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Abstract. Consistency in assigning an avalanche danger level when forecasting or locally assessing avalanche hazard

is essential, but challenging to achieve, as relevant information is often scarce and must be interpreted in the light of

uncertainties. Furthermore, the definitions of the danger levels, an ordinal variable, are vague and leave room for inter-

pretation. Decision tools, developed to assist in assigning a danger level, are primarily experience-based due to a lack

of data. Here, we address this lack of quantitative evidence by exploring a large data set of stability tests (N = 10,125)5

and avalanche observations (N = 39,017) from two countries related to the three key factors that characterize avalanche

danger: snowpack stability, its frequency distribution and avalanche size. We show that the frequency of the most un-

stable locations increases with increasing danger level. However, a similarly clear relation between avalanche size and

danger level was not found. Only for the higher danger levels the size of the largest avalanche per day and warning region

increased. Furthermore, we derive stability distributions typical for the danger levels 1-Low to 4-High using four stability10

classes (very poor, poor, fair and good), and define frequency classes (none or nearly none, a few, several and many )

describing the frequency of the most unstable locations. Combining snowpack stability, its frequency and avalanche size

in a simulation experiment, typical descriptions for the four danger levels are obtained. Finally, using the simulated snow-

pack distributions together with the largest avalanche size in a step-wise approach, as proposed in the Conceptual Model

of Avalanche Hazard, we present an example for a data-driven look-up table for avalanche danger assessment. Our15

findings may aid in refining the definitions of the avalanche danger scale and in fostering its consistent usage.

1 Introduction

Consistent communication of regional avalanche hazard in publicly available avalanche forecast products is paramount

to avoid misinterpretations by the users (Techel et al., 2018). A key information in public bulletins is the avalanche danger

level. The danger levels - from 1-Low to 5-Very High - are described in the European Avalanche Danger Scale (EADS,20

EAWS, 2018) or its North American equivalent, the North American Avalanche Danger Scale (e.g. Statham et al., 2010)
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with brief definitions of the key factors. The key factors that characterize avalanche danger are (Meister, 1995; EAWS,

2020, 2018):

– the probability of avalanche release,

– the frequency and location of the triggering spots, and

– the expected avalanche size.5

These elements are expected to increase with increasing danger level (e.g. Schweizer et al., 2020).

The release (or triggering) probability of an avalanche, or ’sensitivity to triggers’ as termed in the Conceptual Model of

Avalanche Hazard (CMAH, Statham et al., 2018a), is inversely related to snowpack stability, with a higher probability for

an avalanche to release with lower stability, and vice versa (e.g. Föhn and Schweizer, 1995; Meister, 1995). Hence, the

probability of avalanche release refers to a specific location and relates to the local (or point) snow instability. The latter10

has recently been revisited and three elements were suggested to describe point snow instability: failure initiation, crack

propagation and slab tensile support (Reuter and Schweizer, 2018).

The actual spatial distribution of snow stability is typically unknown. So far, it can only be assessed with laborious exten-

sive sampling (e.g. Birkeland, 2001; Reuter et al., 2016). However, in a regional avalanche forecast the spatial distribution

of snow instability can be described with regard to the frequency and the locations of triggering spots (or more generally15

the locations where the snowpack is weakest). From these two components, frequency and location, only frequency is

relevant when assessing the danger level. The frequency always refers to a specific area, typically a forecast region. In

addition, in the forecast the slope aspects and elevation are described where the danger prevails. The frequency de-

scribes the question «How often do spots with a certain snow stability exist within a region?» – in terms of numbers,

proportions or percentages. Typical frequency distributions for the danger levels 1-Low to 3-Considerable were described20

by Schweizer et al. (2003) using five classes of snow stability. In contrast, the location of triggering spots or of snowpack

stability describes «Where in the terrain is avalanche release most likely?» Currently, the frequency is described using the

terms single, some, many, and most (?), while terms describing the location are manyfold (e.g. where the snowpack is

shallow, close to ridgelines, in bowls, . . .). In contrast, in the CMAH, the spatial distribution is related to the ease of finding

evidence of an avalanche problem (Statham et al., 2018a), and is described using the three terms isolated, specific and25

widespread.

Finally, avalanche size is defined with sizes ranging from 1 to 5 relating to the destructive potential of an avalanche (e.g.

CAA, 2014; EAWS, 2019; McClung and Schaerer, 1981).

The EADS descriptions of the key factors for each of the five categories of danger level leave ample room for interpre-

tation and are even partly ambiguous. This may be a major reason for inconsistencies noted in the use of the danger30

levels between individual forecasters or field observers, and even more prominent between different forecast centers and

avalanche warning services (Lazar et al., 2016; Statham et al., 2018b; Techel and Schweizer, 2017; Techel et al., 2018),

but also when assessing different avalanche problems (Clark and Haegeli, 2018).
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The same danger level can be described with different combinations of the three factors. To improve consistency in the

use of the danger levels, a first decision aid, the Bavarian Matrix was adopted by EAWS in 2005. The Bavarian Matrix, a

look-up table, combined the frequency of triggering locations with the release probability. In 2017, an update of the Bavar-

ian matrix, now called the EAWS-Matrix, was presented that additionally incorporates avalanche size (EAWS, 2020).

More recently, a so-called Avalanche Danger Assessment Matrix (ADAM, Müller et al., 2016) was proposed, which tries5

to combine the workflow described in the CMAH with the assignment of the danger levels based on the three factors as

suggested in the EAWS-Matrix. Both, the current version of the EAWS-Matrix and ADAM, are work in progress.

Challenges in the improvement of these decision support tools include the fact that the three key factors characterizing

avalanche danger are not clearly defined and hence poorly quantified (Schweizer et al., 2020). Our objective is therefore

to address this lack of quantitative evidence by exploring observational data relating to snowpack stability, its frequency10

distribution and avalanche size. The data originate from different snow climates, but also from different avalanche warning

services (Norway, Switzerland). The key questions are: (1) How do the three factors relate to the danger levels? And (2)

Which combination of the actual value of the three factors does best describe the various danger levels? We present

a methodology to generate data-driven stability distributions and to obtain class intervals describing the frequency of a

given snow stability class. Finally, we will compare the findings with currently used definitions in avalanche forecasting, as15

EADS and CMAH, and make recommendations for improvements towards more consistent usage of the danger scale.

2 Data

All the data described below were recorded for the purpose of operational avalanche forecasting in Norway (NOR; Nor-

wegian Water Resources and Energy Directorate NVE) or Switzerland (SWI; WSL Institute for Snow and Avalanche

Research SLF). In the vast majority, these observations were provided by specifically trained observers, belonging to the20

observer network of either the Norwegian or the Swiss avalanche warning service.

Despite the necessity to harmonize some of the data across warning services, we argue that making use of data from

different warning services and snow climates, may highlight potential biases’ or differences.

2.1 Avalanche danger level

The target variable, the avalanche danger level, we want to describe the three factors with, is an estimate at best, as there25

is no straightforward operational verification. Whether assessing the danger level in the field or in hindsight, it remains an

expert assessment (Föhn and Schweizer, 1995; Techel and Schweizer, 2017).

We rely on the local danger level estimates provided by specifically trained observers. In both countries, this estimate is

based on the observations made on the day and on other information considered relevant (Kosberg et al., 2013; Techel

and Schweizer, 2017) and can be called a local nowcast. In very few exceptions (19 days during the verification cam-30

paigns in the winters 2002 and 2003 in the region surrounding Davos, SWI) a «verified» regional danger rating was

available (Schweizer et al., 2003; Schweizer, 2007b).
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Table 1. Data overview.

parameter country N data from*

avalanches natural SWI 29,511 2001-2002

human-triggered SWI 3,751 2001-2002

natural NOR 4,555 2014-2015

human-triggered NOR 1,200 2014-2015

RB SWI 4,698 2001-2002

ECT SWI 2,745 2007-2008

NOR 2,682 2014-2015

* - for days between (and including) 1 Dec and 30 Apr. Always until (and including) the

winter 2018/2019.

