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Abstract. The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season.

In this context, fractional snow-covered area (fSCA) is therefore an essential model parameter characterizing how much

of the ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent

scale-independent fSCA parameterization. For the seasonal implementation
:
, we track snow depth (HS) and snow water

equivalent (SWE)
:
,
:
and account for several alternating accumulation-ablation phases. Besides tracking HS and SWE, the5

seasonal fSCA algorithm only requires computing subgrid terrain parameters from a fine-scale summer digital elevation

model. We implemented the new algorithm in a multilayer energy balance snow cover model. For a spatiotemporal evaluation

of
::
To

:::::::
evaluate

:::
the

:::::::::::::
spatiotemporal

:::::::
changes

::
in

:
modelled fSCA

:
, we compiled three independent fSCA data sets . Evaluating

modelled 1 km fSCA seasonally with fSCA derived from airborne-acquired fine-scaleHS data, satellite- as well as terrestrial

camera-derived fSCA showed overall
::::
data

::::::
derived

::::
from

:::::::
satellite

::::
and

::::::::
terrestrial

:::::::
imagery.

:::::::
Overall,

::::::::
modelled

::::
daily

:::::::::::
1km-fSCA10

:::::
values

::::
had normalized root mean square errors of respectively 9 %, 20 % and 22

:
7

:::
%,

::
12

:::
%

:::
and

:::
21

:
%, and represented

seasonal trends well. The overall good model performance suggests that the
:::::
some

:::::::
seasonal

:::::
trends

:::::
were

::::::::
identified.

::::::::::
Comparing

:::
our

::::::::
algorithm

:::::::::::
performances

:::
to

:::
the

:::::::::::
performances

::
of

:::
the

::::::::
CLM5.0

::::::
fSCA

::::::::
algorithm

:::::::::::
implemented

::
in

:::
the

:::::::::
multilayer

:::::
snow

:::::
cover

:::::
model

:::::::::::
demonstrated

::::
that

:::
our

:::
full

:::::::
seasonal

::::::
fSCA

:::::::::
algorithm

:::::
better

:::::::::
represented

:::::::
seasonal

::::::
trends.

:::::::
Overall,

:::
the

::::::
results

::::::
suggest

::::
that

:::
our seasonal fSCA algorithm can be applied in other geographic regions by any snow model application.15

1 Introduction

In mountainous terrain, the large spatial variability of the snow cover is driven by the interaction of meteorological variables

with the underlying topography. Over the course of a winter season
:
, the dominating topographic interactions with wind, precip-

itation and radiation vary considerably, which generate the
::::::::
generating

:
characteristic seasonal dynamics of spatial snow depth

variability (e.g. Luce et al., 1999). This spatial variability,
:

or how much of the ground is actually covered by snow,
:
is typi-20

cally characterized by the fractional snow-covered area (fSCA). fSCA is a crucial parameter in model applications such as
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weather forecasts (e.g. Douville et al., 1995; Doms et al., 2011), hydrological modelling (e.g. Luce et al., 1999; Thirel et al.,

2013; Magnusson et al., 2014; Griessinger et al., 2016, 2019) or avalanche forecasting (Bellaire and Jamieson, 2013; Horton

and Jamieson, 2016; Vionnet et al., 2014),
:
and is also used for climate scenarios (e.g. Roesch et al., 2001; Mudryk et al., 2020).

fSCA can be retrieved from various satellite sensor imagessuch as from ,
::::::::
including

:
Moderate Resolution Imaging Spectro-25

radiometer (MODIS) or Sentinel-2 (e.g. Hall et al., 1995; Painter et al., 2009; Drusch et al., 2012; Masson et al., 2018; Gascoin

et al., 2019). However, a
:::::::::::
Nevertheless,

::::::::
solutions

:::
are

:::::::
required

::
to

::::::
correct

:::
for

:
temporal and spatial inconsistent coverage due to

time gaps between satellite revisits, data delivery and the frequent presence of clouds requires additional solutions (Parajka

and Blöschl, 2006; Gascoin et al., 2015). Though fine-scale spatial snow cover models provide spatial snow depth distributions

which
:::
that

:
could be used to derive coarse-scale fSCA, applying such models to larger regions is generally not feasiblewhich30

:
.
::::
This

:
is in part due to computational cost, a lack of detailed input data and limitations in model structure or parameters.

While some of these limitations can be overcome using current snow cover model advances applying data assimilation routines

(e.g. Andreadis and Lettenmaier, 2006; Nagler et al., 2008; Thirel et al., 2013; Griessinger et al., 2016; Huang et al., 2017; Baba et al., 2018; Griessinger et al., 2019)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Andreadis and Lettenmaier, 2006; Nagler et al., 2008; Thirel et al., 2013; Griessinger et al., 2016; Huang et al., 2017; Baba et al., 2018; Griessinger et al., 2019; Cluzet et al., 2020)

, the inherent uncertainties in input or assimilation data still remain. Computationally efficient subgrid fSCA parameteriza-35

tions,
:
accounting for unresolved snow depth variability, are therefore currently still the method of choice for coarse-scale model

systems, such as weather forecast, land surface and earth system models. Furthermore, fSCA parameterizations are essential

when assimilating satellite snow-covered area data in model systems (e.g. Zaitchik and Rodell, 2009)

Several compact, closed-form fSCA parameterizations were suggested for coarse-scale model applications (e.g. Douville

et al., 1995; Roesch et al., 2001; Yang et al., 1997; Niu and Yang, 2007; Su et al., 2008; Zaitchik and Rodell, 2009; Swenson and40

Lawrence, 2012). Most of these fSCA parameterizations were heuristically developed. Some parameterizations introduced

subgrid terrain parameters (e.g. Douville et al., 1995; Roesch et al., 2001; Swenson and Lawrence, 2012). The tanh-form,

suggested by Yang et al. (1997), was later confirmed by integrating theoretical log-normal snow distributions and fitting the

resulting parametric depletion curves using the spatial snow depth distribution (σHS) in the denominator of fitted fSCA curves

(Essery and Pomeroy, 2004). Through advances in remote sensing techniques, fine-scale spatial
:::::
snow

::::
depth

::
(HS)

:
data became45

more readily available allowing to empirically parameterize σHS in complex topography at peak of winter (PoW) or during

accumulation (Helbig et al., 2015b; Skaugen and Melvold, 2019). By parameterizing σHS using subgrid terrain parameters,

Helbig et al. (2015b) enhanced
::::::::
expanded

:
the tanh-fSCA parameterization of Essery and Pomeroy (2004) by accounting

::
to

::::::
account

:
for topographic influence. Furthermore

::::::::
Recently, Helbig et al. (2021) re-evaluated this empirically derived fSCA

parameterization with high-resolution spatially distributed snow depth data
:::::
spatial

::::
HS

:
sets from 7 different geographic re-50

gions at PoW. They introduced a scale-dependency in the dominant scaling variables that improved the empirical fSCA

parameterization by making
:
,
:::
and

:::::
made

:
it applicable across spatial scales ≥ 200 m

::
by

:::::::::
introducing

::
a
:::::::::::::::
scale-dependency

::
in

:::
the

::::::::
dominant

:::::
model

:::::::::
descriptors.

Many studies highlighted that the same mean HS in early winter or in late spring can lead to substantially different fSCA

(Luce et al., 1999; Niu and Yang, 2007; Magand et al., 2014), a phenomenon that .
::::
This

:
has led to the introduction of hystere-55

sis in some fSCA parameterizations (e.g. Luce et al., 1999)
:::::::::::::::::::::::::::::::::::::::::::
(e.g. Luce et al., 1999; Swenson and Lawrence, 2012). Previously
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found interannual time-persistent correlations between topographic parameters and snow depth distributions (e.g. Schirmer

et al., 2011; Schirmer and Lehning, 2011; Revuelto et al., 2014; López-Moreno et al., 2017) suggest indeed that a time-

dependent fSCA implementation might be feasible. However, a seasonal model implementation of a closed form fSCA

parameterization also needs to account for alternating snow accumulation and melt events during the season. Especially at60

lower elevations
:::
and

::::::::::
increasingly

::
so

::::
with

:::::::
climate

::::::
change, the separation of the depletion curve in only one accumulation pe-

riod followed by a melting period is no longer applicable (e.g. Egli and Jonas, 2009). A seasonal fSCA implementation in

mountainous regions that accounts for these alternating periods is challenging. While some seasonal fSCA implementations

of varying complexities were previously proposed (e.g. Niu and Yang, 2007; Su et al., 2008; Egli and Jonas, 2009; Swenson

and Lawrence, 2012; Nitta et al., 2014; Magnusson et al., 2014; Riboust et al., 2019) a detailed evaluation of seasonally pa-65

rameterized fSCA with fSCA derived from high-resolution spatial as well as
::
and

:
temporal HS data or snow products is

currently still missing.

This article presents
::::
Here,

:::
we

::::::
present

:
a seasonal fSCA implementation and its temporal evaluation

::::::
evaluate

::
it with high-

resolution observation data in various geographic regions throughout Switzerland. The algorithm is based on the fSCA pa-

rameterization for complex topography proposed by Helbig et al. (2015b, 2021)and applies
:
.
:::
We

:::::
apply two different empirical70

parameterizations for the spatial snow depth distribution, namely the ones from Egli and Jonas (2009) and Helbig et al. (2021).

The seasonal fSCA algorithm allows for alternating snow
:
,
::::
with

:::::::
seasonal

::::
and

::::::
current

::::
HS

:::::
values

::
to
::::::::

describe
:::
the

:::::::::
hysteresis.

:::::
Snow accumulation and melt events during the season by accounting for

::
are

:::::::::
accounted

:::
for

::
by

:::::::
tracking

:
the history of previous

HS and SWE values .
:::::::::
throughout

:::
the

:::::
snow

:::::::
season.

