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Abstract. The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season.

In this context, fractional snow-covered area (fSCA) is therefore an essential model parameter characterizing how much of

the ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-

independent fSCA parameterization. For the seasonal implementation we track snow depth (HS) and snow water equiva-

lent (SWE) and account for several alternating accumulation-ablation phases. Besides tracking HS and SWE, the seasonal5

fSCA algorithm only requires computing subgrid terrain parameters from a fine-scale summer digital elevation model. We

implemented the new algorithm in a multilayer energy balance snow cover model. For a spatiotemporal evaluation of modelled

fSCA we compiled three independent fSCA data sets. Evaluating modelled 1 km fSCA seasonally with fSCA derived

from airborne-acquired fine-scale HS data, satellite- as well as terrestrial camera-derived fSCA showed overall normalized

root mean square errors of respectively 9 %, 20 % and 22 %, and represented seasonal trends well. The overall good model10

performance suggests that the seasonal fSCA algorithm can be applied in other geographic regions by any snow model appli-

cation.

1 Introduction

In mountainous terrain, the large spatial variability of the snow cover is driven by the interaction of meteorological variables

with the underlying topography. Over the course of a winter season the dominating topographic interactions with wind, precip-15

itation and radiation vary considerably, which generate the characteristic seasonal dynamics of spatial snow depth variability

(e.g. Luce et al., 1999). This spatial variability or how much of the ground is actually covered by snow is typically characterized

by the fractional snow-covered area (fSCA). fSCA is a crucial parameter in model applications such as weather forecasts

(e.g. Douville et al., 1995; Doms et al., 2011), hydrological modelling (e.g. Luce et al., 1999; Thirel et al., 2013; Magnusson

et al., 2014; Griessinger et al., 2016, 2019) or avalanche forecasting (Bellaire and Jamieson, 2013; Horton and Jamieson, 2016;20

Vionnet et al., 2014) and is also used for climate scenarios (e.g. Roesch et al., 2001; Mudryk et al., 2020).
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fSCA can be retrieved from various satellite sensor images such as from Moderate Resolution Imaging Spectroradiometer

(MODIS) or Sentinel-2 (e.g. Hall et al., 1995; Painter et al., 2009; Drusch et al., 2012; Masson et al., 2018; Gascoin et al.,

2019). However, a temporal and spatial inconsistent coverage due to time gaps between satellite revisits, data delivery and the

frequent presence of clouds requires additional solutions (Parajka and Blöschl, 2006; Gascoin et al., 2015). Though fine-scale25

spatial snow cover models provide spatial snow depth distributions which could be used to derive coarse-scale fSCA, applying

such models to larger regions is generally not feasible which is in part due to computational cost, a lack of detailed input data

and limitations in model structure or parameters. While some of these limitations can be overcome using current snow cover

model advances applying data assimilation routines (e.g. Andreadis and Lettenmaier, 2006; Nagler et al., 2008; Thirel et al.,

2013; Griessinger et al., 2016; Huang et al., 2017; Baba et al., 2018; Griessinger et al., 2019), the inherent uncertainties in input30

or assimilation data still remain. Computationally efficient subgrid fSCA parameterizations accounting for unresolved snow

depth variability, are therefore currently still the method of choice for coarse-scale model systems, such as weather forecast,

land surface and earth system models. Furthermore, fSCA parameterizations are essential when assimilating satellite snow-

covered area data in model systems (e.g. Zaitchik and Rodell, 2009)

Several compact, closed-form fSCA parameterizations were suggested for coarse-scale model applications (e.g. Douville35

et al., 1995; Roesch et al., 2001; Yang et al., 1997; Niu and Yang, 2007; Su et al., 2008; Zaitchik and Rodell, 2009; Swenson and

Lawrence, 2012). Most of these fSCA parameterizations were heuristically developed. Some parameterizations introduced

subgrid terrain parameters (e.g. Douville et al., 1995; Roesch et al., 2001; Swenson and Lawrence, 2012). The tanh-form,

suggested by Yang et al. (1997), was later confirmed by integrating theoretical log-normal snow distributions and fitting the

resulting parametric depletion curves using the spatial snow depth distribution (σHS) in the denominator of fitted fSCA curves40

(Essery and Pomeroy, 2004). Through advances in remote sensing techniques, fine-scale spatial HS data became more readily

available allowing to empirically parameterize σHS in complex topography at peak of winter (PoW) or during accumulation

(Helbig et al., 2015b; Skaugen and Melvold, 2019). By parameterizing σHS using subgrid terrain parameters, Helbig et al.

(2015b) enhanced the tanh-fSCA parameterization of Essery and Pomeroy (2004) by accounting for topographic influence.

Furthermore, Helbig et al. (2020) re-evaluated this empirically derived fSCA parameterization with high-resolution spatially45

distributed snow depth data sets from 7 different geographic regions at PoW. They introduced a scale-dependency in the

dominant scaling variables that improved the empirical fSCA parameterization by making it applicable across spatial scales

≥ 200 m.

Many studies highlighted that the same mean HS in early winter or in late spring can lead to substantially different fSCA

(Luce et al., 1999; Niu and Yang, 2007; Magand et al., 2014), a phenomenon that has led to the introduction of hysteresis50

in some fSCA parameterizations (e.g. Luce et al., 1999). Previously found interannual time-persistent correlations between

topographic parameters and snow depth distributions (e.g. Schirmer et al., 2011; Schirmer and Lehning, 2011; Revuelto et al.,

2014; López-Moreno et al., 2017) suggest indeed that a time-dependent fSCA implementation might be feasible. However,

a seasonal model implementation of a closed form fSCA parameterization also needs to account for alternating snow ac-

cumulation and melt events during the season. Especially at lower elevations, the separation of the depletion curve in only55

one accumulation period followed by a melting period is no longer applicable (e.g. Egli and Jonas, 2009). A seasonal fSCA
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implementation in mountainous regions that accounts for these alternating periods is challenging. While some seasonal fSCA

implementations of varying complexities were previously proposed (e.g. Niu and Yang, 2007; Su et al., 2008; Egli and Jonas,

2009; Swenson and Lawrence, 2012; Nitta et al., 2014; Magnusson et al., 2014; Riboust et al., 2019) a detailed evaluation

of seasonally parameterized fSCA with fSCA derived from high-resolution spatial as well as temporal HS data or snow60

products is currently still missing.

This article presents a seasonal fSCA implementation and its temporal evaluation with high-resolution observation data

in various geographic regions throughout Switzerland. The algorithm is based on the fSCA parameterization for complex

topography proposed by Helbig et al. (2015b, 2020) and applies two different empirical parameterizations for the spatial snow

depth distribution, namely the ones from Egli and Jonas (2009) and Helbig et al. (2020). The seasonal fSCA algorithm65

allows for alternating snow accumulation and melt events during the season by accounting for the history of previous HS

and SWE values. We implemented the algorithm in a multilayer energy balance snow cover model (modified JIM, the JULES

investigation model by Essery et al. (2013)) which we ran with COSMO-1 (operated by MeteoSwiss) reanalysis data, measured

HS and RhiresD precipitation data (MeteoSwiss). The seasonal performance of this algorithm was evaluated using daily

modelled 1 km fSCA in Switzerland. For the evaluation we compiled fSCA data sets from terrestrial cameras, airborne70

surveys and satellite imagery. With this we were able to evaluate modelled fSCA using independent HS data sets in high

spatial resolution and snow products in high temporal resolution.

2 Fractional snow-covered area algorithm

The fSCA algorithm consists of four parts (cf. upper large box in Figure 1). The first part describes the closed form fSCA

parameterization using snow depth HS and standard deviation of subgrid snow depth σHS of a grid cell. The second and third75

part describe two different σHS parameterizations, one derived for mountainous terrain developed on PoW data (σtopo
HS ) and

one for flat terrain developed on accumulation data (σflat
HS). These are the inputs to the fSCA function in part one. The fourth

part handles the distinctly different paths between σHS and HS during accumulation and ablation periods, the hysteresis. This

last part thus describes the technical aspects for a seasonal implementation of fSCA, presented in part one, which requires

tracking HS and SWE over the season, deriving extreme values of HS and SWE as well as the two σHS parameterizations80

presented in part two and three.

