,
685 Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, J., Moors, E., Munger, J. W., Pilegaard, K., Rannik,

686 U., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling
687 strategies for long term energy flux data sets, *Agr Forest Meteorol*, 107, 71-77, Doi 10.1016/S0168-
688 1923(00)00235-5, 2001a.

689 Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement,
690 R., Dolman, H., Granier, A., Gross, P., Grunwald, T., Hollinger, D., Jensen, N. O., Katul, G., Keronen, P.,
691 Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, H., Moors, E., Munger, J. W., Pilegaard, K., Rannik,
692 U., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling
693 strategies for defensible annual sums of net ecosystem exchange, *Agr Forest Meteorol*, 107, 43-69, Doi
694 10.1016/S0168-1923(00)00225-2, 2001b.

695 Fayad, A., Gascoin, S., Faour, G., López-Moreno, J. I., Drapeau, L., Le Page, M., and Escadafal, R.: Snow
696 hydrology in Mediterranean mountain regions: A review, *J Hydrol*, 551, 374-396, 2017.

697 Fiddes, S. L., Pezza, A. B., and Barras, V.: A new perspective on Australian snow, *Atmospheric Science Letters*,
698 16, 246-252, 10.1002/asl2.549, 2015a.

699 Fiddes, S. L., Pezza, A. B., and Barras, V.: Synoptic climatology of extreme precipitation in alpine Australia,
700 *International Journal of Climatology*, 35, 172-188, 2015b.

701 Gellie, N. J. H.: Native vegetation of the Southern Forests: South-east highlands, Australian alps, south-west
702 slopes and SE corner bioregions, *Royal Botanic Gardens*, 2005.

703 Goree, P. A., and Younkin, R. J.: Synoptic Climatology of Heavy Snowfall Over the Central and Eastern United
704 States, 94, 663-668, 10.1175/1520-0493(1966)094<0663:Scohs>2.3.Co;2, 1966.

705 Granger, R. J., and Gray, D. M.: A Net-Radiation Model for Calculating Daily Snowmelt in Open Environments,
706 *Nord Hydrol*, 21, 217-234, 1990.

707 Gray, M. A., McGowan, H. A., Lowry, A. L., and Guyot, A.: Surface energy exchanges over contrasting
708 vegetation types on a sub-tropical sand island, *Agr Forest Meteorol*, 249, 81-99, 10.1016/j.agrformet.2017.11.018,
709 2018.

710 Grundstein, A. J., and Leathers, D. J.: A case study of the synoptic patterns influencing midwinter snowmelt
711 across the northern Great Plains, 12, 2293-2305, doi:10.1002/(SICI)1099-1085(199812)12:15<2293::AID-
712 HYP797>3.0.CO;2-9, 1998.

713 Hay, J. E., and Fitzharris, B. B.: The synoptic climatology of ablation on a New Zealand glacier, *Journal of*
714 *Climatology*, 8, 201-215, 10.1002/joc.3370080207, 1988.

715 Helgason, W., and Pomeroy, J.: Problems Closing the Energy Balance over a Homogeneous Snow Cover during
716 Midwinter, *J Hydrometeorol*, 13, 557-572, 10.1175/Jhm-D-11-0135.1, 2012.

717 Hendon, H. H., Thompson, D. W. J., and Wheeler, M. C.: Australian Rainfall and Surface Temperature Variations
718 Associated with the Southern Hemisphere Annular Mode, 20, 2452-2467, 10.1175/jcli4134.1, 2007.

719 Hennessy, K. J., Whetton, P. H., Walsh, K., Smith, I. N., Bathols, J. M., Hutchinson, M., and Sharples, J.: Climate
720 change effects on snow conditions in mainland Australia and adaptation at ski resorts through snowmaking, Clim
721 Res, 35, 255-270, 10.3354/cr00706, 2008.

722 Kidson, J. W.: An analysis of New Zealand synoptic types and their use in defining weather regimes, International
723 journal of climatology, 20, 299-316, 2000.

724 Liaw, A., and Wiener, M.: Classification and Regression by randomForest, R News, 2, 18-22, 2002.

725 Lopez-Moreno, J. I., and Vicente-Serrano, S. M.: Atmospheric circulation influence on the interannual variability
726 of snow pack in the Spanish Pyrenees during the second half of the 20th century, Nord Hydrol, 38, 33-44,
727 10.2166/nh.2007.030, 2007.

728 Male, D. H., and Granger, R. J.: Snow Surface-Energy Exchange, Water Resour Res, 17, 609-627, DOI
729 10.1029/WR017i003p00609, 1981.

730 Marks, D., and Dozier, J.: Climate and Energy Exchange at the Snow Surface in the Alpine Region of the Sierra-
731 Nevada .2. Snow Cover Energy-Balance, Water Resour Res, 28, 3043-3054, Doi 10.1029/92wr01483, 1992.

732 Mauder, M., and Foken, T.: Documentation and instruction manual of the eddy-covariance software package TK3,
733 2011.

734 Mazurkiewicz, A. B., Callery, D. G., and McDonnell, J. J.: Assessing the controls of the snow energy balance and
735 water available for runoff in a rain-on-snow environment, J Hydrol, 354, 1-14, 2008.

736 McGregor, G. R., and Gellatly, A. F.: The Energy Balance of a Melting Snowpack in the French Pyrenees During
737 Warm Anticyclonic Conditions, International Journal of Climatology: A Journal of the Royal Meteorological
738 Society, 16, 479-486, doi:10.1002/(SICI)1097-0088(199604)16:4<479::AID-JOC17>3.0.CO;2-W, 1996.

