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Abstract. The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season.
In this context, fractional snow-covered area (fSCA) is therefore-an essential model parameter characterizing how much
of-the-ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent
scale-independent fSCA parameterization. For the seasonal implementation, we track snow depth (H.S) and snow water
equivalent (SW E), and account for several alternating accumulation-ablation phases. Besides tracking H.S and SW E, the
seasonal fSCA algorithm only requires eomputing—subgrid terrain parameters from a fine-scale summer digital elevation
model. We implemented the new algorithm in a multilayer energy balance snow cover model. For-a-spatiotemporal-evaluation

of-To evaluate the spatiotemporal changes in modelled fSC A, we compiled three independent fSC'A data sets —Evaluating
modeHed-HanFSCA-seasonally-with--5CA-derived from airborne-acquired fine-scale H .S data, sateHite—as well as terrestrial

eamera-derived-f SC A shewed-overall-data derived from satellite and terrestrial imagery. Overall, modelled daily 1km-fSC A
values had normalized root mean square errors of respectively 9-%:;20-%and—22-7 %, 12 % and 21 %, and represented

AN ARAAAAANTAA
he-some seasonal trends were identified. Comparin,
our algorithm performances to the performances of the CLMS5.0 f.SC A algorithm implemented in the multilayer snow cover
model demonstrated that our full seasonal fSC A algorithm better represented seasonal trends. Overall, the results suggest that

our seasonal fSC A algorithm can be applied in other geographic regions by any snow model application.

1 Introduction

In mountainous terrain, the large spatial variability of the snow cover is driven by the interaction of meteorological variables
with the underlying topography. Over the course of a winter season, the dominating topographic interactions with wind, precip-
itation and radiation vary considerably, which-generate-the-generating characteristic seasonal dynamics of spatial snow depth
variability (e.g. Luce et al., 1999). This spatial variability, or how much of the ground is actually covered by snow, is typi-

cally characterized by the fractional snow-covered area (fSCA). fSC A is a crucial parameter in model applications such as
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weather forecasts (e.g. Douville et al., 1995; Doms et al., 2011), hydrological modelling (e.g. Luce et al., 1999; Thirel et al.,
2013; Magnusson et al., 2014; Griessinger et al., 2016, 2019) or avalanche forecasting (Bellaire and Jamieson, 2013; Horton
and Jamieson, 2016; Vionnet et al., 2014), and is also used for climate scenarios (e.g. Roesch et al., 2001; Mudryk et al., 2020).

fSC A can be retrieved from various satellite sensor imagessueh-asfrom-, including Moderate Resolution Imaging Spectro-
radiometer (MODIS) or Sentinel-2 (e.g. Hall et al., 1995; Painter et al., 2009; Drusch et al., 2012; Masson et al., 2018; Gascoin
et al., 2019). However-a-Nevertheless, solutions are required to correct for temporal and spatial inconsistent coverage due to
time gaps between satellite revisits, data delivery and the frequent presence of clouds requires-additional-solutions—(Parajka
and Bloschl, 2006; Gascoin et al., 2015). Though fine-scale spatial snow cover models provide spatial snow depth distributions
whieh-that could be used to derive coarse-scale fSCA, applying such models to larger regions is generally not feasiblewhich

._This is in part due to computational cost, a lack of detailed input data and limitations in model structure or parameters.

While some of these limitations can be overcome using current snow cover model advances applying data assimilation routines

.g. Andreadis and Lettenmaier, 2006; 2008; Thirel et al., 2013; Griessinger et al., 2016; Huang et al.,

, the inherent uncertainties in input or assimilation data still remain. Computationally efficient subgrid fSC A parameteriza-

Nagler et al.,

tions, accounting for unresolved snow depth variability, are therefore eurrenthy-still the method of choice for coarse-scale model
systems, such as weather forecast, land surface and earth system models. Furthermore, fSC A parameterizations are essential
when assimilating satellite snow-covered area data in model systems (e.g. Zaitchik and Rodell, 2009)

Several compact, closed-form fSC A parameterizations were suggested for coarse-scale model applications (e.g. Douville
etal., 1995; Roesch et al., 2001; Yang et al., 1997; Niu and Yang, 2007; Su et al., 2008; Zaitchik and Rodell, 2009; Swenson and
Lawrence, 2012). Most of these fSC A parameterizations were heuristically developed. Some parameterizations introduced
subgrid terrain parameters (e.g. Douville et al., 1995; Roesch et al., 2001; Swenson and Lawrence, 2012). The tanh-form,
suggested by Yang et al. (1997), was later confirmed by integrating theoretical log-normal snow distributions and fitting the
resulting parametric depletion curves using the spatial snow depth distribution (o7 ) in the denominator of fitted fSC A curves
(Essery and Pomeroy, 2004). Through advances in remote sensing techniques, fine-scale spatial snow depth (H S) data became
more readily available allowing to empirically parameterize o g in complex topography at peak of winter (PoW) or during
accumulation (Helbig et al., 2015b; Skaugen and Melvold, 2019). By parameterizing o g using subgrid terrain parameters,
Helbig et al. (2015b) enhaneed-expanded the tanh-fSCA parameterization of Essery and Pomeroy (2004) by-aceounting
to account for topographic influence. FurthermereRecently, Helbig et al. (2021) re-evaluated this empirically derived fSCA
parameterization with high-resolution spatially-distributed-snow-depth-data-spatial 4.5 sets from 7 different geographic re-

gions at PoW—They-introduced-a—scale-dependency—in-the-dominant-sealing—variables—thatimproved-the-emp a A

- and made it applicable across spatial scales > 200 m by introducing a scale-dependency in the

dominant model descriptors.
Many studies highlighted that the same mean H S in early winter or in late spring can lead to substantially different fSC A

(Luce et al., 1999; Niu and Yang, 2007; Magand et al., 2014);-a-phenemenen-that-. This has led to the introduction of hystere-
sis in some fSC' A parameterizations {e-g—ueeet-al51999)(e.g. Luce et al., 1999; Swenson and Lawrence, 2012). Previously

2017; Baba et al., 20
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found interannual time-persistent correlations between topographic parameters and snow depth distributions (e.g. Schirmer
et al., 2011; Schirmer and Lehning, 2011; Revuelto et al., 2014; Lépez-Moreno et al., 2017) suggest indeed that a time-
dependent fSC A implementation might be feasible. However, a seasonal model implementation of a closed form fSCA
parameterization also needs to account for alternating snow accumulation and melt events during the season. Especially at
lower elevations and increasingly so with climate change, the separation of the depletion curve in only one accumulation pe-
riod followed by a melting period is no longer applicable (e.g. Egli and Jonas, 2009). A seasonal fSC A implementation in
mountainous regions that accounts for these alternating periods is challenging. While some seasonal fSC' A implementations
of varying complexities were previously proposed (e.g. Niu and Yang, 2007; Su et al., 2008; Egli and Jonas, 2009; Swenson
and Lawrence, 2012; Nitta et al., 2014; Magnusson et al., 2014; Riboust et al., 2019) a detailed evaluation of seasonally pa-
rameterized fSCA with fSCA derived from high-resolution spatial as-weH-as-and temporal H S data or snow products is
currently still missing.

This-artiele-presents-Here, we present a seasonal fSCA implementation and its-temporal-evaluation-evaluate it with high-
resolution observation data in various geographic regions throughout Switzerland. The algorithm is based on the fSC A pa-
rameterization for complex topography proposed by Helbig et al. (2015b, 2021)and-applies-. We apply two different empirical
parameterizations for the spatial snow depth distribution, namely-the-onesfrom Egli and Jonas (2009) and Helbig et al. (2021)-

The-seasonal1-5CA-algorithm-allowsfor-alternating-snow-, with seasonal and current [ S values to describe the hysteresis.

Snow accumulation and melt events during the season by-accounting-for-are accounted for by tracking the history of previeus
HS and SWE values —throughout the snow season. We implemented the algorithm in a multilayer energy balance snow

cover model (modified JIM, the JULES investigation model by Essery et al. (2013)) which we ran with COSMO-1 (operated
by MeteoSwiss) reanalysis data, measured H.S and RhiresD precipitation data (MeteoSwiss). The seasonal performance of
fSCA data
sets from terrestrial cameras, airborne surveys and satellite imagery. With-this—we-were-able-to-evaluate-This allowed us to

assess modelled fSC A using independent H.S data sets in-with high spatial resolution and snow products in-with high tem-

poral resolution. We further implemented the Community Land Model (CLMS.0) £5C A algorithm accounting for hysteresis
in_accumulation and ablation (Lawrence et al., 2018), which is based on the work of Swenson and Lawrence (2012), in the
multilayer energy balance snow cover model. Modelled fSC'A from the CLMS.0 f5CA algorithm was also assessed with the
measured f5CA data sets and the performances compared to those of our seasonal f5CA algorithm,

this algorithm was evaluated using

2 Fractional snow-covered area algorithm

The-In the following, we introduce the seasonal fSC A algorithm eensists—offour—parts{(ef—apperlarge-box—inFigure -

?he—ﬁﬁkpafkdes&rbey&r&e}eseé—femﬂr n two parts. First we present the closed-form fSCA parameterization using-snow
h-derived by Helbig et al. (2015b). This formulation uses the spatial
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on-aceumulation-data{oi-)—These-are-the-inputs—to-theTo derive o, we used two different statistical parameterizations.
Second, we describe our seasonal fSC A function—in—part-one-Thefourth-part-handles-algorithm, i.e. how we handle the

distinctly different paths between o s and HS during accumulation and i S5

part-two-and-threemelt periods, i.e. the hysteresis.