2.1 fSCA parameterization

We use the fSCA parameterization of Helbig et al. (2015b) derived by integrating a theoretical normal snow depth distribution

at PoW, assuming spatially homogeneous melt and by fitting the resulting depletion curves over a range of coefficients of

variation CV (standard deviation divided by its mean) in snow depth ranging from 0.06 to 1.00:85

fSCA = tanh(1.3
HS

σHS
) . (1)
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Using σHS in Eq. (1) allowed Helbig et al. (2015b) to introduce the close link between spatial snow depth variability and

topography in fSCA.

Eq. (1) uses current HS in the numerator and σHS at seasonal maximum HS in the denominator, which we adapt here for a

seasonal fSCA algorithm as described in Section 2.4. For the seasonal fSCA algorithm we further compute σHS differently90

over flat and steep terrain (σflat
HS , σtopo

HS ) which is described in the following.

2.2 σHS parameterization for mountainous terrain at peak of winter (σtopo
HS)

Helbig et al. (2020) could use the same functional form to empirically describe the spatial snow depth variability σHS at PoW

in mountainous terrain than Helbig et al. (2015b) when using snow data sets from seven different geographic regions and two

continents:95

σtopo
HS = HScµd exp[−(ξ/L)2] (2)

albeit that they introduced scale-dependent parameters c(L) and d(L) in Eq. (2), which enhanced the σHS parameterization

across spatial scales for domain sizes L≥200 m. σtopo
HS (Eq. (2)) was parameterized using spatial mean snow depth and subgrid

summer terrain parameters: a squared slope related parameter µ and a terrain correlation length ξ for each domain size L

(coarse grid cell). Given that the σHS parameterization in Eq. (2) accounts for the impact of topography on σHS , we indicate100

that with ’topo’ (σtopo
HS ). For more details on Eq. (2) we refer to Helbig et al. (2015b, 2020) to keep the focus of this study on

the seasonal fSCA algorithm and its evaluation.

2.3 σHS parameterization for flat terrain during accumulation (σflat
HS)

σtopo
HS was developed for grid cells in mountainous terrain. Here, we present a σHS that can be applied in flat terrain, which we

indicate with ’flat’ (σflat
HS). Egli and Jonas (2009) derived an empirical parameterization for σHS during accumulation by fitting105

mean and standard deviation of 77 flat field HS measurements distributed throughout Switzerland over six consecutive winter

seasons. The resulting parameterization solely uses HS and a constant fit parameter:

σflat
HS = HS0.839 . (3)

2.4 Seasonal fSCA implementation110

For the implementation of our seasonal fSCA algorithm (cf. Eq. 1-3) in any snow cover model, tracking snow information

(i.e. keeping the history) through several alternating accumulation-ablation phases is required. By tracking snow information

we can use current to extreme HS values to derive σHS (Eq. (2) and (3)) and fSCA (Eq. (1)). We search extreme points in

time using SWE to avoid influences of snow settling. Since our fSCA algorithm needs HS as input, the corresponding HS

values of SWE extreme points are applied. In the following we will not specify this anymore but instead only refer to extreme115
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Figure 1. Sketch of the seasonal fSCA algorithm as used for one grid cell.

values of HS (minimum, maximum) or HS differences. A full seasonal fSCA algorithm, i.e. including the tracking of HS

and SWE over the course of the season, is applied per grid cell of a distributed snow cover model.

Over the course of the season we describe the fSCA curve by means of one seasonal fSCA (fSCAseason) and one fSCA

for snowfall events (fSCAnsnow). This is done to ensure that a snowfall may add significantly to fSCA (i.e. fSCAnsnow >

fSCAseason) but, once the new snow has started to melt, fSCA can return to similar fSCA values than before. For computing120

the different fSCA we use Eq. (1) but different HS values (from current to extremes) as well as σHS , i.e. σtopo
HS (Eq. (2)) or

σflat
HS (Eq. (3)) (cf. box in the middle in Figure 1). The complete technical aspects of the derivation of all fSCA including some

pseudocode are given in Appendix 1.

The final fSCA is obtained from taking the maximum of fSCAnsnow and fSCAseason.
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3 Data125

3.1 Modelled fSCA andHS maps

We model the snow cover evolution using the JULES investigation model (JIM). JIM is a multi-model framework of physically

based energy-balance models solving the mass and energy balance for a maximum of three snow layers (Essery, 2013). While

the multi-model framework JIM offers 1701 combinations of various process parameterizations, Magnusson et al. (2015)

selected a specific combination that performed best for snow melt modelling for Switzerland, predicting daily snow mass and130

snowpack runoff for the operational snow hydrology service (OSHD) at WSL Institute of Snow and Avalanche Research SLF.

We ran JIMOSHD in 1 km resolution with hourly meteorological data from the COSMO-1 model (operated by MeteoSwiss) for

Switzerland. We used a reanalysis product of daily observed precipitation (RhiresD) from MeteoSwiss as well as COSMO-1

data. Daily HS measurements from manual observers as well as from a dense network of automatic weather stations (AWS)

were used to correct precipitation data via optimal interpolation (OI) (Magnusson et al., 2014), which is a computational135

efficient data assimilation approach. Using OI in JIMOSHD, Griessinger et al. (2019) obtained improved discharge simulations

in 25 catchments over four hydrological years.

To describe the subgrid snow cover evolution in mountainous terrain, the seasonal fSCA algorithm was implemented in

JIMOSHD. As daily values we use model output generated at 6 am (UTC). In the following, when we refer to modelled fSCA

and HS maps we mean fSCA and HS from JIMOSHD model output.140

We additionally computed the snow cover evolution with JIMOSHD using two simplifications in the seasonal fSCA algorithm

(Figure 1). Both simplifications are used in coarse-scale model applications and allow us here to estimate the relevance of

applying the full seasonal fSCA algorithm. First, we switched off all new snow fSCA updates, i.e. the final fSCA was set

to fSCAseason. Second, we defined a fSCAcurr which only uses current modelled HS in fSCA equation (Eq. (1)), i.e. which

does not require any HS tracking. We indicate these snow cover simulations with JIMseason
OSHD and JIMcurr

OSHD.145

3.2 Evaluation data

3.2.1 ADS fine-scaleHS maps

We used fine-scale spatial HS maps gathered by airborne digital scanning (ADS) with an opto-electronic line scanner on an

airplane. Data were acquired over the Wannengrat and Dischma area near Davos in the eastern Swiss Alps (Bühler et al., 2015).

We used ADS-derived HS maps at three points in time during one winter season, namely during accumulation at 26 January150

(’acc’), at approximate peak of winter at 9 March (’PoW’) and during ablation season at 20 April 2016 (’abl’) (Marty et al.,

2019). We used a summer DEM from ADS to derive the snow-free terrain parameters.

Each ADS data set covers about 150 km2 with 2 m spatial resolution. Compared to terrestrial laser scan (TLS)-derived HS

data of a subset, the 2 m ADS-derived HS maps had a root mean square error (RMSE) of 33 cm and a normalized median

absolute deviation (NMAD) of the residuals (Höhle and Höhle, 2009) of 24 cm (Bühler et al., 2015).155
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3.2.2 ALS fine-scaleHS maps

We used fine-scale spatial HS maps gathered by airborne laser scanning (ALS). The ALS campaign was a Swiss partner

mission of the Airborne Snow Observatory (ASO) (Painter et al., 2016). Lidar setup and processing standards were similar to

those in the ASO campaigns in California. The data was acquired over the Dischma area near Davos in the eastern Swiss Alps

(cf. Figure 3a in Helbig et al., 2020). We used ALS-derived HS maps at three points in time during one winter season, namely160

at approximate time of peak of winter at 20 March (’PoW’) and during early and late-ablation season at 31 March and 17 May

2017 (’abl’). We used a summer DEM from 29 August 2017 to derive the summer terrain parameters.