In this study, we make use of local estimates for dry-snow conditions only. Each stability test or avalanche observation

was linked to a danger rating as described below (Sect. 2.2 and 2.3). If no local danger level estimates were available,

the data were not used.

Throughout this manuscript, we refer to the danger levels using their integer-signal word combination, e.g. 1-Low or 2-

Moderate.5

2.2 Snow stability

Operationally available information directly related to snow instability includes simple field observations as well as snow

stability tests (Schweizer and Jamieson, 2010). Field observations such as recent avalanching, shooting cracks and

whumpfs (a sound audible when a weak layer fails due to localized loading) clearly indicate snow instability (Jamieson10

et al., 2009; Schweizer and Jamieson, 2010). These observations are often made in the backcountry while ski touring

and do not require a person to dig a snow pit. Snow stability tests, on the other hand, are considered targeted sampling

(McClung and Schaerer, 2006) with the aim to assess point snow instability. Here, we used data obtained with two stability

tests regularly used to assess snow instability in Switzerland and Norway, the Rutschblock test and the Extended Column

Test.15

The Rutschblock test (RB) is a stability test, ideally performed on slopes steeper than 30°, where a 1.5 m× 2 m block of

snow is isolated from the surrounding snowpack and loaded by a person (e.g Schweizer, 2002). An observer performing

a RB records which of the 6 loading steps, referred to as the score, caused failure, and what portion of the block slid (the

release type: whole block, most of block, edge only). If no failure occurs, RB7 is recorded. Score and release type pro-

vide information on failure initiation and crack propagation, essential components of a slab avalanche release (Schweizer20

et al., 2008b). RB data were only available from Switzerland.

The Extended Column Test (ECT) is a stability test that provides an indication on crack propagation propensity (Simen-

4

https://doi.org/10.5194/tc-2020-42
Preprint. Discussion started: 21 February 2020
c© Author(s) 2020. CC BY 4.0 License.



hois and Birkeland, 2006, 2009). In contrast to the RB, the ECT is performed on a comparably small (30 cm × 90 cm)

isolated column of snow and loaded by tapping on the block. The observer records the tap at which a crack initiates (1-30)

and whether a fracture propagates across the entire column (ECTP), or not (ECTN; Simenhois and Birkeland, 2009). If

no fracture is initiated with 30 taps ECTX is recorded.

Each stability test was linked to a danger rating relating to dry-snow conditions. We considered the danger rating most5

relevant, which was transmitted together with the snow profile or stability test (in text form, SWI). In the Swiss data set,

this danger rating was replaced for stability tests observed on days and in warning regions, for which a «verified» regional

danger rating existed (Sect. 2.1). If neither of them was available, the operational database was searched for local danger

level estimates reported during the day and in the same region. Often, these local estimates were reported by the same

observer who performed the test.10

The Swiss RB data set comprised 4,698 RBs, observed mainly on NW-, N-, and NE-facing slopes (67%) at a median

elevation of 2,380 m a.s.l. (interquartile range IQR 2,160-2,565 m) and a median slope angle of 35° (IQR: 32-37°). The

Swiss ECT data set contained 2,745 ECTs; 67% were observed in NW-, N- and NE-facing slopes at a median elevation

of 2,372 m a.sl. (IQR 2,134-2,547 m) and at 34° (IQR 31-36°). The Norwegian ECT data set consisted of 2,682 ECTs,

observed at a median elevation of 760 m a.sl. (IQR 730-1,067 m). Consistent information on the slope aspect was not15

available for Norwegian stability data.

2.3 Avalanches

As part of the daily observations, observers (and occasionally the public) reported avalanches observed in their region.

Avalanches can be reported individually, but also by summarizing several avalanches into one observation. While in-

dividual avalanches were reported in a similar way in NOR and SWI, the reporting of several avalanches differed. In20

NOR, observers reported avalanche size, trigger type and wetness, which was typical for the situation, and described

the observed number of avalanches using categorical terms (single: 1, some: 2-4, many: 5-10, numerous: ≥11). In SWI,

observers reported the number of avalanches of a given size. In all reporting forms, information about the wetness and

trigger type could be provided. In either country, avalanche size was estimated according to the destructive potential, and

a combination of total length and volume, resulting in avalanche sizes of 1 to 5 (EAWS, 2019). In SWI until 2011, only25

size classes 1-4 were used.

The analysis was restricted to dry-snow avalanches, where the trigger type was either natural release or human-triggered.

These avalanches were linked to a dry-snow local danger rating for the release date of the avalanche(s) and in the same

warning region.

To enhance the quality of the data, we filtered observations, which we believe may indicate errors in the local estimate30

of the danger level or of avalanche size. To this end, we calculated the avalanche activity index (AAI, Schweizer et al.,

1998), a dimensionless index summing up avalanches according to their size with weights of 0.01, 0.1, 1, and 10 for

avalanche sizes 1 to 4, respectively. We did not assign weights to the trigger type (natural, human-triggered). For NOR,

where the number of observed avalanches is described categorically, we assigned numbers as follows: one = 1, few (2-5)
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= 3, several (6-10) = 8, numerous (≥11) = 12. For each country, we then rank-ordered the avalanche data and the lowest

2.5% of the days and regions with 2-Moderate, 3-Considerable and 4-High, and the top 2.5% of the days and regions

with 1-Low, 2-Moderate or 3-Considerable were removed.

The total number of avalanches that remained was 5,755 in Norway, observed on 1,618 different days and regions, and

33,262 in Switzerland, observed on 6,610 days and regions (Table 1).5

3 Methods

3.1 Classification of snow stability

In the following, we describe how we classified the results of the snow instability tests in the four stability classes (very

poor, poor, fair and good - stability class names are in italics throughout this manuscript).

Rutschblock test (RB) results were classified into the four stability classes according to Figure 1a using a combination of10

score and release type, which have been shown to be good predictors of unstable conditions (e.g. Föhn, 1987; Jamieson

and Johnston, 1995; Schweizer et al., 2008b). This stability rating is close to the operationally applied stability rating

in Switzerland, which includes five classes and in addition considers weak layer properties and snowpack structure

(Schweizer, 2007a; Schweizer and Wiesinger, 2001). The classification by Schweizer (2007a) was used in Techel and

Pielmeier (2014) for an automatic assignment of stability based on RB score and release type (also five classes). As in15

Techel. et al. (in prep.), we combined the two classes very good and good into one class called good.

Recently, a similar classification was proposed for the Extended Column Test (ECT) (Techel. et al., in prep.). Using a

combination of crack propagation and the number of taps until failure initiation, four stability classes were defined (Fig.