:
We implemented the algorithm in a multilayer energy balance snow

cover model (modified JIM, the JULES investigation model by Essery et al. (2013)) which we ran with COSMO-1 (operated75

by MeteoSwiss) reanalysis data, measured HS and RhiresD precipitation data (MeteoSwiss). The seasonal performance of

this algorithm was evaluated using daily modelled 1 km fSCA in Switzerland. For the evaluation we compiled fSCA data

sets from terrestrial cameras, airborne surveys and satellite imagery. With this we were able to evaluate
:::
This

:::::::
allowed

::
us

:::
to

:::::
assess modelled fSCA using independent HS data sets in

::::
with high spatial resolution and snow products in

:::
with

:
high tem-

poral resolution.
::
We

::::::
further

:::::::::::
implemented

:::
the

::::::::::
Community

:::::
Land

::::::
Model

:::::::::
(CLM5.0)

::::::
fSCA

::::::::
algorithm

:::::::::
accounting

:::
for

:::::::::
hysteresis80

::
in

:::::::::::
accumulation

::::
and

:::::::
ablation

:::::::::::::::::::
(Lawrence et al., 2018)

:
,
:::::
which

::
is

:::::
based

:::
on

:::
the

:::::
work

::
of

::::::::::::::::::::::::::
Swenson and Lawrence (2012),

:::
in

:::
the

::::::::
multilayer

::::::
energy

:::::::
balance

::::
snow

:::::
cover

::::::
model.

::::::::
Modelled

::::::
fSCA

:::::
from

:::
the

:::::::
CLM5.0

::::::
fSCA

::::::::
algorithm

::::
was

::::
also

:::::::
assessed

::::
with

:::
the

::::::::
measured

::::::
fSCA

::::
data

:::
sets

:::
and

:::
the

::::::::::::
performances

::::::::
compared

::
to

:::::
those

::
of

:::
our

::::::::
seasonal

::::::
fSCA

::::::::
algorithm.

:

2 Fractional snow-covered area algorithm

The
:
In
::::

the
:::::::::
following,

:::
we

::::::::
introduce

:::
the

::::::::
seasonal fSCA algorithm consists of four parts (cf. upper large box in Figure 1).85

The first part describes the closed form
:
in
::::

two
:::::
parts.

:::::
First

:::
we

::::::
present

:::
the

::::::::::
closed-form

:
fSCA parameterization using snow

depth HS and standard deviation of subgrid snow depth
::::::
derived

::
by

::::::::::::::::::
Helbig et al. (2015b).

:::::
This

::::::::::
formulation

::::
uses

:::
the

::::::
spatial

::::::
subgrid

:::::::::
variability

::
of

:::::
snow

:::::
depth

:
(σHS)

::::
and

:::::
snow

:::::
depth

::::
HS of a grid cell. The second and third part describe two different

σHS parameterizations, one derived for mountainous terrain developed on PoW data (σtopo
HS ) and one for flat terrain developed
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on accumulation data (σflat
HS). These are the inputs to the

:::
To

:::::
derive

:::::
σHS ,

:::
we

::::
used

::::
two

:::::::
different

::::::::
statistical

::::::::::::::::
parameterizations.90

::::::
Second,

::::
we

:::::::
describe

:::
our

::::::::
seasonal

:
fSCA function in part one.The fourth part handles

::::::::
algorithm,

:::
i.e.

::::
how

:::
we

::::::
handle

:
the

distinctly different paths between σHS and HS during accumulation and ablation periods, the hysteresis. This last part thus

describes the technical aspects for a seasonal implementation of fSCA, presented in part one, which requires tracking HS

and SWE over the season, deriving extreme values of HS and SWE as well as the two σHS parameterizations presented in

part two and three
::::
melt

:::::::
periods,

:::
i.e.

:::
the

::::::::
hysteresis.95

2.1 fSCA parameterization

We use the fSCA
:::
The

::::
core

::
of

::::
our

:::::::
seasonal

:::::::::
algorithm

::
is

:::
the

:::::
PoW

:
parameterization of Helbig et al. (2015b) derived by

integrating a theoretical normal snow depth distribution at PoW, assuming spatially homogeneous melt and by fitting the

resulting depletion curves over a range of coefficients of variation CV (standard deviation divided by its mean) in snow depth

ranging from 0.06 to 1.00:
::::::
relating

::::::
fSCA

::
to

::::
HS

:::
and

:::::
σHS :100

fSCA = tanh(1.3
HS

σHS
) . (1)

Using
:::
By

::::::::
including

::::
both

:::
HS

::::
and σHS in Eq. (1) allowed Helbig et al. (2015b) to introduce

:
,
:::
this

::::::::::
formulation

::::::::
accounts

:::
for the

close link between spatial
::::::
subgrid

:
snow depth variability and topography in fSCA.

::::::::
Although Eq. (1) uses current HS in the numerator and σHS at seasonal maximum HS in the denominator, which we adapt

here for a seasonal fSCA algorithm as described in Section ??. For the
:::
was

:::::::
derived

::
for

:::::
PoW,

::
in

:::
our

:
seasonal fSCA algorithm105

we further compute
::::
apply

::
it

:::::::::
throughout

:::
the

:::::
entire

::::
snow

::::::
season

:::
by

::::
using

::::
two

:::::::
different

:::::::::::::::
parameterizations

::
for

:
σHSdifferently over

flat and steep terrain (σflat
HS , σtopo

HS ) which is described in the following. ,
::::
one

:::::::::
accounting

::
for

:::::::
subgrid

:::::::::
topography

:::::::::::::::::
(Helbig et al., 2021)

:
,
::::
while

:::
the

::::::
second

::::
only

::::::::
depends

::
on

::::
HS

::::::::::::::::::
(Egli and Jonas, 2009)

:
.

2.2 σHS parameterization for mountainous terrain at peak of winter (σtopo
HS)

Helbig et al. (2021) could use the same functional form to empirically describe110

::::
σHS::::::::::::::::

parameterization
:::::::::
accounting

:::
for

:::::::::::
topography

:::
We

:::
use

:::
the

:::::
PoW

:::::::
subgrid

::::::::::::::
parameterization

:::
for

:::::
σHS ::

in
:::::::::::

mountainous
::::::

terrain
:::::::::

originally
:::::::::
developed

:::
by

::::::::::::::::::
Helbig et al. (2015b)

:::
and

::::
later

::::::::
extended

:::
by

::::::::::::::::
Helbig et al. (2021).

:::::
This

::::::::::::::
parameterization

:::::::
accounts

:::
for

:::
the

::::::
impact

:::
of

:::::::::
topography

:::
on

:
the spatial snow

depth variability σHS at PoWin mountainous terrain than Helbig et al. (2015b) when using snow data sets from seven different

geographic regions and two continents:
:::::::::
distribution

::
at

:::::
PoW:115

σHS
topoHelbig

:::
= HScµd exp[−(ξ/L)2] .

:
(2)

albeit that they introduced
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:::
The

::::::::::::::
parameterization

:::::::
contains

::::
two scale-dependent parameters c(L) and d(L) in Eq. (2), which enhanced the

:
c
:::
and

::
d:

:

c = 0.5330 L0.0389

d = 0.3193 L0.1034 .
:::::::::::::::::::

(3)

::::
This σHS parameterization across spatial scales

::::::
subgrid

:::::::::::::::
parameterization

:
is
:::::::::

generally
::::
valid

:
for domain sizes

:::
(i.e.

:::
the

::::::
coarse120

:::
grid

::::
cell

::::
size) L≥200 m. σtopo

HS (
::::::
Besides

::::::
domain

::::
size

::
L,

:
Eq. (2)) was parameterized using spatial mean snow depth

::
3)

:::::::
requires

::::
snow

:::::
depth

::::
HS and subgrid summer terrain parameters : a

:
µ

:::
and

::
ξ.

::::
The

:::::
mean squared slope related parameter µ and a terrain

correlation length ξ for each domain size
::::::::::::::::::::::::::
µ =

{
[(∂xz)2 + (∂yz)2]/2

}1/2

:
is
:::::::
derived

:::::
using

:::::
partial

:::::::::
derivatives

::
of
:::::::

subgrid
::::::
terrain

::::::::
elevations

::
z,

:::
i.e.

:::::
from

:
a
::::::::

summer
:::::
digital

::::::::
elevation

::::::
model

:::::::
(DEM).

::::
The

:::::::::
correlation

::::::
length

:::::::::::
ξ =
√

2σz/µ::
is

::::::
derived

:::
for

:::::
each L

(coarse grid cell). Given that the σHS parameterization
::::
using

:::
the

:::::::
standard

::::::::
deviation

:::
σz ::

of
::::::
terrain

::::::::
elevations

::
z.

::::
The

::::::::
L/ξ-ratio in125

Eq. (2)accounts for the impact of topography on σHS , we indicate that with ’topo’ (σtopo
HS ). For more

:::
3),

:::::::
describes

:::
the

:::::::::
frequency

::
of

::::::::::
topographic

:::::::
features

::
of

::::::
length

:::::
scale

::
ξ

::
in

:
a
:::::::

domain
:::
L.

:::
All

::::::
terrain

::::::::::
parameters

:::
are

::::::
derived

:::
on

:::::::
linearly

:::::::::
detrended

:::::::
summer

:::::
DEMs

::::::::::::::::::
(Helbig et al., 2015b).

:::::
More

:
details on Eq. (2) we refer to Helbig et al. (2015b, 2021) to keep the focus of this study on

the seasonal fSCA algorithm and its evaluation.
:::
and

::
(3)

::::
can

::
be

:::::
found

::
in

::::::::::::::::::::::
Helbig et al. (2015b, 2021)

:
.