Each ALS data set covers about 260 km2. The original 3 m resolution was aggregated to 5 m horizontal resolution. A RMSE

of 13 cm and a bias of -5 cm with snow probing was obtained for within forest but outside canopy (i.e. not below a tree) 1 m

ALS-derived HS data from 20 March 2017 (Mazzotti et al., 2019).165

3.2.3 Terrestrial camera images

We used camera images from terrestrial time-lapse photography in the visible band. The camera (Nikon Coolpix 5900 from

2016 to 2018, Canon EOS 400D from 2019 to 2020) was installed at the SLF/WSL in Davos Dorf in the eastern Swiss Alps

(van Herwijnen and Schweizer, 2011; van Herwijnen et al., 2013). Photographs were taken of the Dorfberg in Davos, which is a

large southeast-facing slope with a mean slope angle of about 30◦ (cf. Figure 1 in Helbig et al., 2015a). To obtain fSCA values170

from the camera images, we followed the workflow described by Portenier et al. (2020). We used the algorithm of Salvatori

et al. (2011) to classify pixels in the images as snow or snow free. Though images are taken at regular intervals (between 2 and

15 minutes, depending on the year), we used the image at noon to derive fSCA for that day. We evaluated images from five

winter seasons (2016, 2017, 2018, 2019 and 2020) each time from 1 November until 30 June.

The resulting snow/no snow map of the camera images has a horizontal resolution of 2 m. The field of view (FOV) overlaps175

the most with four 1 x 1 km JIMOSHD grid cells with projected visible fractions between 9 to 40 % in each grid cell. The camera

data set can thus cover roughly about 0.76 km2 per time step.

3.2.4 Sentinel-2 snow products

We used fine-scale snow-covered area maps, which we obtained from the Theia snow collection (Gascoin et al., 2019). The

satellite snow products were generated from Sentinel-2 L2A and L2B images. We used Sentinel-2 snow-covered area maps180

over one winter season starting at 20 December 2017 until 31 August 2018 for Switzerland. We further used Sentinel-2 snow

maps over the Dischma area near Davos close to or at the date of the three days when we had ALS-derived fSCA maps

available (18 and 28 March and 17 May 2017).

The horizontal resolution of the snow product is 20 m. While the spatial coverage of the Sentinel-2 snow-covered area maps

in Switzerland varies every time step Sentinel-2 may cover several thousands of square kilometers per time step. A validation185

of the Theia snow product with snow depth from AWS, through comparison to snow maps with higher spatial resolution as

well as by visual inspection indicated that snow is detected very well though with a tendency to underdetect snow (Gascoin

7

https://doi.org/10.5194/tc-2020-377
Preprint. Discussion started: 5 January 2021
c© Author(s) 2021. CC BY 4.0 License.



0 0.25 0.5 0.75 1

 fSCA

0

0.2

0.4

0.6

0.8

1

n
o

rm
a

liz
e

d
 d

e
n

s
it
y

a

0 1 2 3 4

snow depth  HS [m]

0

0.2

0.4

0.6

0.8

1

n
o

rm
a

liz
e

d
 d

e
n

s
it
y

b

0 1000 2000 3000 4000

elevation  z [m]

0

0.2

0.4

0.6

0.8

1

n
o

rm
a

liz
e

d
 d

e
n

s
it
y

c
ADS

ALS

camera

Sentinel

Figure 2. Probability density functions after preprocessing for all valid 1 km (a) fSCA, (b) HS and (c) elevation z per measurement data

set. All densities were normalized with the maximum in each data set. Colors represent the different measurement platforms as detailed in

Section 3.2.

et al., 2019). The main difficulty of satellite snow products is to avoid false snow detection within clouds. Furthermore, snow

omission errors may occur on steep, shaded slopes when the solar elevation is typically below 20◦.

3.3 Derivation of 1 km fSCA evaluation data190

For preprocessing, we masked out forest, rivers, glaciers or buildings in all fine-scale measurement data sets. Optical snow

products that were obscured by clouds were also neglected. In all fine-scale HS data sets, we neglected HS values that were

lower than zero or above 15 m. We used a HS threshold of zero m to decide whether or not a 2 or 5 m grid cell was snow-

covered. This threshold could not be better adjusted due to a lack of independent spatial observations. This likely led to the

rather narrow fSCA peak of the probability density function (pdf) around one (cf. pink and light blue line in Figure 2).195

We then aggregated all fine-scale snow data as well as the snow products from optical imagery in squared domain sizes L

in regular grids of 1 km aligned with the OSHD model domain. For building the spatial averages, we required at least 70 %

valid data for the fine-scale snow data and at least 50 % valid for the satellite-derived fSCA data in a domain size L of 1 km.

We excluded 1 km domains with spatial mean slope angles larger than 60◦ and spatial mean measured HS lower than 5 cm.

We further neglected 1 km grid cells with forest fractions larger than 10 %, which were derived from 25 m forest cover data.200

Overall, this led to a varying number of available domains in the different data sets (Table 1). For the fine-scale snow data sets

this number ranged from 69 to 157 available valid 1 km domains depending on the point in time with a total of 669 valid 1 km

domains. After the removal of clouds and forest we obtained on average every second day in Switzerland some valid Sentinel-2

data (153 valid days from the 255 days). For the time period from 20 December until 31 August 2018, this resulted in 274’979

valid 1 km domains from a total of 3’147’465 valid OSHD grid cells in Switzerland, i.e. about 9 %. These valid 1 km domains205

cover terrain elevations between 174 m and 4213 m, slope angles between 0° to 52° and all terrain aspects. We used three of

the four grid cells covered by the FOV of the terrestrial camera, since one grid cell had a 1 km forest fraction larger than 10

8

https://doi.org/10.5194/tc-2020-377
Preprint. Discussion started: 5 January 2021
c© Author(s) 2021. CC BY 4.0 License.



Table 1. Details of the 1 km fSCA evaluation data sets after pre-processing.

geographical region remote spatial spatial temporal σfSCA mean fSCA

sensing method resolution coverage coverage

(fine-scale)

[m] [km2] [days]

Wannengrat and Dischma area (eastern CH) ADS 2 232 3 0.05 0.98

Dischma and Engadin area (eastern CH) ALS 3 437 3 0.08 0.96

Davos Dorfberg (eastern CH) Terrestrial camera 2 1’019 340 0.30 0.75

Switzerland Sentinel-2 20 274’979 153 0.46 0.54

%. On average we obtained every fourth day valid camera data (340 valid days from 1211 days). Valid camera-derived fSCA

for five seasons and the three grid cells covered by the FOV resulted in 1’019 valid 1 km grid cells from a total of 3’633 1 km

grid cells for the five seasons and three grid cells, i.e. 28 %. Compared to the total of all valid OSHD grid cells in Switzerland210

for the five seasons, the fraction of valid camera-derived fSCA is however less than 0.01 %. The three grid cells have terrain

elevations of 2077 m, 2168 m and 2367 m and slope angles of 27°, 34° and 39°. The diversity in each of the evaluation data

sets after preprocessing is indicated in Table 1 and is also shown for valid 1 km domains by means of the pdf for fSCA, HS

and terrain elevation z in Figure 2.

3.4 Performance measures215

We evaluate modelled and measured fSCA with the following measures: the root mean square error (RMSE), normalized

root mean square error (NRMSE, normalized by the mean of the measurements), mean absolute error (MAE) and the mean

percentage error (MPE, bias with measured minus modelled and normalized with measurements). We also verify distribution

differences by deriving the two-sample Kolmogorov-Smirnov test (K-S test) statistic valuesD (Yakir, 2013) for the probability

density functions (pdf) and by computing the NRMSE for Quantile-Quantile plots (NRMSEquant, normalized by the mean of220

the measured quantiles) for probabilities with values in [0.1,0.9].