1b). Techel. et al. (in prep.) compared the RB- and ECT-classifications shown in Fig. 1 to slope stability classified as either

unstable or stable. They showed that with increasing stability class, the proportion of slopes rated as unstable decreased.20

In a data set with 30% unstable and 70% stable slopes, the four RB stability classes included 76%, 53%, 25% and 11%

unstable slopes, while the four ECT stability classes included 57%, 40%, 23% and 15% unstable slopes. This indicates

that the four stability classes for RB and ECT do not exactly line up: The second RB class had a proportion unstable

slopes (53%) similar to the first ECT class (57%), and the second ECT class (40%) had a value in-between the second

and third RB classes (53% and 25%). To accommodate this misalignment, we assigned the following four class labels25

to the four ECT classes: poor, poor-fair, fair and good. It is of note, that ECT class poor also includes the weakest ECT

results, which may be associated with very poor stability. To obtain the lowest RB or ECT stability class at each location,

we proceeded as follows: If the depth of a weak layer failure was less than 5 cm below the snow surface, we considered

the failure as not relevant (rating the test result as good), if a failure layer was between 6 and 10 cm below the snow

surface, we increased the stability rating by one step (e.g. from very poor to poor ). If several failure planes were detected30

in a single stability test, the most unstable stability class was retained for further analysis.
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Figure 1. Stability classification of (a) Rutschblock test results (based on Schweizer (2007a); Techel and Pielmeier (2014)) and (b)

Extended Column Test results (based on Techel. et al. (in prep.)). * - part of block includes release types most of block and edge only

3.2 Simulation of snow stability distributions

To determine the distribution of point snow instability within a defined region and at a given danger level many stability

test results on a given day are in general needed (e.g. Schweizer et al., 2003). However, as we most often only had one

stability test result on a given day, we followed an alternative approach. Assuming that a single test result is just one

sample from the stability distribution on that day and that different days with the same danger level exhibit similar stability5

distributions, we generated stability distributions by random sampling from the entire population of stability tests at a given

danger level. Thus, we applied bootstrap sampling (Efron, 1979) and proceeded as follows (see also Fig. 2, steps 1 and 2):

– (i) We randomly selected n stability test results with replacement from the stability tests associated with the same

danger level, resulting in a single bootstrap sample. We repeated this procedure B times for each danger level.10

– (ii) For each of the B bootstrap samples, we calculated the proportions of very poor, poor, fair and good stability

tests.

Bootstrap sampling, frequently used to estimate the accuracy of a desired statistic or for machine learning (Hastie et al.,

2009), requires a sufficiently large number of replications B to be drawn. We used B = 2,500 for each danger level,

resulting in 10,000 stability distributions in total.15

The second important parameter when bootstrap sampling is the number n of stability tests drawn in each sample. Small

values of n increase variance, and hence overlap between samples drawn from different danger levels, and reduce the

resolution of the desired statistic (e.g. for n = 10, the resolution is 0.1, for n = 100 it is 0.01). We wanted not only some

overlap between distributions sampled from different danger levels - Nature is not as discrete as the danger levels may

suggest, but also a preferably high resolution of our statistic. Unfortunately, there are no studies we can refer to concerning20

the amount of overlap that would be appropriate. We tested n={10, 25, 50, 100, 200, 1,000}.
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Figure 2. Schematic representation of the workflow for bootstrap sampling and frequency class definition. 1 - For each danger level,

all stability tests are combined. 2 - From the combined stability tests (1), n tests are randomly sampled. This is repeated B = 2,500

times to obtain typical stability distributions for each of the four danger levels. 3 - The 4x 2,500 boot-strap samples are merged and

the proportion of very poor rated stability tests per sample is plotted as a histogram. 4 - The statistics required for frequency class

definitions are calculated and the k frequency classes defined. For details refer to the description in the Sections 3.2 and 3.3.

These simulations are compared to a small number of days when more than 6 RB tests (N=41) or more than 6 ECT tests

(N=31) were collected in the surrounding of Davos (SWI).

3.3 Snow stability and its frequency - approach to define frequency classes

Currently, no classification exists that provides thresholds for the frequency a certain snow stability class is present. In

the following, we therefore introduce a data-driven approach to define class intervals that we will use to describe the5

frequency of a certain snow stability class. We considered the following points:

– Classes should be defined based on the snow stability class most relevant with regard to avalanche release, hence

the frequency of the class very poor. Even though the focus is on the proportion of very poor snow stability, classes

need to capture the entire possible parameter space, i.e. from very rare to virtually all (1 to 99%).

– The number of classes should reflect the human capacity to distinguish between them. We explored 3, 4 and 510

classes only, as these are the number of classes currently used to describe and communicate avalanche hazard
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and its components (e.g. three spatial distribution categories in the CMAH, four frequency terms in the EAWS

matrix, five danger levels, five avalanche size classes).

– Classes must be sufficiently different to ease classification by the forecaster as well as communication to the user.

And, if quantifier terms were assigned to these classes, these terms would need to unambiguously describe such

increasing frequencies. An example of such a succession of five terms is nearly none, a few, several, many and5

nearly all (e.g. Díaz-Hermida and Bugarín, 2010).

Data-driven approaches for defining interval classes are numerous, and are described for instance for thematic mapping

(e.g. Slocum et al., 2005) or for selecting histogram bin-widths (e.g. Evans, 1977; Wand, 1997). In general, the choice of

class intervals should be appropriate to the observed data distribution. Approaches include, among others, splitting the

parameter space into equal intervals, into intervals with an equal number of observations in each bin, or finding natural10

breaks in the data by minimizing the within-class variance while maximising the distance between the class centers (e.g.

Fisher-Jenks algorithm, Slocum et al., 2005). However, in our case, in which low values of the proportion of very poor

stability are frequent and higher values rare, we made use of a geometric progression of class widths, considered most

suitable for this type of distribution (Evans, 1977). Using this approach, we classified the data into k classes with class

interval limits being {0, a, ab, ab2, . . ., abk−1, 1}, where a is the size (width) of the initial (lowest) class and b is a multiplying15

factor. According to Evans (1977), a data-driven calculation of b for the closed interval from 0 to 100 can be given:

b=
(

100−V Pmed

V Pmed

) 2
k

, (1)

where VPmed is the median proportion of very poor stability, and k the number of classes preferred. This approach

requires a suitable value of the number of classes k to be defined. Given k and b, the initial class width a is (Evans,

1977):20

a=
V Pmed(1− b)

1− b k
2

(2)

To derive a and b, we generated snow stability distributions, as outlined in the previous section (see also Fig. 2, steps 3

and 4).

3.4 Combining snow stability and its frequency with avalanche size: a simulation experiment25

When assigning a danger level, the information relating to snow stability and its frequency needs to be combined with

avalanche size. As we cannot link these three factors using data relating to the same day and region, we used a simulation

approach by assuming that the distribution of the observed data represents the typical values and ranges at a specific

danger level. Randomly sampling and combining a sufficient number of data points results in typical combinations of the

three factors according to their presence in the data, but may also produce a small number of less likely combinations.30

We made use of the simulated frequency distributions of snow stability and their respective frequency class (Sect.s 3.2,
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3.3). For each danger level, we complemented the snow stability information with avalanche size by randomly selecting

an avalanche size from the empirical avalanche size distribution for the given danger level (which will be shown in Sect.

4.2) .

4 Results

4.1 Snow stability5

4.1.1 Rutschblock and ECT stability

We analyzed the distribution of RB and ECT results at danger levels 1-Low to 4-High (Fig. 3).

The proportion of very poor rated RB tests increased monotonically with increasing danger level from 2% at 1-Low to 38%

at 4-High. As a consequence, the combined proportion of very poor and poor rated tests also increased strongly from 8%

to 67% (Fig. 3a), while the proportion of tests rated as good decreased accordingly (68% to 10%). These patterns were10

also confirmed when exploring the correlation between the RB stability class and danger level (Spearman rank-order

correlation; ρ = 0.4, p < 0.001).