2.2 σHS parameterization for flat terrain during accumulation (σflat
HS)130

σtopo
HS was developed for grid cells in mountainous terrain. Here, we present a σHS that can be applied in flat terrain, which we

indicate with ’flat’ (σflat
HS). Egli and Jonas (2009) derived an empirical parameterization for

::::
σHS::::::::::::::::

parameterization
:::
not

::::::::::
accounting

:::
for

::::::::::
topography

:::
The

::::::
second

:
σHS during accumulation by fitting mean

:::::::::::::
parameterization

::::
was

:::::::::
developed

::
by

:::::::::::::::::::
Egli and Jonas (2009)

::
by

::::::
fitting

::::
daily

::::::
spatial

:::
HS

::::::
means

:
and standard deviation of 77 flat field HS measurements distributed throughout Switzerland

::::
from

:::
77135

::::::
weather

:::::::
stations

:::::::::
distributed

:::::::::
throughout

::::
the

:::::
Swiss

::::
Alps

:
over six consecutive winter seasons

:::::
during

::::::::::::
accumulation

::::::
season. The

resulting parameterization solely uses HS and a constant fit parameter:

σHS
flatEgli

::
= HS0.839 . (4)

Sketch of the seasonal fSCA algorithm as used for one grid cell.
::::
This

::::::::::::::
parameterization

::::
does

:::
not

:::::::
account

:::
for

:::
the

::::::
impact

:::
of

:::::::::
topography

:::
on

::::
σHS .

:
140

2.2 Seasonal fSCA implementation

For the implementation of our seasonal

2.2
:::::::

Seasonal
:::::::
fSCA

:::::::::
algorithm

::
To

:::
use

:::
the

:::::
above

:
fSCA algorithm (cf.

::::::::::
formulation

:
(Eq. 1-3) in any snow cover model, tracking snow information (i.e. keeping

the history) through several alternating accumulation-ablation phases is required. By tracking snow information we can use145
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current to extreme HS values to derive σHS (Eq. (2) and (3))and
:
)
:::::::::
throughout

:::
an

:::::
entire

::::
snow

:::::::
season,

:::
we

::::
track

:::::::
changes

::
in

::::
HS

::::
with

::::
time.

::::
This

::
is
:::::
done

::
to

::::::
account

:::
for

:::
the

::::
fact

:::
that

:::::
after

:
a
::::::::
snowfall, fSCA (Eq

:::
can

:::::::::::
dramatically

:::::::
increase.

:::::
Once

:::
the

::::
new

:::::
snow

:::
has

:::::
settled

::
or
::::::
started

::
to

:::::
melt,

::::::
fSCA

:::::
values

::::
then

::::::::
generally

::::::
return

::
to

::::::
similar

:::::
values

::
as

::::::
before.

:::
We

:::::::
account

:::
for

:::
this

:::
by

:::::::::
computing

:::
two

::::::
fSCA

::::::
values

::
in
::::::::

parallel,
::::::
namely

::
a
:::::::
seasonal

:::::::
fSCA

:::::::::::
(fSCAseason)

::::
and

:
a
::::

new
:::::

snow
:::::::
fSCA

:::::::::::
(fSCAnsnow).

::::::::::
fSCAseason

:::::::
accounts

:::
for

:::
the

:::::
entire

::::::
history

::
of

:::
the

:::::
snow

::::::
season

:::
up

::
to

:::
the

::::::
current

::::
time

::::
step,

::::
and

::::
thus

::
all

::::::::
processes

:::::::
shaping

:::
the

::::::
spatial

:::::
snow150

::::
depth

:::::::::::
distribution.

::
It

::
is

::::::::
therefore

::::::::
computed

::::::
using

:::::
σHelbig
HS :

(1))
::
Eq. We search extreme points in time

::
3),

::::::
which

::::::::
accounts

:::
for

::::::
subgrid

::::::::::
topography.

::::::::::
fSCAnsnow ::::

only
:::::::
accounts

:::
for

:::::::::::
contributions

::
by

::::::
recent

::::::::
snowfall.

::
As

::
a

:::::::
snowfall

::::::::
generally

:::::
covers

:::::
most

::
of

:::
the

:::::::::
topography

::::::
within

:
a
::::
grid

:::
cell

::::
(i.e.

:::
all

:::::::
surfaces

:::
are

::::::
initially

:::::::
covered

:::
by

:::::
snow),

:::
we

::::
use

::::
σEgli
HS ::::

(Eq.
::
4),

::::::
which

::::
does

:::
not

:::::::
account

:::
for

::::::
subgrid

:::::::::::
topography.

::::::::::
fSCAseason155

::
To

:::::::
compute

:::::::::::
fSCAseason,

:::
we

:::
use

:::::::
extreme

::::
HS

:::::
values

::
at

::::
each

::::
time

::::
step

:::
per

::::
grid

:::
cell

:::::::
(Figure

:::
1a).

::
It
::
is

::::::::
important

::
to
::::
note

::::
that

:::
we

::::::
identify

:::::
these

:::::::
extremes

:
using SWE to avoid influences of snow settling. Since

:::::
rather

::::
than

::::
HS,

::
as

::::
due

::
to

::::
snow

:::::::::
settlement

::::
HS

:::::
values

:::
can

:::::
peak

::::
even

::::::
before

:
a
:::::::::::
precipitation

:::::
event

:::
has

::::::
ended.

::::::::
However,

::
as

:
our fSCA algorithm needs

::::::
requires

:
HS as input,

::
we

::::::
search

:::
for

:::::::
extreme

::::::
SWE

:::::
values

:::
in

::::
time,

::::
and

:::
use

:
the corresponding HS valuesof SWE extreme points are applied. .

:
In

the following we will not specify this anymorebut instead
:
,
:::
and

:
only refer to extreme values of HS(minimum, maximum) or160

HS differences. A full seasonal .
:::
To

:::::::
compute

::::::::::
fSCAseason:::

we
:::
use

::::::
σHelbig
HS ::::

(Eq.
::
3)

::
in

:::
the fSCA algorithm

::::::::::
formulation

:::
(Eq.

:::
1)

::
as

:::::::
follows:

fSCAseason = tanh(1.3
HSpseudo-min

σHelbig
HSmax

) .

::::::::::::::::::::::::::::::::

(5)

::::
Here,

:::::::::::
HSpseudo-min ::

is
:::
the

::::::
current

::::
HS

:::::
value

::
or

:
a
::::::

recent
::::::::
minimum

:::::
(pink

::::
dots

::
in

::::::
Figure

::::
1a),

:::
and

::::::
σHelbig
HSmax::

is
:::::::::
computed

:::::
using

:::
the

::::::
current

:::::::
seasonal

:::::::::
maximum

::::
snow

:::::
depth

::::::
HSmax, i.e. including the tracking of

::
the

:::::::::
maximum

::
in

:
HS and SWE over the course165

::::
from

:::
the

::::
start of the season , is applied per grid cell of adistributed snow cover model.

Over the course of the season we describe the fSCA curve by means of one seasonal fSCA (fSCAseason) and one fSCA

for snowfall events (fSCAnsnow ::
up

::
to

::
the

:::::::
current

::::
time

:::
step

::::::
(green

::::
dots

::
in

:::::
Figure

:::
1a). This is done to ensure that a snowfall may

add significantly to
:::
We

:::
call

:::::::::::
HSpseudo-min :

a
:::::::::::::::

pseudo-minimum
::
as

::
it
::
is
:::
not

::::
the

:::::::
absolute

:::::::
seasonal

:::::::::
minimum.

:::
At

::::
each

::::
time

:::::
step,

::::::::::
HSpseudo-min :::

and
::::::
HSmax:::

are
:::::::
updated

::
to

:::::::
compute

:
fSCA(

:
.
::::
Note

::::
that

::::
after

:::
the

:::::
PoW,

::::::
HSmax :::

and
::::::
σHelbig
HSmax ::::::

remain
::::::::
constant.170

:::
For

:::
the

::::
rare,

:::::::::
completely

::::
flat

:::
grid

:::::
cells,

:
i.e. fSCAnsnow > fSCAseason) but, once the new snow has started to melt, fSCA

can return to similar fSCA values than before. For computing the different fSCA we a
:::::::

subgrid
:::::
mean

:::::
slope

:::::
angle

::
of

:::::
zero,

:::
Eq.

:::
(3)

:::::
would

::::::
always

:::::
result

::
in
:::::::::::
fSCA= 1.

::
In

:::::
those

:::::
cases,

:::
we

::::::::
therefore use Eq. (1) but different HS values (from current to

extremes) as well as σHS , i.e. σtopo
HS :

4)
::::::
instead

:::
of

:::
Eq.

:::
(3)

::
to

:::::::
compute

:::::::::::
fSCAseason.

::::::::::
fSCAnsnow175
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Figure 1.
::::::::
Schematic

::::::::::
representation

::
of
:::::
snow

::::
depth

:::
HS

:::::::
extreme

:::::
values

:::
used

::
to

:::::::
compute

:::::
fSCA

:::
for

:
a
::::
grid

:::
cell.

::
(a)

:::
To

:::::::
determine

::::::::::
fSCAseason,

::::::
extremes

::
in
::::
HS

:::::
(black

:::
line)

:::
are

::::::
tracked

:::
over

:::
the

::::
entire

::::::
season.

:::::
When

:::
HS

::::::::
decreases,

::
the

:::::::
seasonal

::::::::
maximum

::::
snow

::::
depth

::::::
HSmax :::::

(green
::::
dots)

::::::
remains

::::::
constant

::::
until

:
a
:::
new

::::::::
maximum

::
is

::::::
reached

:::
with

:::::::::
subsequent

::::::::
snowfalls.

:::
The

:::::::::::::
pseudo-minimum

:::::::::
HSpseudo-min ::::

(pink
::::
dots)

:::::::
decreases

:::::
when

:::
HS

::::::::
decreases,

::::
until

::
the

::::
next

:::::::
snowfall.

:
It
::::

then
::::::
remains

:::::::
constant

::::
until

:::
HS

:::::
either

::::::
exceeds

:::::
HSmax::

or
::::::::
decreases

::::
below

:::
the

:::::::
previous

::::::::
minimum.