4 Results

We grouped the evaluation results of the seasonal fSCA algorithm in three sections: evaluation with fSCA derived from

fine-scale HS maps, evaluation with fSCA from time-lapse photography and evaluation with fSCA from Sentinel-2 snow

products.225

4.1 Evaluation with fSCA from fine-scaleHS maps

Modelled fSCA compares very well to fSCA derived from all six fine-scale HS data sets. For instance for all evaluated

points in time we obtain a NRMSE of 9 % and a MPE of 1 % (Table 2). Overall best performances are achieved for the
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Table 2. Performance measures are shown for modelled fSCA with (I) fSCA derived from all fine-scale HS maps (combined ADS- and

ALS-derived fSCA) and (II) Sentinel-derived fSCA (only available for ALS dates). Performance measures are shown for ALS-derived

fSCA with Sentinel-derived fSCA (III). Given statistics are NRMSE, RMSE, MPE, MAE, K-S test statistic and NRMSEquant. For all

differences we computed measured minus modelled values respectively Sentinel-derived fSCA minus ALS-derived fSCA for III. The

abbreviations ’acc’, ’PoW’ and ’abl’ indicate the different point in time of the season as given in Section 3.2.

NRMSE RMSE MPE MAE K-S NRMSEquant

[%] [%] [%]

I JIMOSHD vs ADS&ALS

fSCA 8.5 0.08 1.2 0.04 0.27 1.0

fSCAacc 8.0 0.08 -3.6 0.04 0.46 3.2

fSCAPoW 4.9 0.05 0.6 0.02 0.50 0.7

fSCAabl 10.4 0.10 2.4 0.05 0.20 2.6

II JIMOSHD vs Sentinel-2 (at ALS dates)

fSCA 10.1 0.09 -0.5 0.05 0.24 2.9

fSCAPoW 2.8 0.03 2.5 0.03 1 2.7

fSCAabl 10.2 0.09 -0.6 0.05 0.22 2.9

III Sentinel-2 vs ALS

fSCA 10.8 0.10 3.1 0.05 0.10 4.6

fSCAPoW 8.7 0.08 -5.9 0.06 1 7.7

fSCAabl 10.9 0.10 3.4 0.05 0.11 4.8

Figure 3. Modelled fSCA (JIMOSHD) and ADS-derived fSCA in elevation bins for three dates: (a) during accumulation, (b) at approximate

peak of winter (PoW) and (c) during ablation. Two benchmarks are shown where applicable. The red stars were derived using Eq. (1) with

current ADS HS in the numerator and ADS σHS from the PoW measurement in the denominator. The blue stars were derived using Eq. (1)

with current ADS HS in the numerator and current ADS σHS in the denominator. The bars show the valid data percentage per bin.
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Figure 4. Modelled fSCA (JIMOSHD), ALS-derived fSCA and Sentinel-derived fSCA in elevation bins for three dates: (a) at approximate

PoW, (b) during early ablation and (c) during late ablation. The same two benchmarks as indicated in Figure 3 are shown where applicable.

Sentinel-derived fSCA was available 2 days before the PoW, 3 days before the early ablation and at the point in time of the late ablation

ALS flight date (green line). The bars show the valid data percentage per bin.

combined two dates at the approximate date of PoW with a NRMSE of 5 % and a MPE of 0.6 %. The performance decreases

slightly for the accumulation date (NRMSE of 8 %) and the combined three points in time of ablation (NRMSE of 10 %).230

Given the overall good seasonal agreement between fSCA from all fine-scale HS data sets and modelled fSCA, we

binned the data in 200 m elevation bands and for ADS and ALS data sets separately to unveil seasonal variations in the

elevation-dependent performances. Similar to overall seasonal model performances (Table 2, I), seasonal elevation-dependent

performances with ALS data decrease from PoW, to ablation. For ADS data, seasonal elevation-dependent performances are

similar good at PoW and early ablation and decrease during accumulation. Except for the date during accumulation, largest235

performance differences occur mostly for the lowest elevation bin, i.e. in general, model performances improve with elevation.

While at both early ablation dates there is still an overall good agreement between HS-derived fSCA and modelled fSCA

(red versus black dots in Figure 3c and 4b), at the ablation date modelled fSCA underestimates ALS-derived fSCA across all

elevations (Figure 4c). The largest underestimations occur for the two lowest elevation bins with each on average 0.14. Across

all elevations, we obtain almost consistently good performances at approximate PoW (Figure 3b and 4a). Larger overestima-240

tions occur only at lowest elevations between 1700 m and 1900 m with on average 0.15. At the date during accumulation,

performances decrease with elevation. Modelled fSCA overestimates ADS-derived fSCA at elevations above 2100 m with

at maximum 0.09 (Figure 3a).

Some valid Sentinel-2 coverage is available at or close to the dates of the ALS measurements. Though overall seasonal

performances between modelled and Sentinel-derived fSCA decrease from PoW to the combined two ablation dates (Table245

2, II), seasonal elevation-dependent performances are best across all elevations for the latest ablation date when Sentinel-2

coverage is available at the exact same day (green versus red dots in Figure 4). At the lowest binned elevations between 1700

m and 1900 m and between 1900 m and 2100 m modelled fSCA underestimates Sentinel-derived fSCA with on average

respectively 0.03 and 0.04 (Figure 4b and c). Seasonal performances between Sentinel- and ALS-derived fSCA across all
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Figure 5. Modelled snow depth HS (JIMOSHD) and ADS-derived HS in elevation bins for three dates: (a) during accumulation, (b) at

approximate PoW and (c) during ablation.

Figure 6. Modelled snow depth HS (JIMOSHD) and ALS-derived HS in elevation bins for three dates: (a) at approximate PoW, (b) during

early ablation and (c) during ablation.

elevations are similar to the performances between modelled and ALS-derived fSCA. For all dates with Sentinel-2 coverage250

we obtain similar NRMSE. Between modelled and Sentinel-derived fSCA the NRMSE is 10 % and between Sentinel- and

ALS-derived fSCA the NRMSE is 11 % (Table 2, II versus III).

To understand modelled fSCA performances we also evaluated modelled with measured HS in 200 m - elevation bins

(see Figure 5 and 6). Compared to the seasonal snow depth change between the three dates of ADS-HS (Figure 5) there is

much less seasonal variation than between the three dates of the ALS-HS data across all elevations (Figure 6). While on the255

one hand, the time intervals are much smaller between the three dates of the ALS acquisitions (20 March, 31 March, 17 May

2017) compared to the ones of the ADS acquisitions (26 January, 9 March and 20 April 2016), there were also some snowfall

events during ablation in 2017. Except for at the date during accumulation performances decrease with elevation starting at

elevations of about 2100 m to 2500 m. Modelled HS considerably underestimates measured HS at higher elevations while

at lower elevations modelled HS mostly overestimates measured HS, except for the accumulation and PoW date of the ADS260
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data. Seasonal performances do not show a clear trend, but best performances are achieved during accumulation. For all dates

and data sets, modelled HS shows a NRMSE of 12 % and a MPE of 14 % with measured HS.