The proportion poor rated ECT increased from 11% at 1-Low to 28% at 3-Considerable, while the proportion of the two

most unfavorable stability classes combined rose from 19% to 44%. At 4-High only the combined proportion of the two

most unfavorable classes showed this increasing trend (61%, Fig. 3b). Again, a positive though weak correlation between15

stability rating and danger level was noted (ECT: ρ = 0.22, p < 0.001). ECTs were conducted more frequently at higher

danger levels in Switzerland than in Norway (e.g. at 3-Considerable: 39% in SWI and 21% in NOR). The ECT stability

class distributions for the two countries are shown in in the Appendix (Fig. A1).

In both countries, very few RB and ECT were observed at 4-High (for instance ECT in NOR N = 6, in SWI N = 7, see also

Fig. A1 in Appendix).20

4.1.2 Simulated stability distributions and frequency classification

As shown in the previous section, the RB stability classes very poor and good correlated better with the four danger levels

than the ECT. For this reason, and because ECT seems not to separate well between very poor and poor stability, in the

following we present results for RB only. The respective analysis for the ECT is shown as a supplement in the Appendix25

(Sect. 1).

To obtain a variety of frequency distributions of point snow instability, we sampled stability tests as described in Sect.

3.2. As outlined there, one important parameter affecting such a sampling approach is the number of tests n drawn in

each sample. We tested n = {10, 25, 50, 100, 200, 1000}. We visually checked the resulting histograms for the proportion

of very poor stability (Figure B1a-f in the Appendix) and visually checked for clusters in a two-dimensional context by30

considering the two extreme classes of the stability range, the proportion of very poor and good tests (Fig. C1).
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Figure 3. Distribution of stability ratings for the stability tests (a) Rutschblock (RB) and (b) ECT for danger levels 1-Low to 4-High. For

the definition of the stability classes refer to Fig. 1 and Sect. 3.1.

The distribution of the proportion of very poor stability was skewed towards lower proportions being more frequent than

higher proportions (Figure B1a-f). Increasing n impacted the number of modes detected in the histograms, with two or

more modes being present when n reached values of about 50. This decrease of variance with increasing n, which leads

to less overlap in samples drawn from different danger levels, is a characteristic of bootstrap sampling. Similar patterns

can be noted in the two-dimensional context (Fig. C1), with clusters not only becoming visually more and more pro-5

nounced with increasing n, but the overlap between danger levels reducing particularly at 3-Considerable and 4-High.

Comparing the bootstrap-sampled distributions with actually observed distributions of stability tests on the same day and

in the same region (N = 41), showed that the distribution obtained using bootstrap-sampling reflected the variation in the

observed distributions reasonably well (Fig. 4). The influence of a low number n of tests drawn in the bootstrap or tests

actually collected in the field, is reflected in the large overlap between danger levels, but also variation within.10

Relevant parameters for the definition of class intervals, as introduced in Sect. 3.3, are the respective median proportion

of very poor stability VPmed and the number of classes k desired. VPmed showed a minor decrease with increasing reso-

lution of the test statistic defined by n. It decreased from VPmed = 0.1 (n = 10) to VPmed = 0.08 (n ≥ 25). The initial (lowest)

class width a, which decreased with k, was less than 0.03. Similarly, the factor b, scaling the increase in interval-width

from one class to the next, decreased (b = {5.0, 3.4, 2.6}).15
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Table 2. Frequency intervals, derived from the distribution of very poor RB stability. The respective upper interval limits, as well as the

most and second most frequent danger level the samples were drawn from (D(1st), D(2nd), respectively) are shown. All values for n =

25. For k = 4 classes, the terms used later in the manuscript are shown.

classes k upper limit D(1st) D(2nd) term

3 0.031 1 2

0.159 2 3

1 4 3

4 0.018 1 2 none or nearly none

0.062 1 2 a few

0.21 3 2 several

1 4 3 many

5 0.013 1 2

0.034 1 2

0.089 2 1

0.237 3 2

1 4 3

The thresholds of the class interval widths therefore depended primarily on k rather than n. The resulting interval bin-

widths for an exemplary value of n = 50 and k = {3, 4, 5} are shown in Table 2. In all cases, an additional class boundary

would exist, generally at values between 0.5 and 0.9. As this class would remain empty most of the time, it is not shown

in Table 2.

The correlation between the frequency class and the danger level was strong (n = 50, ρ > 0.83, p < 0.001). Even with5

n = 10, with a large amount of overlap between classes, the correlation between frequency class and danger level was

significant (RB: ρ > 0.7, p < 0.001) The correlation increased with increasing k and individual classes classified best for

the respective lowest and highest frequency classes.

Using k = 4 and the respective thresholds in Table 2, the median proportion very poor stability observed in each fre-

quency class were 0, 0.04, 0.12, 0.32.10

4.2 Avalanche size

Most avalanches were of size 1 (Fig. 5a), except at 4-High, where a similar proportion of size 1, 2 and 3 avalanches

were reported. The proportion of size 1 avalanches decreased with danger level, while the proportion of size 3 and 4

avalanches was highest at 4-High. Comparing the distributions at 1-Low to 3-Considerable shows that the most frequent15

avalanche size has little discriminating power to differentiate between danger levels. The median avalanche size was size
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Figure 4. Comparison of observed (points, N = 41) and boot-strap sampled distributions (boxes) for the proportion of very poor (a, d),

very poor and poor combined (b, e) and good stability tests (c, f), for two settings of the number n of tests drawn. When 7 to 15 RB

tests were observed on the same day and within the same region, these are shown together with sampling using n = 10. When more

than 16 tests were collected, these are shown together with n = 25. For n = 10 and good stability, the observed distributions were

significantly different than the sampled distributions at 2-Moderate and 3-Considerable (p < 0.05, Wilcoxon rank sum test).
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1 at 1-Low and 2-Moderate, and size 2 at 3-Considerable and 4-High (Fig. 5a).

The size distributions of the reported avalanches differed between the countries: size 1 were proportionally more frequent

in SWI than in NOR (30% vs. 17%), while size 4 avalanches had larger proportions in NOR (NOR 2%, SWI 1%; see also

Fig. E1a, b in the Appendix). Even though the proportion of reported size 1 avalanches decreased with increasing danger

level, size 1 was clearly the most frequently reported size at danger levels 1-Low to 3-Considerable in SWI, and at 1-Low5

in NOR (Fig. E1a, b). In Norway, size 2 avalanches were the most frequent size at 3-Considerable and at 4-High. At

3-Considerable in NOR, and at 4-High in both countries, about one third of the avalanches were size 3 or 4. In SWI,

the distributions were almost identical for natural and for human-triggered avalanches. In NOR, there were proportionally

more human-triggered size 1 avalanches than natural avalanches, for sizes 3 and 4 the opposite was the case.

Considering the size of the largest reported avalanche per day and warning region showed again rather similar size10

distributions at 1-Low and 2-Moderate (Fig. 5b). The median largest avalanche per day and region was size 2 for 1-Low

to 3-Considerable, except at 4-High with size 3. However, the proportion of days when size 1 avalanches were the largest

observed avalanche decreased considerably with increasing danger level, while the proportion of days with at least one

size 3 or size 4 avalanche increased monotonically. At 4-High, more than 75% of the days had at least one avalanche of

size 3 or 4 recorded. This proportion was higher in SWI (78%; Fig. E1d) than in NOR (59%; Fig. E1c).15

The correlation between the size of the avalanche and the danger level was weaker for the median size per day and

warning region (ρ= 0.15, p < 0.001) than for the largest size (ρ= 0.25, p < 0.001).

The number of reported avalanches per day and warning region increased with danger level from 2.5, 4, 5 to 8 for 1-Low

to 4-High, respectively. It is of note that we did not explore days with no avalanches as we were interested in the size of

avalanches, not their frequency. The frequency component is addressed using the frequency of locations with very poor20

stability as a proxy.