::
(b)

::
To

::::::::
determine

::::::::::
fSCAnsnow,

:::::
several

:::::::
extremes

::
in

:::
HS

:::::
(black

::::
line)

:::
are

::::::
tracked

:::::
within

:::
the

:::
last

::
14

::::
days

:::::
(black

:::::
dashed

::::
lines

::
in

::
a):

:::
the

::::::
current

::::
value

:::::::
HScurrent ::::

(blue
::::
dot),

:::
the

:::::::
minimum

:::::
within

:::
the

:::
last

:::
14

:::
days

:::::::
HS14day

min ::::
(pink

::::
dot),

:::
the

::::::::
maximum

:::::
within

:::
the

:::
last

::
14

::::
days

:::::::
HS14day

max :::::
(green

:::
dot),

:::
and

:::
the

::::::::
minimum

:::
prior

::
to
:::
the

::::
most

:::::
recent

::::::
snowfall

:::::::
HSrecent

min ::::::
(yellow

:::
dot).

::
To

:::::::
account

:::
for

:::::::
possible

::::::::
increases

::
in

::::::
fSCA

::::
after

::::::
recent

::::::::
snowfalls,

:::
we

:::::::
evaluate

:::::::
fSCA (Eq. (2) ) or σflat

HS (Eq. (3)) (cf. box in

the middle
::
1)

::::
using

:::::
σEgli
HS :::

(Eq.
:::
4)

::::::::
computed

::::
with

:::::::::
differences

::
in

:::::
snow

:::::
depth

::::
dHS

:::::
(only

:::::::
positive

:::::::
changes)

::::::
within

:::
the

:::
last

:::
14

::::
days

::::::
(Figure

::::
1b).

:::
We

:::
use

::::
dHS

::::::
rather

:::
than

::::
HS

::
to

::::
only

:::::::
account

:::
for

:::
the

::::::::::
contribution

::
of

::::
new

::::
snow

:::
on

:::::::
changes

::
in

::::::
fSCA,

::::
thus

::
as

::
if

:::
the

:::
new

:::::
snow

:::
fell

:::
on

:::
bare

:::::::
ground.

::
A

::::
time

:::::::
window

::
of

::
14

:::::
days

:::::::
provided

:::::::
reliable

::::::
fSCA

:::::
results

::::
after

::::::::
intensive

::::::
testing,

:::
but

:::
the

::::::
length

::
of

:::
this

::::::
period

::::
may

::::::
require

::::::
further

::::::::::
investigation

:::::
once

::::
more

::
is

::::::
known

:::::
about

:::::::
changes

::
in

::::
snow

:::::
depth

:::::::::::
distributions

::
in

:::::::::::
mountainous180

:::::
terrain

::::
after

::::::::
snowfall.

:

:::::
Within

::::
the

::
14

::::
day

::::
time

::::::::
window,

:::
we

:::::::
compute

::::
two

:::::::
different

:::::::
fSCA

:::::
values

::::
and

::::
then

:::::
retain

::::
the

::::::::
maximum

::::::
value.

:::::
First,

:::
we

:::::::
evaluate

:::::::::
fSCA14day

nsnow:::::
using

:::
the

::::::
largest

:::::::
positive

::::::
change

::
in

:::::
snow

:::::
depth

:::::
within

:::
the

:::
last

:::
14

:::::
days:

fSCA14day
nsnow = tanh(1.3

(HScurrent−HS14day
min )

σEgli
dHS14day

) .

:::::::::::::::::::::::::::::::::::::::

(6)

::::
Here,

::::::::
HScurrent::

is
:::
the

::::
snow

:::::
depth

::
at

:::
the

::::::
current

::::
time

:::
step

:::::
(blue

:::
dot

::
in

::::::
Figure

:::
1b),

:::::::
HS14day

min ::
is

:::
the

::::::::
minimum

:::::
snow

:::::
depth

::
in

:::
the

:::
last185

::
14

::::
days

:::::
(pink

:::
dot

::
in

:::::
Figure

::::
1b),

:::
and

:::::::
σEgli
dHS14day::

is
::::::::
computed

:::::
using

:::
the

::::::::
maximum

:::::::::
difference

::
in

::::
snow

:::::
depth

::::::::::::::::::::::::::
dHS14day =HS14day

max −HS14day
min

::
in

:::
the

::::
last

::
14

:::::
days,

::::
with

:::::::
HS14day

max :::
the

:::::::::
maximum

::::
snow

:::::
depth

::
in
:::
the

::::
last

::
14

::::
days

::::::
(green

:::
dot

::
in

::::::
Figure

:::
1b).

:
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Table 1.
::::::
Details

::
of

::
the

:::::::
different

:::::
fSCA

:::::::::
algorithms

:::
that

::
are

::::::::
compared

::
to

::
the

:::
full

::::::
fSCA

:::::::
algorithm

::
in
:::::::
JIMOSHD.

:::::::
algorithm

:::::
name

:::::::::
fSCAseason ::::::::

fSCAnsnow: ::::::
tracking

:::
HS

::
&
:::::
SWE

:::::::
(Section

:::
2.2)

::::::
JIMOSHD: ::

Eq.
:::
(5)

:::
Eq.

::
(6)

::
&
:::
(7)

::::
season

::
&
:::
14

:::
days

:

::::::
JIMseason

OSHD: ::
Eq.

:::
(5) -

: ::::
season

:

::::::
JIMcurr

OSHD: ::::::::::::::
tanh(1.3 HScurrent

σ
Helbig
HScurrent

)
:

-
:

-
:

::::::::
JIMallHelbig

OSHD ::
Eq.

:::
(5)

:::
Eq.

::
(6)

::
&

:::
(7)

:::
with

:::::
σHelbig
HS : ::::

season
::

&
:::
14

:::
days

:

::::::::
JIMSwenson*

OSHD : :::
Eq.

::::
(8.2)

:
in
: :::

Eq.
:::
(8.1)

::
in
: :::::

season
::
&

::
14

::::
days

:::::::::::::::::
Lawrence et al. (2018)

:::::::::::::::::
Lawrence et al. (2018)

::::::
Second,

:::
we

:::::::
evaluate

::::::::::
fSCArecent

nsnow:::::
using

::::
only

:::
the

::::
most

::::::
recent

::::::
change

::
in

:::::
snow

:::::
depth

:::::
within

:::
the

:::
last

:::
14

:::::
days:

fSCArecent
nsnow = tanh(1.3

dHSrecent

σEgli
dHSrecent

) .

::::::::::::::::::::::::::::::

(7)

::::
Here,

:::::::::::::::::::::::::::
dHSrecent =HScurrent−HSrecent

min ::
is

:::
the

::::::
change

::
in
:::::

snow
:::::
since

:::
the

::::
most

::::::
recent

::::::::
snowfall,

:::::
where

:::::::
HSrecent

min ::
is
:::
the

:::::::::
minimum190

::::
snow

:::::
depth

::::
prior

::
to
:::
the

:::::::
snowfall

:::::::
(yellow

:::
dot in Figure 1). The complete technical aspects of the derivation of all

::
b).

::::::::::
fSCArecent

nsnow

:::::
avoids

::::::
spatial

:::::::::::::
discontinuities:

:::::::
Without

:::
this

::::::::::::::
implementation,

::::
grid

::::
cells

::::
with

::::::
HS >

::
0

::
m

::::
prior

::
to
::

a
:::::
recent

::::::::
snowfall

::::
may

::::
have

::
a

:::::
lower fSCA including some pseudocode are given in Appendix ??.

::::
value

::::
than

::::
grid

::::
cells

:::::
where

:::
the

:::::
same

::::::
amount

::
of

::::
new

:::::
snow

:::
has

:::::
fallen

::
on

:::
the

::::
bare

:::::::
ground.

::::::
Finally,

:::
the

:::::::::
maximum

::
of

::::::::::
fSCA14day

nsnow :::
and

::::::::::
fSCArecent

nsnow ::::
gives

::::::::::
fSCAnsnow:::

for
:::
the

::::::
current

::::
time

::::
step

:::
and

::
a
:::
grid

::::
cell.

:
195

:::::::
Seasonal

:::::::::
algorithm

::::
Over

:::
the

::::::
course

::
of

:::
the

:::::
snow

::::::
season,

:::
we

::::::
derive

::::::::::
fSCAnsnow:::

and
:::::::::::
fSCAseason ::

for
:::::

each
::::
time

::::
step

:::
and

::::
grid

::::
cell

::::::
(Figure

:::
2).

:
The

final fSCA is obtained from
:::
was

::::
then

:::::::
obtained

:::
by taking the maximum of fSCAnsnow and fSCAseason.

:::
both

::::::
values.

::::
This

::::
full

:::::::
seasonal

::::::
fSCA

:::::::::
algorithm,

:::
i.e.

::::::::
including

:::
the

:::::::
tracking

::
of

::::
HS

:::
and

::::::
SWE,

::::
was

:::::::::::
implemented

::
in

:
a
:::::::::
distributed

:::::
snow

:::::
cover

::::::
model.

:::
The

::::
code

::
is

:::::::
publicly

::::::::
available

::
on

:::
the

:::::::::
WSL/SLF

::::::
GitLab

::::::::
repository

::::
(cf.

::::
Code

::::::::::
availability

:::::::
section).

:::
The

::::
data

::::
sets

::::
used

::
to

:::::::
evaluate200

::
the

:::::::::::
performance

::
of

::::
this

::::::::
algorithm

:::
are

::::::::
described

::
in

:::
the

::::
next

:::::::
section.

3 Data

3.1 Modelled fSCA andHS maps

We model the snow cover evolution using the JULES investigation model (JIM). JIM is a multi-model framework of physically

based energy-balance models solving the mass and energy balance for a maximum of three snow layers (Essery, 2013). While205

the multi-model framework JIM offers 1701 combinations of various process parameterizations, Magnusson et al. (2015)
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Figure 2.
::::::::
Illustration

::
of

:::::::
modelled

::::::::::
fSCArecent

nsnow,
::::::::
fSCA14day

nsnow:::
and

:::::::::
fSCAseason:::

for
:::
one

:::
grid

:::
cell

::::
over

:
a
::::::
season.

:::::
fSCA

::
is
:::
the

:::::::
maximum

:::
for

::::
each

:::
time

::::
step

:::
from

::::::::::::::::::::::::::::::::
fSCAnsnow=max(fSCArecent

nsnow,fSCA14day
nsnow)

:::
and

:::::::::
fSCAseason.