2.1 fSC A parameterization

We-uase-the—£5GA-The core of our seasonal algorithm is the PoOW parameterization of Helbig et al. (2015b) derived-by

ranging-from-0:06-to-1-00:relating fSCA to HS and gy5:
HS

fSCA = tanh(1.3—) . (1)
oHs

Using-By including both H S and o p sin-Eq—(H-aHowed-Helbiget-al(2615b)-to-introduee-, this formulation accounts for the
close link between spatial subgrid snow depth variability and topography in fSC'A.

5 aap

Although Eq. (1) uses-eurrent-H-S-in-the numeratorand-orrs easonal-maximum7-S-in-the-denomin

hereforaseasonal-fSCA-algorithm-as-deseribed-in-Seetion-22-Feor-the-was derived for PoW, in our seasonal fSC'A algorithm
we further compute-apply it throughout the entire snow season by using two different parameterizations for o sdifferently-over
flatand steep-terrain (o507 which is deseribed-in the following-, one accounting for subgrid topography (Helbig et al.. 2021)
» while the second only depends on H.5 (Egli and Jonas, 2009).

115

o arameterization accounting for topograph

We use the PoW subgrid parameterization for o in mountainous terrain originally developed by Helbig et al. (2015b)
and later extended by Helbig et al. (2021). This parameterization accounts for the impact of topography on the spatial snow
depth variabif . i e Tl o o i aa i e

ops NI = HS pd exp[—(¢/L)°].. )
. e oduced
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The parameterization contains two scale-dependent parameters e{-L)-and-d{L)-inEq+2)-which-enhaneed-the-c and d:_

¢ = 0.5330 L0089

€)
d = 0.3193 L 01034,

This o5 parameterization-across-spatial-seales—subgrid parameterization is generally valid for domain sizes (i.e. the coarse
grid cell size) L >200 m. &{E@Q@&%Eq (2))-was-parameterized-using-spatial-mean-snow-depth-3) requires
snow depth H.S and subgrid summer terrain parameters +a- and &. The mean squared slope related parameter #-and-a-terrain

)2
eorrelationlength-Cforeach-domain-size- 02)? +(0y2)2]/2 is derived using partial derivatives of subgrid terrain

elevations z, i.e. from a summer digital elevation model DEM). The correlation length £ = is derived for each L

Eq. (
of topographic features of length scale ¢ in a domain L. All terrain parameters are derived on linearly detrended summer
DEMs (Helbig et al., 2015b). More details on Eq. (2) wereferto-Helbig-et-al (20456, 202 to-keep-the focus-of-thisstudy-on
the-seasonalf5CA-algorithm-and-its-evaluation—and (3) can be found in Helbig et al. (2015b, 2021).

o arameterization not accounting for topograph

The second oy during-aceumulationbyfitting-mean-parameterization was developed by Egli and Jonas (2009) by fittin
daily spatial .S means and standard deviation of 77-flat-field-H S measurements-distributed-throughout-Switzerland-from 77

weather stations distributed throughout the Swiss Alps over six consecutive winter seasons during accumulation season. The
resulting parameterization selely-uses H.S and a constant fit parameter:

s = HO @

Sketeh-of-theseasenal5CA—algorithm-as—used-for-one—grid-eel-This parameterization does not account for the impact of
topography on g5

2.2 Seasenal-fSGCA-implementation
2.2 Seasonal fSC A algorithm

To use the above fSC A algorithm-tef-formulation (Eq. 1-3)-in
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with time. This is done to account for the fact that after a snowfall, fSCA (Eqcan dramatically increase. Once the new snow.
has settled or started to melt, fSCA values then generally return to similar values as before. We account for this by computing
two fSCA values in parallel, namely a seasonal fSCA (fSC Aseasan) and a new snow fSCA (fSC Angon) F3C Aseason.
accounts for the entire history of the snow season up to the current time step, and thus all processes shaping the spatial snow.
depth distribution. It is therefore computed using oy7s"® (FHEg. We-search-extreme-points-in-time-3), which accounts for
subgrid topography. fSC Apsaqu 0nly accounts for contributions by recent snowfall. As a snowfall generally covers most of the
topography within a grid cell (i.e. all surfaces are initially covered by snow), we use s (Eq. 4), which does not account for
subgrid topography.

SC Ageason

To compute fSC Aseasan, We Use extreme .5 values at each time step per grid cell (Figure 1a). It is important to note that we
identify these extremes using STV E to-avoid-influences-of snow-settling- Since rather than S, as due (0 snow settlement HS
values can peak even before a precipitation event has ended. However, as our fSCA algorithm needs requires H.S' as input,
we search for extreme SW E values in time, and use the corresponding H.S valuesof-SH/ -f5-extreme-points-are-applied—, In
the following we will not specify this anymorebut-instead-, and only refer to extreme values of H S{minimum;-maximum)-or

H-S-differences—A-full-seasonal-, To compute {SCA we use gheie (Eq. 3) in the fSC A algerithmformulation (Eq. 1) as

follows:_

HS, seudo-min
FSC Aggason = tanh(1.3 —FE2Em0) (5)

O H Sy

Here, H Spsendo-min 1S the current H.S value or a recent minimum (pink dots in Figure 1a), and oheldie i computed using the

current seasonal maximum snow depth H Sy, i.e. including-the-tracking-of-the maximum in H S and-SW->-over-the-eourse
from the start of the season s-is-apphied-per-grid-cell-of-adistributed-snow-cover-model-

forsnowfall-events( 5 CAmmowup to the current time step (green dots in Figure 1a). This-is-done-to-ensure-thata-snowfall-may
add-significantly-to-We call I .Speudo-min @ Pseudo-minimum as it is not the absolute seasonal minimum, At each time step,
For the rare, completely flat grid cells, i.e. oW seasom) Bttty k st =

traitar mputing-the-differer we-a subgrid mean slope angle of zero,
Eg. (3) would always result in fSCA = 1. In those cases, we therefore use Eq. (h)-but-different-H-5-values (from-current-to
extremes)-as-weltas orrsse-oy/s-4) instead of Eq. (3) to compute fSC Assqon..

n o 0 Pay M A acthan-hefare

£SC Apon
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Figure 1. Schematic representation of snow depth H S extreme values used to compute fSC A for a grid cell. (a) To determine fSC A

extremes in H S (black line) are tracked over the entire season. When H S decreases, the seasonal maximum snow depth H Sy« (green dots

remains constant until a new maximum is reached with subsequent snowfalls. The pseudo-minimum H Spseudo-min (pink dots) decreases when

H S decreases, until the next snowfall. It then remains constant until H.S either exceeds H Snax or decreases below the previous minimum.

b) To determine [ SC Ayaow, several extremes in H S (black line) are tracked within the last 14 days (black dashed lines in a): the current
value H Seyen: (blue dot), the minimum within the last 14 days H.S'*" (pink dot), the maximum within the last 14 days H S5 (oreen
dot), and the minimum prior to the most recent snowfall H S&™ (yellow dot).

To account for possible increases in fSCA after recent snowfalls, we evaluate fSCA (Eq. (2))eroffs(Eq— (3 tef-box-in
the-middie-1) using o6 (Eq. 4) computed with differences in snow depth dH S (only positive changes) within the last 14 days
(Figure 1b). We use d 1S rather than H S to only account for the contribution of new snow on changes in fSC'A, thus as if the
new snow fell on bare ground. A time window of 14 days provided reliable fSC'A results after intensive testing, but the length
of this period may require further investigation once more is known about changes in snow depth distributions in mountainous
terrain after snowfall.

Within the 14 day time window, we compute two different fSC'A values and then retain the maximum value. First, we

H current — H lé}day
FSCAMS :tanh(1.3( & o Snin )). (6)

nsnow
O 1 §14day

Here, H.S ¢ is the snow depth at the current time step (blue dot in Figure 1b), H.S 14day 3¢ the minimum snow depth in the last

is computed using the maximum difference in snow depth d H S149 — [ S,

in the last 14 days, with H S 14day 116 maximum snow depth in the last 14 days (green dot in Figure 1b).
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Table 1. Details of the different fSC A algorithms that are compared to the full fSC A algorithm in JIMospup.

-algorithm name SC Aseason SC Ajpsnow tracking HS & SW E (Section 2.2)
JIMosup_ Eq. (5) Eq. (6) & (7 season & 14 days
IMosin. Eq. (9 - season_
IIMGsip. tanh(1.3 Fggme) - .