4.3 Combining snow stability, its frequency and avalanche size

Combining the snow stability class, its frequency and avalanche size considers all three key factors characterizing the

avalanche danger level. We explored a data set consisting of the Swiss RB and avalanche data only:

– The number of frequency classes was set to k = 4 with B = 2,500 repetitions for each danger level. For this example,25

we selected the largest n with a uni-modal histogram (n = 25).

– We classified the proportion of very poor stability using the thresholds and the four terms (none or nearly none, a

few, several and many ) for the 4 classes (Tab. 2).

– Each sample was complemented with an avalanche size, drawn from the distribution of the largest avalanche size

per day and warning region, for the respective danger level (Fig. 5b).30

The resulting simulated data set contained the following information: danger level, frequency class describing occurrence

of very poor stability, largest avalanche size. These data looked like the following, here for 1-Low:
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Figure 5. Size distribution of dry-snow avalanches, which released naturally or were human-triggered for danger levels 1-Low to 4-

High, showing (a) all avalanches and (b) the largest reported avalanche per day and warning region. Note, proportions reflect the

combined number of avalanches (more avalanches in SWI than in NOR).

Sample 1: 1-Low, a few, avalanche size 1

Sample 2: 1-Low, none or nearly none, avalanche size 2

Sample 3: 1-Low, a few, avalanche size 1

. . .

Sample B: 1-Low - none or nearly none - avalanche size 15

Tab. 3 summarizes the simulated data set. The most frequent combinations of the frequency class and avalanche size for

each danger level were:

– 1-Low: None or nearly none locations with very poor stability (53%) exist. The largest avalanches are size 2 (48%).

– 2-Moderate: A few locations with very poor stability (37%) are present. However, none or nearly none or several10

locations are of almost similar frequency (32-31%). The typical largest avalanche is of size 2 (50%).
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Table 3. Table showing the combination of the frequency class of very poor snow stability and the largest avalanche size for the four

danger levels. Frequencies are rounded to the full per cent value. "–" indicates that these combinations did not exist.

1-Low 2-Moderate 3-Considerable 4-High

size none* few several many none* few several many none* few several many none* few several many

1 17 10 5 – 8 9 7 0 0 2 12 2 – 0 0 1

2 25 16 7 – 16 19 15 0 1 3 30 5 – 0 3 18

3 11 8 3 – 8 9 9 0 1 3 30 6 – 0 6 37

4 – – – – 0 0 0 0 0 0 3 1 – 0 5 30

* - none or nearly none

simulation setting: Rutschblock, avalanches (SWI), n = 25, k = 4, B = 2,500 per danger level

– 3-Considerable: Several locations with very poor stability (75%) exist. The typical largest avalanches are sizes 2 or

3 (79%).

– 4-High: Many locations with very poor stability (86%) exist. The typical largest avalanche is of size 3 (43%).

Tab. 4 summarizes the simulated stability class - frequency class combinations for all stability classes, and the respective

most frequent and second most frequent danger level. The frequency class describing very poor stability was closely5

linked to one or two danger levels, which reflects Tab. 3. Poor stability as the most unstable stability class (when none or

nearly none very poor existed), was generally associated with 2-Moderate or 1-Low. If both very poor and poor stability

fell into the category none or nearly none, the resulting danger level was mostly 1-Low. The actual danger level distribu-

tions, summarized in Tab. 4, are shown in the Appendix (Fig. G1).

10

Finally, we present a data-driven look-up table to assess avalanche danger (Fig. 6) using the simulations presented

before. We used a step-wise approach, and two matrices as proposed by Müller et al. (2016) in the so-called Avalanche

Danger Assessment Matrix (ADAM). In a first step, the most unfavorable snowpack stability class is combined with

its frequency (Fig. 6, left matrix, which we refer to as stability matrix). The resulting most unfavorable stability class -

frequency class combination, which has a frequency greater than none or nearly none (>1.8%, Tab. 2), is retained.15

Cell labels (letters A to E) shown in the stability matrix correspond to similar danger level distributions related to this

most unfavorable stability class - frequency class combination according to Table 4. The simulated RB stability class

distributions behind the cells A-E are shown in Figure 7. In a second step, the most appropriate cell describing stability

and its frequency (letter in the stability matrix) is combined with avalanche size (Fig. 6, right matrix, which we refer to as

danger matrix). The danger matrix displays the most frequent danger level (bold) and the second most frequent danger20

level (if present more than 30%: no brackets, if present between 15 and 30%: in brackets) characterizing this combination.

Again, to illustrate the actual danger level distributions behind this matrix, Figure 8 summarizes the simulated data.
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none* few several many 1 2 3 4

very poor ** D B A A 3 -4 4 (-3) 4 4

poor ** E D C B 3 (-2/-1) 3 (-2) 3 (-2) 4 -3

fair  - - E E C 2 (-3) 2 -3 3 -2  - 

good  - -  - - D 1 -2 2 -1 2 -1 3 (-2)
* none or nearly none E 1 1 (-2) 1 (-2)  - 

 -3:    >30%

(-3):  15-30%

C cell contains less than 1% of the data

**  if none, refer to next higher stability class

- no data

stability matrix
frequency

danger matrix
largest avalanche size
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Figure 6. Data-driven look-up table for avalanche danger assessment (similar to the structure proposed by Müller et al. (2016)). Refer

to text for details.
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Figure 7. Mean simulated RB stability classes behind the stability matrix in Figure 6. Letters describe cells with the corresponding

most frequent and second most frequent danger level (Tab. 4 and Fig. G1).
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Table 4. Summary of the simulated RB stability and frequency class combinations, and the respective most frequent danger level D(1st)

and the second most frequent danger level D(2nd). Combinations of stability and frequency classes resulting in the same D(1st) and

D(2nd) are indicated by the same letters in the group. Letters are ordered according to rank-order of D(1st) and D(2nd). If a frequency

class is none or nearly none, the next higher stability class should be considered. The data behind this summary table is shown in Fig.

G1 in the Appendix.

stability frequency class D(1st) D(2nd) group

very poor many 4 3 A

several 3 2 B

few 2 1 D

none* check poor stability

poor many 2 3 C

several 2 1 D

few 1 2 E

none* check fair stability

fair many 1 2 E

several 1 – F

* - none or nearly none

All values for RB, n = 25, k = 4, B = 2,500 per danger level

5 Discussion

In the following, we discuss our findings in the light of potential uncertainties linked to the data (Sect. 5.1) and methods

selected (Sect. 5.2). Furthermore, we compare the results to currently used definitions, guidelines and decision aids used

in regional avalanche forecasting (Sect. 5.3).

5.1 Data5

We relied on observational data recorded in the context of operational avalanche forecasting. This means that differences

in the quality of single observations are possible. For instance, variations in both the estimation of avalanche size (Moner

et al., 2013) as well as in locally assessing the avalanche danger level (Techel and Schweizer, 2017) have been noted.

Furthermore, observations of avalanche activity often have a temporal uncertainty of a day or more, especially in situa-

tions with prolonged storms and poor visibility that often accompany a higher danger level. We addressed these issues10

by filtering the most extreme 2.5% of the avalanche observations for each danger level.

