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Abstract. The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In

this context, fractional snow-covered area (fSCA) is an essential model parameter characterizing how much ground surface

in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-independent fSCA

parameterization. For the seasonal implementation, we track snow depth (HS) and snow water equivalent (SWE), and account

for several alternating accumulation-ablation phases. Besides tracking HS and SWE, the seasonal fSCA algorithm only5

requires subgrid terrain parameters from a fine-scale summer digital elevation model. We implemented the new algorithm in a

multilayer energy balance snow cover model. To evaluate the spatiotemporal changes in modelled fSCA, we compiled three

independent fSCA data sets derived from airborne-acquired fine-scale HS data and from satellite and terrestrial imagery.

Overall, modelled daily 1km-fSCA values had normalized root mean square errors of 7 %, 12 % and 21 % for the three data

sets, and some seasonal trends were identified. Comparing our algorithm performances to the performances of the CLM5.010

fSCA algorithm implemented in the multilayer snow cover model demonstrated that our full seasonal fSCA algorithm better

represented seasonal trends. Overall, the results suggest that our seasonal fSCA algorithm can be applied in other geographic

regions by any snow model application.

1 Introduction

In mountainous terrain, the large spatial variability of the snow cover is driven by the interaction of meteorological variables15

with the underlying topography. Over the course of a winter season, the dominating topographic interactions with wind, pre-

cipitation and radiation vary considerably, generating characteristic seasonal dynamics of spatial snow depth variability (e.g.

Luce et al., 1999). This spatial variability, or how much of the ground is actually covered by snow, is typically characterized

by the fractional snow-covered area (fSCA). fSCA is a crucial parameter in model applications such as weather forecasts

(e.g. Douville et al., 1995; Doms et al., 2011), hydrological modelling (e.g. Luce et al., 1999; Thirel et al., 2013; Magnusson20
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et al., 2014; Griessinger et al., 2016, 2019) or avalanche forecasting (Bellaire and Jamieson, 2013; Horton and Jamieson, 2016;

Vionnet et al., 2014), and is also used for climate scenarios (e.g. Roesch et al., 2001; Mudryk et al., 2020).

fSCA can be retrieved from various satellite sensor images, including Moderate Resolution Imaging Spectroradiometer

(MODIS) or Sentinel-2 (e.g. Hall et al., 1995; Painter et al., 2009; Drusch et al., 2012; Masson et al., 2018; Gascoin et al.,

2019). Nevertheless, solutions are required to correct for temporal and spatial inconsistent coverage due to time gaps between25

satellite revisits, data delivery and the frequent presence of clouds (Parajka and Blöschl, 2006; Gascoin et al., 2015). Though

fine-scale spatial snow cover models provide spatial snow depth distributions that could be used to derive coarse-scale fSCA,

applying such models to larger regions is generally not feasible. This is in part due to computational cost, a lack of detailed input

data and limitations in model structure or parameters. While some of these limitations can be overcome using current snow

cover model advances applying data assimilation routines (e.g. Andreadis and Lettenmaier, 2006; Nagler et al., 2008; Thirel30

et al., 2013; Griessinger et al., 2016; Huang et al., 2017; Baba et al., 2018; Griessinger et al., 2019; Cluzet et al., 2020), the

inherent uncertainties in input or assimilation data still remain. Computationally efficient subgrid fSCA parameterizations,

accounting for unresolved snow depth variability, are therefore still the method of choice for coarse-scale model systems,

such as weather forecast, land surface and earth system models. Furthermore, fSCA parameterizations are essential when

assimilating satellite snow-covered area data in model systems (e.g. Zaitchik and Rodell, 2009)35

Several compact, closed-form fSCA parameterizations were suggested for coarse-scale model applications (e.g. Douville

et al., 1995; Roesch et al., 2001; Yang et al., 1997; Niu and Yang, 2007; Su et al., 2008; Zaitchik and Rodell, 2009; Swenson and

Lawrence, 2012). Some parameterizations introduced subgrid terrain parameters (e.g. Douville et al., 1995; Roesch et al., 2001;

Swenson and Lawrence, 2012). The heuristic tanh-form, suggested by Yang et al. (1997), was later confirmed by integrating

theoretical log-normal snow distributions and fitting the resulting parametric depletion curves using the spatial snow depth40

distribution (σHS) in the denominator of fitted fSCA curves (Essery and Pomeroy, 2004). Through advances in remote sensing

techniques, fine-scale spatial snow depth (HS) data became more readily available allowing empirical parameterization of σHS

in complex topography at peak of winter (PoW) or during accumulation (Helbig et al., 2015b; Skaugen and Melvold, 2019).

By parameterizing σHS using subgrid terrain parameters, Helbig et al. (2015b) expanded the tanh-fSCA parameterization of

Essery and Pomeroy (2004) to account for topographic influence. Recently, Helbig et al. (2021) re-evaluated this empirically45

derived fSCA parameterization with high-resolution spatial HS sets from 7 different geographic regions at PoW, and made it

applicable across spatial scales ≥ 200 m by introducing a scale-dependency in the dominant model descriptors.

Many studies highlighted that the same mean HS in early winter or in late spring can lead to substantially different fSCA

(Luce et al., 1999; Niu and Yang, 2007; Magand et al., 2014). This has led to the introduction of hysteresis in some fSCA

parameterizations (e.g. Luce et al., 1999; Swenson and Lawrence, 2012). Previously found interannual time-persistent correla-50

tions between topographic parameters and snow depth distributions (e.g. Schirmer et al., 2011; Schirmer and Lehning, 2011;

Revuelto et al., 2014; López-Moreno et al., 2017) suggest indeed that a time-dependent fSCA implementation might be feasi-

ble. However, a seasonal model implementation of a closed form fSCA parameterization also needs to account for alternating

snow accumulation and melt events during the season. Especially at lower elevations and increasingly so with climate change,

the separation of the depletion curve in only one accumulation period followed by a melting period is no longer applicable (e.g.55
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Egli and Jonas, 2009). A seasonal fSCA implementation in mountainous regions that accounts for these alternating periods

is challenging. While some seasonal fSCA implementations of varying complexities were previously proposed (e.g. Niu and

Yang, 2007; Su et al., 2008; Egli and Jonas, 2009; Swenson and Lawrence, 2012; Nitta et al., 2014; Magnusson et al., 2014;

Riboust et al., 2019) a detailed evaluation of seasonally parameterized fSCA with fSCA derived from high-resolution spatial

and temporal HS data or snow products is currently still missing.60

Here, we present a seasonal fSCA implementation and evaluate it with high-resolution observation data in various ge-

ographic regions throughout Switzerland. The algorithm is based on the fSCA parameterization for complex topography

proposed by Helbig et al. (2015b, 2021). We apply two different empirical parameterizations for the spatial snow depth distri-

bution, from Egli and Jonas (2009) and Helbig et al. (2021), with seasonal and current HS values to describe the hysteresis.

Snow accumulation and melt events during the season are accounted for by tracking the history of HS and SWE values65

throughout the snow season. We implemented the algorithm in a multilayer energy balance snow cover model (modified JIM,

the JULES investigation model by Essery et al. (2013)) which we ran with COSMO-1 (operated by MeteoSwiss) reanalysis

data, measured HS and RhiresD precipitation data (MeteoSwiss). The seasonal performance of this algorithm was evaluated

using fSCA data sets from terrestrial cameras, airborne surveys and satellite imagery. This allowed us to assess modelled

fSCA using independent HS data sets with high spatial resolution and snow products with high temporal resolution. We70

further implemented the Community Land Model (CLM5.0) fSCA algorithm accounting for hysteresis in accumulation and

ablation (Lawrence et al., 2018), which is based on the work of Swenson and Lawrence (2012), in the multilayer energy balance

snow cover model. Modelled fSCA from the CLM5.0 fSCA algorithm was also assessed with the measured fSCA data sets

and the performances compared to those of our seasonal fSCA algorithm.