HSCHH’CH‘
JIMAGE Eq. (5) Eq. (6) & (7) with ore® season & 14 days
J,Ivl\ggg;’g‘\’f; Eg. (8.2) in Eq. (8.1)in season & 14 days

Lawrence et al. (2018 Lawrence et al. (2018)

Second, we evaluate fSC A™™ ysing only the most recent change in snow depth within the last 14 days:

. dH recent
fSCA™™ — tanh(1.3 ngi) ) (7

nsnow
O—dH Sl‘CCCﬂl

Here, dH.S™" = H Seuyen — H S5 is the change in snow since the most recent snowfall, where [, S35 is the minimum
snow depth prior to the snowfall (yellow dot in Figure 1)-Fhe-complete-technical-aspeets-of the-derivation-ofallb). fSCATCN
avoids spatial discontinuities: Without this implementation, grid cells with 75 > 0 m prior to a recent snowfall may have a
lower fSCA including some pseudocode are given-in-Appendix2?-value than grid cells where the same amount of new snow.
has fallen on the bare ground.

Finally, the maximum of fSC Anay and fSC AR gives fSC Ay for the current time step and a grid cell.

Seasonal algorithm

Over the course of the snow season, we derive fSC Aysow and fSC Age.son for each time step and grid cell (Figure 2). The
final fSC'A is-obtained-from-was then obtained by taking the maximum of /SC Axsow-and—5E Awmmon—both values. This full

seasonal fSC A algorithm, i.e. including the tracking of H.S and SW E, was implemented in a distributed snow cover model.

The code is publicly available on the WSL/SLF GitLab repository (cf. Code availability section). The data sets used to evaluate
the performance of this algorithm are described in the next section.

3 Data

3.1 Modelled fSCA and H S maps

We model the snow cover evolution using the JULES investigation model (JIM). JIM is a multi-model framework of physically
based energy-balance models solving the mass and energy balance for a maximum of three snow layers (Essery, 2013). While

the multi-model framework JIM offers 1701 combinations of various process parameterizations, Magnusson et al. (2015)
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Figure 2. Illustration of modelled fSCA®S™ fSC AN and fSC Asesan for one grid cell over a season. fSCA is the maximum for each

time step from fSC Apgnow=max(fSC A SO AN ) and fSC Ageason. All terms are described in Section 2.2.

selected a specific combination that performed best for snow melt modelling for Switzerland;-predieting-, The latter model
combination is used to predict daily snow mass and snowpack runoff for the operational snow hydrology service (OSHD) at
WSL Institute of Snow and Avalanche Research SLE. We ran JIMogyp in 1 km resolution with hourly meteorological data from
the COSMO-1 model (operated by MeteoSwiss) for Switzerland. We used a reanalysis product of daily observed precipitation
(RhiresD) from MeteoSwiss as well as COSMO-1 data. Daily H.S measurements from manual observers as well as from a
dense network of automatic weather stations (AWS) were used to correct precipitation data via optimal interpolation (OI)
(Magnusson et al., 2014), which is a computational efficient data assimilation approach. Using OI in JIMosup, Griessinger
et al. (2019) obtained improved discharge simulations in 25 catchments over four hydrological years.

To describe the subgrid snow cover evolution in mountainous terrain, the-our seasonal fSC A algorithm was implemented in
JIMosup. As daily valueswe-tise-, we used model output generated at 6 am (UTC). In the following, when-we-refer-to-modelled
fSCA and H S maps we-mean-refer to daily fSC'A and HS from JIMosyp model output.

We additionally-also computed the snow cover evolution WMJIMOSHD uﬂﬂg—fw&\mlmphﬁcatlons in
the seasonal fSC A algorithm (Fig i
Mm%e%hﬁﬁe%ﬂeeefﬂpplyiﬁgﬁeﬁ&kseaseﬂﬁk@%m fSC A algerithm-—First-we-switched-off-all-new

snow-parameterizations implemented in CLMS5.0 (Lawrence et al., 2018) which are based on Swenson and Lawrence (2012)

cf, Table 1 for more details). This latter fSC A updatesalgorithm also accounts for hysteresis in accumulation and ablation




225

230

235

240

245

250

by using two different /.SC A parameterizations and by tracking the seasonal maximum ST E. While subgrid topography is

accounted for in the fSC'A parameterization during ablation via g, topography is not accounted for during snowfall events.
The algorithm of Swenson and Lawrence (2012) was derived by linking daily satellite-retrieved fSCA to snow data. We
implemented this algorithm in JIM using our snow tracking algorithm, i.e. the final-f:5€A-was setto-f:5C€ Aseamom-Second;we
i S E A whi s corresponding 7.5 in-values such as H .Spsengomin (cf. Section 2.2). This
was done to solely evaluate the differences in the fSCA equati —(h)ie—whi s i g
indieate-these-parameterizations. In total, we performed four additional snow cover simulationswith-: JIMESpand-, JIMggn.

JIvELHeDiE 0 g JIMSwenson® (of Table 1).

3.2 Evaluation data
3.2.1 ADS fine-scale H.S maps

We used fine-scale spatial H.S maps gathered by airborne digital scanning (ADS) with an opto-electronic line scanner on an
airplane. Data were acquired over the Wannengrat and Dischma area near Davos in the eastern Swiss Alps during winter and
summer (Biihler et al., 2015). We used ADS-derived H S maps at three points in time during one winter season, namely during
accumulation at-on 26 January ("acc’), at approximate peak of winter at-on 9 March ("PoW’) and during ablation season at-on
20 April 2016 (abl’) (Marty et al., 2019). We used a summer DEM from ADS to derive the snow-free terrain parameters.
Each ADS data set covers about 150 km? with 2 m spatial resolution. Compared to terrestrial laser scan (TLS)-derived H S

dataef-a—subset, the 2 m ADS-derived HS maps had a root mean square error (RMSE) of 33 cm and a normalized median
absolute deviation (NMAD) ef-theresiduals(Hohle-and Hohle; 2009-of 24 cm (Biihler et al., 2015).

3.2.2 ALS fine-scale H S maps

We used fine-scale spatial HS maps gathered by airborne laser scanning (ALS). The ALS campaign was a Swiss partner
mission of the Airborne Snow Observatory (ASO) (Painter et al., 2016). Lidar setup and processing standards were similar to
those in the ASO campaigns in California. The-data-was-Data were acquired over the Dischma area near Davos in the eastern
Swiss Alps (cf. Figure 3a in Helbig et al., 2021). We used ALS-derived H.S maps at three points in time during one winter
season, namely at approximate-time-of-the approximate peak of winter at-on 20 March (PoW’) and during the early and late-
ablation season at-on 31 March and 17 May 2017 ("abl’), respectively. We used a summer DEM from ALS from 29 August
2017 to derive the summer-snow-free terrain parameters.

Each ALS data set eovers-covered about 260 km?. The original 3 m resolution was aggregated to 5 m horizontal resolution.

: < g omparing the ALS-derived H S data to manual
snow probing within forest but outside canopy (i.e. not below a tree)t-m-ALS-derived-H-S-data-from-, Mazzotti et al. (2019)

reported a RMSE of 13 cm and a bias of -5 cm for 20 March 2047-(Mazzetti-et-al52649»-2017.

10
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3.2.3 Terrestrial camera images

We used camera images from terrestrial time-lapse photography in the visible band. The camera (Nikon Coolpix 5900 from
2016 to 2018, Canon EOS 400D from 2019 to 2020) was installed at the SLF/WSL in Davos Dorf in the eastern Swiss Alps
(van Herwijnen and Schweizer, 2011; van Herwijnen et al., 2013). Photographs were taken of the Dorfberg in Davos, which
is a large southeast-facing slope with a mean slope angle of about 30° (cf. Figure 1 in Helbig et al., 2015a). To obtain fSC' A
values from the camera images, we followed the workflow described by Portenier et al. (2020). We used the algorithm of
Salvatori et al. (2011) to classify pixels in the images as snow or snow-freesnow-free. Though images are taken at regular
intervals (between 2 and 15 minutes, depending on the year), we used the image at noon to derive fSC A for that day. We
evaluated images from five winter seasons (2016, 2017, 2018, 2019 and 2020) each-every time from 1 November #ntit-to 30
June.

The resulting snow/no-srew-no-snow map of the camera images has-had a horizontal resolution of 2 m. The field of view

(FOV) overlaps the-mest-with four 1 x 1 km JIMosyp grid cells with projected visible fractions between 9 to 40 % in each grid
cell. The camera dataset-can-thus-eoverroughty-FOV covers about 0.76 km?pertime-step.