739 McKay, D. C., and Thurtell, G. W.: Measurements of the energy fluxes involved in the energy budget of a snow
740 cover, J Appl Meteorol, 17, 339-349, 1978.

741 Michelson, D. B.: Systematic correction of precipitation gauge observations using analyzed meteorological
742 variables, J Hydrol, 290, 161-177, 2004.

743 Moore, R., and Owens, I.: Controls on advective snowmelt in a maritime alpine basin, Journal of Climate and
744 Applied Meteorology
745 23, 135-142, 1984.

746 Neale, S. M., and Fitzharris, B. B.: Energy balance and synoptic climatology of a melting snowpack in the
747 Southern Alps, New Zealand, *International Journal of Climatology*, 17, 1595-1609, 10.1002/(SICI)1097-
748 0088(19971130)17:14<1595::AID-JOC213>3.0.CO;2-7, 1997.

749 Nicholls, N.: Climate variability, climate change and the Australian snow season, *Aust Meteorol Mag*, 54, 177-
750 185, 2005.

751 Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe,
752 Q., and Dasgupta, P.: Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the
753 fifth assessment report of the Intergovernmental Panel on Climate Change, IPCC, 2014.

754 Parry, M., Parry, M. L., Canziani, O., Palutikof, J., Van der Linden, P., and Hanson, C.: Climate change 2007-
755 impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC,
756 Cambridge University Press, 2007.

757 Pepler, A., Hope, P., and Dowdy, A.: Long-term changes in southern Australian anticyclones and their impacts
758 (vol 53, pg 4701, 2019), *Climate Dynamics*, 53, 4715-4715, 10.1007/s00382-019-04931-w, 2019.

759 Pepler, A. S., Trewin, B., and Ganter, C.: The influences of climate drivers on the Australian snow season, *Aust
760 Meteorol Ocean*, 65, 195-205, Doi 10.22499/2.6502.002, 2015.

761 Pomeroy, J. W., Toth, B., Granger, R. J., Hedstrom, N. R., and Essery, R. L. H.: Variation in surface energetics
762 during snowmelt in a subarctic mountain catchment, *J Hydrometeorol*, 4, 702-719, Doi 10.1175/1525-
763 7541(2003)004<0702:Viseds>2.0.Co;2, 2003.

764 Pook, M. J., McIntosh, P. C., and Meyers, G. A.: The synoptic decomposition of cool-season rainfall in the
765 southeastern Australian cropping region, *Journal of Applied Meteorology Climatology*, 45, 1156-1170, 2006.

766 Pook, M. J., Risbey, J., and McIntosh, P.: East coast lows, atmospheric blocking and rainfall: a Tasmanian
767 perspective, *IOP Conference Series: Earth and Environmental Science*, 2010, 012011,

768 Pook, M. J., Risbey, J. S., and McIntosh, P. C.: The synoptic climatology of cool-season rainfall in the central
769 wheatbelt of Western Australia, *Monthly Weather Review*, 140, 28-43, 2012.

770 Pook, M. J., Risbey, J. S., and McIntosh, P. C.: A comparative synoptic climatology of cool-season rainfall in
771 major grain-growing regions of southern Australia, *Theoretical Applied Climatology*, 117, 521-533,
772 10.1007/s00704-013-1021-y, 2014.

773 Prezerakos, N. G., and Angouridakis, V. E.: Synoptic consideration of snowfall in Athens, *Journal of Climatology*,
774 4, 269-285, 10.1002/joc.3370040305, 1984.

775 Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J., Theriault, J. M.,
776 Kucera, P., Gochis, D., Smith, C., Nitu, R., Hall, M., Ikeda, K., and Gutmann, E.: How Well Are We Measuring

777 Snow? The NOAA/FAA/NCAR Winter Precipitation Test Bed, *B Am Meteorol Soc*, 93, 811-829, 10.1175/Bams-
778 D-11-00052.1, 2012.

779 Reba, M. L., Link, T. E., Marks, D., and Pomeroy, J.: An assessment of corrections for eddy covariance measured
780 turbulent fluxes over snow in mountain environments, *Water Resour Res*, 45, 10.1029/2008wr007045, 2009.

781 Reinfelds, I., Swanson, E., Cohen, T., Larsen, J., and Nolan, A.: Hydrospatial assessment of streamflow yields
782 and effects of climate change: Snowy Mountains, Australia, *J Hydrol*, 512, 206-220,
783 10.1016/j.jhydrol.2014.02.038, 2014.

784 Robock, A.: The seasonal cycle of snow cover, sea ice and surface albedo, *Monthly Weather Review*, 108, 267-
785 285, 1980.

786 Romolo, L., Prowse, T. D., Blair, D., Bonsal, B. R., Marsh, P., and Martz, L. W.: The synoptic climate controls
787 on hydrology in the upper reaches of the Peace River Basin. Part II: Snow ablation, 20, 4113-4129,
788 doi:10.1002/hyp.6422, 2006a.

789 Romolo, L., Prowse, T. D., Blair, D., Bonsal, B. R., and Martz, L. W.: The synoptic climate controls on hydrology
790 in the upper reaches of the Peace River Basin. Part I: snow accumulation, 20, 4097-4111, doi:10.1002/hyp.6421,
791 2006b.

792 Ruckstuhl, C., Philipona, R., Morland, J., and Ohmura, A.: Observed relationship between surface specific
793 humidity, integrated water vapor, and longwave downward radiation at different altitudes, *Journal of Geophysical
794 Research: Atmospheres*, 112, 2007.