Completeness of observations is another issue. Avalanche recordings are generally incomplete, in the sense that not all

avalanches within an area are recorded as well as that single observations may lack information, e.g. on size. However,

the size distributions (Fig. 5) reflect that smaller avalanches are more frequent, which was also observed in previous
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Figure 8. Distribution of danger levels for combinations of the typical largest avalanche size and the cells obtained before in the stability

matrix (A-E, Fig. 6 left). The most frequent and second most frequent danger levels in each cell - avalanche size combination are shown

in the danger matrix in the right part of Fig. 6.

studies where other recording systems were applied such as recording of avalanches by snow safety staff and the public

(Logan and Greene, 2018), manual mapping of avalanches (Hendrikx et al., 2005; Schweizer et al., 2020) or satellite-

detection of avalanches (Eckerstorfer et al., 2017; Bühler et al., 2019). Still, smaller avalanches may be underrepresented

compared to larger avalanches - as was the case for instance for size 1 avalanches in NOR (Fig. E1a). This underre-

porting may depend on the relevance to an observer, but also on the ease of recording or limitations set by the recording5

of numerous smaller avalanches. As we did not primarily use the number of avalanches, but focused on the largest

avalanche per day and warning region, we expect this limitation to be less relevant.

Stability tests conducted by specifically trained observers are often performed at locations, where the snowpack is ex-

pected to be weak, though in an environment where spatial variability of the mountain snowpack can be high (e.g.

Schweizer et al., 2008a). Additionally, in most cases just one stability test was performed by an observer, not permitting10
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us to judge whether this test was representative for the conditions of the day. However, the overall distributions of the

stability test results, regardless whether RB or ECT were considered (Fig. 3), highlight the increase of locations with low

snow stability at higher danger levels.

To address potential bias in observations linked to a specific warning service (e.g. Techel et al., 2018), we used data from

two different warning services (NOR, SWI). This brought additional challenges, like a different structure or content of the5

observational data, which required us to make further assumption (e.g. for counting the number of avalanches reported

in forms when several avalanches were reported together in Norway). The stability distributions of the ECT (Fig. A1) or

the largest avalanche size per day and warning region (Fig. E1) showed similar overall patterns across countries, with

increasing frequencies of very poor stability and increasing avalanche size with increasing danger level.

At 4-High, stability test data were limited, as these situations are not only rare and temporally often short-lived, but also10

since backcountry travel in avalanche terrain is dangerous and therefore not recommended. As a consequence, not only

considerably fewer field observations were made, but these were also dug on less steep slopes at lower elevation, which

may potentially underestimate snow instability.

Finally, stability test results, avalanche observations and local danger level assessment are generally not independent

from each other, as often the same observer provided all this information. However, as shown by Bakermans et al. (2010),15

stability test results – compared to other observations - have relatively little influence on a local danger level estimate,

while numerous natural or artificially triggered avalanches are a clear indication for a higher danger level and may thus

raise the quality of the local assessment.

5.2 Methods20

5.2.1 Stability classification of RB and ECT

We relied on existing RB and ECT classifications (RB: Schweizer and Wiesinger (2001); Schweizer (2007a); ECT: Techel.

et al. (in prep.), Fig. 1). While the RB classification scheme is well-established in the operational assessment of snow

profiles in the Swiss avalanche warning service, the classification of ECT into four stability classes has only recently

been proposed by Techel. et al. (in prep.). They showed that for a large data set of pairs of ECT and RB performed in25

the same snow pit, both classifications provided good correlations to slope stability. However, the most favorable and the

most unfavorable RB stability classes captured slope stability better than the respective ECT classes, indicating a lower

agreement between slope stability and ECT results compared to the RB. This was our argument for not fully aligning the

four RB and ECT stability classes and is supported by our findings: The RB stability class distributions changed more

pronounced from 1-Low (68% good stability, 2% very poor ) to 4-High (10% good, 38% very poor ) than the most favorable30

and unfavorable ECT stability classes (1-Low: 60% good stability, 8% poor, 4-High: 15% good, 23% poor ).
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5.2.2 Simulation of stability distributions

We could not rely on a large number of stability distributions observed on the same day in the same region, which is

a general problem in avalanche forecasting. We therefore generated stability distributions using re-sampling methods

(Sect. 3.2) and by selecting sampling settings which lead to considerably overlapping distributions (Fig. 4). We argue that

some overlap in stability distributions would characterize the large variability of avalanche conditions. However, which n5

captures the variation best, we do not know. We suspect that a combination of (labour-intensive) field measurements

combined with spatial modeling in a large variety of avalanche conditions will be necessary to shed some light on this

question (e.g. Reuter et al., 2016, for a small basin in Switzerland). Alternatively, spatial modeling of the snowpack, pro-

vided that a robust stability parameter can be simulated, would be required.

Repeated sampling from small data sets may underestimate the uncertainty associated with a metric, but more impor-10

tantly, the question must be raised, whether the sample reflects the population well. While at 1-Low to 3-Considerable,

we sampled from between 700 and 2800 RB or ECT tests per danger level, at 4-High the respective number of observa-

tions was very small (RB: N = 21, ECT: N = 13). Hence, both the data shown in Fig. 3 as well as the sampled stability

distributions for this danger level are more uncertain than for the other danger levels. While the combined number of

locations with very poor and poor stability increased, and those with good stability decreased at 4-High (Fig. 3), judging15

whether the observed tests reflect the population well is difficult. For instance, when exploring the very small ECT data

sets for the two countries individually (NOR: N = 6, SWI: N = 7; Fig. A1), the uncertainties associated with very small data

sets are highlighted. Unfortunately, we are not aware of other studies, which have explored the snow stability distribution

in a region at 4-High based on many tests, and therefore have no comparison. Even on 7 Feb 2003, one of the days

of the verification campaign in the region of Davos/SWI (Schweizer et al., 2003), the forecast danger level 4-High was20

only «verified» to be between 3-Considerable and 4-High (Schweizer, 2007b). On this day, 14 Rutschblock tests were

observed. 36% of these were either very poor or poor, thus being close to the average values noted for 3-Considerable

(Fig. 3a). It is of note that these data was not considered in our analysis, as we analyzed only stability data when only

one specific danger level was locally estimated.

Comparing the distributions of our snow stability classes with the characteristic stability distributions obtained during the25

verification campaign in Switzerland in 2002 and 2003, some differences can be noted (Swiss RB data): For instance,

the proportion of very poor and poor combined was at 2-Moderate about 15% and at 3-Considerable about 40%, which

is lower than Schweizer et al. (2003)’s findings (20-25% and about 50%, respectively). At 1-Low, about 70% of the RB

tests were classified as good, while Schweizer et al. (2003) noted about 90% of the profiles to have good or very good

stability. This suggests a smaller spread in the distribution of our automatically assigned stability classes, compared to30

the manual classification approach according to Schweizer and Wiesinger (2001).
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5.2.3 Classification of snow stability frequency distributions

In addition to simulating snow stability distributions using a re-sampling approach, we attempted for the first time a data-

driven classification of the proportion of very poor stability tests. Our approach shows that the number n drawn for each

bootstrap has little influence on class interval definitions, as long as the resolution of the test statistic is sufficiently high.

Class thresholds are primarily defined by the central tendency of the distribution, in our case the median proportion of5

very poor stability tests VPmed, and by the number of classes preferred k. In the case of a low resolution of the test

statistic the class interval widths should be scaled according to the number of distinct measurements (Evans, 1977). In

other words, with n = 10 and b = 2, class interval widths would be [0], [0.1, 0.2], [0.3, 0.4, 0.5, 0.6], . . .

Assigning a class to the proportion of very poor stability, however, was affected by n due to the fact that n influences both

the resolution of the statistic and the variance, while the overall class assignment was less dependent on n. This means10

that conceptually we can think in frequency classes, as long as class interval boundaries are scaled according to the data

used. Furthermore, the simulated stability distributions indicate that the focus is on optimizing class definitions to values

between 0 and 40% when relying on stability tests, rather than the entire potential parameter space (0-100%).