3.2.4 Sentinel-2 snow products

We used fine-scale snow-covered area maps -whieh-we-obtained from the Theia snow collection (Gascoin et al., 2019). The
satellite snow products were generated from Sentinel-2 L2A and L2B images. We used Sentinel-2 snow-covered area maps
over one winter season starting-at-from 20 December 2017 untit-to 31 August 2018 for Switzerland. We further used Sentinel-2
snow maps over the Dischma area near Davos close to or at the date of the three days-when-we-had-AlLS-derived5GA-maps
avatlable-ALS-scans (18 and 28 March and 17 May 2017) —and over the Dorfberg area in Davos Dorf from 1 November 2017
10,30 June 2018,

The horizontal resolution of the snow product is 20 m. While the spatial coverage of the Sentinel-2 snow-covered area maps

in Switzerland varies every time step, Sentinel-2 may cover several theusands-of square-kilometersper-timestepthousand square
kilometers. A validation of the Theia snow product with snow depth from AWS, through comparison to snow maps with higher

spatial resolution as well as by visual inspection indicated that snow is detected-very-well-theugh-with-well detected, although
there is a tendency to underdetect snow (Gascoin et al., 2019). The main difficulty of satellite snow products is to avoid false
snow detection within clouds. Furthermore, snow omission errors may occur on steep, shaded slopes when the solar elevation

is typically below 20°.
3.3 Derivation of 1 km fSC A evaluation data

For preproeessingpre-processing, we masked out forest, rivers, glaciers or buildings in all fine-scale measurement data sets.
Optical snow products that were obscured by clouds were also neglected. In all fine-scale H.S data sets, we neglected H.S
values that were lower than zero or above 15 m. We used a H S threshold of zero m to decide whether or not a 2 or 5 m grid cell

was snow-covered. This threshold could not be better adjusted due to a lack of independent spatial-observations. This-tikely
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Figure 3. Probability density functions after preprocessing for all valid 1 km (a) fSCA, (b) #S-snow depth and (c) elevation =-per mea-
surement data set. All densities were normalized with the maximum in each data set. Colors represent the different measurement platforms

as detailed in Section 3.2.

We then aggregated all fine-scale snow data, as well as the snow products from optical imagery, in squared domain sizes

L in regular grids of 1 km aligned with the OSHD model domain. For building-the spatial averages, we required at least 70
% valid data for the fine-scale snow data and at least 50 % valid for the satellite-derived fSC A data in a-demain-size-t-of
each 1 km grid cell. We excluded 1 km domains-grid cells with spatial mean slope angles larger than 60° and spatial mean
measured H-5-tewer-than-or modelled /75 <5 cm. We further neglected 1 km grid cells with forest fractions larger than 10
%, which-were-derived from 25 m forest cover data. Overall, this led to a varying-number-of-available-domains-in-variable
%mehe different data sets (Table }2) For the fine-scale snow data sets, this number ranged
from 69 to 157 availa i ime-with a total of 669-668 valid 1 km demains:
gegrid cells. After cloud and forest removal, on average, every
second day in-Switzerland-we had some valid Sentinel-2 data in Switzerland (153 valid days from the 255 calendar days). For
the time period from 20 December unti-2017 to 31 August 2018, this resulted in 274°979-216’896 valid 1 km demains-grid
cells from a total of 3*447°465-2°274°991 valid OSHD grid cells in Switzerland, i.e. about 9-9.5 %. These valid 1 km demains

eover-terratn-elevations-between-grid cells covered terrain elevations from 174 m and-4213-m;slope-angles-between-to 4278
m, subgrid mean slope angles from 0 to 5260 and all terrain aspects. We used three of the four grid cells covered by the FOV

of the terrestrial camera, since one grid cell had a +-km-forest fraction larger than 10 %. On averagewe-obtained-, every fourth
day we had valid camera data (340-337 valid days from +244-the 1212 calendar days). Valid camera-derived fSC A for five
seasons and the three grid cells covered by the FOV resulted in ++6+9-931 valid 1 km grid cells from a total of 3’633+km-grid

eells-for-thefiveseasens-and-three-018 valid OSHD grid cells, i.e. %ﬂm&%@%ﬁﬁ%&d—@&%@gﬂé&ﬁm
%31 %. The three grid
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Table 2. Details of the valid 1 km fSC'A evaluation data sets after pre-processing as described in Section 3.3.

geographical region remote spatial spatial-temporal ofsca mean fSCA
sensing method reselution-coverage coverage
thine-seale)-
[mkm?] [days]

Wannengrat and Dischma area (eastern CH) ADS 2232 3 0.05 0.98
Dischma and Engadin area (eastern CH) ALS 3437436 3 0.08 0.96
Davos Dorfberg (eastern CH) Terrestrial camera 2649931 340337 0:36-0.23 6-75-0.81
Switzerland Sentinel-2 20-274°979-216’896 153 0:460.18 0:54-0.93

cells have terrain elevations of 2077 m, 2168 m and 2367 m and slope angles of 27°, 34° and 39°. The diversity in each of the
evaluation data sets after preprocessing-pre-processing is indicated in Table +-2 and is also shown for valid 1 km domains by
means of the pdf for fSCA, HS and terrain elevation z in Figure 23.

3.4 Performance measures

We-evaluate-modeled-and-measured-To evaluate the performance of modelled fSCA with-the-fellowing-compared to the
measurements, we used three measures: the root mean square error (RMSE), the normalized root mean square error (NRMSE;

i normalized by the mean of the measurements) ;-mean-absoltute-error-(MAE)-and the mean percentage error (MPE;-bias-with

; defined as measured minus modelledand-normalized-with-measuremen s)—We-also-verify-distribution-differences-by-deriving

measurements).

4 Results

We grouped-the-evaluationresults-of-the-present the evaluation of our seasonal fSC'A algorithm in three sections: evaluation
with fSCA derived from fine-scale H.S maps near Davos, evaluation with fSCA from time-lapse photography in Davos
Dorf and evaluation with fSCA from Sentinel-2 snow products -

We further present some additional comparisons with Sentinel-2 snow products in the first two sections when Sentinel-2 data
was available in the Davos area (cf. Section 3.2.4).
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Table 3. Performance measures are-shown-for modelled fSC A with (I) fSC A derived from all fine-scale H.S maps (combined ADS- and
ALS-derived fSCA) and (II) Sentinel-derived fSCA (only available for ALS dates). Performanee-Additionally, performance measures
are shown for ALS-derived fSCA with Sentinel-derived fSC A (IIT) MWMZ@' Given statistics are
NRMSE, RMSE - MPE;MAEK-S-teststatistic-and NRMSEqMPE. For all differences we computed measured minus modelled values
respectively Sentinel-derived fSC A minus ALS-derived fSC A for III. The abbreviations—ace " PoW -and-abl-indicate-the-different point
points in time of the season as-given-are specified in Section 3.2.

SCA NRMSE RMSE MPE MAE-K-S-NRMSEqmam
[%] (%] %

IJIMosup vs ADS&ALS
F5EAE56:08+2all dates 6047 6270.07 +6-0.7
156 Azaccumulation date. 8:6-8 0.08 -3:66:0404632-3.8
56 Arow49-6:65-PoW dates 6:62 0.02 6:56-6:7-0.3
F5CAmr16-4-0-16-24-ablation dates 6058 6:20-0.08 2:6-1.8
II JIMosup vs Sentinel-2 (at ALS dates)
F5EA+H01+6:69-6-5-all dates 6059 6:240.08 2914
F5EArswPoW dates 2383 0.03 2.5 6:031+27
156 Amr16:2-0:09-0-6-ablation dates 6:659 622008 2915
III Sentinel-2 vs ALS
56 Aall dates 16811 0.10 3.1
ablation dates 1 0.10 4634
FSCAmheightlV IIMEEE™ vs ADSKALS 87 008
all dates 5914 606014 12
FSCAumrPoW dates 1096 040,06 34-06_
ablation dates 06518 6-H-0.18 48-0.
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4.1 Evaluation with fSC A from fine-scale H S maps

Modelled fSC A eempares-very-wel-te-compared well with fSC A derived from all six fine-scale H.S data sets. Forinstanee

for-all-evaluated-points-in-time-we-obtain-Overall, we obtained a NRMSE of 9-%7 %, a RMSE of 0.07 and a MPE of +-0.7
% (Table 2)—Overall-best-performanees-are-achieved-for-the-combined-3). The best performance was for the two dates at the
appr0x1mate date-of PoW-with-a NRMSE-of5-%PoW (NRMSE of 2 %, a RMSE of 0.02 and a MPE of Oﬁ%"ﬂaepeffefmaﬂee

To investigate the influence of elevation, we binned the data in 200 m elevation bands and—fer—for the ADS and ALS

data sets separately

4 and 5). For ADS data, seasenal-elevation-dependent peffefm&nees—afe%mlﬂar—geeémodelled SC A values were comparable

to the measurements at PoW and early ablation

differences during accumulation were more pronounced (compare red and black dots in Figure 4). There was also no consistent

elevation trend, as during accumulation differences between modelled and measured fSC A increased with elevation, while
during early ablation the opposite was true. For the ALS data, measurements were only available at PoW and during ablation.
Overall, modelled fSCA {red-versus-values were again in line with the measurements (compare red and black dots in Figure

elevation—MedeHed-difference was observed for the lowest elevation bin (0.15 at PoW at 1800m; Figure 5a), and for the
late ablation data, modelled fSC A everestimates-ADS-derived-was consistently lower than ALS-derived fSC Aatelevations

abeve—%k@()ﬁwmﬂ{—maﬁmﬂﬂcr@@@%gwe—%a% in particular for the lower elevation bins (Figure 5c).
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Seme-valid-Valid Sentinel-2 eoverage-is-available-at-or-data were only available on dates close to the dates-of-the-ALS

r—ALS measurements (green dots in Figure 5), not to the
ADS measurement dates. Overall, modelled and Sentinel-derived fSCA deereasefromPoW-to-the-combined-two-ablation

ARARAARRRANAARAARAANIAANAARTA

Between-modeled-and-The Sentinel-derived fSC A the NRMSE-is10-%-and-between-Sentinel—values can also be compared

to those from the ALS scans. In this case, the performance measures were somewhat lower (compare II and III in Table 3), and

values were especiall

lower than the ALS data in late ablation (compare green and black dots in Figure 5c¢).
e

Our seasonal fSCA algorithm was-is implemented in a complex operational snow cover model framework (Section 3.1).