795 Sade, R., Rimmer, A., Litaor, M. I., Shamir, E., and Furman, A.: Snow surface energy and mass balance in a warm
796 temperate climate mountain, *J Hydrol*, 519, 848-862, 2014.

797 Snowy Hydro Limited Snow Depths Calculator: [https://www.snowyhydro.com.au/our-](https://www.snowyhydro.com.au/our-energy/water/inflows/snow-depths-calculator/)
798 [energy/water/inflows/snow-depths-calculator/](https://www.snowyhydro.com.au/our-energy/water/inflows/snow-depths-calculator/), access: 03/08/2018, 2018.

799 Stewart, I. T.: Changes in snowpack and snowmelt runoff for key mountain regions, *Hydrol Process*, 23, 78-94,
800 10.1002/hyp.7128, 2009.

801 Stiperski, I., and Rotach, M. W.: On the Measurement of Turbulence Over Complex Mountainous Terrain, *Bound-
802 Lay Meteorol*, 159, 97-121, 10.1007/s10546-015-0103-z, 2016.

803 Stoy, P. C., Peitzsch, E., Wood, D., Rottinghaus, D., Wohlfahrt, G., Goulden, M., and Ward, H.: On the exchange
804 of sensible and latent heat between the atmosphere and melting snow, *Agricultural Forest Meteorology*, 252, 167-
805 174, 2018.

806 Stull, R.: Wet-Bulb Temperature from Relative Humidity and Air Temperature, *J Appl Meteorol Clim*, 50, 2267-
807 2269, 10.1175/Jamc-D-11-0143.1, 2011.

808 Sturm, M., Holmgren, J., and Liston, G. E.: A seasonal snow cover classification system for local to global
809 applications, *J Climate*, 8, 1261-1283, 1995.

810 Theobald, A., McGowan, H., Speirs, J., and Callow, N.: A Synoptic Classification of Inflow-Generating
811 Precipitation in the Snowy Mountains, Australia, *J Appl Meteorol Clim*, 54, 1713-1732, 10.1175/Jamc-D-14-
812 0278.1, 2015.

813 Theobald, A., McGowan, H., and Speirs, J.: Trends in synoptic circulation and precipitation in the Snowy
814 Mountains region, Australia, in the period 1958-2012, *Atmos Res*, 169, 434-448, 10.1016/j.atmosres.2015.05.007,
815 2016.

816 Ueno, K.: Synoptic conditions causing nonmonsoon snowfalls in the Tibetan Plateau, *Geophys Res Lett*, 32, 2005.

817 Vivioli, D., Durr, H. H., Messerli, B., Meybeck, M., and Weingartner, R.: Mountains of the world, water towers
818 for humanity: Typology, mapping, and global significance, *Water Resour Res*, 43, Artn W07447
819 10.1029/2006wr005653, 2007.

820 Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements for density effects due to heat
821 and water vapour transfer, *Quarterly Journal of the Royal Meteorological Society*, 106, 85-100, 1980.

822 Webb, M., Slingol, A., and Stephens, G.: Seasonal variations of the clear-sky greenhouse effect: The role of
823 changes in atmospheric temperatures and humidities, *Climate dynamics*, 9, 117-129, 1993.

824 Welch, C. M., Stoy, P. C., Rains, F. A., Johnson, A. V., and McGlynn, B. L.: The impacts of mountain pine beetle
825 disturbance on the energy balance of snow during the melt period, *Hydrol Process*, 30, 588-602,
826 10.1002/hyp.10638, 2016.

827 Whetton, P. H., Haylock, M. R., and Galloway, R.: Climate change and snow-cover duration in the Australian
828 Alps, *Climatic Change*, 32, 447-479, Doi 10.1007/Bf00140356, 1996.