The preferred number of classes k cannot be defined and may depend on a number of factors. We suggest that defining

k should be guided by keeping classes as distinguishable as possible - for instance by addressing the frequently occur-15

ring low proportions of very poor stability on one side and the rarely observed large proportions of very poor stability

on the other side, and potentially a class covering the in-between. Furthermore, these terms must be unambiguously

understandable to the user, regardless of language.

5.3 Data interpretation20

5.3.1 Snowpack stability and its frequency

We showed an increasing number of locations with very poor snow stability with increasing danger level, which is in

line with previous studies exploring point snow stability within a region or small basin (Schweizer et al., 2003; Reuter

et al., 2016) or the number of natural and human-triggered avalanches within a region (e.g Schweizer et al., 2020). This

correlation was generally strong, and even when using a sampling setting leading to large variation and overlap (n =25

10) and a small number of classes k, the correlation between the frequency class describing very poor stability and the

danger level was still moderate (Sect. 4.1.2).

We explored snowpack stability using RB and ECT, which describe the stability at a specific point. However, within a slope

or a region, point snow stability is variable (e.g. Birkeland, 2001; Schweizer et al., 2008a). This can be expressed by the

frequency a certain stability class exists, and by additionally describing the locations more specifically. When describing30

the avalanche danger level in a region, snowpack stability and its frequency distribution are therefore inseparable. We

suggest that primarily the frequency of the lowest stability class is relevant for the assignment of a danger level, as this

stability class combined with its frequency describes the minimal trigger needed to release an avalanche and how frequent
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these most unstable locations exist within a region. The combination of stability class and its frequency distribution will

also define which aspects and elevations should be described with the same danger level. Furthermore, the specific

description of triggering locations, for instance at treeline or in extremely steep terrain, may provide an indication where

in the terrain these locations may exist more frequently within its frequency class. Even though different terms are used,

both the EAWS-Matrix (?) and the CMAH (Statham et al., 2018a) first combine snowpack stability and its frequency5

distribution, before avalanche size is considered. The respective terms which were used are the ’load’ (trigger) and the

’distribution of hazardous sites’ in the EAWS-Matrix and the ’sensitivity to triggers’ and ’spatial distribution’ leading to the

’likelihood of avalanches’ in the CMAH.

We explored primarily the frequency of the stability class very poor, which is most related to actual triggering points.

However, as several studies have shown, even when stability tests suggested instability, often only some of the slopes10

were in fact unstable and released as an avalanche (e.g. Moner et al., 2008; Techel. et al., in prep.). Thus, depending

on the data used to define very poor stability, for instance whether stability tests are used or natural avalanches, an

adjustment of class intervals may be necessary for it to capture the frequency of locations where natural avalanches may

initiate or where human-triggered avalanches are possible.

5.3.2 Avalanche size15

The most frequent avalanche size had little discriminating power, with the typical size being of size 1 or size 2, regardless

of danger level. This finding is similar to other studies (Harvey, 2002; Logan and Greene, 2018; Schweizer et al., 2020).

All three studies showed that the typical avalanche size did not increase with danger level, except at 4-High in the study

by Logan and Greene (2018).

We showed that considering the largest avalanche per day resulted in a slightly better discrimination between danger20

levels. This finding is also supported by Schweizer et al. (2020), with the size of the largest avalanche being mostly of

size 4 at 4-High. Furthermore, the typical largest expected avalanche is highly relevant for risk assessment and mitigation.

For danger level 5-Very High, for which we had no data, other studies have shown a further shift towards size 4

avalanches. Schweizer et al. (2020) showed that at 5-Very High size 4 avalanches were 15 times more frequent than

at 3-Considerable and five times more frequent compared to 4-High. In two extraordinary avalanche situations in January25

2018 and January 2019, when danger level 5-Very High was verified for parts of the Swiss Alps, avalanches recorded

using satellite data showed that often ten or more size 4 avalanches and/or one size 5 avalanche was observed per 100

km2 (Bühler et al., 2019; Zweifel et al., 2019).

5.3.3 Combining snow stability, its frequency and avalanche size30

In Section 4.3 we presented a data-driven look-up table to assess avalanche danger (Fig. 6). As can be seen in this

table, the combination of snow stability and its frequency that best matches an avalanche situation (A to E), is highly

relevant for danger level assessment. In general, avalanche size only has a rather minor influence on the danger level,
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once the cell describing stability has been fixed. This is in contrast to the original avalanche danger level assessment

matrix (ADAM, Müller et al., 2016) that proposed that an increase in either the frequency class or the avalanche size, or

a decrease in snow stability, should lead to an increase in danger level by one level. Clearly, the presented data-driven

look-up table highlights that a greater focus must be placed on snow stability and its frequency distribution, compared

to avalanche size, when assessing avalanche hazard. This was also shown by Clark and Haegeli (2018), who explored5

the combination of descriptive terms describing the three factors in the data behind the avalanche forecasts in Canada

and their relation to the published danger level and avalanche problem. They showed that the ’likelihood of avalanches’,

which compares to our stability matrix (Fig. 6), also had a greater impact on the resulting danger level than avalanche

size, even though avalanche size ≤1.5 (considered harmless to people) was often a first split in a decision tree model.

Hence, despite using different approaches, partially different terminology and slightly different avalanche danger scales10

in Europe and North America, the relative importance of the three key contributing factors and the distributions of the

danger levels are similar.

Our approach can only provide general distributions observed under dry-snow conditions. The look-up table presented

here should therefore primarily be seen as a tool stimulating not only the discussion of specific situations but also when

attempting to improve the definitions underlying the categorical descriptions of the danger levels.15

6 Conclusions

We explored observational data from two different countries relating to the three key factors describing avalanche hazard,

snowpack stability, its frequency distribution and avalanche size. We simulated stability distributions and defined classes

summarizing the frequency of potential avalanche triggering locations.

Our findings suggest that the three key factors did not distinguish equally prominently between the danger levels:20

– The proportion of very poor or poor stability test results increased from one danger level to the next higher (Fig-

ures 3 and 4). Considering very poor snowpack stability and its frequency alone, already distinguished rather well

between danger levels 2-Moderate, 3-Considerable and 4-High (Tab. 4).

– Considering the largest observed avalanche size per day and warning region was most relevant to distinguish

between 3-Considerable and 4-High (Fig. 5 and Tab. 3). For other situations, the largest avalanche size - used by25

itself - had comparably little discriminating power at 1-Low to 3-Considerable (Fig. 5).

In summary, the frequency of the most unfavorable snowpack stability class is the dominating discriminator. At higher

danger levels the occurrence of size 4 avalanches discriminates danger level 3-Considerable from 4-High. We further

suppose that the occurrence of size 5 avalanches discriminates between 4-High and 5-Very High without an additional

increase in the spatial distribution of very poor stability. This shift in importance between factors is currently poorly repre-30

sented in existing decision aids like the EAWS-Matrix or ADAM (Müller et al., 2016), but also in the European Avalanche

Danger Scale.
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We hope that our data-driven perspective on avalanche hazard will allow a review of key definitions in avalanche fore-

casting, like the avalanche danger scale.
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1 Appendix: ECT - simulated snow stability distributions and frequency classification

As a supplement to the analysis shown for the RB in the main part of the paper, in the following we show the key results

for the ECT. As for the RB, we tested n = {10, 25, 50, 100, 200, 1000}. Besides visual inspection, we additionally tested

the poor stability distributions for multi-modality using the modetest (Ameijeiras-Alonso et al., 2018).