Uncertainties related to input or model structure may-therefore-have-an-impaet-on-therefore impact modelled H.S and thus
[ SC A performances—We-investigated-this-by-deriving-values. To investigate the influence of these uncertainties more closel
we also derived two benchmark f.SC'A with-models based on Eq. (1) using measured rather than modelled /7.5 dataonty. The

first benchmark £5CA-uses-eurrent-observed-os-and [ SC AT (Jight blue stars in Figures 4 and 5) uses measured H S

namely-afSEADBucdand 54 ¢ from the current scan. The second benchmark medel-combines-current-measured-H-S-and
observed-orrs—at PoW,namely—a f SC ARaured (of blue-and-red-stars—inFigure 3-and4-)—orange stars in Figures 4 and 5)
combines current /7S measurements with g7 values measured at PoW. At PoW, fSC ARG and fSCAZE™! are the
same, and fSC AR ed can only be derived whenPeoWhas-passed;e—during-ablation—at or after POW. Overall-performanees

of both-benchmark—Results obtained with both benchmark models were similar, except for the lowest elevation bin in the
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Figure 6. Modelled and ADS-derived H S in 200 m elevation bins for three dates: (a) during accumulation, (b) at approximate PoW and (c
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Figure 7. Modelled and ALS-derived H S in 200 m elevation bins for three dates: (a) at approximate PoW, (b) during early ablation and (c

during ablation.

ALS data set (Figure Sb and c). Overall, the values of fSCA™ed were somewhat closer to the measured fSC A are-better

benchmark models were closest to the measured fSC A values during the ablation season (Figure 4¢ and 5c¢), and overall the

agreement was better for higher elevation bins. Our seasonal fSC A implementation (red dots in Figures 4 and 5) was also

similar to both benchmark models. The largest differences were during the accumulation period (Figure 4a).

As a final benchmark, we also compared our seasonal fSCA implementation with the parameterizations implemented in
CLMS5.0 (cf. Table 1). Modelled fSC A using JIM erformed better than that modelled with JIM3¥¢%°" (compare I and TV
in Table 3). During most of the season, fSC'A values from JIMBSH™ were close to 1 and showed little elevation dependence

(blue stars in Figure

was during the late-ablation season, when fSCA
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4bfrom JMosyp and from JIMRSTE™ were very similar (blue and red dots in Figure S¢).

To investigate the origin of the discrepancies between modelled and observed fSCA values more closely, we compared
modelled and measured H.S in 200 m elevation bins for the ADS and ALS data sets separately (Figure 6 and 7). For both
data sets, modelled H 5 was substantially lower than measured H5 at higher elevations. The only exception was for the
accumulation date, when modelled and measured /7.5 were in good agreement for all elevations (Figure 6a). For all dates and
data sets, the NRMSE between modelled and measured H.5 was 12 % and the MPE was 14 %. Note that seasonal variations in
ALS-H 5 across all elevations were generally much lower than those in the ADS-H 5 data. This was in part because the time
intervals between the three ALS scans (20 March, 31 March, 17 May 2017) were shorter than for the ADS scans (26 January,
9 March and 20 April 2016), and there were also some snowfall events during the ALS ablation period (spring 2017).

4.2 Evaluation with fSC A from camera images

The high temporal resolution of daily-camera-derived fSCA allews-allowed us to evaluate seasenal-model-performances:
Overall—modelled_the seasonal model performance. The seasonal trend in modelled fSCA folows-the-seasonal-trend-of
%mcamﬂa—dmwed fSC A fertwo-ofthe-three-—grid-eells-througheut-almest

eseh): (compare red and black dots in Figure 8). For the grid

cell at 2168 m, however, the agreement was somewhat poorer, as there was a delay in the modelled start of the ablation
4, and modelled fSC A furtheroverestimates

eamera-derived--5CA-values were too high during accumulation (Figure 78b,e).

RAANAR AN

For all winter seasons (2016 to 2020and-) and for the three grid cellswe-ebtain-, we obtained a NRMSE of 22-%21 %, a

wel-as-perfermanees(I in Table 4). Note that the inter-annual performance varied substantially, as did the performance among
the three grid cells. For instance, for all three grid cells, we-obtain-the overall best performance was for the season 2018 with
aNRMSE-of 15-%and-aMPE-of (NRMSE = 14 %, RMSE = 0.11, MPE = -4 %and-the-worst-performancesfor-), while the
worst performance was for the season 2019 with-a NRMSE-of-(NRMSE = 25 %and-a-MPE-of, RMSE = 0.2, MPE = -12 %and

For winter season 2018, we used Sentinel-derived fSC A to evaluate modelled and camera-derived fSC A (Fable 3 H-and
HH;-Figure-7dsesH)—While-values. While overall the agreement between modelled and Sentinel-derived fSC A agree-very-well
INRMSE-of-was good (NRMSE 2 % and MPE of -1-1 %), Sentinel—and-camera-derived-the agreement between camera- and
Sentinel-derived fSC A eompare-less-welHINRMSE-of-was poorer (NRMSE = 12 %and-MPE-of -5-%)though-performances
are-simitar-to-thosefor-, MPE = 5 %). The latter performance values were however comparable to the agreement between

modelled and camera-derived and-modeled-fSC A (INRMSE-of 15-%and-a-MPE-offor days with valid Sentinel-derived data
NRMSE = 12 %, MPE = -4 %).
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We-exploited-the-high-temperal-resolation-of - The camera-derived fSCA was also used to evaluate the relevance of ap-
plying the—our full seasonal fSCA algorithm, as opposed to snew—cover-model-simplifications—of-the—fSCA-algorithm;

ﬁ&m&y—féﬁ%&ﬂd—f—&%—%%&ﬂdﬁ%mm lifications and JIM3¥ernson™ (cf, Table 1 for details). While
156G Avmorand-modelled-overall fSCA from JIMSEo

and JIMospp_agreed well, there were substantial differences after snowfall events on partly snow-free ground s—f5€seon
can—be-considerablytower{(yeHowstars—versus—(compare orange stars and red dots in Figure 7b;e)—When-replacing—the
195G A-algerithmwith-SCAqamdeviationsto-8). Specifically, after such a snowfall event, modelled fSCA using the-fullt
algorithm-are getting farger tblue stars-versus JIMosyp generally increased. while JIMGgi remained constant, Using JIMGgyp.
modelled fSCA values were less in line with those from JIMosup, (compare light blue stars and red dots in Figure 7)-—targe

While discrepancies were again large after snowfall event, they were also pronounced during the ablation periods. The start-of
ablation-season-is-delayed-butis-In general, with JIMgdy, the ablation season started later and was followed by a much steeper
melt out compared-to-the-fult-period. Using JIMagyp, can result in a substantially shorter snow season compared to JIMosup.
%Mwmmm SC Ameodel:
» both simplified models performed

less well than JIM Table 4). The performance using J IMallHelblg was very similar to fSCA algerithm—For-instaneefor

full-from JIMq i.e. applyin aHelbig instead of O’Egh for £SC Apgow did not substantially affect model performance. On

the contrary, fSCA - from JIMSEH
had the worse overall performances when compared to camera-derived fSC A (VII in Table 4). Similar to JIMS. . usin
TIMBSHR™" considerably delayed the ablation season, followed by a much steeper melt out. The snow season was substantially
shortened again by at most 32 days in the 2017 ¢ ' '
6-days-at-2168-min-season2020-Overall-both-simplified-season at 2077 m. Modelled fSCA mede}&eefﬂpafe%eswe}kfe
camera-derived-using JIMBSis™ also largely overestimates fSC A than-medeHed-during the accumulation period (blue dots
in Figure 8). Overall, using JIMZSiis™" led to much steeper increases and decreases in fSC Ausing-the-full-, i.e. an almost
binary seasonal [SC'A trend that was not in line with camera-derived fSC Aalgorithm; howeverf5C Ao performs better
thanF5GAamTable 3.