829 Wilks, D. S.: Cluster analysis, in: *International geophysics*, Elsevier, 603-616, 2011.

830

831

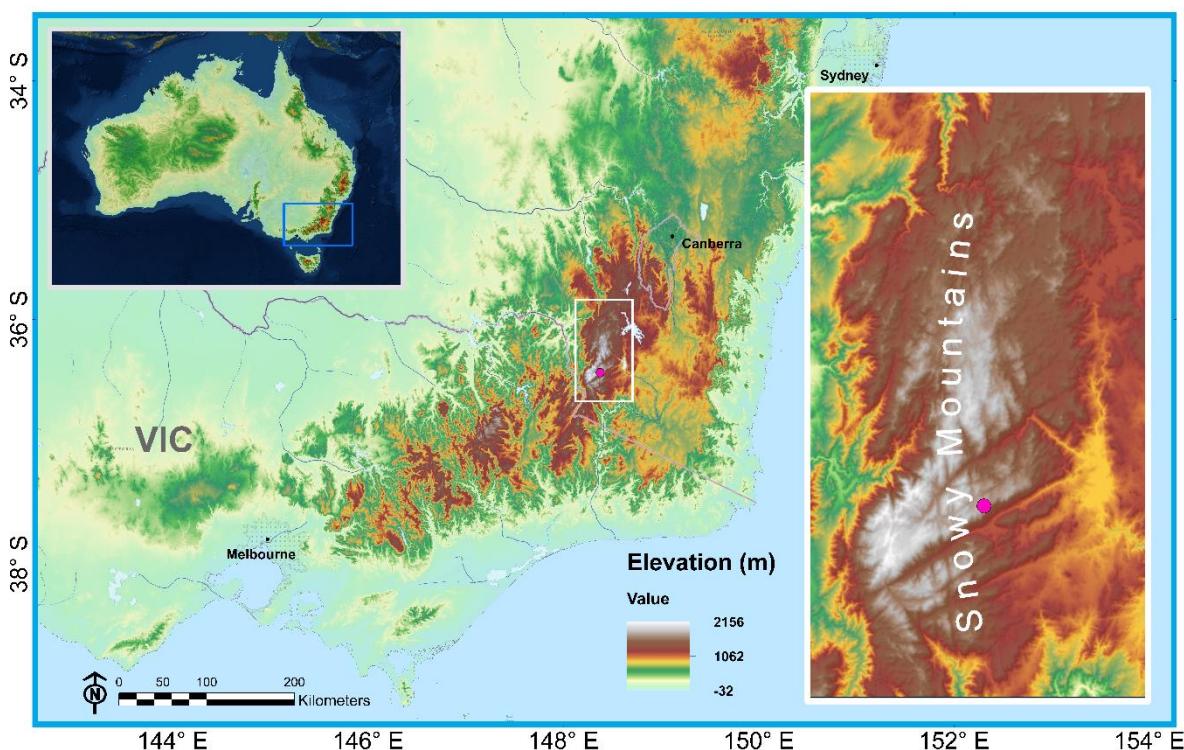
832

833

834

835

836


837

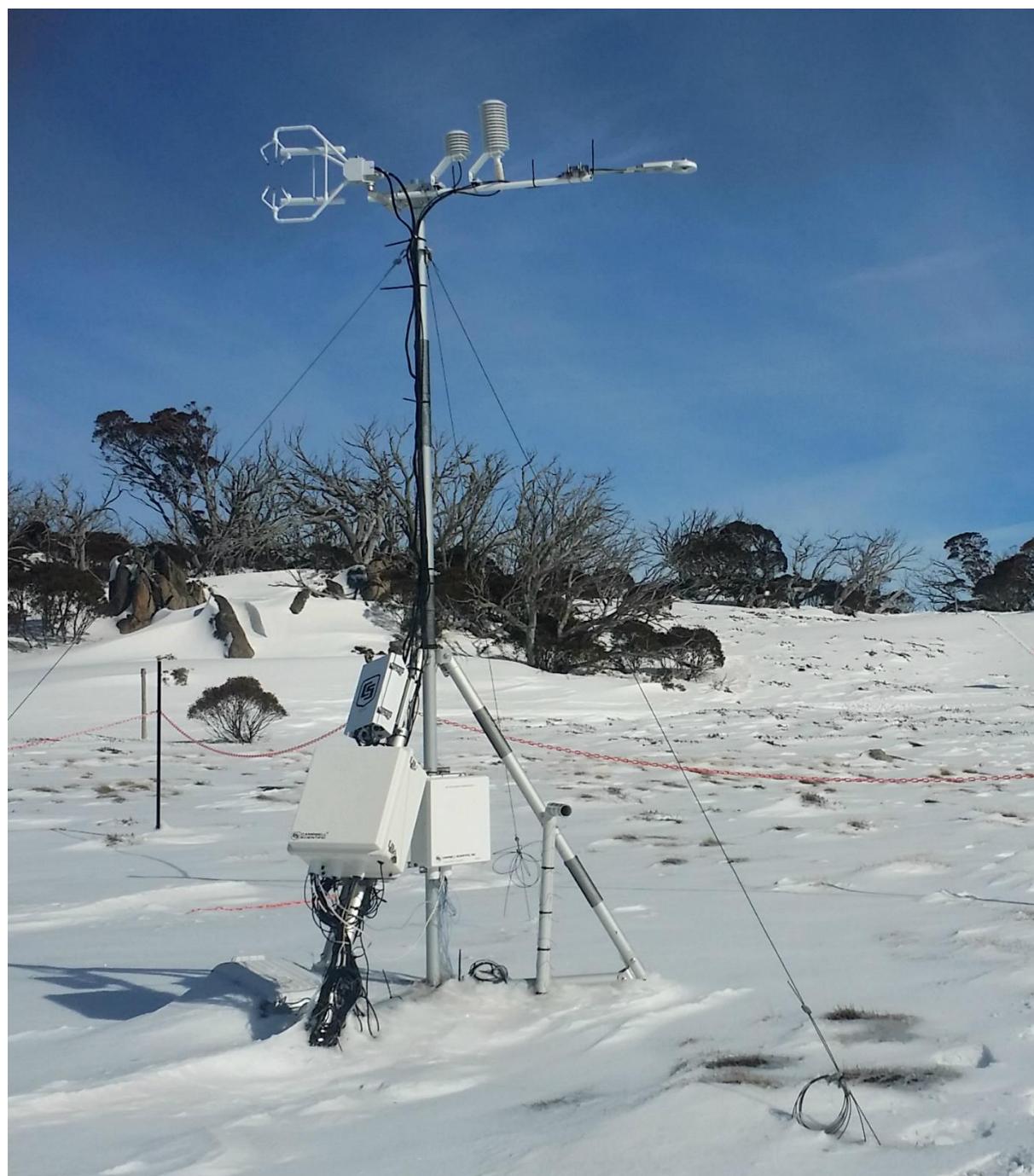
838

839

840

841
842
843
844
845
846
847
848

849 **Figure 1: Map of southeast Australia and the Snowy Mountains. Pink dot represents the location of the energy balance**
850 **instrumentation site. Map layer sources copyright: ESRI, USGS, NOAA, DigitalGlobe, GeoEye, Earthstar**
851 **Geographics, CNE S/A Airbus DS, USDA, AeroGRID, IGN, and the GIS User Community.**