:::
All

::::
terms

:::
are

:::::::
described

::
in
::::::
Section

:::
2.2.

selected a specific combination that performed best for snow melt modelling for Switzerland, predicting
:
.
:::
The

:::::
latter

::::::
model

::::::::::
combination

::
is

::::
used

::
to

::::::
predict

:
daily snow mass and snowpack runoff for the operational snow hydrology service (OSHD) at

WSL Institute of Snow and Avalanche Research SLF. We ran JIMOSHD in 1 km resolution with hourly meteorological data from

the COSMO-1 model (operated by MeteoSwiss) for Switzerland. We used a reanalysis product of daily observed precipitation210

(RhiresD) from MeteoSwiss as well as COSMO-1 data. Daily HS measurements from manual observers as well as from a

dense network of automatic weather stations (AWS) were used to correct precipitation data via optimal interpolation (OI)

(Magnusson et al., 2014), which is a computational efficient data assimilation approach. Using OI in JIMOSHD, Griessinger

et al. (2019) obtained improved discharge simulations in 25 catchments over four hydrological years.

To describe the subgrid snow cover evolution in mountainous terrain, the
:::
our seasonal fSCA algorithm was implemented in215

JIMOSHD. As daily valueswe use
:
,
::
we

:::::
used model output generated at 6 am (UTC). In the following, when we refer to modelled

fSCA and HS maps we mean
:::
refer

::
to
:::::
daily fSCA and HS from JIMOSHD model output.

We additionally
:::
also

:
computed the snow cover evolution with

::::
using

:
JIMOSHD using two

:::
with

:::::::
various

:
simplifications in

the seasonal fSCA algorithm (Figure 1). Both simplifications are used in coarse-scale model applications and allow us here

to estimate the relevance of applying the full seasonal
::
as

::::
well

::
as

::::
with

:::
the

:
fSCA algorithm. First, we switched off all new220

snow
::::::::::::::
parameterizations

:::::::::::
implemented

::
in

::::::::
CLM5.0

:::::::::::::::::::
(Lawrence et al., 2018)

:::::
which

:::
are

:::::
based

:::
on

::::::::::::::::::::::::::
Swenson and Lawrence (2012)

:::
(cf.

:::::
Table

:
1
:::
for

:::::
more

:::::::
details).

::::
This

:::::
latter

:
fSCA updates

::::::::
algorithm

::::
also

:::::::
accounts

:::
for

:::::::::
hysteresis

::
in

:::::::::::
accumulation

::::
and

:::::::
ablation

9



::
by

:::::
using

:::
two

::::::::
different

::::::
fSCA

:::::::::::::::
parameterizations

:::
and

:::
by

:::::::
tracking

:::
the

:::::::
seasonal

:::::::::
maximum

::::::
SWE.

::::::
While

::::::
subgrid

::::::::::
topography

::
is

::::::::
accounted

:::
for

::
in

:::
the

::::::
fSCA

::::::::::::::
parameterization

::::::
during

:::::::
ablation

:::
via

:::
σz ,

::::::::::
topography

::
is

:::
not

:::::::::
accounted

::
for

::::::
during

::::::::
snowfall

::::::
events.

:::
The

:::::::::
algorithm

::
of

::::::::::::::::::::::::::
Swenson and Lawrence (2012)

:::
was

:::::::
derived

:::
by

::::::
linking

:::::
daily

:::::::::::::::
satellite-retrieved

::::::
fSCA

:::
to

:::::
snow

::::
data.

::::
We225

::::::::::
implemented

::::
this

::::::::
algorithm

::
in

::::
JIM

:::::
using

:::
our

::::
snow

::::::::
tracking

::::::::
algorithm, i.e. the final fSCA was set to fSCAseason. Second, we

defined a fSCAcurr which only uses current modelled
:::::::::::
corresponding

:
HS in

:::::
values

::::
such

:::
as

::::::::::
HSpseudo-min :::

(cf.
:::::::
Section

::::
2.2).

::::
This

:::
was

:::::
done

::
to

:::::
solely

:::::::
evaluate

:::
the

:::::::::
differences

::
in
:::

the
:
fSCA equation (Eq. (1)), i.e. which does not require any HS tracking. We

indicate these
:::::::::::::::
parameterizations.

::
In

:::::
total,

:::
we

:::::::::
performed

::::
four

::::::::
additional

:
snow cover simulationswith

:
:
:
JIMseason

OSHDand
:
, JIMcurr

OSHD:
,

:::::::::
JIMallHelbig

OSHD :::
and

:::::::::
JIMSwenson*

OSHD ::::
(cf.

:::::
Table

::
1).230

3.2 Evaluation data

3.2.1 ADS fine-scaleHS maps

We used fine-scale spatial HS maps gathered by airborne digital scanning (ADS) with an opto-electronic line scanner on an

airplane. Data were acquired over the Wannengrat and Dischma area near Davos in the eastern Swiss Alps
::::::
during

:::::
winter

::::
and

::::::
summer

:
(Bühler et al., 2015). We used ADS-derived HS maps at three points in time during one winter season, namely during235

accumulation at
::
on

:
26 January (’acc’), at approximate peak of winter at

::
on 9 March (’PoW’) and during ablation season at

::
on

20 April 2016 (’abl’) (Marty et al., 2019). We used a summer DEM from ADS to derive the snow-free terrain parameters.

Each ADS data set covers about 150 km2 with 2 m spatial resolution. Compared to terrestrial laser scan (TLS)-derived HS

dataof a subset, the 2 m ADS-derived HS maps had a root mean square error (RMSE) of 33 cm and a normalized median

absolute deviation (NMAD) of the residuals (Höhle and Höhle, 2009) of 24 cm (Bühler et al., 2015).240

3.2.2 ALS fine-scaleHS maps

We used fine-scale spatial HS maps gathered by airborne laser scanning (ALS). The ALS campaign was a Swiss partner

mission of the Airborne Snow Observatory (ASO) (Painter et al., 2016). Lidar setup and processing standards were similar to

those in the ASO campaigns in California. The data was
::::
Data

::::
were

:
acquired over the Dischma area near Davos in the eastern

Swiss Alps (cf. Figure 3a in Helbig et al., 2021). We used ALS-derived HS maps at three points in time during one winter245

season, namely at approximate time of
::
the

:::::::::::
approximate peak of winter at

::
on

:
20 March (’PoW’) and during

:::
the early and late-

ablation season at
::
on

:
31 March and 17 May 2017 (’abl’)

:
,
::::::::::
respectively. We used a summer DEM from

::::
ALS

:::::
from 29 August

2017 to derive the summer
::::::::
snow-free terrain parameters.

Each ALS data set covers
::::::
covered

:
about 260 km2. The original 3 m resolution was aggregated to 5 m horizontal resolution.

A RMSE of 13 cm and a bias of -5 cm with snow probing was obtained for
:::::::::
Comparing

:::
the

:::::::::::
ALS-derived

:::
HS

::::
data

::
to

:::::::
manual250

::::
snow

:::::::
probing within forest but outside canopy (i.e. not below a tree)1 m ALS-derived HS data from ,

:::::::::::::::::::
Mazzotti et al. (2019)

:::::::
reported

:
a
::::::
RMSE

::
of

:::
13

:::
cm

:::
and

:
a
::::
bias

::
of

::
-5

:::
cm

:::
for

:
20 March 2017 (Mazzotti et al., 2019).

:::::
2017.
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3.2.3 Terrestrial camera images

We used camera images from terrestrial time-lapse photography in the visible band. The camera (Nikon Coolpix 5900 from

2016 to 2018, Canon EOS 400D from 2019 to 2020) was installed at the SLF/WSL in Davos Dorf in the eastern Swiss Alps255

(van Herwijnen and Schweizer, 2011; van Herwijnen et al., 2013). Photographs were taken of the Dorfberg in Davos, which

is a large southeast-facing slope with a mean slope angle of about 30◦ (cf. Figure 1 in Helbig et al., 2015a). To obtain fSCA

values from the camera images, we followed the workflow described by Portenier et al. (2020). We used the algorithm of

Salvatori et al. (2011) to classify pixels in the images as snow or snow free
::::::::
snow-free. Though images are taken at regular

intervals (between 2 and 15 minutes, depending on the year), we used the image at noon to derive fSCA for that day. We260

evaluated images from five winter seasons (2016, 2017, 2018, 2019 and 2020) each
:::::
every time from 1 November until

:
to

:
30

June.

The resulting snow/no snow
:::::::
no-snow

:
map of the camera images has

:::
had

:
a horizontal resolution of 2 m. The field of view

(FOV) overlaps the most with four 1 x 1 km JIMOSHD grid cells with projected visible fractions between 9 to 40 % in each grid

cell. The camera data set can thus cover roughly
::::
FOV

::::::
covers about 0.76 km2per time step.265

3.2.4 Sentinel-2 snow products

We used fine-scale snow-covered area maps , which we obtained from the Theia snow collection (Gascoin et al., 2019). The

satellite snow products were generated from Sentinel-2 L2A and L2B images. We used Sentinel-2 snow-covered area maps

over one winter season starting at
::::
from 20 December 2017 until

::
to 31 August 2018 for Switzerland. We further used Sentinel-2

snow maps over the Dischma area near Davos close to or at the date of the three days when we had ALS-derived fSCA maps270

available
::::::::
ALS-scans

:
(18 and 28 March and 17 May 2017) .

:::
and

::::
over

:::
the

::::::::
Dorfberg

::::
area

::
in

:::::
Davos

::::
Dorf

:::::
from

:
1
:::::::::
November

:::::
2017

::
to

::
30

::::
June

:::::
2018.