4.3 Evaluation with fSC A from Sentinel-2 snow products

Overall, modelled fSC A eempares-weH-te-using JIM compared well with Sentinel-derived fSC A throughout the season
rthough-there-is-seme(L in Table 5). To investigate the elevation-dependent seatter-differences between modelled and Sentinel-
derived fSC A (Figure-8)—

detail, we binned the data in 250 m elevation bands for each day throughout the entire season (Figure 9). To estimate the end

of the accumulation (1 April 2018) and ablation season (30 June 2018), we used the spatial mean H S (solid eurveinFigure-8)-

20



475

480

Table 4. Performance measures are-shownfor modeHed—fSCA-and-the-three—grid-eels—with-(I) modelled fSCA using JIMosyp_and
camera-retrieved fSC A for the winter seasons 2016 to 2049-and-for-winter-season20+8-with-2020, (II) modelled fSC A using JIMosun.
and Sentinel-derived fSC A —Performanee-measured-are-shown-for ati-the three grid cells for the winter season 2018, (III) camera-derived
fSCA with Sentinel-derived fSCA —Infor the three grid cells, and IV to VII VII) statisties-are-also-shownfor all JIM modelled fSCA
versions

details see Table 1)medeled-with-HMosnp—Given-statisties-are NRMSE-RMSE, MPEnamely for JIMagin, MAEJIMagyp,, K-S-teststatistie
lm,‘;”sﬁlf&'i nd NRMSEqmd IMS™ | with camera-derived fSCA.

SCA NRMSE RMSE MPE MAEXK-S-NRMSEqman
[%] (%] %

I JIMosup Vs camera

HII JIMosup vs eamera-Sentinel-2.
F5CA 2162 046002 7608
FSC Ao 23301 height 6512 0.1 6:238.95.0
FSCAqr279-0:21-8F-heightlV JIMpGin vs camera 643~ 0.32 18.6-
H-HMosm-vs-Sentinel-2- 2 0.18 6.1
0.0126  6:53021 +03-9.2
HI—Seﬂﬁﬂe}-%\\LIA.LI/Mnggings camera
2 07 76
0:06:30  0:570.25 6:5-10.6

Ffem—ehiﬁweesfmaa{ed—&xeﬂid—ef—spaﬁal—meaﬁ lack line at bottom of Figure 9). Overall, differences in performance between

the accumulation and the

ablation period were small (I in Table 5). However.

there were marked differences with elevation throughout the season. Up to the end of the accumulation period, the largest
differences between modelled and Sentinel-derived fSC A were at elevations lower than 1500 m, whereas at higher-elevations

beth—elevations above around 3000 m the agreement was good (Figure 9a). During the ablation period, most of the snow at
lower elevations was gone, and modelled f SCA ag

larger than Sentinel-derived fSC A at higher elevations (> 2500 m), in particular towards the end of the ablation season. Durin
the summer (30 June 2048-until-to 30 August 2018), i.e. during-summerafter the end of the ablation season, modelled fSC A
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Figure 8. Modelled-{-SCA:—f-SCAwmon, 5CAamras-well-as-eamera-derived—{-5G-A-camera- and Sentinel-derived fSC A for the three 1

km grid cells seen-by-within the field of view of the camera in-BPavesfor two seasons: upper-panet-(a ),-b)-and-to c) winter 2017, tower
panekte)(d yand-eto f) winter 2018.
. Note that, only for illustration, we here also show camera- and Sentinel-derived fSC A (black and green dots) for grid cells with modelled

HS<5em.

overestimates-was larger than Sentinel-derived fSCA at the highest elevations abeve-about-(> 3500 mwhereas-between)
MIM snow line and these highest elevations, modelled f SCA uﬂdefesﬂfﬂates—Seﬂ%mel-defwed—j‘—S%

%%%%W-
Given the a}se—fa%heﬁhlgh temporal resolution of the Sentinel-derived fSCA data set, we again eemputed-evaluated the
fSCA i ith-algorithm simplifications and JIM3%enson (cf,

Table 1). Compared to our seasonal implementation, the overall performance values of the fSCA algorithm simplifications

were similar, except for JIME ~ and JIMSwenson* (Taple 5). Modelled fSCA values with JIMS  and JIMSwenson* were

enerally larger than Sentinel-derived fSC Aare-only-slightly-werse-thanfor-modelled-, resulting in larger MPE values with

the largest ones for JIMSWerson* (compare I, IIT and V in Table 5). This is also clearly reflected in the elevation-dependent

differences between fSC A using-the-full-using JIMI%non” and Sentinel-derived fSC A algorithm—We-obtain-a NRMSE-of
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Figure 9. Difference between Sentinel-derived f5&A-minus-and modelled fSCA for Switzerland as a-function of date and elevation z

in 250 m elevation bins) for available satellite dates for (a) JIMosup and (b) JIMS%S™ . Daily spatlal mean snow depth H S is also shown
by-the(solid black linebelow). tOR—S ashed-The vertical tine

whereas-lines indicate the dates for the approximate-end of accumulation (dashed) and ablation season-is-indicated-by-the-verticat-(line with

stars) season.

throughout the season (Figure 9b).

5 Discussion

5.1 Fractional snow-covered area f SC A algorithm

We-developed-a-Our seasonal fSC A algorithm by ARG A ; i i r-is based
on the closed-form fSC'A parameterization of Helbig et al. (2015a) (Eq. %ﬂﬂéreﬂefeFﬂﬂHeﬁaﬂ%éEer(%}%wﬁh&aekmg

WWW@WW%&%WM
maximum snow depth and precipitation events. The algorithm is-easy-to-apphy-and-onlyrequires-storing snow history-and
subgrid-is modular, meaning that individual parts can easily be complemented or replaced with new parameterizations e.g.
for fSC Ayenow. Overall, our algorithm only requires subgrid cell summer terrain parameters, which are the-a slope related
parameter #+-and the terrain correlation lengthSeetion-2:2)-, and tracking snow information.

At the-moment-we-use-the-o}f'-parameterization-We evaluated the performance of our seasonal fSC'A implementation in
Switzerland. We could not explicitly evaluate the performance for completely flat grid cells, i.e. grid cells with a subgrid mean
slope angle of zero. After removing rivers/lakes, we only had five 1 km grid cells for Switzerland with a subgrid mean slope
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Table 5. Performance measures between-Sentinel-derived-for (I) modelled fSCA using JIMosyp and medeHed-Sentinel-retrieved fSCA
for the winter seasons 2018 for all valid 1 km grid cells of Switzerland between-and for all dates (20 December 2017 to 30 June 2018), for the

AARAAARAARZRIAARAARAARE

accumulation period (20 December to 1 April) and for the ablation period (1 April to 30 June2648—-Givenstatisties-are- NRMSE), RMSEand

11 to V) for all JIM modelled fSC A versions (for details see Table 1), MPEnamely for JIMosup, MAEIIMshn, K-S-teststatistie-JIMaghp,
JIMallHelbig and NRA 1SEquan JIMSwenson*.

[SCA vs Sentinel-2 NRMSE  RMSE  MPE MAEK-SNRMSEqmr
[%] (%]
1 MMosup.
all dates %12 U 04
ablation period 14 012, 03
all dates 12 012 04
ablation period 14 012, 05
all dates 14 685013 63908
accumulation period 3L 0l 0.1
#56 v ablation period 26-+18 645016 +9-24
all dates 2612 0l 03
ablation period 14 012, 03
accumulation period 7 0.16 =07
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Helbig

we therefore proposed to use o' (Bq. 4). Although we see no reason why our fSCA algorithm could not be used in other
geographic region, it remains unclear at this point if our seasonal f5CA implementation can also be used in flat regions.
Egh . .. . . ~

We used g (Eq.
not account for subgrid topography, to derive fSC A . We did this to account for uniform blanketing after a snowfall

i.e. to account for possible increases in fSC A after a recent snowfall. When substituting o-5. by o€ in Eq. 6) and (7

Egli

JIM&Hebie e Table 1), the overall performance was very similar (Table 4 and 5). Thus, while applying o might not

describe the true spatial new snow depth-distributions-distribution in mountainous terrainwhen-the-ground-is-typically-almest
e ; e-might-nee ifferen ipti the formulation is simple and is therefore used here

snow-produets-in-high-tempeoralreselution—parameterizations can be applied in our seasonal algorithm, e.g. for a flat grid cell
or for fSC Apsnow (for some empirical examples cf. Essery and Pomeroy, 2004).