2 Fractional snow-covered area algorithm75

In the following, we introduce the seasonal fSCA algorithm in two parts. First we present the closed-form fSCA param-

eterization derived by Helbig et al. (2015b). This formulation uses the spatial subgrid variability of snow depth (σHS) and

snow depth HS of a grid cell. To derive σHS , we used two different statistical parameterizations. Second, we describe our

seasonal fSCA algorithm, i.e. how we handle the distinctly different paths between σHS and HS during accumulation and

melt periods, i.e. the hysteresis.80

2.1 fSCA parameterization

The core of our seasonal algorithm is the PoW parameterization of Helbig et al. (2015b) relating fSCA to HS and σHS :

fSCA = tanh(1.3
HS

σHS
) . (1)

By including both HS and σHS , this formulation accounts for the close link between spatial subgrid snow depth variability

and topography in fSCA. Although Eq. (1) was derived for PoW, in our seasonal fSCA algorithm we apply it throughout the85
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entire snow season by using two different parameterizations for σHS , one accounting for subgrid topography (Helbig et al.,

2021), while the second only depends on HS (Egli and Jonas, 2009).

σHS parameterization accounting for topography

We use the PoW subgrid parameterization for σHS in mountainous terrain originally developed by Helbig et al. (2015b) and

later extended by Helbig et al. (2021). This parameterization accounts for the impact of topography on the spatial snow depth90

distribution at PoW:

σHelbig
HS = HScµd exp[−(ξ/L)2] . (2)

The parameterization contains two scale-dependent parameters c and d:

c = 0.5330 L0.0389

d = 0.3193 L0.1034 .
(3)

This σHS subgrid parameterization is generally valid for domain sizes (i.e. the coarse grid cell size) L≥200 m. Besides95

domain size L, Eq. (3) requires snow depth HS and subgrid summer terrain parameters µ and ξ. The mean squared slope

related parameter µ =
{
[(∂xz)2 +(∂yz)2]/2

}1/2

is derived using partial derivatives of subgrid terrain elevations z, i.e. from a

summer digital elevation model (DEM). The correlation length ξ =
√
2σz/µ is derived for each L using the standard deviation

σz of terrain elevations z. The L/ξ-ratio in Eq. (3), describes the frequency of topographic features of length scale ξ in a

domain L. All terrain parameters are derived on linearly detrended summer DEMs (Helbig et al., 2015b). More details on Eq.100

(2) and (3) can be found in Helbig et al. (2015b, 2021).

σHS parameterization not accounting for topography

The second σHS parameterization was developed by Egli and Jonas (2009) by fitting daily spatial HS means and standard

deviation of HS from 77 weather stations distributed throughout the Swiss Alps over six consecutive winter seasons during

accumulation season. The resulting parameterization uses HS and a constant fit parameter:105

σEgli
HS = HS0.839 . (4)

This parameterization does not account for the impact of topography on σHS .

2.2 Seasonal fSCA algorithm

To use the above fSCA formulation (Eq. 1) throughout an entire snow season, we track changes inHS with time. This is done

to account for the fact that after a snowfall, fSCA can dramatically increase. Once the new snow has settled or started to melt,110

fSCA values then generally return to similar values as before. We account for this by computing two fSCA values in parallel,

namely a seasonal fSCA (fSCAseason) and a new snow fSCA (fSCAnsnow). fSCAseason accounts for the entire history of

the snow season up to the current time step, and thus all processes shaping the spatial snow depth distribution. It is therefore
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computed using σHelbig
HS (Eq. 3), which accounts for subgrid topography. fSCAnsnow only accounts for contributions by recent

snowfall. As a snowfall generally covers most of the topography within a grid cell (i.e. all surfaces are initially covered by115

snow), we use σEgli
HS (Eq. 4), which does not account for subgrid topography.

fSCAseason

To compute fSCAseason, we use extreme HS values at each time step per grid cell (Figure 1a). It is important to note that we

identify these extremes using SWE rather thanHS, as due to snow settlementHS values can peak even before a precipitation

event has ended. However, as our fSCA algorithm requires HS as input, we search for extreme SWE values in time, and use120

the corresponding HS values. In the following we will not specify this anymore, and only refer to extreme values of HS. To

compute fSCAseason we use σHelbig
HS (Eq. 3) in the fSCA formulation (Eq. 1) as follows:

fSCAseason = tanh(1.3
HSpseudo-min

σHelbig
HSmax

) . (5)

Here, HSpseudo-min is the current HS value or a recent minimum (pink dots in Figure 1a), and σHelbig
HSmax

is computed using the

current seasonal maximum snow depth HSmax, i.e. the maximum in HS from the start of the season up to the current time step125

(green dots in Figure 1a). We call HSpseudo-min a pseudo-minimum as it is not the absolute seasonal minimum. At each time

step, HSpseudo-min and HSmax are updated to compute fSCA. Note that after the PoW, HSmax and σHelbig
HSmax

remain constant.

For the rare, completely flat grid cells, i.e. a subgrid mean slope angle of zero, Eq. (2) would always result in fSCA= 1. In

those cases, we therefore use Eq. (4) instead of Eq. (2) to compute fSCAseason.

fSCAnsnow130

To account for possible increases in fSCA after recent snowfalls, we evaluate fSCA (Eq. 1) using σEgli
HS (Eq. 4) computed

with differences in snow depth dHS (only positive changes) within the last 14 days (Figure 1b). We use dHS rather than HS

to only account for the contribution of new snow on changes in fSCA, thus as if the new snow fell on bare ground. A time

window of 14 days provided reliable fSCA results after intensive testing, but the length of this period may require further

investigation once more is known about changes in snow depth distributions in mountainous terrain after snowfall.135

Within the 14 day time window, we compute two different fSCA values and then retain the maximum value. First, we

evaluate fSCA14day
nsnow using the largest positive change in snow depth within the last 14 days:

fSCA14day
nsnow = tanh(1.3

(HScurrent−HS14day
min )

σEgli
dHS14day

) . (6)

Here, HScurrent is the snow depth at the current time step (blue dot in Figure 1b), HS14day
min is the minimum snow depth in

the last 14 days (pink dot in Figure 1b), and σEgli
dHS14day is computed using the maximum difference in snow depth dHS14day =140

HS14day
max −HS14day

min in the last 14 days, with HS14day
max the maximum snow depth in the last 14 days (green dot in Figure 1b).
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Figure 1. Schematic representation of snow depth HS extreme values used to compute fSCA for a grid cell. (a) To determine fSCAseason,

extremes in HS (black line) are tracked over the entire season. When HS decreases, the seasonal maximum snow depth HSmax (green dots)

remains constant until a new maximum is reached with subsequent snowfalls. The pseudo-minimum HSpseudo-min (pink dots) decreases when

HS decreases, until the next snowfall. It then remains constant until HS either exceeds HSmax or decreases below the previous minimum.

(b) To determine fSCAnsnow, several extremes in HS (black line) are tracked within the last 14 days (black dashed lines in a): the current

value HScurrent (blue dot), the minimum within the last 14 days HS14day
min (pink dot), the maximum within the last 14 days HS14day

max (green

dot), and the minimum prior to the most recent snowfall HSrecent
min (yellow dot).

Second, we evaluate fSCArecent
nsnow using only the most recent change in snow depth within the last 14 days:

fSCArecent
nsnow = tanh(1.3

dHSrecent

σEgli
dHSrecent

) . (7)

Here, dHSrecent =HScurrent−HSrecent
min is the change in snow since the most recent snowfall, where HSrecent

min is the minimum

snow depth prior to the snowfall (yellow dot in Figure 1b). fSCArecent
nsnow avoids spatial discontinuities: Without this implemen-145

tation, grid cells with HS > 0 m prior to a recent snowfall may have a lower fSCA value than grid cells where the same

amount of new snow has fallen on the bare ground.