:

The horizontal resolution of the snow product is 20 m. While the spatial coverage of the Sentinel-2 snow-covered area maps

in Switzerland varies every time step
:
, Sentinel-2 may cover several thousands of square kilometersper time step

:::::::
thousand

::::::
square

::::::::
kilometers. A validation of the Theia snow product with snow depth from AWS, through comparison to snow maps with higher275

spatial resolution as well as by visual inspection indicated that snow is detected very well though with
::::
well

:::::::
detected,

::::::::
although

::::
there

::
is a tendency to underdetect snow (Gascoin et al., 2019). The main difficulty of satellite snow products is to avoid false

snow detection within clouds. Furthermore, snow omission errors may occur on steep, shaded slopes when the solar elevation

is typically below 20◦.

3.3 Derivation of 1 km fSCA evaluation data280

For preprocessing
::::::::::::
pre-processing, we masked out forest, rivers, glaciers or buildings in all fine-scale measurement data sets.

Optical snow products that were obscured by clouds were also neglected. In all fine-scale HS data sets, we neglected HS

values that were lower than zero or above 15 m. We used aHS threshold of zero m to decide whether or not a 2 or 5 m grid cell

was snow-covered. This threshold could not be better adjusted due to a lack of independent spatial observations. This likely

11
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Figure 3. Probability density functions after preprocessing for all valid 1 km (a) fSCA, (b) HS
::::
snow

:::::
depth and (c) elevation z per mea-

surement data set. All densities were normalized with the maximum in each data set. Colors represent the different measurement platforms

as detailed in Section 3.2.

led to the rather narrow fSCA peak of the probability density function (pdf) around one (cf. pink and light blue line in Figure285

2).

We then aggregated all fine-scale snow data,
:
as well as the snow products from optical imagery

:
, in squared domain sizes

L in regular grids of 1 km aligned with the OSHD model domain. For building the spatial averages, we required at least 70

% valid data for the fine-scale snow data and at least 50 % valid for the satellite-derived fSCA data in a domain size L of

::::
each 1 km

:::
grid

::::
cell. We excluded 1 km domains

::::
grid

::::
cells with spatial mean slope angles larger than 60◦ and spatial mean290

measured HS lower than
::
or

::::::::
modelled

::::::
HS <5 cm. We further neglected 1 km grid cells with forest fractions larger than 10

%, which were derived from 25 m forest cover data. Overall, this led to a varying number of available domains in
:::::::
variable

::::::
number

::
of

::
1
:::
km

:::::
valid

::::
grid

::::
cells

:::
for

:
the different data sets (Table 1

:
2). For the fine-scale snow data sets,

:
this number ranged

from 69 to 157 available valid 1 km domains depending on the point in time with a total of 669
:::
668

:
valid 1 km domains.

After the removal of clouds and forest we obtained on average
::::
grid

::::
cells.

:::::
After

:::::
cloud

::::
and

:::::
forest

::::::::
removal,

::
on

::::::::
average, every295

second day in Switzerland
::
we

:::
had

:
some valid Sentinel-2 data

:
in

::::::::::
Switzerland

:
(153 valid days from the 255

:::::::
calendar

:
days). For

the time period from 20 December until
::::
2017

::
to

:
31 August 2018, this resulted in 274’979

::::::
216’896

:
valid 1 km domains

:::
grid

::::
cells from a total of 3’147’465

::::::::
2’274’991

:
valid OSHD grid cells in Switzerland, i.e. about 9

:::
9.5 %. These valid 1 km domains

cover terrain elevations between
:::
grid

::::
cells

:::::::
covered

::::::
terrain

::::::::
elevations

:::::
from 174 m and 4213 m, slope angles between

:
to

:::::
4278

::
m,

:::::::
subgrid

::::
mean

:::::
slope

::::::
angles

::::
from

:
0 to 52

::
60 and all terrain aspects. We used three of the four grid cells covered by the FOV300

of the terrestrial camera, since one grid cell had a 1 km forest fraction larger than 10 %. On averagewe obtained ,
:
every fourth

day
:::
we

:::
had

:
valid camera data (340

:::
337

:
valid days from 1211

:::
the

:::::
1212

:::::::
calendar days). Valid camera-derived fSCA for five

seasons and the three grid cells covered by the FOV resulted in 1’019
:::
931 valid 1 km grid cells from a total of 3’633 1 km grid

cells for the five seasons and three
:::
018

::::
valid

::::::
OSHD

:
grid cells, i.e. 28 %. Compared to the total of all valid OSHD grid cells in

Switzerland for the five seasons, the fraction of valid camera-derived fSCA is however less than 0.01 %.
::
31

:::
%. The three grid305
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Table 2. Details of the
:::
valid

:
1 km fSCA evaluation data sets after pre-processing

:
as

:::::::
described

::
in
::::::
Section

:::
3.3.

geographical region remote spatial spatial temporal σfSCA mean fSCA

sensing method resolution coverage coverage

(fine-scale)

[mkm2] [days]

Wannengrat and Dischma area (eastern CH) ADS 2 232 3 0.05 0.98

Dischma and Engadin area (eastern CH) ALS 3 437
:::
436

:
3 0.08 0.96

Davos Dorfberg (eastern CH) Terrestrial camera 2 1’019
:::
931 340

:::
337 0.30

:::
0.23 0.75

:::
0.81

:

Switzerland Sentinel-2 20 274’979
::::::
216’896 153 0.46

:::
0.18 0.54

:::
0.93

:

cells have terrain elevations of 2077 m, 2168 m and 2367 m and slope angles of 27°, 34° and 39°. The diversity in each of the

evaluation data sets after preprocessing
::::::::::::
pre-processing is indicated in Table 1

:
2 and is also shown for valid 1 km domains by

means of the pdf for fSCA, HS and terrain elevation z in Figure 2
:
3.

3.4 Performance measures

We evaluate modelled and measured
::
To

:::::::
evaluate

:::
the

:::::::::::
performance

::
of

:::::::::
modelled fSCA with the following

::::::::
compared

:::
to

:::
the310

::::::::::::
measurements,

:::
we

::::
used

::::
three

:
measures: the root mean square error (RMSE),

::
the

:
normalized root mean square error (NRMSE,

:
; normalized by the mean of the measurements) , mean absolute error (MAE) and the mean percentage error (MPE, bias with

:
;
::::::
defined

::
as

:
measured minus modelledand normalized with measurements). We also verify distribution differences by deriving

the two-sample Kolmogorov-Smirnov test (K-S test) statistic values D (Yakir, 2013) for the probability density functions (pdf)

and by computing the NRMSE for Quantile-Quantile plots (NRMSEquant, normalized by ,
::::::::::

normalized
::::
with

:
the mean of the315

measured quantiles)for probabilities with values in [0.1,0.9].

:::::::::::::
measurements).

4 Results

We grouped the evaluation results of the
::::::
present

:::
the

:::::::::
evaluation

::
of

:::
our

:
seasonal fSCA algorithm in three sections: evaluation

with fSCA derived from fine-scale HS maps
:::
near

::::::
Davos, evaluation with fSCA from time-lapse photography

::
in

::::::
Davos320

::::
Dorf and evaluation with fSCA from Sentinel-2 snow products . Modelled fSCA (JIMOSHD) and ADS-derived fSCA in

elevation bins for three dates: (a) during accumulation, (b) at approximate peak of winter (PoW) and (c) during ablation. Two

benchmarks are shown where applicable. The red stars were derived using Eq. (1) with current ADS HS in the numerator and

ADS σHS from the PoW measurement in the denominator. The blue stars were derived using Eq. (1) with current ADS HS

in the numerator and current ADS σHS in the denominator. The bars show the valid data percentage per bin.
:::
over

:::::::::::
Switzerland.325

:::
We

::::::
further

::::::
present

:::::
some

::::::::
additional

:::::::::::
comparisons

::::
with

:::::::::
Sentinel-2

::::
snow

::::::::
products

::
in

:::
the

::::
first

:::
two

:::::::
sections

:::::
when

:::::::::
Sentinel-2

::::
data

:::
was

::::::::
available

::
in

:::
the

:::::
Davos

::::
area

:::
(cf.

:::::::
Section

:::::
3.2.4).

:
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Table 3. Performance measures are shown for modelled fSCA with (I) fSCA derived from all fine-scale HS maps (combined ADS- and

ALS-derived fSCA) and (II) Sentinel-derived fSCA (only available for ALS dates). Performance
::::::::::
Additionally,

:::::::::
performance

:
measures

are shown for ALS-derived fSCA with Sentinel-derived fSCA (III)
:::
and

:::
for

:::::::
modelled

:::::
fSCA

:::::
using

::::::::
JIMSwenson*

OSHD ::::
(IV). Given statistics are

NRMSE, RMSE , MPE, MAE, K-S test statistic and NRMSEquant ::::
MPE. For all differences we computed measured minus modelled values

respectively Sentinel-derived fSCAminus ALS-derived fSCA for III. The abbreviations ’acc’, ’PoW’ and ’abl’ indicate the different point

::::
points

:
in time of the season as given

::
are

:::::::
specified in Section 3.2.