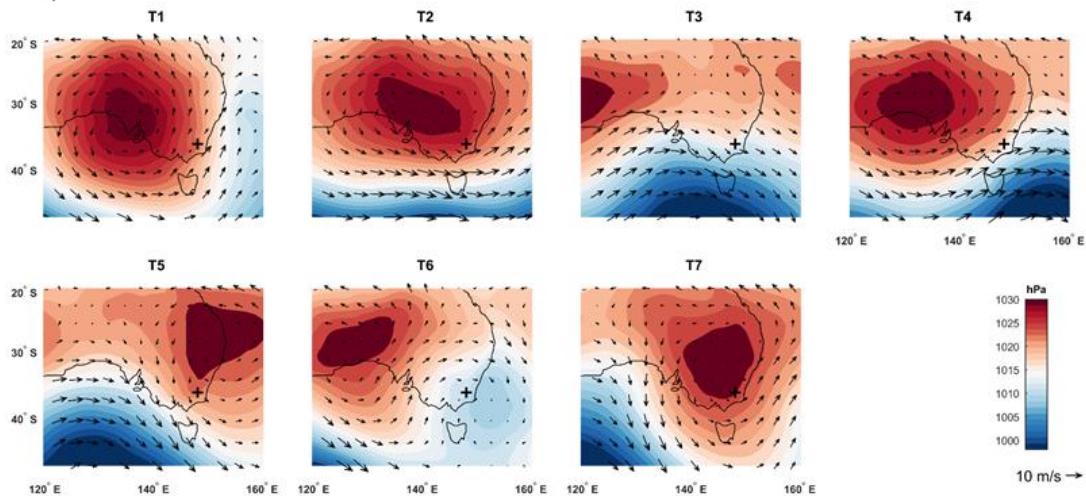

852
853
854
855
856

857

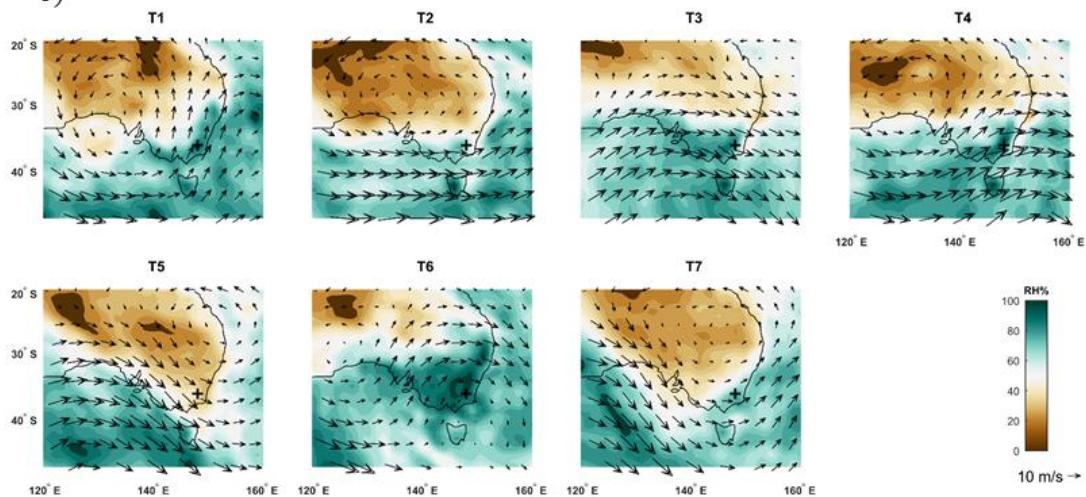
858

859

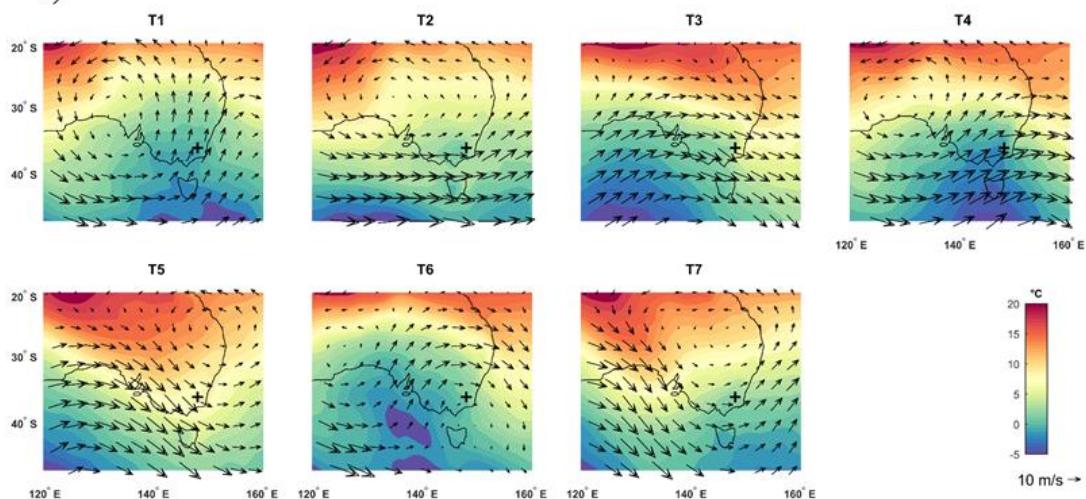
860

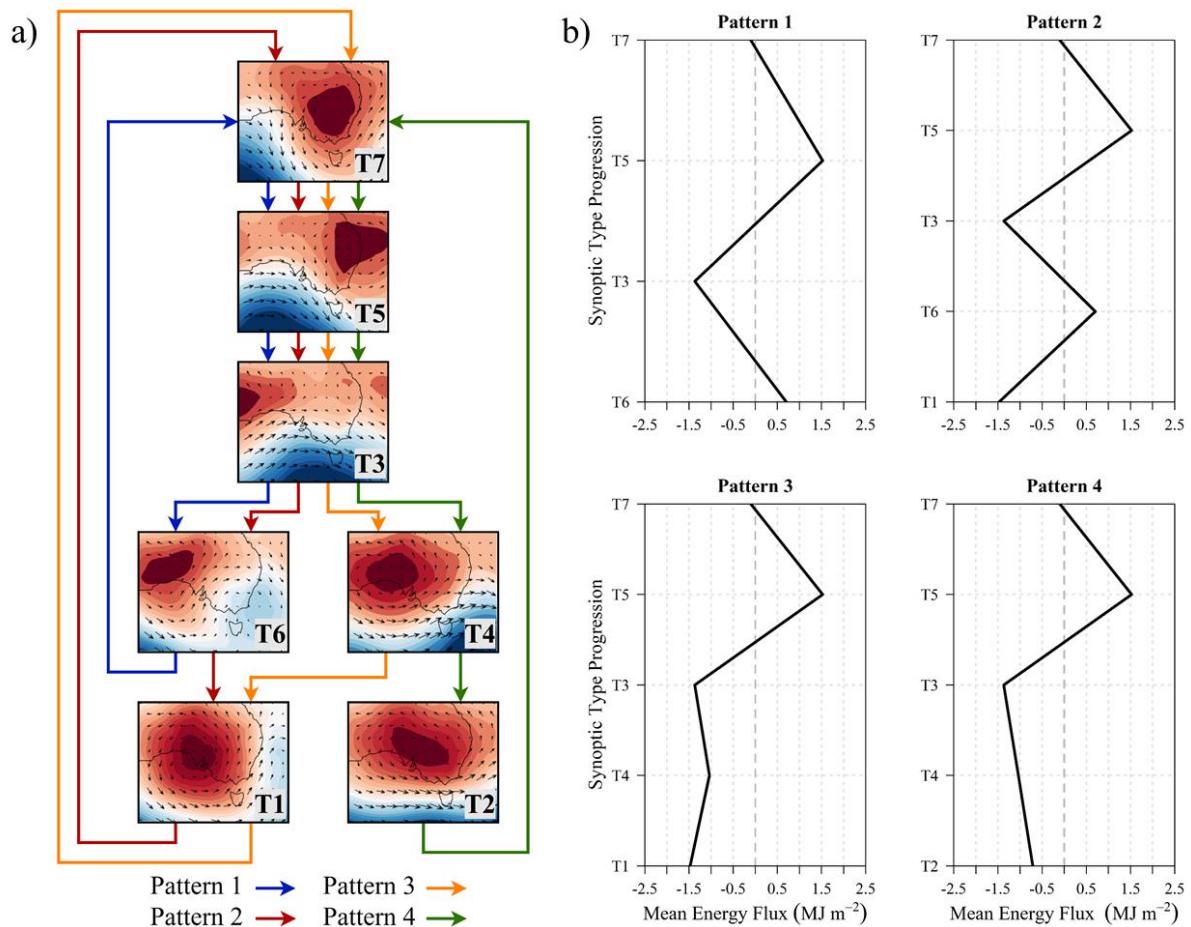