Finally, the maximum of fSCA14day
nsnow and fSCArecent

nsnow gives fSCAnsnow for the current time step and a grid cell.

Seasonal algorithm

Over the course of the snow season, we derive fSCAnsnow and fSCAseason for each time step and grid cell (Figure 2). The150

final fSCA was then obtained by taking the maximum of both values. This full seasonal fSCA algorithm, i.e. including

the tracking of HS and SWE, was implemented in a distributed snow cover model. The code is publicly available on the
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Figure 2. Illustration of modelled fSCArecent
nsnow, fSCA14day

nsnow and fSCAseason for one grid cell over a season. fSCA is the maximum for each

time step from fSCAnsnow=max(fSCArecent
nsnow,fSCA14day

nsnow) and fSCAseason. All terms are described in Section 2.2.

Table 1. Details of the different fSCA algorithms that are compared to the full fSCA algorithm in JIMOSHD.

algorithm name fSCAseason fSCAnsnow tracking HS & SWE (Section 2.2)

JIMOSHD Eq. (5) Eq. (6) & (7) season & 14 days

JIMseason
OSHD Eq. (5) - season

JIMcurr
OSHD tanh(1.3 HScurrent

σ
Helbig
HScurrent

) - -

JIMallHelbig
OSHD Eq. (5) Eq. (6) & (7) with σHelbig

HS season & 14 days

JIMSwenson*
OSHD Eq. (8.2) in Eq. (8.1) in season & 14 days

Lawrence et al. (2018) Lawrence et al. (2018)

WSL/SLF GitLab repository (cf. Code availability section). The data sets used to evaluate the performance of this algorithm

are described in the next section.
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3 Data155

3.1 Modelled fSCA andHS maps

We model the snow cover evolution using the JULES investigation model (JIM). JIM is a multi-model framework of physically

based energy-balance models solving the mass and energy balance for a maximum of three snow layers (Essery, 2013). While

the multi-model framework JIM offers 1701 combinations of various process parameterizations, Magnusson et al. (2015)

selected a specific combination that performed best for snow melt modelling for Switzerland. The latter model combination is160

used to predict daily snow mass and snowpack runoff for the operational snow hydrology service (OSHD) at WSL Institute of

Snow and Avalanche Research SLF. We ran JIMOSHD in 1 km resolution with hourly meteorological data from the COSMO-1

model (operated by MeteoSwiss) for Switzerland. We used a reanalysis product of daily observed precipitation (RhiresD) from

MeteoSwiss as well as COSMO-1 data. Daily HS measurements from manual observers as well as from a dense network

of automatic weather stations (AWS) were used to correct precipitation data via optimal interpolation (OI) (Magnusson et al.,165

2014), which is a computationally efficient data assimilation approach. Using OI in JIMOSHD, Griessinger et al. (2019) obtained

improved discharge simulations in 25 catchments over four hydrological years.

To describe the subgrid snow cover evolution in mountainous terrain, our seasonal fSCA algorithm was implemented in

JIMOSHD. As daily values, we used model output generated at 6 am (UTC). In the following, modelled fSCA and HS maps

refer to daily fSCA and HS from JIMOSHD model output.170

We also computed the snow cover evolution using JIMOSHD with various simplifications in the seasonal fSCA algorithm

as well as with the fSCA parameterizations implemented in CLM5.0 (Lawrence et al., 2018) which are based on Swenson

and Lawrence (2012) (cf. Table 1 for more details). This latter fSCA algorithm also accounts for hysteresis in accumulation

and ablation by using two different fSCA parameterizations and by tracking the seasonal maximum SWE. While subgrid

topography is accounted for in the fSCA parameterization during ablation via σz , topography is not accounted for during175

snowfall events. The algorithm of Swenson and Lawrence (2012) was derived by linking daily satellite-retrieved fSCA to

snow data. We implemented this algorithm in JIM using our snow tracking algorithm, i.e. the corresponding HS values such

as HSpseudo-min (cf. Section 2.2). This was done to solely evaluate the differences in the fSCA parameterizations. In total, we

performed four additional snow cover simulations: JIMseason
OSHD, JIMcurr

OSHD, JIMallHelbig
OSHD and JIMSwenson*

OSHD (cf. Table 1).

3.2 Evaluation data180

3.2.1 ADS fine-scaleHS maps

We used fine-scale spatial HS maps gathered by airborne digital scanning (ADS) with an opto-electronic line scanner on an

airplane. Data were acquired over the Wannengrat and Dischma area near Davos in the eastern Swiss Alps during winter and

summer (Bühler et al., 2015). We used ADS-derived HS maps at three points in time during one winter season, namely during

accumulation on 26 January (’acc’), at approximate peak of winter on 9 March (’PoW’) and during ablation season on 20 April185

2016 (’abl’) (Marty et al., 2019). We used a summer DEM from ADS to derive the snow-free terrain parameters.
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Each ADS data set covers about 150 km2 with 2 m spatial resolution. Compared to terrestrial laser scan (TLS)-derived

HS data, the 2 m ADS-derived HS maps had a root mean square error (RMSE) of 33 cm and a normalized median absolute

deviation (NMAD) of 24 cm (Bühler et al., 2015).

3.2.2 ALS fine-scaleHS maps190

We used fine-scale spatial HS maps gathered by airborne laser scanning (ALS). The ALS campaign was a Swiss partner

mission of the Airborne Snow Observatory (ASO) (Painter et al., 2016). Lidar setup and processing standards were similar to

those in the ASO campaigns in California. Data were acquired over the Dischma area near Davos in the eastern Swiss Alps (cf.

Figure 3a in Helbig et al., 2021). We used ALS-derived HS maps at three points in time during one winter season, namely at

the approximate peak of winter on 20 March (’PoW’) and during the early and late-ablation season on 31 March and 17 May195

2017 (’abl’), respectively. We used a summer DEM from ALS from 29 August 2017 to derive the snow-free terrain parameters.

Each ALS data set covered about 260 km2. The original 3 m resolution was aggregated to 5 m horizontal resolution. Com-

paring the ALS-derived HS data to manual snow probing within forest but outside canopy (i.e. not below a tree), Mazzotti

et al. (2019) reported a RMSE of 13 cm and a bias of -5 cm for 20 March 2017.

3.2.3 Terrestrial camera images200

We used camera images from terrestrial time-lapse photography in the visible band. The camera (Nikon Coolpix 5900 from

2016 to 2018, Canon EOS 400D from 2019 to 2020) was installed at the SLF/WSL in Davos Dorf in the eastern Swiss Alps

(van Herwijnen and Schweizer, 2011; van Herwijnen et al., 2013). Photographs were taken of the Dorfberg in Davos, which is a

large southeast-facing slope with a mean slope angle of about 30◦ (cf. Figure 1 in Helbig et al., 2015a). To obtain fSCA values

from the camera images, we followed the workflow described by Portenier et al. (2020). We used the algorithm of Salvatori205

et al. (2011) to classify pixels in the images as snow or snow-free. Though images are taken at regular intervals (between 2 and

15 minutes, depending on the year), we used the image at noon to derive fSCA for that day. We evaluated images from five

winter seasons (2016, 2017, 2018, 2019 and 2020) every time from 1 November to 30 June.

The resulting snow/no-snow map of the camera images had a horizontal resolution of 2 m. The field of view (FOV) overlaps

with four 1 x 1 km JIMOSHD grid cells with projected visible fractions between 9 to 40 % in each grid cell. The camera FOV210

covers about 0.76 km2.