The fSCA algorithm was implemented in a complex operational snow cover model framework (Section 3.1). Uncertainties

related to input or model structure may therefore have an impact on modelled HS and thus fSCA performances. We inves-

tigated this by deriving two benchmark fSCA with Eq. (1) using measured HS data only. The first benchmark fSCA uses265

current observed σHS and measured HS, namely a fSCAmeasured
curr . The second benchmark model combines current measured

HS and observed σHS at PoW, namely a fSCAmeasured
PoW (cf. blue and red stars in Figure 3 and 4). At PoW, fSCAmeasured

PoW and

fSCAmeasured
curr are the same and fSCAmeasured

PoW can only be derived when PoW has passed, i.e. during ablation. Overall perfor-

mances of both benchmark fSCA are better (lower NRMSE) compared to modelled fSCA. Among all dates, best seasonal

elevation-dependent performances (200 m bins) of fSCAmeasured
curr and fSCAmeasured

PoW are achieved for two of the ablation dates270

(red and blue stars in Figure 3c and 4c). Performances mostly improve, similarly to as for modelled fSCA, with elevation.

For the three ablation dates, we obtain overall similar NRMSE’s for both benchmark models. Except for the lowest elevation

bin seasonal elevation-dependent performances are also similar among both benchmark models though the performance of

fSCAmeasured
curr is slightly improved (e.g. Figure 3c or 4b).

4.2 Evaluation with fSCA from camera images275

The high temporal resolution of daily camera-derived fSCA allows us to evaluate seasonal model performances. Overall,

modelled fSCA follows the seasonal trend of camera-derived fSCA for two of the three grid cells throughout almost all

seasons well (cf. for two seasons Figure 7a,c,d,f). However, for the grid cell at 2168 m the ablation season starts much later

with modelled fSCA compared to camera-derived fSCA, and modelled fSCA further overestimates camera-derived fSCA

during accumulation (Figure 7b,e).280

For all winter seasons 2016 to 2020 and the three grid cells we obtain a NRMSE of 22 % and a MPE of -7 % for modelled

fSCA (Table 3, I). However, interannual performances vary considerably as well as performances among the three grid cells.

For instance, for all three grid cells, we obtain the overall best performance for the season 2018 with a NRMSE of 15 % and a

MPE of -4 % and the worst performances for season 2019 with a NRMSE of 25 % and a MPE of -12 % and season 2020 with

a NRMSE of 23 % and a MPE of -17 %.285

For winter season 2018, we used Sentinel-derived fSCA to evaluate modelled and camera-derived fSCA (Table 3, II and

III; Figure 7d,e,f). While modelled and Sentinel-derived fSCA agree very well (NRMSE of 2 % and MPE of -1 %), Sentinel-

and camera-derived fSCA compare less well (NRMSE of 12 % and MPE of -5 %) though performances are similar to those

for camera-derived and modelled fSCA (NRMSE of 15 % and a MPE of -4 %).

We exploited the high temporal resolution of camera-derived fSCA to evaluate the relevance of applying the full seasonal290

fSCA algorithm as opposed to snow cover model simplifications of the fSCA algorithm, namely fSCAseason and fSCAcurr

(JIMseason
OSHD and JIMcurr

OSHD). While fSCAseason and modelled fSCA agree well when the snow cover is quite homogeneous, after

snowfalls on partly snow-free ground, fSCAseason can be considerably lower (yellow stars versus red dots in Figure 7b,c).

When replacing the fSCA algorithm with fSCAcurr, deviations to modelled fSCA using the full algorithm are getting larger
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Table 3. Performance measures are shown for modelled fSCA and the three grid cells with (I) camera-retrieved fSCA for the winter

seasons 2016 to 2019 and for winter season 2018 with (II) Sentinel-derived fSCA. Performance measured are shown for all three grid

cells for camera-derived fSCA with Sentinel-derived fSCA. In (I) statistics are also shown for JIM modelled fSCA versions, namely the

algorithm component fSCAseason as well as a fSCAcurr, which uses the current σHS with current HS in Eq. (1) modelled with JIMOSHD.

Given statistics are NRMSE, RMSE, MPE, MAE, K-S test statistic and NRMSEquant.

NRMSE RMSE MPE MAE K-S NRMSEquant

[%] [%] [%]

I JIMOSHD vs camera

fSCA 21.6 0.16 -7.0 0.11 0.23 9.5

fSCAseason 23.3 0.17 -6.5 0.11 0.23 8.9

fSCAcurr 27.9 0.21 -8.1 0.13 0.32 18.6

II JIMOSHD vs Sentinel-2

fSCA 1.8 0.02 -0.7 0.01 0.53 1.03

III Sentinel-2 vs camera

fSCA 11.5 0.11 5.0 0.06 0.57 6.5

(blue stars versus red dots in Figure 7). Large overestimations occur similarly after snowfall but large differences now also295

occur independent from snowfalls during ablation periods. The start of ablation season is delayed but is followed by a much

steeper melt out compared to the full fSCA model. Applying fSCAcurr always considerably shortens the season compared to

applying the full fSCA algorithm. For instance, for season 2016 the shortening is 46 days at 2077 m. In part, fSCAseason also

shortened the ablation season compared to the full fSCA algorithm by at maximum 24 days at 2077 m in season 2016 [not

shown]. In season 2017 and 2020 however, applying fSCAseason prolonged the season by at maximum 6 days at 2168 m in300

season 2020. Overall, both simplified fSCA models compare less well to camera-derived fSCA than modelled fSCA using

the full fSCA algorithm, however fSCAseason performs better than fSCAcurr (Table 3, I).

4.3 Evaluation with fSCA from Sentinel-2 snow products

Overall, modelled fSCA compares well to Sentinel-derived fSCA throughout the season, though there is some elevation-

dependent scatter between modelled and Sentinel-derived fSCA (Figure 8).305

In order to analyze the elevation-dependent scatter between modelled and Sentinel-derived fSCA, we derived spatial mean

HS (solid curve in Figure 8). From this we estimated the end of spatial mean accumulation and the start of spatial mean ablation

period for Switzerland at 1 April 2018 (vertical dashed black line in Figure 8). Until the start of the ablation period we obtain

the most scatter between modelled and Sentinel-derived fSCA at elevations lower than 1500 m, whereas at higher elevations

both fSCA agree well. At 30 June about 15 % of the seasonal maximum spatial mean HS is left which concentrates at high310

elevations above about 2700 m (vertical line with stars in Figure 8). From 30 June 2018 until 30 August, i.e. during summer,
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Figure 7. Modelled fSCA, fSCAseason, fSCAcurr as well as camera-derived fSCA and Sentinel-derived fSCA for the three 1 km grid

cells seen by the camera in Davos for two seasons: upper panel (a), (b) and (c) winter 2017, lower panel (c), (d) and (e) winter 2018.

modelled fSCA overestimates Sentinel-derived fSCA at the highest elevations above about 3500 m whereas between snow

line and these highest elevations modelled fSCA underestimates Sentinel-derived fSCA.

For the winter season lasting from 20 December to 30 June 2018 in Switzerland we obtain a NRMSE of 20 % and a MPE of

2 % (Table 4).315

Given the also rather high temporal resolution of the Sentinel-derived fSCA data set, we again computed the fSCA

model simplifications, fSCAseason and fSCAcurr. Overall errors with Sentinel-derived fSCA are only slightly worse than for

modelled fSCA using the full fSCA algorithm. We obtain a NRMSE of 20 % for fSCAseason and a NRMSE of 22 % for

fSCAcurr (Table 4).

5 Discussion320

5.1 Fractional snow-covered area fSCA algorithm

We developed a seasonal fSCA algorithm by combining a PoW σHS parameterization for mountainous terrain (Eq. (2)) and

one for flat terrain (Eq. (3)) with tracking snow values for alternating accumulation and melt events throughout the season in

a closed form fSCA parameterization (Eq. (1). Such an implementation of a seasonal fSCA algorithm has, to the best of
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Figure 8. Sentinel-derived fSCA minus modelled fSCA for Switzerland as a function of date and elevation z for available satellite dates.

Daily spatial mean snow depth HS is shown by the solid line below. Approximate end of accumulation and start of ablation season is

indicated by the dashed vertical line whereas the approximate end of ablation season is indicated by the vertical line with stars.