861


862

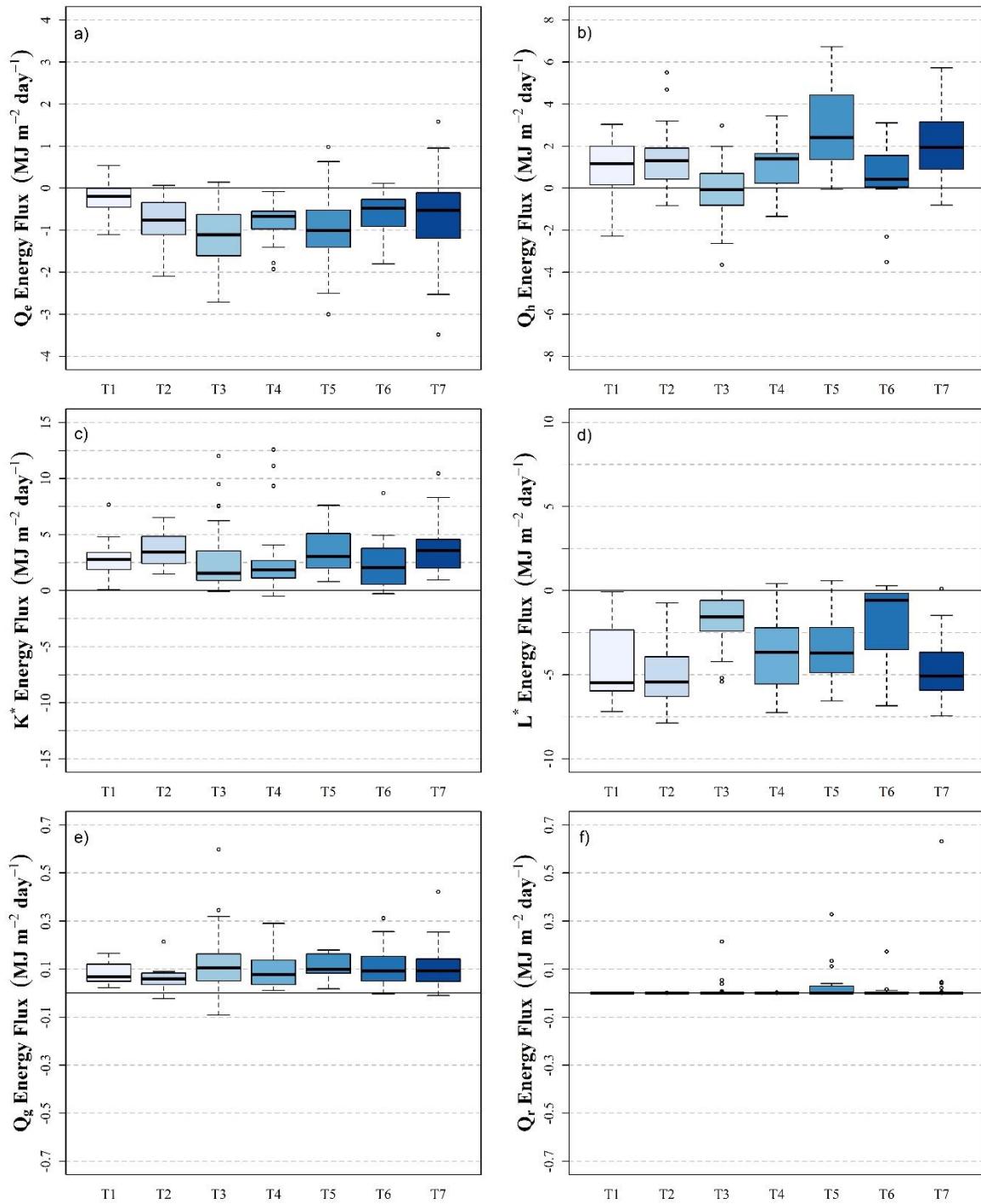
863 **Figure 2: Energy balance field site with eddy covariance instrumentation at Pipers Creek catchment headwaters.**