3.2.4 Sentinel-2 snow products

We used fine-scale snow-covered area maps obtained from the Theia snow collection (Gascoin et al., 2019). The satellite snow

products were generated from Sentinel-2 L2A and L2B images. We used Sentinel-2 snow-covered area maps over one winter

season from 20 December 2017 to 31 August 2018 for Switzerland. We further used Sentinel-2 snow maps over the Dischma215

area near Davos close to or at the date of the three ALS-scans (18 and 28 March and 17 May 2017) and over the Dorfberg area

in Davos Dorf from 1 November 2017 to 30 June 2018.
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Figure 3. Probability density functions after preprocessing for all valid 1 km (a) fSCA, (b) snow depth and (c) elevation per measurement

data set. All densities were normalized with the maximum in each data set. Colors represent the different measurement platforms as detailed

in Section 3.2.

The horizontal resolution of the snow product is 20 m. While the spatial coverage of the Sentinel-2 snow-covered area maps

in Switzerland varies every time step, Sentinel-2 may cover several thousand square kilometers. A validation of the Theia snow

product with snow depth from AWS, through comparison to snow maps with higher spatial resolution as well as by visual220

inspection indicated that snow is well detected, although there is a tendency to underdetect snow (Gascoin et al., 2019). The

main difficulty of satellite snow products is to avoid false snow detection within clouds. Furthermore, snow omission errors

may occur on steep, shaded slopes when the solar elevation is typically below 20◦.

3.3 Derivation of 1 km fSCA evaluation data

For pre-processing, we masked out forest, rivers, glaciers or buildings in all fine-scale measurement data sets. Optical snow225

products that were obscured by clouds were also neglected. In all fine-scale HS data sets, we neglected HS values that were

lower than zero or above 15 m. We used a HS threshold of zero m to decide whether or not a 2 or 5 m grid cell was snow-

covered. This threshold could not be better adjusted due to a lack of independent observations.

We then aggregated all fine-scale snow data, as well as the snow products from optical imagery, in squared domain sizes L

in regular grids of 1 km aligned with the OSHD model domain. For the spatial averages, we required at least 70 % valid data230

for the fine-scale snow data and at least 50 % valid for the satellite-derived fSCA data in each 1 km grid cell. We excluded 1

km grid cells with spatial mean slope angles larger than 60◦ and spatial mean measured or modelled HS <5 cm. We further

neglected 1 km grid cells with forest fractions larger than 10 %, derived from 25 m forest cover data. Overall, this led to a

variable number of 1 km valid grid cells for the different data sets (Table 2). For the fine-scale snow data sets, this number

ranged from 69 to 157 with a total of 668 valid 1 km grid cells. After cloud and forest removal, on average, every second235

day we had some valid Sentinel-2 data in Switzerland (153 valid days from the 255 calendar days). For the time period from

20 December 2017 to 31 August 2018, this resulted in 216’896 valid 1 km grid cells from a total of 2’274’991 valid OSHD
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Table 2. Details of the valid 1 km fSCA evaluation data sets after pre-processing as described in Section 3.3.

geographical region remote spatial temporal σfSCA mean fSCA

sensing method coverage coverage

[km2] [days]

Wannengrat and Dischma area (eastern CH) ADS 232 3 0.05 0.98

Dischma and Engadin area (eastern CH) ALS 436 3 0.08 0.96

Davos Dorfberg (eastern CH) Terrestrial camera 931 337 0.23 0.81

Switzerland Sentinel-2 216’896 153 0.18 0.93

grid cells in Switzerland, i.e. about 9.5 %. These valid 1 km grid cells covered terrain elevations from 174 m to 4278 m,

subgrid mean slope angles from 0° to 60° and all terrain aspects. We used three of the four grid cells covered by the FOV of

the terrestrial camera, since one grid cell had a forest fraction larger than 10 %. On average, every fourth day we had valid240

camera data (337 valid days from the 1212 calendar days). Valid camera-derived fSCA for five seasons and the three grid

cells covered by the FOV resulted in 931 valid 1 km grid cells from a total of 3’018 valid OSHD grid cells, i.e. 31 %. The three

grid cells have terrain elevations of 2077 m, 2168 m and 2367 m and slope angles of 27°, 34° and 39°. The diversity in each of

the evaluation data sets after pre-processing is indicated in Table 2 and is also shown for valid 1 km domains by means of the

pdf for fSCA, HS and terrain elevation z in Figure 3.245

3.4 Performance measures

To evaluate the performance of modelled fSCA compared to the measurements, we used three measures: the root mean square

error (RMSE), the normalized root mean square error (NRMSE; normalized by the mean of the measurements) and the mean

percentage error (MPE; defined as measured minus modelled, normalized with the mean of the measurements).

4 Results250

We present the evaluation of our seasonal fSCA algorithm in three sections: evaluation with fSCA derived from fine-scale

HS maps near Davos, evaluation with fSCA from time-lapse photography in Davos Dorf and evaluation with fSCA from

Sentinel-2 snow products over Switzerland. We further present some additional comparisons with Sentinel-2 snow products in

the first two sections when Sentinel-2 data was available in the Davos area (cf. Section 3.2.4).

4.1 Evaluation with fSCA from fine-scaleHS maps255

Modelled fSCA compared well with fSCA derived from all six fine-scale HS data sets. Overall, we obtained a NRMSE of

7 %, a RMSE of 0.07 and a MPE of 0.7 % (Table 3). The best performance was for the two dates at the approximate PoW
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Table 3. Performance measures for modelled fSCAwith (I) fSCA derived from all fine-scaleHS maps (combined ADS- and ALS-derived

fSCA) and (II) Sentinel-derived fSCA (only available for ALS dates). Additionally, performance measures are shown for ALS-derived

fSCA with Sentinel-derived fSCA (III) and for modelled fSCA using JIMSwenson*
OSHD (IV). Given statistics are NRMSE, RMSE and MPE.

For all differences we computed measured minus modelled values respectively Sentinel-derived fSCA minus ALS-derived fSCA for III.

The different points in time of the season are specified in Section 3.2.

fSCA NRMSE RMSE MPE

[%] [%]

I JIMOSHD vs ADS&ALS

all dates 7 0.07 0.7

accumulation date 8 0.08 -3.8

PoW dates 2 0.02 0.3

ablation dates 8 0.08 1.8

II JIMOSHD vs Sentinel-2 (at ALS dates)

all dates 9 0.08 -1.4

PoW dates 3 0.03 2.5

ablation dates 9 0.08 -1.5

III Sentinel-2 vs ALS

all dates 11 0.10 3.1

PoW date 9 0.08 -5.9

ablation dates 11 0.10 3.4

IV JIMSwenson*
OSHD vs ADS&ALS

all dates 14 0.14 -1.2

accumulation date 9 0.09 -6.1

PoW dates 6 0.06 -0.6

ablation dates 18 0.18 -0.7

(NRMSE of 2 %, a RMSE of 0.02 and a MPE of 0.3 %), while the performance was somewhat lower during the ablation and

accumulation period.

To investigate the influence of elevation, we binned the data in 200 m elevation bands for the ADS and ALS data sets260

separately (Figures 4 and 5). For ADS data, elevation-dependent modelled fSCA values were comparable to the measurements

at PoW and early ablation, while the differences during accumulation were more pronounced (compare red and black dots in

Figure 4). There was also no consistent elevation trend, as during accumulation differences between modelled and measured

fSCA increased with elevation, while during early ablation the opposite was true. For the ALS data, measurements were only

available at PoW and during ablation. Overall, modelled fSCA values were again in line with the measurements (compare red265

and black dots in Figure 5). The largest difference was observed for the lowest elevation bin (0.15 at PoW at 1800m; Figure
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Figure 4. Modelled and ADS-derived fSCA in 200 m elevation bins for three dates: (a) during accumulation, (b) at approximate peak of

winter (PoW), and (c) during ablation. Two benchmarks based on Eq. (1) are shown where applicable: fSCAmeasured
PoW (orange stars) uses HS

form the current ADS scan and σHS from the ADS scan at PoW, while fSCAmeasured
curr (light blue stars) uses HS and σHS form the current

ADS scan. The bars show the valid data percentage per bin.