In contrast to the RB class very poor stability, the distribution of the proportion of poor ECT stability was less skewed5

towards lower proportions of poor stability. Increasing n impacted the number of modes detected in the histograms, with

two or more modes being present when n reached values of about 100 (Fig. B1g-l). Exploring the bootstrapped-sampled

distributions for the most extreme ECT stability classes poor and good (Fig. D1) generally showed similar results as for

the RB (Fig. C1). However, while the distributions for the RB also exhibited a logical pattern at 4-High (Fig. C1f), despite

being drawn from a small population (drawn from N = 21), the same cannot be noted for the ECT (Fig. D1f, drawn from N10

= 13).

Comparing the sampled distributions with actually observed distributions of stability tests on the same day and in the

same region (N = 31), showed that the distributions obtained using bootstrap-sampling reflected the variation in the ob-

served distributions not always well (Fig. F1). Visually comparing the results for n = 10, where there was still a reasonably

large number of days with 7 to 15 ECT (N = 5, 6, 9), implies that the bootstrap-sampled distributions captured the ob-15

served distributions poorly. However, a significant deviation between sampled and observed distributions was only noted

for good stability at 3-Considerably (p = 0.02, Fig. F1c). It must be noted, however, that sample sizes are small impacting

both the likelihood to obtain unusual data sets in the field as well as for p-values not being the optimal indicator to detect

significant differences.
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Figure A1. Bar plots showing distribution of stability ratings for ECT for (a) Norway and (b) Switzerland. Note the very small number of

tests at 4-High. The ECT classification scheme is shown in Fig. 1b.

2 Appendix: Additional figures and tables
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Figure B1. Simulated proportions of very poor (RB) or poor (ECT) stability for different number of samples n drawn in each of the

bootstraps for (a-f) Rutschblock and (g-l) ECT. The more samples drawn, the more the data becomes multi-modal and clustered around

the means of each danger level. This is indicated by the p-value (modetest, median p-value of 10 repetitions, Ameijeiras-Alonso et al.,

2018). See also Fig.s C1 and D1 for two-dimensional plots.
31

https://doi.org/10.5194/tc-2020-42
Preprint. Discussion started: 21 February 2020
c© Author(s) 2020. CC BY 4.0 License.



● ●

●

●

●●●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6

pr
op

or
tio

n 
go

od

a) RB, n = 10

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●
●

●
●
●

●

●

●

●

●
●
●

●

●●
●

●●
●
●

●●

●

●

●

●

●
●
●
●
●

●
●
●
●
●
●

●
●

●

●

●

●

●
●
●
●
●
●
●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●
●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●
●

●

●
●
●

●
●

●
●●

●

●
●

●

●
●
●●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●

● ●
●

●
●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●
●
●

●
●

●
●

●
●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●
●●

●

●
●
●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●
●
●
●

●

●
●
●
●●

●

●
●
●

●
●
●
●

●
●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●

●

●
●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●●

●
●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●
●

●
●
●
●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●
●

●
●
●

● ●

●●
●

●

●
●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●
●

●
●

●●
●

●●

●

●

●

●

●●

●

●
●

●
●

●●●

●

●●

●●

●●

●●

●

●

●●●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●
●

●●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●●●

●●

●

●
●

●

●
●●

●

●

●

●

●●

●
●

●

●

●●
●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●
●

●●

●
●

●

●
●
●
●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●●

● ●

●

●
●

● ●

●●
● ●

●●●●

● ●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●●
● ●

●

●

●

● ●
●

●

●

●

●

●

● ●

●●

●

●
●●

●

●

●

●

●
●
●

●

●●

●
●

●

●
●

●
●

●

●

●
●

●

●
●
●

●

●

●
●

●
●●●●

●

●
●
●

●

●

●

●●

●
●

●

●●

●

●

●

●
● ●

●
●
●

●
●

●●
●●

●
●●

●
●

●
●

●

●●

●●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●●

●
●

● ●

●

●
●

●

●
●
●

●
●
●

●

●

●●

●●●
●

●

●●

●
●

●
●●●

●

●

●

●
●
●

●

●

●●●
●

●●
● ●

●●●
●

●●

●●

●

●

●

●

●●

●
●

● ●● ●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●●

●●

●

●

●
●
●
●●

●●
●●●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●
●●●

●

●

●

●
●

●
●
●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●●
●

●

●

●

●

●

●

●●
●●

●●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●

●
●

●●

●●
●
●
●
●●
●
●●
●●

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6
proportion very poor

pr
op

or
tio

n 
go

od

d) RB, n = 100
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e) RB, n = 200
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Figure C1. Simulated proportions of very poor (x-axis) and good RB-stability (y-axis), for different number of samples n drawn in each

of the bootstraps (a-f). The colour represents the most frequent danger level for the respective very poor - good combination. The

more samples are drawn, the more the data becomes clustered around the means of each danger level.
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Figure D1. Simulated proportions of poor (x-axis) and good ECT-stability (y-axis), for different number of samples n drawn in each

of the bootstraps (a-f). The colour represents the most frequent danger level for the respective poor - good combination. The more

samples are drawn, the more the data becomes clustered around the means of each danger level.

33

https://doi.org/10.5194/tc-2020-42
Preprint. Discussion started: 21 February 2020
c© Author(s) 2020. CC BY 4.0 License.



49%
42%

9%
1%

N=418

40% 41%

15%
3%

N=2788

25%

43%

27%

5%

N=2295

10%

56%

26%

8%

N=254

1−Low
2−M

oderate
3−C

onsiderable
4−H

igh

1 2 3 4

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

Avalanche size

P
ro

po
rt

io
n 

in
 %

a) all avalanches (NOR)

28%

7%
0%

N=396

54%

35%

11%
0%

N=7373

50%

35%

14%

1%

N=22520

32% 29% 28%

11%

N=3027

1−Low
2−M

oderate
3−C

onsiderable
4−H

igh

1 2 3 4

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

Avalanche size

P
ro

po
rt

io
n 

in
 %

a) all avalanches

43% 47%

10%
0%

N=129

28%

47%

23%

3%

N=860

20%

40%
34%

6%

N=585

14%

27%

43%

16%

N=44

1−Low
2−M

oderate
3−C

onsiderable
4−H

igh

1 2 3 4

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

Avalanche size

P
ro

po
rt

io
n 

in
 %

c) largest avalanche (NOR)*

33%

47%

20%

0%

N=138

25%

47%

28%

0%

N=1789

16%

40% 40%

4%

N=4297

1%

20%

43%
35%

N=386

1−Low
2−M

oderate
3−C

onsiderable
4−H

igh

1 2 3 4

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

Avalanche size

P
ro

po
rt

io
n 

in
 %

d) largest avalanche (SWI)

Figure E1. Bar plots showing the size distribution of all avalanches (upper row) and the largest avalanche *per day and warning region

(lower row), for Norway (left column) and Switzerland (right column).
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Figure F1. Comparison of observed (points, N = 31) and bootstrap-sampled ECT distributions (boxes) for the proportion of poor (a, b)

and good stability tests (c, d), for two settings of the number n of tests drawn. Observations with 7 to 15 individual tests on the same

day and within the same region are shown together with sampling using n = 10. When more than 16 tests were collected, these are

shown together with n = 25.
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Figure G1. Distribution of danger levels for snowpack stability and frequency class combinations. Combinations with the same most

frequent and second most frequent danger level are labelled with the same letter (A to E). If a lower stability class resulted in frequency

class none, for these cases the distributions for the next higher stability class is shown in the respective row below (i.e. the 2146 cases

of none very poor are shown in the row poor ). The letter which comes first in the alphabet is retained and used as a reference for the

following matrix (Fig. 8). This matrix corresponds to the stability matrix in Fig. 6.
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