a)


b)

c)

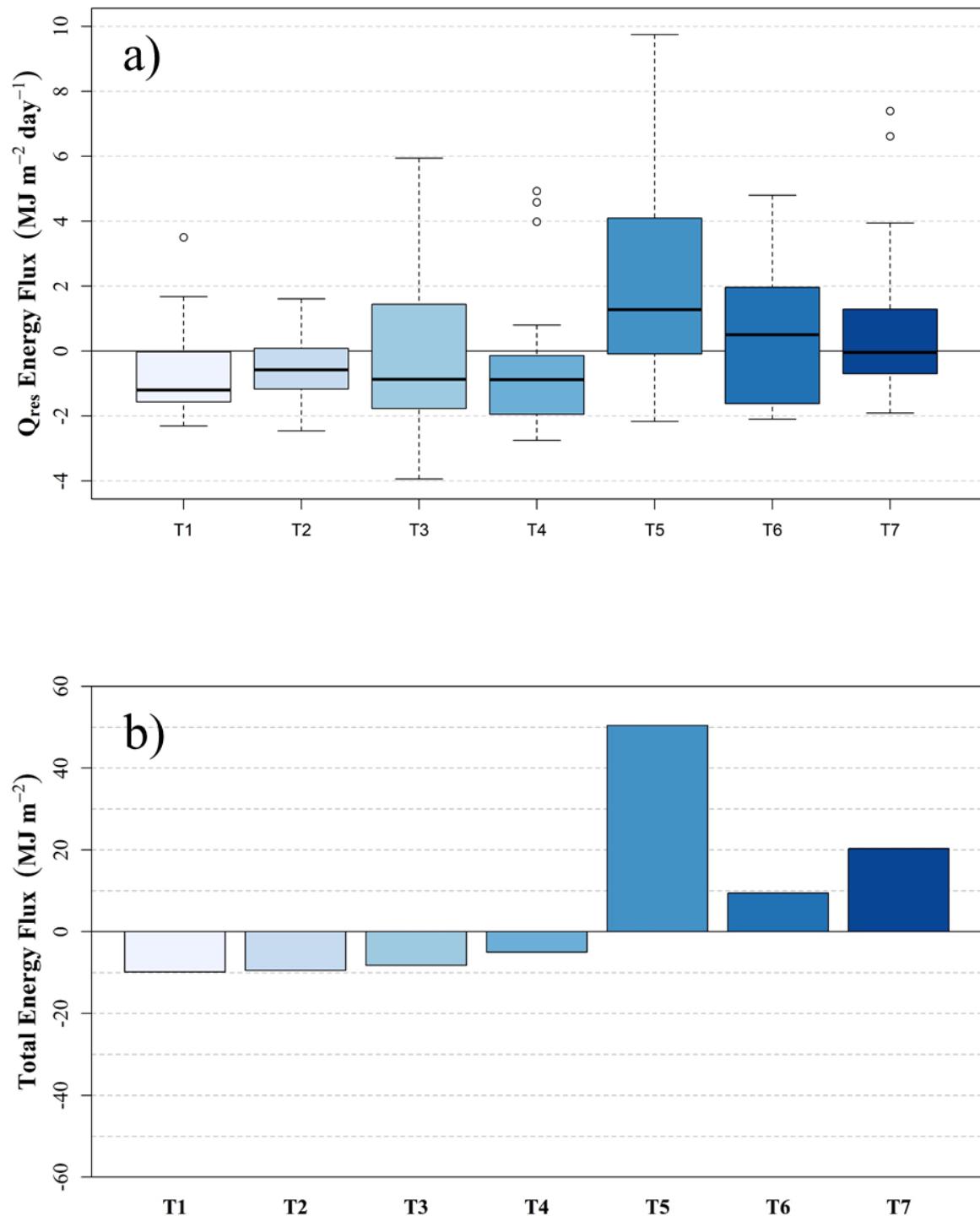
866 **Figure 3: Mean synoptic type MSLP and 10m wind vectors (a), 850 hPa RH and wind vectors (b), and 850 hPa T_d and**
867 **wind vectors (c) over the southeast Australia region for the 2016 and 2017 seasons. Location of surface energy balance**
868 **site marked with '+'.**