5.2 Evaluation
5.2.1 Evaluation with fSC A from fine-scale H S maps

The evaluation of the seasonal fSC A algorithm with fSC A from fine-scale H.S maps revealed-overall-goodperformanees

NOHA A ha qa On h- NRMSE? heinolove han AMYA hle Parformanececde o ad am—Pa\A
d PO O aSO W N d d O S—TOW d v © d© O d . d . O Oy

i ton—showed that overall the model performed well, especially at PoW(I in Table 3). Modelled
SCA using JIMS¥enson™ enerally overestimated fSCA (MPE< 0). This algorithm inter-
shows that the seasonal fSC A evolution is better captured by JIM most likely because the JIMS¥enson™ yadel does not

sufficiently account for the high spatial variability in snow distribution in complex terrain.
During accumulation at higher elevations, modelled fSC A everestimates-using JIM, overestimated ADS-derived fSCA,

on the other hand, comparison

even though modelled H S underestimates-measured-+F-S-across-altelevations(Figure 3a-and-5Sagreed reasonably well with the
measurements (Figure 4a and 6a). Thi i i i i

We also used a different model configuration (JIMaHHe]big in Table 1), yet fSC A values did not substantially change for the
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accumulation date [not shown]. Based on this we assume that both o arameterizations cannot sufficiently describe snow
redistribution during accumulation, likely due to periods with strong winds following snowfall. The description of spatial-H-5

erg 1.5 during the accumulation period
%%me%mmore than one spatial H.S data set acquired-during-aceumulationwould
beneededduring accumulation.

Except for during acenmulation. modeHed-At PoW and during the ablation season, Mgy mostly underestimated fSC A
f&theﬁuﬁdﬁe%&mamww f SC A from fine-scale HS maps%%ewevef—medeﬂed—fﬁ%dee%—ﬁe{—%kmw—ﬁﬂn{&ﬁ%&eﬂg

a clear elevation trend (Figures 4 and 5). Discrepancies between modelled and measured H Svalues-of-on-averagelower-than
30-em-dominate-, on the other hand, generally increased with elevation (Figure 6 )y—We-assume-that-the-ehetee-ofa-and 7).

Obviously for larger snow depth, correctly modelling H .S has little effect on fSC A, The overall underestimated modelled
SCA values were likely a consequence of the H S threshold of zere-m-0 m we used to decide whether ernet-a 2 or 5 m grid

cell was snow-covered might-be-one-reasonfor-the-underestimationsor not. In reality, due to measurement uncertainties, both
small positive or negative measured I S values mighthave beenzero-too-When-inereasing this-can still be associated with snow
free areas. When arbitrarily increasing the H S threshold to &= 10 cm resultingfor the ALS-data, modelled 1 km fSCA frem

of-the-seasen-values were rather larger than the measurements [not shown]. This is not contradictory, but emphasizes the need
to accurately model H.S along snow lines, where small inaccuracies in /S can have large impacts on fSC A. For instance

during early ablation modelled as well as measured fSC'A are larger in the lowest elevation bin than at higher elevations (cf.
Fig. 4¢). Unfortunately, we currently do not have detailed snow observations available to define robust H.S threshold values
which take into account the different points in time of the season as well as varying-terrain-slope-anglesthe influence of terrain
and ground cover. However, the overall good agreement between Sentinel- and ALS-derived fSCA (Figure 4-and-Table-2;

Hl-prevides-5 and III in Table 3) provides some confidence in the fine-scale H.S data-derived fSC A used here to evaluate
modelled fSCA.
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The two benchmark fSC A models (f-SEADsued ynd £ geramesuedhased on Eq. (1) using measured H-S-compare-better

to-f-SCAderived-fromrather than modelled H'S data than(fSC Amesud and fSC AR ™) generally showed similar trends
Mmmodelled fSCA using e nat-tanh-form

(Figure 4 and 5).
At PoW, SCAme“S‘lred agreed less well with measured fSC' A perfermed-betterthis-might-be-due-to-snewfalls-after-the-date
at—appfe*ﬁﬂafe—PeWm%hfeﬂseeuﬁveme}t—{than our seasonal implementation (cf. Flgure 4b and 5a). This may have-altered-the

WM&M%WMWWfSCAWWM&MM
atthat early-ablation-date (Figure-4parameterization (Eq. 1) which requires further investigation of spatial /7.5 data sets during
accumulation. During ablation, we expected that £SC AESH""*! would be closer to measured fSC'A than fSCAZE"™, which
Mmmwum d atls—a : imate-da :

Evaluating the-benchmark—f-5CA-models-with-Since the true PoW date is elevation and aspect dependent, we cannot assume
that one date for PoW is representative for the entire catchment, covering several hundred of square kilometers and large
elevation gradients. Thus, measured o5 at the date we defined as PoW, might not have been representative for the true g5,
in each grid cell as required by Eq. (5). Besides possible uncertainties in the empirical fSCA derived-from parameterization
(Eq. 1), we assume this is the main reason why these two benchmark models using measured H.S data confirmed-the-overalt
applicability-of-did not outperform our seasonal implementation. Overall, these comparisons emphasize the need for tracking
snow information per grid cell, as is done by our seasonal fSC A algorithm.

5.2.2 Evaluation with camera-derived fSC A

While-the-evaluation-of-the-seasonal-f-SCA-algorithm-with-f-5CA-frem-The evaluation with fine-scale .S maps revealed
overall good performanees-model performance at six points in time;seasonal-performances-could-notbe-evaluated-continuously
-1t was however not possible to comprehensively evaluate the performance over the season. Evatuating-with-For this, we used
daily camera-derived fSC Ademeonstrated—that-modelled—, showing that the modelled seasonal fSCA was-able-to-mostly
reproduce-well-the seasonal-trend-(Figure7trend was mostly in line with observations (Figure 8).
Hewever;-overall-modeled-/5CA-compareddess-wellto-Model performance compared to the camera-derived fSC'A than
modeHed-fSCA-compared-values was overall worse than when comparing to H.S-derived fSCA (e.g. NRMSE of 22-%-21 %
for Iin Table 4 compared to NRMSE

of 7 % for I in Table 3). Since the higher temporal resolution of the camera data set leads to the largest spread in fSC A values

compared to the other two data sets (cf. Table 2 and Fig. 3), a larger portion of intermediate fSC A values (e.g. close to the

snow line) are included which are generally more difficult to model correctly than {SC' A values close to one. The poorer model
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erformance is however likely also be due to the overall lower accuracy of camera-derived fSC Acompared-toSCAfrom

fine-sealeH-S-maps. For instance, the projection of the 2D-camera image to a 3D DEM may introduce errors and distortions.
Furthermore, when deriving fSC A from camera images, clouds/fog and uneven illuminationdue-to-for-instanee-, for instance
due to shading or partial cloud covermay

Salvateri-et-al(20+)-and-can-, may deteriorate the accuracy (e.g. Farinotti et al., 2010; Fedorov et al., 2016; Hérer et al., 2016;

Portenier et al., 2020). Thechoice-of the threshold- method-when-automatically-derivine £-SC A-from-the images-also-introdu

2019-and-2020-could-stem-from—an-inerease-in-Another factor affecting the performance measures was the threshold for the

number of imagepixels—when-the-camera—wasuperaded—This—may-haveledto-meore-detatled-information—when—e-¢

in-the-eamera-derived-valid fine-scale data per 1 km grid cell. When aggregating to 1 km fSC A dataset—Forinstancewhile

maps for the Sentinel-derived values, we required at least 50 % valid fine-scale informationfor-the-Sentinel-derived—-5C#4
when-aggregating-to-+-km--5CA-maps;-this-data. This requirement could not be met for camera-derived fSC A-Fer-the-three
+Hem-model-grid-eells, as the projected fractions of the camera FOV are-on the 1 km model grid cells were only 9 %, 13 %
and 14 Gp— bbbl i b S L b bl e e CAfor-thefull-erid-cell-area—On

other-hand;-while-it-seems-that-there-is-a-. This is reflected in the better agreement between modelled and Sentinel-derived and
modelled-fSC A than between eamera-derived-and-modeHed-camera- and Sentinel-derived fSCA -(NRMSE of 2 % versus

12 % in Table 4). Finally, as the camera was installed at valley bottom, steep slope sections cover larger areas of the FOV, while

flatter slope parts remain invisible. This likely lead to underestimated fSC'A values. On the other hand, valid Sentinel-derived
FESA-fSCA has a much lower temporal resolution and did not cover the entire ablation period. Instead, Sentinel-derived

fSC A was often available throughout the period when fSC A was rather close to one (cf. Figure 78d,e). Thus, while there is

likely more uncertainty in camera-derived fSC A, the snew-cever-model-might-have-also-underestimated-snow-me

The-high temporal resolution of this product still provides valuable information on model performance throughout the

season.
We used the camera-derived fSC A allewed-us-to-evaluate-modelled-simplifieations-of-the-to also evaluate simplifications
of our seasonal fSCA algorithm -e- season curT It 0] oSty Whi

- ges: g as well as JIM3¥enson* (Table 1). Compared to
our seasonal fSC A inerease-fromHMESH-to-implementation, the more simple implementations did not capture the seasonal
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variation as well (Figure 8). With JIMgsip, with-HMGgpy-the start of the ablation season is-net-only-delayedbut-was delayed,
and the ablation season is-was also considerably shortened, by up to 46-21 days. In prineiple; f-SCAqmdeseribes-seasonal-this

respect, the results for JIMSYERo™ were very similar, as overall the increases and decreases of fSC A as-if stayingcontintousty

seeﬂ%yfh&ﬁeepfﬂe}&eu%yefrwere very steep, leading to shortened snow seasons and poorer performances (cf. Table 4). In
mJlMggﬂD -or-when-eurrent-considers each day as PoW, leading to rapid changes in fSC'A, in particular when H .S