5a), and for the late ablation data, modelled fSCAwas consistently lower than ALS-derived fSCA, in particular for the lower

elevation bins (Figure 5c).

Valid Sentinel-2 data were only available on dates close to the ALS measurements (green dots in Figure 5), not to the ADS

measurement dates. Overall, modelled and Sentinel-derived fSCA values were in good agreement for the three ALS dates (II270

in Table 3), there was no clear elevation dependence (compare green and red dots in Figure 5), and differences were at most

0.05 (for elevations between 2300 m and 2500 m in Figure 5c). The Sentinel-derived fSCA values can also be compared

to those from the ALS scans. In this case, the performance measures were somewhat lower (compare II and III in Table 3),

and Sentinel-derived fSCA values were especially lower than the ALS data in late ablation (compare green and black dots in

Figure 5c).275

Our seasonal fSCA algorithm is implemented in a complex operational snow cover model framework (Section 3.1). Un-

certainties related to input or model structure therefore impact modelled HS and fSCA values. To investigate the influence of

these uncertainties more closely, we also derived two benchmark fSCA models based on Eq. (1) using measured rather than

modelled HS data. The first benchmark fSCAmeasured
curr (light blue stars in Figures 4 and 5) uses measured HS and σHS from

the current scan. The second benchmark fSCAmeasured
PoW (orange stars in Figures 4 and 5) combines current HS measurements280

with σHS values measured at PoW. At PoW, fSCAmeasured
PoW and fSCAmeasured

curr are the same, and fSCAmeasured
PoW can only be

derived at or after PoW. Results obtained with both benchmark models were similar, except for the lowest elevation bin in the

ALS data set (Figure 5b and c). Overall, the values of fSCAmeasured
curr were somewhat closer to the measured fSCA values (e.g.

Figure 4c or 5b). Both benchmark models were closest to the measured fSCA values during the ablation season (Figure 4c and

5c), and overall the agreement was better for higher elevation bins. Our seasonal fSCA implementation (red dots in Figures 4285

and 5) was also similar to both benchmark models. The largest differences were during the accumulation period (Figure 4a).
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Figure 5. Modelled and ALS-derived, and Sentinel-derived fSCA in 200 m elevation bins for three dates: (a) at approximate PoW, (b)

during early ablation and (c) during late ablation. The same two benchmarks based on Eq. (1) as in Figure 4 are also shown where applicable.

Sentinel-derived fSCA (green dots) was available 2 days before the PoW scan, 3 days before the early ablation scan and on the same day

as the late ablation scan. The bars show the valid data percentage per bin.

Figure 6. Modelled and ADS-derived HS in 200 m elevation bins for three dates: (a) during accumulation, (b) at approximate PoW and (c)

during ablation.

As a final benchmark, we also compared our seasonal fSCA implementation with the parameterizations implemented in

CLM5.0 (cf. Table 1). Modelled fSCA using JIMOSHD performed better than that modelled with JIMSwenson*
OSHD (compare I and IV

in Table 3). During most of the season, fSCA values from JIMSwenson*
OSHD were close to 1 and showed little elevation dependence

(blue stars in Figure 4 and 5). The only exception was during the late-ablation season, when fSCA from JIMOSHD and from290

JIMSwenson*
OSHD were very similar (red dots and dark blue stars in Figure 5c).

To investigate the origin of the discrepancies between modelled and observed fSCA values more closely, we compared

modelled and measured HS in 200 m elevation bins for the ADS and ALS data sets separately (Figure 6 and 7). For both

data sets, modelled HS was substantially lower than measured HS at higher elevations. The only exception was for the

accumulation date, when modelled and measured HS were in good agreement for all elevations (Figure 6a). For all dates and295
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Figure 7. Modelled and ALS-derived HS in 200 m elevation bins for three dates: (a) at approximate PoW, (b) during early ablation and (c)

during ablation.

data sets, the NRMSE between modelled and measured HS was 12 % and the MPE was 14 %. Note that seasonal variations in

ALS-HS across all elevations were generally much lower than those in the ADS-HS data. This was in part because the time

intervals between the three ALS scans (20 March, 31 March, 17 May 2017) were shorter than for the ADS scans (26 January,

9 March and 20 April 2016), and there were also some snowfall events during the ALS ablation period (spring 2017).

4.2 Evaluation with fSCA from camera images300

The high temporal resolution of camera-derived fSCA allowed us to evaluate the seasonal model performance. The seasonal

trend in modelled fSCA using JIMOSHD was generally in line with that from camera-derived fSCA (compare red and black

dots in Figure 8). For the grid cell at 2168 m, however, the agreement was somewhat poorer, as there was a delay in the

modelled start of the ablation season, and modelled fSCA values were too high during accumulation (Figure 8b,e).

For all winter seasons (2016 to 2020) and for the three grid cells, we obtained a NRMSE of 21 %, a RMSE of 0.17 and305

a MPE of -7 % (I in Table 4). Note that the inter-annual performance varied substantially, as did the performance among the

three grid cells. For instance, for all three grid cells, the overall best performance was for the season 2018 (NRMSE = 14 %,

RMSE = 0.11, MPE = -4 %), while the worst performance was for the season 2019 (NRMSE = 25 %, RMSE = 0.2, MPE =

-12 %).

For winter season 2018, we used Sentinel-derived fSCA to evaluate modelled and camera-derived fSCA values. While310

overall the agreement between modelled and Sentinel-derived fSCAwas good (NRMSE 2 % and MPE of 1 %), the agreement

between camera- and Sentinel-derived fSCA was poorer (NRMSE = 12 %, MPE = 5 %). The latter performance values were

however comparable to the agreement between modelled and camera-derived fSCA for days with valid Sentinel-derived data

(NRMSE = 12 %, MPE = -4 %).

The camera-derived fSCA was also used to evaluate the relevance of applying our full seasonal fSCA algorithm, as315

opposed to simplifications and JIMSwenson*
OSHD (cf. Table 1 for details). While overall fSCA from JIMseason

OSHD and JIMOSHD agreed

well, there were substantial differences after snowfall events on partly snow-free ground (compare orange stars and red dots
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Table 4. Performance measures for (I) modelled fSCA using JIMOSHD and camera-retrieved fSCA for the winter seasons 2016 to 2020,

(II) modelled fSCA using JIMOSHD and Sentinel-derived fSCA for the three grid cells for the winter season 2018, (III) camera-derived

fSCA with Sentinel-derived fSCA for the three grid cells, and (IV to VII) for all JIM modelled fSCA versions (for details see Table 1),

namely for JIMseason
OSHD, JIMcurr

OSHD, JIMallHelbig
OSHD and JIMSwenson*

OSHD , with camera-derived fSCA.

fSCA NRMSE RMSE MPE

[%] [%]