871 **Figure 4: Flowchart of four primary synoptic type patterns/progressions based on probability of transition for the 2016
872 and 2017 seasons (a) and calculated synoptic pattern snowpack fluxes based on median daily values and mean duration
873 of synoptic type (b).**

876

877


878

879 **Figure 5:** Boxplots of daily snowpack latent heat (a), sensible heat (b), net shortwave radiation (c), net longwave
 880 radiation (d), ground heat flux (e), and liquid precipitation (f) energy fluxes for each synoptic type during the 2016 and
 881 2017 seasons.

882

883

884

885 **Figure 6: Boxplot of daily residual snowpack energy fluxes (a) and bar chart of total summed energy flux (b) by synoptic**

886 type for the 2016 and 2017 seasons.

887

888

889

Instrument	Manufacturer	Variables Measured	Accuracy
SI-111	Apogee Instruments	Surface Temperature (T_{sfc})	$\pm 0.2^\circ\text{C}$ $-10^\circ\text{C} < T < 65^\circ\text{C}$ $\pm 0.5^\circ\text{C}$ $-40^\circ\text{C} < T < 70^\circ\text{C}$
CS650	Campbell Scientific	Soil Water Content (SWC)	$\pm 3\%$ SWC
		Soil Temperature	$\pm 5^\circ\text{C}$
CSAT3A	Campbell Scientific	Wind Components (u_x, u_y, u_z); Wind Speed (u) and Direction ($^\circ$); and Sonic Temperature	$\pm 5 \text{ cm s}^{-1}$
EC150	Campbell Scientific	H_2O Gas Density	2%
NOAH II	ETI Instrument Systems	Precipitation Accumulation	$\pm 0.254 \text{ mm}$
HFP01	Hukseflux	Soil Heat Flux	$< 3\%$
CNR4	Kipp and Zonen	$K \downarrow, K \uparrow, L \downarrow, L \uparrow$	$K < 5\%$ Daily Total $L < 10\%$ Daily Total
HMP155	Vaisala	Air Temperature (T_d)	$< 0.3^\circ\text{C}$
		Relative Humidity (RH)	$< 1.8\%$ RH
PTB110	Vaisala	Barometric Pressure	$\pm 0.15 \text{ kPa}$

890

891 **Table 1: Information on instruments used at the Pipers Creek catchment site.**

892

893

894

895

896

897

898

899

900

901

902

903

904

905

Synoptic Type	T1	T2	T3	T4	T5	T6	T7
Surface Characteristics	High pressure; SW winds	High pressure; WNW winds	Frontal; NW winds	High/low transition; W winds	High Pressure; NNW winds	Lee-side low; SW winds	High pressure; WNW winds
Cloud Cover (% days with any cover)	100%	75.00%	100.00%	100.00%	100.00%	100.00%	84.00%
Q_h (MJ m ⁻² day ⁻¹)	1.17	1.30	0.04	0.88	2.50	0.47	1.92
Q_e (MJ m ⁻² day ⁻¹)	-0.22	-0.64	-1.16	-0.67	-1.09	-0.51	-0.53
K_{\downarrow} (MJ m ⁻² day ⁻¹)	12.62	15.47	8.91	11.29	12.60	8.11	13.05
K_{\uparrow} (MJ m ⁻² day ⁻¹)	-9.61	-11.26	-6.97	-9.55	-9.48	-5.85	-9.60
L_{\downarrow} (MJ m ⁻² day ⁻¹)	19.53	20.16	24.95	22.08	23.59	26.57	21.38
L_{\uparrow} (MJ m ⁻² day ⁻¹)	-25.32	-26.00	-26.63	-25.74	-27.38	-26.91	-26.70
Q_g (MJ m ⁻² day ⁻¹)	0.07	0.06	0.10	0.08	0.10	0.09	0.09
Q_r (MJ m ⁻² day ⁻¹)	0.00	0.00	0.00	0.00	0.01	0.00	0.00
Q_{res} (MJ m ⁻² day ⁻¹)	-1.31	-0.43	-0.84	-0.90	1.11	0.63	-0.20
Total Number of Occurrences	15	16	44	19	22	16	31
Mean Type Duration (Days)	1.23	1.31	1.59	1.19	1.20	1.33	1.42

906

907 **Table 2: Synoptic, energy flux, and occurrence characteristics for each synoptic type. Mean Daily surface and cloud**
 908 **cover characteristics are mean values and daily energy flux values are median values.**

909

Number of days	Energy Balance Closure			Wind Speed (ms^{-1})		
	Mean	SD	Q_{ec}	Mean	SD	
T1	6	0.14	1.01	0.86	2.76	1.18
T2	7	0.83	1.33	0.17	2.65	1.43
T3	14	0.58	0.97	0.42	3.02	1.56
T4	1	-0.24	0.30	1.24	5.02	0.69
T5	9	0.71	1.08	0.29	3.48	1.37
T6	6	0.92	1.13	0.08	2.92	1.01
T7	16	0.67	1.02	0.33	2.86	1.63

910 **Table 3: Statistics on energy balance closure, error in energy balance closure (Q_{ec}) and wind speed during energy
911 balance closure analysis periods for each synoptic type.**