Table 4. Performance measures between Sentinel-derived fSCA and modelled fSCA for all valid 1 km grid cells of Switzerland between

20 December 2017 and 30 June 2018. Given statistics are NRMSE, RMSE, MPE, MAE, K-S test statistic and NRMSEquant.

NRMSE RMSE MPE MAE K-S NRMSEquant

[%] [%] [%]

fSCA 19.9 0.15 1.9 0.05 0.39 2.5

fSCAseason 20.1 0.15 1.9 0.05 0.39 2.6

fSCAcurr 22.0 0.16 1.1 0.06 0.39 4.5

our knowledge, not been presented in detail so far. The algorithm is easy to apply and only requires storing snow history and325

subgrid summer terrain parameters, which are the slope related parameter µ and the terrain correlation length (Section 2.2).

At the moment we use the σflat
HS parameterization (Eq. (3)) to describe the spatial new snow depth distribution σHS in

Eq. (1) rather than the σtopo
HS parameterization (Eq. (2)). Since σtopo

HS was empirically derived from PoW data we found that

to describe the spatial new snow depth distributions in mountainous terrain when the ground is typically almost completely

covered by snow we might need a different description. As a first approach we therefore use the flat field parameterization330

even over mountainous terrain. Though at least at lower elevations and during spring neglecting topographic interactions might

be justified for new snow distributions, spatial snow depth distributions before and after snowfall accumulations should be

analyzed throughout the season for confirmation.
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Implementing the seasonal fSCA algorithm in a distributed snow cover model allowed us to evaluate the algorithm with

spatiotemporal measurement data. We are not aware of any seasonal fSCA implementation that has been evaluated in detail335

by exploiting independent HS data sets in high spatial resolution and snow products in high temporal resolution.

5.2 Evaluation

5.2.1 Evaluation with fSCA from fine-scaleHS maps

The evaluation of the seasonal fSCA algorithm with fSCA from fine-scale HS maps revealed overall good performances

at all six points of the season with NRMSE’s always being lower than 10 % (Table 2). Performances decreased from PoW, to340

accumulation and later ablation.

During accumulation at higher elevations modelled fSCA overestimates ADS-derived fSCA though modelled HS under-

estimates measured HS across all elevations (Figure 3a and 5a). This could indicate a problem of our fSCA algorithm during

accumulation. In this period of the season snowfall events dominate, during which, we use the flat field standard deviation

of HS (Eq. (3)) to characterize fSCA even on inclined grid cells. Not accounting for the various topography interactions345

with wind, precipitation and radiation shaping the snow depth distribution in mountainous terrain during accumulation might

have led to overestimations of modelled fSCA. The description of spatial HS distribution during accumulation thus requires

further investigations, for which however more than one spatial HS data set acquired during accumulation would be needed.

Except for during accumulation, modelled fSCA rather underestimates fSCA from fine-scale HS maps. However, mod-

elled fSCA does not show similar strong trends when compared to Sentinel-derived fSCA but agrees rather well with fSCA350

from Sentinel-2 snow products for the three dates (Figure 4). Largest underestimations occur for ALS data at lower elevations

and during ablation where low HS values of on average lower than 30 cm dominate (Figure 6). We assume that the choice of a

HS threshold of zero m to decide whether or not a 2 or 5 m grid cell was snow-covered might be one reason for the underesti-

mations. In reality small positive or negative HS values might have been zero too. When increasing this threshold to ± 10 cm

resulting 1 km fSCA from HS maps decreased considerably and in part large overestimations of modelled fSCA resulted355

at the various points in time of the season [not shown]. Unfortunately, we currently do not have detailed snow observations

available to define robust HS threshold values which take into account the different points in time of the season as well as

varying terrain slope angles. However, the overall good agreement between Sentinel- and ALS-derived fSCA (Figure 4 and

Table 2, III) provides confidence in the fine-scale HS data-derived fSCA used here to evaluate modelled fSCA.

fSCA performances mostly improve with elevation or remain similar, except for during accumulation (Figure 3b,c and 4).360

On the contrary, performances for modelled HS mostly decrease with elevation for the same points in time (Figure 5b,c and

6). Large underestimations in modelled HS at high elevations affected modelled fSCA much less than weak overestimations

of measured HS at lower elevation during ablation. This is not contradictory but emphasizes the need of accurately modelled

HS along snow lines where small inaccuracies in HS can have large impacts. In addition, along the snow line the valid data

percentage per bin was very low with values between 1 to 5 % for all fSCA from fine-scaleHS data sets. Thus, a single outlier365

along the snow line could have also degraded the performance (e.g. Figure 5c). Note that the overall tendency of modelled HS
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to underestimate measured HS at high altitudes may also originate from precipitation underestimation. As there are fewer

AWS at high elevations data assimilation cannot correct for any flawed precipitation input.

The two benchmark fSCAmodels (fSCAmeasured
curr and fSCAmeasured

PoW ) using measuredHS compare better to fSCA derived

from HS data than modelled fSCA using JIMOSHD. This result confirms the previously derived functional tanh-form (Eq.370

(1)) for fSCA at PoW for a seasonal application. While at the date of early ablation of ALS data, modelled fSCA performed

better, this might be due to snowfalls after the date at approximate PoW with consecutive melt (Figure 4b). This may have

altered the actual PoW snow depth distribution compared to the ALS-measured σHS at approximate date of PoW. Except for

the lowest elevation bin, performances among both benchmark models are quite similar. While we would have expected at least

a better performance of fSCAmeasured
PoW during ablation, fSCAmeasured

curr performs slightly better during early ablation. The reason375

for this is most likely the same than why modelled fSCA outperformed both benchmark models at that early ablation date

(Figure 4b). Due to snowfalls after the approximate date of PoW of ALS data, at some elevations, the actual PoW snow depth

distribution does not agree with the one at approximate date of PoW of ALS data at these elevations anymore. Applying a

snow cover model that tracks the history of HS to derive seasonal fSCA is thus beneficial. Evaluating the benchmark fSCA

models with fSCA derived from HS data confirmed the overall applicability of our seasonal fSCA algorithm.380

5.2.2 Evaluation with camera-derived fSCA

While the evaluation of the seasonal fSCA algorithm with fSCA from fine-scale HS maps revealed overall good perfor-

mances at six points in time, seasonal performances could not be evaluated continuously over the season. Evaluating with daily

camera-derived fSCA demonstrated that modelled fSCA was able to mostly reproduce well the seasonal trend (Figure 7).

However, overall, modelled fSCA compared less well to camera-derived fSCA than modelled fSCA compared to HS-385

derived fSCA (e.g. NRMSE of 22 % compared to NRMSE to 9 %; Table 2, I versus Table 2, I). These overall larger errors

most likely originate in an overall lower accuracy of camera-derived fSCA compared to fSCA from fine-scale HS maps.

For instance, the projection of the 2D-camera image to a 3D DEM may introduce errors and distortions. Furthermore, when

deriving fSCA from camera images, clouds/fog and uneven illumination due to for instance shading or partial cloud cover

may compromise the possibility of detecting snow by the snow classification algorithm of Salvatori et al. (2011) and can390

deteriorate the accuracy (e.g. Farinotti et al., 2010; Fedorov et al., 2016; Härer et al., 2016; Portenier et al., 2020). The choice

of the threshold method when automatically deriving fSCA from the images also introduces uncertainty. Here, we decided

that the method proposed by Salvatori et al. (2011) followed the seasonal modelled fSCA trend best though some uncertainty

remained. For instance, the decreased performances by about 10 % of the NRMSE in season 2019 and 2020 could stem from an

increase in the number of image pixels when the camera was upgraded. This may have led to more detailed information when395

e.g. small vegetation is resolved. The overall better agreement between modelled and Sentinel-derived fSCA than between

between Sentinel- and camera-derived fSCA (NRMSE of 2 % versus 12 %, cf. Table 2) similarly indicates some larger

uncertainties in the camera-derived fSCA data set. For instance, while we required at least 50 % valid fine-scale information

for the Sentinel-derived fSCA when aggregating to 1 km fSCA maps, this requirement could not be met for camera-derived

fSCA. For the three 1 km model grid cells the projected fractions of the camera FOV are 9 %, 13 % and 14 %, which is400
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much lower than the 50 % but is also used to evaluate modelled fSCA for the full grid cell area. On the other hand, while

it seems that there is a better agreement between Sentinel-derived and modelled fSCA than between camera-derived and

modelled fSCA, valid Sentinel-derived fCSA has a much lower temporal resolution and did not cover the entire ablation

period. Instead, Sentinel-derived fSCA was often available throughout the period when fSCA was rather close to one (cf.