:::::
fSCA

:
NRMSE RMSE MPE MAE K-S NRMSEquant

[%] [%] %

I JIMOSHD vs ADS&ALS

fSCA 8.5 0.08 1.2
::
all

::::
dates 0.04

:
7
:

0.27
:::
0.07 1.0

::
0.7

:

fSCAacc :::::::::
accumulation

::::
date 8.0

:
8 0.08 -3.6 0.04 0.46 3.2

:::
-3.8

fSCAPoW 4.9 0.05
:::
PoW

::::
dates

:
0.6

:
2 0.02 0.50 0.7

::
0.3

fSCAabl 10.4 0.10 2.4
::::::
ablation

::::
dates

:
0.05

:
8
:

0.20
:::
0.08 2.6

::
1.8

:

II JIMOSHD vs Sentinel-2 (at ALS dates)

fSCA 10.1 0.09 -0.5
::
all

::::
dates

:
0.05

:
9
:

0.24
:::
0.08 2.9

::
-1.4

:

fSCAPoW ::::
PoW

::::
dates

:
2.8

:
3 0.03 2.5 0.03 1 2.7

fSCAabl 10.2 0.09 -0.6
::::::
ablation

::::
dates 0.05

:
9
:

0.22
:::
0.08 2.9

::
-1.5

:

III Sentinel-2 vs ALS

fSCA
::
all

::::
dates 10.8

::
11 0.10 3.1

::::
PoW

:::
date

:
0.05

:
9
: :::

0.08
: :::

-5.9
:

::::::
ablation

::::
dates

: ::
11 0.10 4.6

::
3.4

:

fSCAPoW height
::
IV

::::::::
JIMSwenson*

OSHD ::
vs

:::::::::
ADS&ALS 8.7 0.08

::
all

::::
dates

:
-5.9

::
14 0.06

:::
0.14 1

:::
-1.2

::::::::::
accumulation

:::
date

:
7.7

:
9

:::
0.09

: :::
-6.1

:

fSCAabl::::
PoW

::::
dates

:
10.9

:
6
:

0.10
:::
0.06 3.4

::
-0.6

:

::::::
ablation

::::
dates

:
0.05

::
18 0.11

:::
0.18 4.8

::
-0.7

:
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4.1 Evaluation with fSCA from fine-scaleHS maps

Modelled fSCA compares very well to
:::::::
compared

::::
well

::::
with

:
fSCA derived from all six fine-scale HS data sets. For instance

for all evaluated points in time we obtain
:::::::
Overall,

:::
we

:::::::
obtained

:
a NRMSE of 9 %

:
7
:::
%,

::
a

::::::
RMSE

::
of

::::
0.07

:
and a MPE of 1

:::
0.7330

% (Table 2). Overall best performances are achieved for the combined
:::
3).

:::
The

::::
best

:::::::::::
performance

:::
was

:::
for

:::
the

:
two dates at the

approximate date of PoW with a NRMSE of 5 %
::::
PoW

::::::::
(NRMSE

::
of

:
2
:::
%,

:
a
::::::
RMSE

::
of

::::
0.02 and a MPE of 0.6 %. The performance

decreases slightly for the accumulation date (NRMSE of 8 %)and the combined three points in time of ablation (NRMSE of

10 %)
::
0.3

::::
%),

:::::
while

:::
the

::::::::::
performance

::::
was

::::::::
somewhat

:::::
lower

::::::
during

:::
the

:::::::
ablation

:::
and

::::::::::::
accumulation

:::::
period.

Given the overall good seasonal agreement between fSCA from all fine-scale HS data sets and modelled fSCA335

::
To

:::::::::
investigate

::::
the

::::::::
influence

::
of

::::::::
elevation, we binned the data in 200 m elevation bands and for

::
for

::::
the ADS and ALS

data sets separately to unveil seasonal variations in the elevation-dependent performances. Similar to overall seasonal model

performances (Table 2, I), seasonal elevation-dependent performances with ALS data decrease from PoW, to ablation
:::::::
(Figures

:
4
:::
and

::
5). For ADS data, seasonal elevation-dependent performances are similar good

:::::::
modelled

::::::
fSCA

::::::
values

::::
were

::::::::::
comparable

::
to

:::
the

::::::::::::
measurements at PoW and early ablationand decrease during accumulation . Except for the date during accumulation340

, largest performance differences occur mostly for the lowest elevationbin, i.e. in general, model performances improve with

elevation. While at both early ablation dates there is still an overall good agreement betweenHS-derived fSCA and ,
:::::
while

:::
the

:::::::::
differences

:::::
during

::::::::::::
accumulation

::::
were

:::::
more

:::::::::
pronounced

::::::::
(compare

:::
red

::::
and

:::::
black

:::
dots

::
in

::::::
Figure

:::
4).

:::::
There

:::
was

::::
also

::
no

:::::::::
consistent

:::::::
elevation

:::::
trend,

:::
as

::::::
during

:::::::::::
accumulation

:::::::::
differences

::::::::
between

::::::::
modelled

:::
and

:::::::::
measured

::::::
fSCA

::::::::
increased

::::
with

:::::::::
elevation,

:::::
while

:::::
during

:::::
early

:::::::
ablation

:::
the

:::::::
opposite

::::
was

::::
true.

:::
For

:::
the

::::
ALS

:::::
data,

::::::::::::
measurements

::::
were

::::
only

::::::::
available

::
at

::::
PoW

::::
and

:::::
during

::::::::
ablation.345

::::::
Overall,

:
modelled fSCA (red versus

:::::
values

::::
were

:::::
again

::
in

:::
line

:::::
with

:::
the

::::::::::::
measurements

::::::::
(compare

:::
red

:::
and

:
black dots in Figure

3c and 4b), at the ablation date modelled fSCA underestimates ALS-derived fSCA across all elevations (Figure 4c
:
5). The

largest underestimations occur for the two lowest elevation bins with each on average 0.14. Across all elevations, we obtain

almost consistently good performances at approximate PoW (Figure 3b and 4a). Larger overestimations occur only at lowest

elevations between 1700 m and 1900 m with on average 0.15. At the date during accumulation, performances decrease with350

elevation. Modelled
::::::::
difference

::::
was

::::::::
observed

:::
for

:::
the

::::::
lowest

::::::::
elevation

:::
bin

:::::
(0.15

::
at
:::::

PoW
::
at

:::::::
1800m;

::::::
Figure

::::
5a),

:::
and

::::
for

:::
the

:::
late

:::::::
ablation

::::
data,

::::::::
modelled

:
fSCA overestimates ADS-derived

::::
was

::::::::::
consistently

:::::
lower

::::
than

:::::::::::
ALS-derived fSCAat elevations

above 2100 m with at maximum 0.09 (Figure 3a).
:
,
::
in

::::::::
particular

:::
for

:::
the

:::::
lower

::::::::
elevation

:::
bins

:::::::
(Figure

:::
5c).

:

Modelled fSCA (JIMOSHD), ALS-derived fSCA and Sentinel-derived fSCA in elevation bins for three dates: (a) at

approximate PoW, (b) during early ablation and (c) during late ablation. The same two benchmarks as indicated in Figure355

3 are shown where applicable. Sentinel-derived fSCA was available 2 days before the PoW, 3 days before the early ablation

and at the point in time of the late ablation ALS flight date (green line). The bars show the valid data percentage per bin.

Modelled snow depth HS (JIMOSHD) and ADS-derived HS in elevation bins for three dates: (a) during accumulation, (b)

at approximate PoW and (c) during ablation.Modelled snow depth HS (JIMOSHD) and ALS-derived HS in elevation bins for

three dates: (a) at approximate PoW, (b) during early ablation and (c) during ablation.360
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Some valid
::::
Valid

:
Sentinel-2 coverage is available at or

:::
data

:::::
were

::::
only

::::::::
available

:::
on

:::::
dates close to the dates of the ALS

measurements . Though overall seasonal performances between
::::
ALS

::::::::::::
measurements

::::::
(green

::::
dots

:::
in

::::::
Figure

:::
5),

:::
not

::
to
::::

the

::::
ADS

:::::::::::
measurement

::::::
dates.

:::::::
Overall, modelled and Sentinel-derived fSCA decrease from PoW to the combined two ablation

dates (Table 2, II ), seasonal elevation-dependent performances are best across all elevations for the latest ablation date when

Sentinel-2 coverage is available at the exact same day (green versus
:::::
values

:::::
were

::
in

::::
good

:::::::::
agreement

:::
for

:::
the

::::
three

:::::
ALS

::::
dates

:::
(II365

::
in

::::
Table

:::
3),

:::::
there

:::
was

:::
no

::::
clear

::::::::
elevation

::::::::::
dependence

::::::::
(compare

:::::
green

:::
and red dots in Figure 4). At the lowest binned elevations

between 1700 m and 1900 m and between 1900 m and 2100 m modelled fSCA underestimates Sentinel-derived fSCA with

on average respectively 0.03 and 0.04 (Figure 4b and
::
5),

:::
and

:::::::::
differences

:::::
were

::
at

::::
most

::::
0.05

:::
(for

:::::::::
elevations

:::::::
between

::::
2300

::
m
::::
and

::::
2500

::
m

::
in

::::::
Figure

:
5c). Seasonal performances between Sentinel- and ALS-derived fSCA across all elevations are similar to the

performances between modelled and ALS-derived fSCA. For all dates with Sentinel-2 coverage we obtain similar NRMSE.370

Between modelled and
:::
The

:
Sentinel-derived fSCA the NRMSE is 10 % and between Sentinel-

:::::
values

:::
can

::::
also

::
be

:::::::::
compared

::
to

::::
those

:::::
from

:::
the

::::
ALS

:::::
scans.

::
In

::::
this

::::
case,

:::
the

::::::::::
performance

::::::::
measures

:::::
were

::::::::
somewhat

:::::
lower

::::::::
(compare

::
II

:::
and

:::
III

::
in

:::::
Table

::
3),

:
and

ALS-derived fSCA the NRMSE is 11 % (Table 2, II versus III).

To understand modelled
:::::::::::::
Sentinel-derived

:
fSCA performances we also evaluated modelled with measured HS in 200 m -

elevation bins (see Figure 5 and 6). Compared to the seasonal snow depth change between the three dates of ADS-HS (Figure375

5) there is much less seasonal variation than between the three dates of the ALS-HS data across all elevations (Figure 6).

While on the one hand, the time intervals are much smaller between the three dates of the ALS acquisitions (20 March, 31

March, 17 May 2017) compared to the ones of the ADS acquisitions (26 January, 9 March and 20 April 2016), there were also

some snowfall events during ablation in 2017. Except for at the date during accumulation performances decrease with elevation

starting at elevations of about 2100 m to 2500 m. ModelledHS considerably underestimates measuredHS at higher elevations380

while at lower elevations modelled HS mostly overestimates measured HS, except for the accumulation and PoW date of the

ADS data. Seasonal performances do not show a clear trend, but best performances are achieved during accumulation. For all

dates and data sets, modelled HS shows a NRMSE of 12 % and a MPE of 14 % with measured HS
:::::
values

::::
were

:::::::::
especially

:::::
lower

:::
than

:::
the

:::::
ALS

::::
data

::
in

:::
late

:::::::
ablation

::::::::
(compare

:::::
green

:::
and

:::::
black

::::
dots

::
in

::::::
Figure

:::
5c).