I JIMOSHD vs camera

21 0.17 -7.1

II JIMOSHD vs Sentinel-2

2 0.02 0.8

III camera vs Sentinel-2

12 0.11 5.0

IV JIMseason
OSHD vs camera

22 0.18 -6.1

V JIMcurr
OSHD vs camera

26 0.21 -9.2

VI JIMallHelbig
OSHD vs camera

21 0.17 -7.6

VII JIMSwenson*
OSHD vs camera

30 0.25 -10.6

in Figure 8). Specifically, after such a snowfall event, modelled fSCA using JIMOSHD generally increased, while JIMseason
OSHD

remained constant. Using JIMcurr
OSHD, modelled fSCA values were less in line with those from JIMOSHD (compare light blue

stars and red dots in Figure 8). While discrepancies were again large after snowfall events, they were also pronounced during320

the ablation periods. In general, with JIMcurr
OSHD the ablation season started later and was followed by a much steeper melt out

period. Using JIMcurr
OSHD can result in a substantially shorter snow season compared to JIMOSHD, with a maximum difference of

21 days at 2168 m in the season 2017. Overall, compared to camera-derived fSCA, both simplified models performed less

well than JIMOSHD (Table 4). The performance using JIMallHelbig
OSHD was very similar to fSCA from JIMOSHD, i.e. applying σHelbig

HS

instead of σEgli
HS for fSCAnsnow did not substantially affect model performance. On the contrary, fSCA from JIMSwenson*

OSHD325

had the worst overall performances when compared to camera-derived fSCA (VII in Table 4). Similar to JIMcurr
OSHD, using

JIMSwenson*
OSHD considerably delayed the ablation season, followed by a much steeper melt out. The snow season was substantially

shortened again by at most 32 days in the 2017 season at 2077 m. Modelled fSCA using JIMSwenson*
OSHD also largely overestimates

fSCA during the accumulation period (blue dots in Figure 8). Overall, using JIMSwenson*
OSHD led to much steeper increases and

decreases in fSCA, i.e. an almost binary seasonal fSCA trend that was not in line with camera-derived fSCA.330
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Figure 8. Modelled, camera- and Sentinel-derived fSCA for the three 1 km grid cells within the field of view of the camera for two seasons:

(a to c) winter 2017, (d to f) winter 2018.

4.3 Evaluation with fSCA from Sentinel-2 snow products

Overall, modelled fSCA using JIMOSHD compared well with Sentinel-derived fSCA throughout the season (I in Table 5). To

investigate the elevation-dependent differences between modelled and Sentinel-derived fSCA in more detail, we binned the

data in 250 m elevation bands for each day throughout the entire season (Figure 9). To estimate the end of the accumulation (1

April 2018) and ablation season (30 June 2018), we used the spatial mean HS (solid black line at bottom of Figure 9). Overall,335

differences in performance between the accumulation and the ablation period were small (I in Table 5). However, there were

marked differences with elevation throughout the season. Up to the end of the accumulation period, the largest differences

between modelled and Sentinel-derived fSCA were at elevations lower than 1500 m, whereas at elevations above around

3000 m the agreement was good (Figure 9a). During the ablation period, most of the snow at lower elevations was gone, and

modelled fSCA was generally larger than Sentinel-derived fSCA at higher elevations (> 2500 m), in particular towards the340

end of the ablation season. During the summer (30 June to 30 August 2018), i.e. after the end of the ablation season, modelled

fSCA was larger than Sentinel-derived fSCA at the highest elevations (> 3500 m) whereas between the snow line and these

highest elevations, modelled fSCA was generally lower.

Given the high temporal resolution of the Sentinel-derived fSCA data set, we again evaluated the fSCA algorithm simpli-

fications and JIMSwenson*
OSHD (cf. Table 1). Compared to our seasonal implementation, the overall performance values of the fSCA345
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Figure 9. Difference between Sentinel-derived and modelled fSCA for Switzerland as function of date and elevation z (in 250 m elevation

bins) for available satellite dates for (a) JIMOSHD and (b) JIMSwenson*
OSHD . Daily spatial mean snow depth HS is also shown (solid black line).

The vertical lines indicate the dates for the end of accumulation (dashed) and ablation (line with stars) season.

algorithm simplifications were similar, except for JIMcurr
OSHD and JIMSwenson*

OSHD (Table 5). Modelled fSCA values with JIMcurr
OSHD

and JIMSwenson*
OSHD were generally larger than Sentinel-derived fSCA, resulting in larger MPE values with the largest ones for

JIMSwenson*
OSHD (compare I, III and V in Table 5). This is also clearly reflected in the elevation-dependent differences between

fSCA using JIMSwenson*
OSHD and Sentinel-derived fSCA throughout the season (Figure 9b).

5 Discussion350

5.1 Fractional snow-covered area fSCA algorithm

Our seasonal fSCA algorithm is based on the closed-form fSCA parameterization of Helbig et al. (2015a) (Eq. 1) and

combines two statistical parameterizations for σHS together with a tracking method to account for changes in maximum snow

depth and precipitation events. The algorithm is modular, meaning that individual parts can easily be complemented or replaced

with new parameterizations e.g. for fSCAnsnow. Overall, our algorithm only requires subgrid cell summer terrain parameters,355

which are a slope related parameter and the terrain correlation length, and tracking snow information.

We evaluated the performance of our seasonal fSCA implementation in Switzerland. We could not explicitly evaluate the

performance for completely flat grid cells, i.e. grid cells with a subgrid mean slope angle of zero. After removing rivers/lakes,

we only had five 1 km grid cells for Switzerland with a subgrid mean slope angle of zero, i.e. 0.01 % of all grid cells. For these

grid cells, using σHelbig
HS (Eq. 2) always results in a fSCA of one. As a first approach, we therefore proposed to use σEgli

HS (Eq.360

4). Although we see no reason why our fSCA algorithm could not be used in other geographic region, it remains unclear at

this point if our seasonal fSCA implementation can also be used in flat regions.
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Table 5. Performance measures for (I) modelled fSCA using JIMOSHD and Sentinel-retrieved fSCA for the winter seasons 2018 for all

valid 1 km grid cells of Switzerland and for all dates (20 December 2017 to 30 June 2018), for the accumulation period (20 December to 1

April) and for the ablation period (1 April to 30 June), and (II to V) for all JIM modelled fSCA versions (for details see Table 1), namely

for JIMOSHD, JIMseason
OSHD, JIMcurr

OSHD, JIMallHelbig
OSHD and JIMSwenson*

OSHD .

fSCA vs Sentinel-2 NRMSE RMSE MPE

[%] [%]

I JIMOSHD

all dates 12 0.11 0.4

accumulation period 11 0.11 0.3

ablation period 14 0.12 0.5

II JIMseason
OSHD

all dates 12 0.12 0.4

accumulation period 11 0.11 0.3

ablation period 14 0.12 0.5

III JIMcurr
OSHD

all dates 14 0.13 -0.8

accumulation period 11 0.11 0.1

ablation period 18 0.16 -2.4

IV JIMallHelbig
OSHD

all dates 12 0.11 0.3

accumulation period 11 0.11 0.2

ablation period 14 0.12 0.5

V JIMSwenson*
OSHD

all dates 18 0.17 -1.8

accumulation period 17 0.16 -0.7

ablation period 21 0.19 -3.6
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We used σEgli
HS (Eq. 4), which does not account for subgrid topography, to derive fSCAnsnow. We did this to account for

uniform blanketing after a snowfall, i.e. to account for possible increases in fSCA after a recent snowfall. When substituting

σEgli
dHS by σHelbig

dHS in Eq. (6) and (7) (JIMallHelbig
OSHD , cf. Table 1), the overall performance was very similar (Table 4 and 5). Thus,365

while applying σEgli
dHS might not describe the true spatial new snow distribution in mountainous terrain, the formulation is

simple and is therefore used here as a first approach. Based on the modular algorithm setup, different closed-form fSCA

parameterizations can be applied in our seasonal algorithm, e.g. for a flat grid cell or for fSCAnsnow (for some empirical

examples cf. Essery and Pomeroy, 2004).