Figure 7d,e). Thus, while there is likely more uncertainty in camera-derived fSCA, the snow cover model might have also405

underestimated snow melt which led to overestimated modelled HS and thus fSCA at the beginning of ablation (cf. Figure

7e).

The high temporal resolution of camera-derived fSCA allowed us to evaluate modelled simplifications of the seasonal

fSCA algorithm, i.e. fSCAseason and fSCAcurr (JIMseason
OSHD and JIMcurr

OSHD). While the overall performance decrease is rather

low with for instance an increase in NRMSE by 1 % for JIMseason
OSHD and by 6 % for JIMcurr

OSHD compared to the full fSCA model,410

seasonal performance trends are clearly poorer than when applying the full fSCA model (Figure 7). The reason that this

deterioration is not seen in the overall error measures is most likely due to less frequent camera-derived fSCA at time steps

during or following snowfall events when clouds or bad illumination might have prevented deriving valid fSCA from images.

While the in part large overestimations of camera-derived fSCA increase from JIMseason
OSHD to JIMcurr

OSHD, with JIMcurr
OSHD the start

of the ablation season is not only delayed but the ablation season is also considerably shortened by up to 46 days. In principle,415

fSCAcurr describes seasonal fSCA as if staying continuously at peak winter, though for various HS values. However, this

leads to sudden jumps when currentHS approaches zero, as seen by the steep melt outs of JIMcurr
OSHD, or when currentHS raises

from no snow to a value larger than zero following snowfall events on bare ground, as seen during accumulation for JIMcurr
OSHD.

Thus, while including the tracking of current seasonal maximum HS to derive the current maximum σHS already improved

the seasonal trends (fSCAseason), additional accounting for fSCAnsnow is able to overcome the remaining differences between420

fSCAseason and modelled fSCA derived by the full fSCA algorithm.

5.2.3 Evaluation with Sentinel-derived fSCA

By including Sentinel-derived fSCA in our evaluation data set to evaluate modelled fSCA, we added a data set that unites

a rather high temporal data resolution with a much larger spatial coverage than was inherent in the two other evaluation data

sets (cf. Table 1). The Sentinel-derived fSCA data set comprises about 275’000 1 km grid cells covering a range in terrain425

elevations, slope angles and terrain aspects. This variety was not achieved for the high-temporal evaluation with camera-

derived fSCA limited to one southeast-facing slope with overall similar elevations between 2077 m and 2367 m and slope

angles between 27° and 39° (cf. Figure 2b).

For the one winter season investigated, we obtained an overall good seasonal agreement across Switzerland, though some

elevation-dependent scatter exists (Figure 8). The majority of the largest scatter occurs during the accumulation period at lower430

elevations where lower spatial HS values as well as more cloudy weather prevail during accumulation. By neglecting all 1 km

domains with modelled HS lower than 5 cm, which would also resemble the preprocessing of fine-scale HS-derived fSCA

(cf. Section 3.3), the scatter between modelled and Sentinel-derived fSCA at these lower elevations during accumulation

reduced considerably and the overall performances improved substantially. For instance the NRMSE reduced from 20 % to 12
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% and the MPE from 1.9 % to 0.23 %. The scatter at higher elevations during summer might originate from underestimated435

modelled fSCA due to underestimated precipitation (fewer AWS at high elevations).

Similar than for camera-derived fSCA the overall performance decrease when using JIMseason
OSHD and JIMcurr

OSHD is rather low

with for instance an increase in NRMSE by 0.2 % for JIMseason
OSHD and by 2 % for JIMcurr

OSHD compared to the full fSCA model.

When binned per elevation for Switzerland a small increase in scatter only appeared between modelled fSCA and fSCAcurr

towards the end of the season [not shown]. While we in part obtained large differences for individual grid cells between440

the three modelled fSCA and camera-derived fSCA, performances between modelled and Sentinel-derived fSCA only

improved slightly compared to when applying JIMseason
OSHD or JIMcurr

OSHD over a much larger spatial coverage. We assume that the

lack of a stronger improvement in the overall error measures is due to more missing valid satellite coverage during clouded

periods that typically occur during or after snowfalls. Yet exactly during these periods we would expect larger differences due

to the missing new snow fSCA updates when e.g. reducing the full fSCAmodel to fSCAseason (cf. Figure 7b,c). Overall, we445

obtained poorer performance measures between modelled fSCA and Sentinel- as well as camera-derived fSCA compared

to between modelled fSCA and fSCA from fine-scale HS maps (e.g. a NRMSE of 20 % for Sentinel-2 fSCA, of 22 %

for camera fSCA and of 9 % for fSCA from HS data). Uncertainties introduced by reduced visibility in the snow products

of Sentinel-2 and the camera are most likely the reason. Both, our camera- as well as the Sentinel-2 data set cover long time

periods in higher temporal resolution, i.e. they include also periods under unfavorable weather conditions. On the contrary,450

clear sky dates were carefully selected for the on-demand high-quality data acquisitions from the air for our fSCA data sets

derived from fine-scale HS maps. Nevertheless, the camera- as well as the Sentinel-2 data set enabled us to evaluate seasonal

fSCA model trends which would not have been possible alone from the six fSCA data sets derived from HS data.

6 Conclusions

We presented a seasonal fractional snow-covered area (fSCA) algorithm based on the fSCA parameterization of Helbig455

et al. (2015b, 2020). The seasonal algorithm is based on tracking HS and SWE values accounting for alternating snow

accumulation and melt events. Two empirical parameterizations are applied to describe the spatial snow depth distribution, one

for mountainous terrain at PoW and one for flat terrain during a snowfall. An implementation in a multilayer energy balance

snow cover model system (JIMOSHD; JIM, JULES investigation model (Essery et al., 2013)) allowed us to evaluate seasonally

modelled fSCA for Switzerland.460

Compiling independent fSCA data sets enabled a thorough spatiotemporal analysis of the seasonal fSCA algorithm. While

the evaluation with the three data sets showed overall good seasonal performance, each of the evaluation data sets allowed to

draw additional conclusions. The evaluation with fine-scale spatial HS-derived fSCA showed that snow depth uncertainties

along the snow line likely contributed to the largest fSCA underestimations during ablation compared to the overall best

agreement at PoW. The camera-derived fSCA data set, with the highest temporal resolution, confirmed the need for tracking465

HS over the season as well as accounting for intermediate snowfalls to avoid a delayed melt start and a drastically shortening of

the ablation season. The Sentinel-derived fSCA data set, with the largest spatial coverage together with a rather high temporal
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resolution, demonstrated that the seasonal fSCA algorithm performs well across a range of elevations, slope angles, terrain

aspects and snow regimes. This comparison showed that there were some differences at low elevation coinciding with very

low HS early in the season, while discrepancies occured mostly at high elevations towards the end of the season respectively470

during summer.

Overall NRMSE’s for seasonally modelled fSCA increased from 9 % for HS data-derived fSCA, to 20 % for Sentinel-

derived fSCA and to 22 % for camera-derived fSCA. While the large margin in performance measures is likely tied to the

various temporal and spatial resolutions of the data sets leading to different data uncertainties, it also demonstrates the diffi-

culties in drawing conclusions when evaluating a model algorithm with evaluation data from different acquisition platforms.475

Nevertheless, this comparison with data covering a wide range of spatiotemporal scales allowed us to obtain a comprehensive

overview of the strength and weaknesses of our seasonal fSCA implementation.