Wb{%@hﬂ%ﬁﬂﬁdﬂ}g&h&%ﬂﬂg&ﬁﬂ%ﬁ@m}fmvalues are low (i.e. early accumulation or ablation
season). In JIMS2%0 | the seasonal maximum value of HS i § alres : g

MMVMQ%MMMNWWM&WﬁCA derived-by-the-fulttrend, in particular
during the ablation season. However, changes in fSCA algerithmdue to snowfall events were still not captured well with this
implementation, showing that our new snow tracking algorithm further improves the overall model performance. Since the

similar to JIM

requires further investigation.

cf. Table 4 and 5). This again indicates that the description of o following snowfall events

WEIC veE

5.2.3 Evaluation with Sentinel-derived fSC A

By including Sentinel-derived fSC A in our evaluationdata—set-to-evaluate-modeledSCGA, we added a data set that-unites

arather-high-temporal-data-reselution—with-with both a high temporal resolution and a much larger spatial coverage than-was
inherentin-the-two-otherevaluation-datasets(cf. Table 12). The Sentinel-derived fSC A data set eomprises-abeut275comprised

about 217°000 1 km grid cells covering a wide range in terrain elevations, slope angles and terrain aspects. This-variety-was

For the ene—winter-seasoninvestigated,—we-obtained-investigated winter season, results showed an overall good seasonal
agreement across Switzerland, though there was some elevation-dependent scatter exists-(Figure-8)—The-majority-of the-largest

seatter-oceurs—during-the-aceumulation—period—(Figure 9a). Discrepancies during accumulation occurred mostly along the

snowline at lower elevations, where lower spatial H S values as well as more cloudy weather prevail during accumulation. By

M%M%WWWQde Sentinel-derived
fSCA. Furthermore, we assume that some of the overestimations in modelled fSCA at these-towerhi Melevat1ons during

accumulation re

from20-%to12%and-the MPEfrom—1+-9-%to-0-23-%-—could also stem from underestimated o during periods when

strong winds follow snowfall events, as was also observed in the H S data sets (Figure 4a and Section 5.2.1). The scatter
i high elevations during ablation and summer likel
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originates from lower modelled fSCA due to underestimated precipitationg, as there are fewer AWS at high elevations y—for

data assimilation in our model.

7 % for fSCA frem-for HS data). Uncertainties introduced by reduced visibility in the snow products of Sentinel-2 and-the

eamera-are-mostlikely-thereason-are the most likely reason for this. Both, our camera- as well as the Sentinel-2 data set cover
long time periods in higher temporal resolution, i.e. they include also periods under unfavorable weather conditions. On the

contrary, clear sky dates were carefully selected for the on-demand high-quality data acquisitions from the air for our fSC A
data sets derived from fine-scale H.S maps. Nevertheless, the camera- as well as the Sentinel-2 data set enabled us to evaluate
seasonal fSC'A model trends which would not have been possible alene-from-the-from only six fSC A data sets derived from
HS data.

When evaluating the simplified fSCA algorithms and JIMASHE™ . model performance measures were comparable to
our seasonal implementation except for JIMg,, and JIMGSHS™ (Table 5). as was also the case for the comparison with
likely the limited availabilit
of 5C A data during or shortly after snowfall, due to bad visibility and clouds. Additionally, for the Sentinel-derived fSC'A,
local performance differences across Switzerland are likely averaged out. Nevertheless, fSCA values when using JIMZSFE™
were overestimated compared to Sentinel-derived values (Figure 9b, and negative MPE for V in Table 5). Similar results were
also observed when using JIMggyp (cf. negative MPE for 11T in Table 3). These biases are most likely related to the rather
steep increases and decreases of modelled f5C'A over the season, as we also observed with the camera-derived fSCA (Figure
8). We further assume that overestimated fSC'A using JIMZS ™ at higher elevations, due to underestimating spatial snow.
depth variability in complex terrain, may have compensated for other modelled fSC A error sources (e.g. from underestimated
precipitation input at these elevations) leading to an overall lower bias at higher elevations during accumulation compared to
our [SC A implementation, Finally, note that the scatter above zero between Sentinel-derived and JIMESE™ fSCA (Figure
9b) almost disappears when we neglect all 1 km domains with modelled /7S < 5 cm using JIMSIS™ [not shown], While the
overall NRMSE values for JIMaSGi™ are then comparable to our seasonal implementation (e.g. NRMSE of 12 % for all dates

derived fSC'A (Table 4). For Sentinel- and camera-derived fSC A, the main reason is

camera-
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instead of 18 %; cf. V in Table 5), it reveals the overall overestimation of JIMSWenson* (e o increased negative MPE of -4.1

% for all dates instead of -1.8 %). Clearly, our seasonal fSC A implementation is better suited to more realistically represent

seasonal changes in mountainous terrain, in particular following snowfall and during the ablation period.

6 Conclusions

We presented a seasonal fractional snow-covered area (fSC A) algorithm based on the fSC A parameterization of Helbig et al.
(2015b, 2021). The seasonal algorithm is based on tracking H.S and SW E values accounting for alternating snow accumulation
and melt events. Two empirical parameterizations are-applied-were used to describe the spatial snow depth distribution, one
for mountainous terrain at-PoW-and-one-for-flat-terrain-during-a-snowfattand one not accounting for subgrid topography. An
implementation in a multilayer energy balance snow cover model system (JIMosup; JIM, JULES investigation model (Essery
et al., 2013)) allowed us to evaluate seasonally modelled fSC A for Switzerland.

Compiling independent fSCA data sets with different spatiotemporal characteristics enabled a thorough spatietemperal

analysis of the seasonal fSC A algorithm in mountainous terrain of daily 1km- fSC' A values. While the evaluation with the
three data sets showed overall good seasonal performance, each of the evaluation data sets allowed to-draw-additional-drawing

specific conclusions. The evaluation with fine-scale spatial H S-derived f.SC A showed that snow-depth-H S uncertainties along

the snow line likely contributed to-thelargestmost to underestimation of f.SC A underestimations-during-ablation-compared-to
the-overall-best-agreement-atPoWduring ablation and PoW, emphasizing the need to accurately model H S along snow lines.

The camera-derived fSC A data set, with the highest temporal resolution -confirmed the need for tracking H.S over the season
as well as accounting for intermediate snowfalls to avoid a delayed melt start and a drastiealty-drastic shortening of the ablation
season. The Sentinel-derived fSC A data set, with the largest spatial coverage together with a rather high temporal resolution,
demonstrated that the seasonal fSC A algorithm performs well across a range of elevations, slope angles, terrain aspects and
snow regimes. This comparison showed that there were some differences at low elevation eeineiding—with-very-or along the
snowline coinciding with low H Searly-in-the-seasen, while discrepancies eeeured-occurred mostly at high elevations towards
the end of the season, respectively during summer.

Overall, NRMSE’s for seasonally modelled fSCA increased from 9-7 % for HS data-derived fSCA, to 20-12 % for
Sentinel-derived fSC A and to 22-21 % for camera-derived fSCA. While the large margin-variation in performance measures
is likely tied to the various temporal and spatial resolutions of the data sets leading-to-different-data-and measurement uncer-
tainties, it also demonstrates the difficulties in drawing conclusions when evaluating a model algorithm with evaluation data
from different acquisition platforms. Nevertheless, this comparison with data covering a wide range of spatiotemporal scales
allowed us to obtain a comprehensive overview of the strength and weaknesses of our seasonal fSCA implementation. We
are not aware of any seasonal fSC'A implementation that has been evaluated in such detail by exploiting independent F.S and
snow product data sets in high spatial and temporal resolution.
modelled fSCA using JIMEGIS™ . This showed that our seasonal fSC A algorithm captures the seasonal variation best, and
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The implementation of the seasonal fSC A algorithm in a model only requires trackingH-S-and-SW-F-foracoarse-grideel
as-well-as-deriving-subgrid-summer-subgrid terrain parameters from a fine-scale summer DEM in combination with tracking
HS and SWE for coarse grid cells. The algorithm is set up such that improvements or adaptations of individual algorithm

arts can easily be implemented. The PoW fSCA parameterization of Helbiget-al2021-Helbig et al. (2015b) forms the
centerpiece of the presented seasonal fSC A algorithm. The recent evaluation-re-evaluation with various spatial PoW snow

depth data sets from 7 geographic regions showed an overall NRMSE of only 2 % (Helbig et al., 2021). This detailed evaluation
at PoW in different geographic regions and-the-seasonal-evaluationtogether with the seasonal assessment with the three fSC'A
data pools presented here, suggests that the seasonal fSCA algorithm may performsimilarin-most-also be used in other
geographic regions. However, further investigations, once more spatial HS data sets before and after snowfalls in complex

topography become available, would be advantageous for improvements of our seasonal fSCA algorithmduring-a-snowfall,
especially during the accumulation period.
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cation.
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