5.2 Evaluation370

5.2.1 Evaluation with fSCA from fine-scaleHS maps

The evaluation of the seasonal fSCA algorithm with fSCA from fine-scale HS maps showed that overall the model per-

formed well, especially at PoW(I in Table 3). Modelled fSCA using JIMSwenson*
OSHD , on the other hand, generally overestimated

fSCA (MPE< 0). This algorithm inter-comparison shows that the seasonal fSCA evolution is better captured by JIMOSHD,

most likely because the JIMSwenson*
OSHD model does not sufficiently account for the high spatial variability in snow distribution in375

complex terrain.

During accumulation at higher elevations, modelled fSCA using JIMOSHD overestimated ADS-derived fSCA, even though

modelled HS agreed reasonably well with the measurements (Figure 4a and 6a). We also used a different model configuration

(JIMallHelbig
OSHD in Table 1), yet fSCA values did not substantially change for the accumulation date [not shown]. Based on this

we assume that both σHS parameterizations cannot sufficiently describe snow redistribution during accumulation, likely due380

to periods with strong winds following snowfall. The description of σHS during the accumulation period thus needs to be

improved. This will, however, require more than one spatial HS data set during accumulation.

At PoW and during the ablation season, JIMOSHD mostly underestimated fSCA compared to fSCA from fine-scale HS

maps, without a clear elevation trend (Figures 4 and 5). Discrepancies between modelled and measured HS, on the other hand,

generally increased with elevation (Figure 6 and 7). Obviously for larger snow depth, correctly modelling HS has little effect385

on fSCA, The overall underestimated modelled fSCA values were likely a consequence of the HS threshold of 0 m we

used to decide whether a 2 or 5 m grid cell was snow-covered or not. In reality, due to measurement uncertainties, both small

positive or negative measured HS values can still be associated with snow free areas. When arbitrarily increasing the HS

threshold to ± 10 cm for the ALS-data, modelled 1 km fSCA values were rather larger than the measurements [not shown].

This is not contradictory, but emphasizes the need to accurately model HS along snow lines, where small inaccuracies in HS390

can have large impacts on fSCA. For instance, during early ablation modelled as well as measured fSCA are larger in the

lowest elevation bin than at higher elevations (cf. Fig. 4c). Unfortunately, we currently do not have detailed snow observations

available to define robust HS threshold values which take into account the different points in time of the season as well as

the influence of terrain and ground cover. However, the overall good agreement between Sentinel- and ALS-derived fSCA
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(Figure 5 and III in Table 3) provides some confidence in the fine-scaleHS data-derived fSCA used here to evaluate modelled395

fSCA.

The two benchmark fSCA models based on Eq. (1) using measured rather than modelled HS data (fSCAmeasured
curr and

fSCAmeasured
PoW ) generally showed similar trends as HS-derived and modelled fSCA (Figure 4 and 5). At PoW, fSCAmeasured

curr

agreed less well with measured fSCA than our seasonal implementation (cf. Figure 4b and 5a). This may indicate uncer-

tainties in the empirical fSCA parameterization (Eq. 1), which requires further investigation of spatial HS data sets during400

accumulation. During ablation, we expected that fSCAmeasured
PoW would be closer to measured fSCA than fSCAmeasured

curr , which

was however not the case (cf. Figure 4c and 5b). Since the true PoW date is elevation and aspect dependent, we cannot assume

that one date for PoW is representative for the entire catchment, covering several hundred of square kilometers and large ele-

vation gradients. Thus, measured σHS at the date we defined as PoW, might not have been representative for the true σHSmax

in each grid cell as required by Eq. (5). Besides possible uncertainties in the empirical fSCA parameterization (Eq. 1), we405

assume this is the main reason why these two benchmark models using measured HS data did not outperform our seasonal

implementation. Overall, these comparisons emphasize the need for tracking snow information per grid cell, as is done by our

seasonal fSCA algorithm.

5.2.2 Evaluation with camera-derived fSCA

The evaluation with fine-scale HS maps revealed overall good model performance at six points in time. It was however not410

possible to comprehensively evaluate the performance over the season. For this, we used daily camera-derived fSCA, showing

that the modelled seasonal fSCA trend was mostly in line with observations (Figure 8).

Model performance compared to the camera-derived fSCA values was overall worse than when comparing to HS-derived

fSCA (e.g. NRMSE of 21 % for I in Table 4 compared to NRMSE of 7 % for I in Table 3). Since the higher temporal

resolution of the camera data set leads to the largest spread in fSCA values compared to the other two data sets (cf. Table415

2 and Fig. 3), a larger portion of intermediate fSCA values (e.g. close to the snow line) are included which are generally

more difficult to model correctly than fSCA values close to one. The poorer model performance is however likely also due to

the overall lower accuracy of camera-derived fSCA. For instance, the projection of the 2D-camera image to a 3D DEM may

introduce errors and distortions. Furthermore, when deriving fSCA from camera images, clouds/fog and uneven illumination,

for instance due to shading or partial cloud cover, may deteriorate the accuracy (e.g. Farinotti et al., 2010; Fedorov et al., 2016;420

Härer et al., 2016; Portenier et al., 2020). Another factor affecting the performance measures was the threshold for the number

of valid fine-scale data per 1 km grid cell. When aggregating to 1 km fSCA maps for the Sentinel-derived values, we required

at least 50 % valid fine-scale data. This requirement could not be met for camera-derived fSCA, as the projected fractions

of the camera FOV on the 1 km model grid cells were only 9 %, 13 % and 14 %. This is reflected in the better agreement

between modelled and Sentinel-derived fSCA than between camera- and Sentinel-derived fSCA (NRMSE of 2 % versus 12425

% in Table 4). Finally, as the camera was installed at valley bottom, steep slope sections cover larger areas of the FOV, while

flatter slope parts remain invisible. This likely lead to underestimated fSCA values. On the other hand, valid Sentinel-derived

fSCA has a much lower temporal resolution and did not cover the entire ablation period. Instead, Sentinel-derived fSCA
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was often available throughout the period when fSCA was rather close to one (cf. Figure 8d,e). Thus, while there is likely

more uncertainty in camera-derived fSCA, the high temporal resolution of this product still provides valuable information on430

model performance throughout the season.

We used the camera-derived fSCA to also evaluate simplifications of our seasonal fSCA algorithm as well as JIMSwenson*
OSHD

(Table 1). Compared to our seasonal fSCA implementation, the more simple implementations did not capture the seasonal

variation as well (Figure 8). With JIMcurr
OSHD, the start of the ablation season was delayed, and the ablation season was also

considerably shortened, by up to 21 days. In this respect, the results for JIMSwenson*
OSHD were very similar, as overall the increases435

and decreases of fSCAwere very steep, leading to shortened snow seasons and poorer performances (cf. Table 4). In principle,

JIMcurr
OSHD considers each day as PoW, leading to rapid changes in fSCA, in particular when HS values are low (i.e. early

accumulation or ablation season). In JIMseason
OSHD, the seasonal maximum value of HS was additionally tracked, substantially

improving the seasonal fSCA trend, in particular during the ablation season. However, changes in fSCA due to snowfall

events were still not captured well with this implementation, showing that our new snow tracking algorithm further improves440

the overall model performance. Since the impact of using JIMallHelbig
OSHD on modelled fSCA is mainly restricted to snowfall

following melt periods, overall performances were very similar to JIMOSHD (cf. Table 4 and 5). This again indicates that the

description of σHS following snowfall events requires further investigation.

5.2.3 Evaluation with Sentinel-derived fSCA

By including Sentinel-derived fSCA in our evaluation, we added a data set with both a high temporal resolution and a much445

larger spatial coverage (cf. Table 2). The Sentinel-derived fSCA data set comprised about 217’000 1 km grid cells covering a

wide range in terrain elevations, slope angles and terrain aspects.