The implementation of the seasonal fSCA algorithm in a model only requires tracking HS and SWE for a coarse grid

cell as well as deriving subgrid summer terrain parameters from a fine-scale summer DEM. The PoW fSCA parameterization

of Helbig et al. (2020) forms the centerpiece of the presented seasonal fSCA algorithm. The recent evaluation with various480

spatial PoW snow depth data sets from 7 geographic regions showed an overall NRMSE of only 2 %. This detailed evaluation

at PoW in different geographic regions and the seasonal evaluation with the three fSCA data pools presented here, suggests

that the seasonal fSCA algorithm may perform similar in most other geographic regions. However, further investigations,

once more spatial HS data sets before and after snowfalls in complex topography become available, would be advantageous

for improvements of our seasonal fSCA algorithm during a snowfall.485
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1 Appendix: Technical aspects - Seasonal fSCA implementation

The technical aspects of the different fSCA (cf. box in the middle of in Figure 1), i.e. the seasonal fSCA (fSCAseason)495

and the fSCA for snowfall events (fSCAnsnow), are given here. This description gives the necessary details to implement the

seasonal fSCA algorithm in a snow cover model. We first present some pseudocode and then give a detailed text description.

!! Seasonal fSCA algorithm

1 for each grid cell do500

2 !! Update SWE history (buffer) from past 14 days with current SWE

3 SWEbuffer(current)=SWE

4 !! Calculate max, min and recent min indices in 14 days SWEbuffer

5 maxbuff, minbuff, recentminbuff

6 !! Apply indices to finding new snow depth changes ∆HS505

7 !! New snow amount in 14 days buffer

8 14 day ∆HS = HS - HS(minbuff)

9 !! Recent new snow amount in 14 days buffer

10 recent ∆HS = HS - HS(recentminbuff)

11 !! Max snow depth change in 14 days buffer510

12 max ∆HS = HS(maxbuff) - HS(minbuff)

13 !! Find current absolute max and pseudo-min SWE values

14 IF SWE is zero, set SWEmax and SWEpseudo-min to zero

15 IF SWE ≥ SWEmax, set SWEmax and SWEpseudo-min to SWE

16 IF SWE < SWEmax and SWE < SWEpseudo-min, set SWEpseudo-min = SWE515

17 set HSmax, HSpseudo-min according to SWEmax,SWEpseudo-min

18 !! Start calculating fSCA

19 !! fSCAseason using Eq. (1)-(3)

20 IF grid cell is flat

21 σHSseason := Eq. (3) with HSmax520

22 ELSE

23 σHSseason := Eq. (2) with HSmax

24 fSCAseason:= Eq. (1) with σHSseason and HSpseudo-min

25 !! fSCA14daynsnow using Eq. (1) and (3)

26 σHS14d := Eq. (3) with max ∆HS525

27 fSCA14daynsnow:= Eq. (1) with σHS14d and 14 day ∆HS

28 !! fSCArecentnsnow using Eq. (1) and (3)
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29 σHSrecent := Eq. (3) with recent ∆HS

30 fSCArecentnsnow:= Eq. (1) with σHSrecent and recent ∆HS

31 !! Deriving fSCAnsnow530

32 fSCAnsnow =max(fSCA14daynsnow,fSCArecentnsnow)

33 !! Reset fSCAseason, if new snow is really melting

34 IF fSCAnsnow > 0 and fSCAnsnow < fSCAseason

35 SWEpseudo-min = SWE and HSpseudo-min =HS

36 !! Calculate coefficient of variation from seasonal values535

37 CVseason = σHSseason/HSmax

38 !! Recalculate current absolute HSmax

39 HSmax = 1.3HSpseudo-min/(CVseasonatanh(fSCAseason))

40 !! Recalculate current absolute SWEmax

41 SWEmax = ρmaxHSmax540

42 !! Recalculate fSCAseason

43 IF grid cell is flat

44 σHSseason := Eq. (3) with HSmax

45 ELSE

46 σHSseason := Eq. (2) with HSmax545

47 fSCAseason:= Eq. (1) with σHSseason and HSpseudo-min

48 fSCAnsnow:=0

49 !! Calculate final fSCA

50 fSCA=max(fSCAseason,fSCAnsnow)

550

Following new snow accumulation, the ground is almost completely covered by snow, which may lead to a different spatial

snow depth variability than at PoW. We account for this by using σflat
HS rather than σtopo

HS for the derivation of fSCAnsnow to

avoid introducing topography interactions in new snow σHS which were derived for PoW σHS . To calculate fSCAnsnow we

insert new snow amounts in Eq. (1)-(3). Thus, fSCAnsnow describes the contribution to fSCA solely from the new snow, i.e.

as if the new snow fell on bare ground. Two fSCAnsnow are derived: fSCA14daynsnow for a new snow event within the last555

14 days and a fSCArecentnsnow for the most recent new snow event. To calculate both, fSCA14daynsnow and fSCArecentnsnow,

we store HS of the last 14 days. For fSCA14daynsnow we derive the absolute maximum as well as the absolute minimum

from this time window. The difference between these two extreme HS values is used to compute the corresponding σHS and

the difference between current and absolute minimum HS is inserted in the numerator to obtain fSCA14daynsnow as fSCA.

To compute fSCArecentnsnow we determine the first local HS minimum from the 14 days time window by going back in560

time. The difference between current and this local minimum HS is used to derive σHS and is also used in the numerator of

fSCArecentnsnow. The maximum of fSCA14daynsnow and fSCArecentnsnow gives us fSCAnsnow for that time step and grid cell.
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To describe the overall seasonal fSCA development we use a fSCAseason which we compute with σtopo
HS . For grid cells with

slope angles equal to zero we use σflat
HS . To compute fSCAseason we use current seasonal maximum HS to derive σtopo

HS or σflat
HS .

In the numerator of fSCAseason we use a HS variable which we call a pseudo-minimum HS solely to differentiate it from565

real global and local minima. The pseudo-minimum HS is used in fSCAseason to derive a fSCA as if there was no previous

snowfall. We do this to obtain two separate fSCA, one fSCAnsnow and one fSCAseason, which will be compared afterwards.

During accumulation, the pseudo-minimum HS is the current HS up until a snow event starts, following a previous melt

period. Then the pseudo-minimum HS keeps the pre-snow event HS value up until current HS reaches the current seasonal

maximum HS again. From then on the pseudo-minimum HS is the current HS again. During ablation, the pseudo-minimum570

HS matches, similar as during accumulation, the currentHS up until a snow event starts. Then the pseudo-minimumHS keeps

the pre-snow event HS value up until current HS falls below the pre-snow HS value again or increases up to a new current

seasonal maximum HS. However, once the fSCAnsnow is again lower than fSCAseason and the newly fallen snow has started

to melt (SWEt−1−SWEt > 2 mm), we recalculate the current seasonal maximum HS. Then, we update fSCAseason using

the new current seasonal maximum HS for σHS and the pseudo-minimum HS taking the current HS in the numerator. We575

perform the recalculation of the seasonal maximum HS to account for an increased seasonal σHS caused by the intermediate

snow event. The recalculated seasonal maximum HS takes that value that allows to arrive at the current HS by melt only,

i.e. without intermediate snowfall. For the recalculation procedure we solve the seasonal CV from before the snow event,

i.e. σHS /HS both using the previous seasonal maximum HS, for σHS and insert it in fSCAseason. By further using the

pseudo-minimum HS (which was set to the current HS) in fSCAseason we derive a new seasonal maximum HS. At the end580

of this adjustment fSCAnsnow is set to zero and an updated (larger) seasonal maximum HS with a similar or slightly lower

fSCAseason results.
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