For the investigated winter season, results showed an overall good seasonal agreement across Switzerland, though there

was some elevation-dependent scatter (Figure 9a). Discrepancies during accumulation occurred mostly along the snowline at

lower elevations, where lower spatial HS values as well as more cloudy weather prevail during accumulation. Both can lead450

to inaccurate modelled and Sentinel-derived fSCA. Furthermore, we assume that some of the overestimations in modelled

fSCA at higher elevations during accumulation could also stem from underestimated σHS during periods when strong winds

follow snowfall events, as was also observed in the HS data sets (Figure 4a and Section 5.2.1). The scatter at high elevations

during ablation and summer likely originates from lower modelled fSCA due to underestimated precipitation, as there are

fewer AWS at high elevations for data assimilation in our model.455

Performance measures were somewhat poorer than those from fine-scale HS maps (e.g. NRMSE of 12 % for Sentinel

versus 7 % for fSCA for HS data). Uncertainties introduced by reduced visibility in the snow products of Sentinel-2 are the

most likely reason for this. Both, our camera- as well as the Sentinel-2 data set cover long time periods in higher temporal

resolution, i.e. they include also periods under unfavorable weather conditions. On the contrary, clear sky dates were carefully

selected for the on-demand high-quality data acquisitions from the air for our fSCA data sets derived from fine-scale HS460

maps. Nevertheless, the camera- as well as the Sentinel-2 data set enabled us to evaluate seasonal fSCA model trends which

would not have been possible from only six fSCA data sets derived from HS data.
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When evaluating the simplified fSCA algorithms and JIMSwenson*
OSHD , model performance measures were comparable to our

seasonal implementation except for JIMcurr
OSHD and JIMSwenson*

OSHD (Table 5), as was also the case for the comparison with camera-

derived fSCA (Table 4). For Sentinel- and camera-derived fSCA, the main reason is likely the limited availability of fSCA465

data during or shortly after snowfall, due to bad visibility and clouds. Additionally, for the Sentinel-derived fSCA, local

performance differences across Switzerland are likely averaged out. Nevertheless, fSCA values when using JIMSwenson*
OSHD were

overestimated compared to Sentinel-derived values (Figure 9b, and negative MPE for V in Table 5). Similar results were also

observed when using JIMcurr
OSHD (cf. negative MPE for III in Table 5). These biases are most likely related to the rather steep

increases and decreases of modelled fSCA over the season, as we also observed with the camera-derived fSCA (Figure470

8). We further assume that overestimated fSCA using JIMSwenson*
OSHD at higher elevations, due to underestimating spatial snow

depth variability in complex terrain, may have compensated for other modelled fSCA error sources (e.g. from underestimated

precipitation input at these elevations) leading to an overall lower bias at higher elevations during accumulation compared to

our fSCA implementation. Finally, note that the scatter above zero between Sentinel-derived and JIMSwenson*
OSHD fSCA (Figure

9b) almost disappears when we neglect all 1 km domains with modelled HS < 5 cm using JIMSwenson*
OSHD [not shown]. While the475

overall NRMSE values for JIMSwenson*
OSHD are then comparable to our seasonal implementation (e.g. NRMSE of 12 % for all dates

instead of 18 %; cf. V in Table 5), it reveals the overall overestimation of JIMSwenson*
OSHD (e.g. increased negative MPE of -4.1

% for all dates instead of -1.8 %). Clearly, our seasonal fSCA implementation is better suited to more realistically represent

seasonal changes in mountainous terrain, in particular following snowfall and during the ablation period.

6 Conclusions480

We presented a seasonal fractional snow-covered area (fSCA) algorithm based on the fSCA parameterization of Helbig

et al. (2015b, 2021). The seasonal algorithm is based on tracking HS and SWE values accounting for alternating snow

accumulation and melt events. Two empirical parameterizations were used to describe the spatial snow depth distribution, one

for mountainous terrain and one not accounting for subgrid topography. An implementation in a multilayer energy balance

snow cover model system (JIMOSHD; JIM, JULES investigation model (Essery et al., 2013)) allowed us to evaluate seasonally485

modelled fSCA for Switzerland.

Compiling independent fSCA data sets with different spatiotemporal characteristics enabled a thorough analysis of the

seasonal fSCA algorithm in mountainous terrain of daily 1km-fSCA values. While the evaluation with the three data sets

showed overall good seasonal performance, each of the evaluation data sets allowed drawing specific conclusions. The eval-

uation with fine-scale spatial HS-derived fSCA showed that HS uncertainties along the snow line likely contributed most490

to underestimation of fSCA during ablation and PoW, emphasizing the need to accurately model HS along snow lines. The

camera-derived fSCA data set, with the highest temporal resolution confirmed the need for tracking HS over the season as

well as accounting for intermediate snowfalls to avoid a delayed melt start and a drastic shortening of the ablation season. The

Sentinel-derived fSCA data set, with the largest spatial coverage together with a rather high temporal resolution, demonstrated

that the seasonal fSCA algorithm performs well across a range of elevations, slope angles, terrain aspects and snow regimes.495
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This comparison showed that there were some differences at low elevation or along the snowline coinciding with low HS,

while discrepancies occurred mostly at high elevations towards the end of the season, respectively during summer.

Overall, NRMSE’s for seasonally modelled fSCA increased from 7 % for HS data-derived fSCA, to 12 % for Sentinel-

derived fSCA and to 21 % for camera-derived fSCA. While the large variation in performance measures is likely tied to the

various temporal and spatial resolutions of the data sets and measurement uncertainties, it also demonstrates the difficulties in500

drawing conclusions when evaluating a model algorithm with evaluation data from different acquisition platforms. Neverthe-

less, this comparison with data covering a wide range of spatiotemporal scales allowed us to obtain a comprehensive overview

of the strength and weaknesses of our seasonal fSCA implementation. We are not aware of any seasonal fSCA implemen-

tation that has been evaluated in such detail by exploiting independent HS and snow product data sets in high spatial and

temporal resolution.505

By implementing the fSCA parameterizations applied in CLM5.0 (Lawrence et al., 2018) in JIMOSHD, we also evaluated

modelled fSCA using JIMSwenson*
OSHD . This showed that our seasonal fSCA algorithm captures the seasonal variation best, and

that seasonal variation in JIMSwenson*
OSHD was limited. JIMSwenson*

OSHD resulted in often overestimated fSCA values, likely because the

high spatial variability in snow depth distribution in complex terrain is not sufficiently described.

The implementation of the seasonal fSCA algorithm in a model only requires subgrid terrain parameters from a fine-510

scale summer DEM in combination with tracking HS and SWE for coarse grid cells. The algorithm is set up such that

improvements or adaptations of individual algorithm parts can easily be implemented. The PoW fSCA parameterization of

Helbig et al. (2015b) forms the centerpiece of the presented seasonal fSCA algorithm. The recent re-evaluation with various

spatial PoW snow depth data sets from 7 geographic regions showed an overall NRMSE of only 2 % (Helbig et al., 2021).

This detailed evaluation at PoW in different geographic regions together with the seasonal assessment with the three fSCA515

data pools presented here, suggests that the seasonal fSCA algorithm may also be used in other geographic regions. However,

further investigations, once more spatial HS data sets before and after snowfalls in complex topography become available,

would be advantageous for improvements of our seasonal fSCA algorithm, especially during the accumulation period.

Code availability. The code of the full algorithm is made available on WSL/SLF GitLab repository as well as on Envidat upon final publi-

cation.520

Data availability. All data used in this study is described in the data section. The data can be downloaded from the referenced repositories

or data availability is described in the referenced publications. Theia snow maps are freely distributed via the Theia portal

(https://doi.org/10.24400/329360/F7Q52MNK).
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