The385

:::
Our

:::::::
seasonal

:
fSCA algorithm was

::
is implemented in a complex operational snow cover model framework (Section 3.1).

Uncertainties related to input or model structure may therefore have an impact on
:::::::
therefore

::::::
impact

:
modelled HS and thus

fSCA performances. We investigated this by deriving
::::::
values.

::
To

:::::::::
investigate

:::
the

::::::::
influence

::
of

:::::
these

:::::::::::
uncertainties

::::
more

:::::::
closely,

::
we

::::
also

::::::
derived

:
two benchmark fSCA with

::::::
models

:::::
based

::
on

:
Eq. (1) using measured

:::::
rather

::::
than

::::::::
modelled HS dataonly. The

first benchmark fSCA uses current observed σHS and
:::::::::::
fSCAmeasured

curr :::::
(light

::::
blue

::::
stars

::
in

:::::::
Figures

:
4
::::
and

::
5)

::::
uses measured HS390

, namely a fSCAmeasured
curr :::

and
::::
σHS:::::

from
:::
the

::::::
current

::::
scan. The second benchmark model combines current measured HS and

observed σHS at PoW, namely a fSCAmeasured
PoW (cf. blue and red stars in Figure 3 and 4 ).

:::::
orange

::::
stars

:::
in

::::::
Figures

::
4
:::
and

:::
5)

::::::::
combines

::::::
current

::::
HS

::::::::::::
measurements

::::
with

:::::
σHS :::::

values
:::::::::
measured

::
at

:::::
PoW. At PoW, fSCAmeasured

PoW and fSCAmeasured
curr are the

same
:
, and fSCAmeasured

PoW can only be derived when PoWhas passed, i.e. during ablation.
::
at

::
or

::::
after

:::::
PoW. Overall performances

of both benchmark
::::::
Results

::::::::
obtained

::::
with

::::
both

::::::::::
benchmark

:::::::
models

::::
were

:::::::
similar,

::::::
except

:::
for

:::
the

::::::
lowest

::::::::
elevation

:::
bin

:::
in

:::
the395
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Figure 4.
:::::::
Modelled

:::
and

:::::::::::
ADS-derived

:::::
fSCA

::
in

:::
200

::
m
:::::::
elevation

::::
bins

:::
for

::::
three

::::
dates:

:::
(a)

:::::
during

:::::::::::
accumulation,

::
(b)

::
at
::::::::::
approximate

::::
peak

::
of

:::::
winter

:::::
(PoW),

:::
and

:::
(c)

:::::
during

:::::::
ablation.

:::
Two

:::::::::
benchmarks

:::::
based

::
on

:::
Eq.

::
(1)

:::
are

:::::
shown

:::::
where

::::::::
applicable:

:::::::::::
fSCAmeasured

PoW ::::::
(orange

::::
stars)

:::
uses

::::
HS

:::
form

:::
the

::::::
current

::::
ADS

::::
scan

:::
and

::::
σHS ::::

from
::
the

::::
ADS

::::
scan

::
at

::::
PoW,

:::::
while

::::::::::
fSCAmeasured

curr ::::
(light

::::
blue

::::
stars)

::::
uses

:::
HS

::::
and

:::
σHS::::

form
:::

the
::::::
current

::::
ADS

::::
scan.

:::
The

:::
bars

:::::
show

::
the

::::
valid

::::
data

::::::::
percentage

:::
per

:::
bin.

Figure 5.
:::::::
Modelled

:::
and

::::::::::
ALS-derived,

:::
and

:::::::::::::
Sentinel-derived

::::::
fSCA

::
in

:::
200

::
m

:::::::
elevation

::::
bins

::
for

:::::
three

::::
dates:

:::
(a)

::
at

::::::::::
approximate

::::
PoW,

:::
(b)

:::::
during

::::
early

::::::
ablation

:::
and

::
(c)

:::::
during

:::
late

:::::::
ablation.

:::
The

::::
same

:::
two

::::::::::
benchmarks

::::
based

::
on

:::
Eq.

:::
(1)

::
as

:
in
:::::
Figure

::
4
::
are

::::
also

:::::
shown

::::
where

:::::::::
applicable.

::::::::::::
Sentinel-derived

:::::
fSCA

::::::
(green

::::
dots)

:::
was

:::::::
available

:
2
::::
days

:::::
before

:::
the

::::
PoW

::::
scan,

::
3

:::
days

:::::
before

:::
the

::::
early

:::::::
ablation

:::
scan

:::
and

:::
on

::
the

:::::
same

:::
day

:
as
:::

the
:::
late

::::::
ablation

:::::
scan.

:::
The

:::
bars

::::
show

:::
the

::::
valid

::::
data

::::::::
percentage

:::
per

:::
bin.
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Figure 6.
:::::::
Modelled

:::
and

::::::::::
ADS-derived

::::
HS

:
in
::::

200
:
m
:::::::

elevation
::::

bins
::
for

:::::
three

::::
dates:

:::
(a)

:::::
during

::::::::::
accumulation,

:::
(b)

::
at

:::::::::
approximate

::::
PoW

:::
and

:::
(c)

:::::
during

::::::
ablation.

Figure 7.
:::::::
Modelled

:::
and

::::::::::
ALS-derived

:::
HS

::
in
::::
200

:
m
:::::::
elevation

::::
bins

::
for

::::
three

:::::
dates:

:::
(a)

:
at
::::::::::
approximate

::::
PoW,

:::
(b)

:::::
during

::::
early

::::::
ablation

:::
and

:::
(c)

:::::
during

::::::
ablation.

::::
ALS

::::
data

::
set

:::::::
(Figure

::
5b

::::
and

::
c).

:::::::
Overall,

:::
the

::::::
values

::
of

::::::::::::
fSCAmeasured

curr ::::
were

:::::::::
somewhat

:::::
closer

::
to

:::
the

::::::::
measured

:
fSCA are better

(lower NRMSE) compared to modelled fSCA. Among all dates, best seasonal elevation-dependent performances (200 m

bins)of fSCAmeasured
curr and fSCAmeasured

PoW are achieved for two of the ablation dates (red and
:::::
values

::::
(e.g.

::::::
Figure

::
4c

:::
or

:::
5b).

:::::
Both

:::::::::
benchmark

::::::
models

:::::
were

::::::
closest

::
to

:::
the

::::::::
measured

::::::
fSCA

::::::
values

:::::
during

:::
the

:::::::
ablation

::::::
season

:::::::
(Figure

::
4c

::::
and

:::
5c),

::::
and

::::::
overall

:::
the

::::::::
agreement

::::
was

:::::
better

:::
for

::::::
higher

::::::::
elevation

::::
bins.

::::
Our

::::::::
seasonal

::::::
fSCA

:::::::::::::
implementation

::::
(red

::::
dots

::
in

:::::::
Figures

:
4
::::
and

::
5)

::::
was

::::
also400

::::::
similar

::
to

::::
both

:::::::::
benchmark

:::::::
models.

:::
The

::::::
largest

::::::::::
differences

::::
were

::::::
during

:::
the

:::::::::::
accumulation

::::::
period

::::::
(Figure

:::
4a).

:

::
As

::
a
::::
final

::::::::::
benchmark,

:::
we

::::
also

::::::::
compared

::::
our

:::::::
seasonal

::::::
fSCA

:::::::::::::
implementation

:::::
with

:::
the

::::::::::::::
parameterizations

::::::::::::
implemented

::
in

:::::::
CLM5.0

:::
(cf.

:::::
Table

::
1).

::::::::
Modelled

::::::
fSCA

:::::
using

::::::::
JIMOSHD ::::::::

performed
:::::
better

::::
than

::::
that

:::::::
modelled

::::
with

::::::::::
JIMSwenson*

OSHD ::::::::
(compare

:
I
:::
and

:::
IV

::
in

::::
Table

:::
3).

::::::
During

:::::
most

::
of

:::
the

::::::
season,

::::::
fSCA

::::::
values

::::
from

::::::::::
JIMSwenson*

OSHD ::::
were

:::::
close

::
to

:
1
:::
and

:::::::
showed

::::
little

::::::::
elevation

::::::::::
dependence

:
(blue stars in Figure 3c and 4 c). Performances mostly improve, similarly to as for modelled

:
4
:::
and

:::
5).

::::
The

::::
only

:::::::::
exception405

:::
was

::::::
during

:::
the

:::::::::::
late-ablation

::::::
season,

:::::
when

:
fSCA , with elevation . For the three ablation dates , we obtain overall similar
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NRMSE ’s for both benchmark models. Except for the lowest elevation bin seasonal elevation-dependent performances are

also similar among both benchmark models though the performance of fSCAmeasured
curr is slightly improved (e.g. Figure 3c or

4b
::::
from

::::::::
JIMOSHD :::

and
::::
from

::::::::::
JIMSwenson*

OSHD ::::
were

::::
very

::::::
similar

:::::
(blue

:::
and

:::
red

::::
dots

::
in

::::::
Figure

::::
5c).

::
To

:::::::::
investigate

:::
the

::::::
origin

::
of

:::
the

::::::::::::
discrepancies

:::::::
between

::::::::
modelled

::::
and

::::::::
observed

::::::
fSCA

::::::
values

::::
more

:::::::
closely,

:::
we

:::::::::
compared410

:::::::
modelled

::::
and

::::::::
measured

::::
HS

::
in
::::

200
::
m

::::::::
elevation

::::
bins

:::
for

:::
the

:::::
ADS

::::
and

::::
ALS

::::
data

::::
sets

::::::::
separately

:::::::
(Figure

::
6

:::
and

:::
7).

:::
For

:::::
both

:::
data

:::::
sets,

::::::::
modelled

::::
HS

::::
was

:::::::::::
substantially

:::::
lower

::::
than

::::::::
measured

::::
HS

:::
at

::::::
higher

:::::::::
elevations.

::::
The

::::
only

:::::::::
exception

:::
was

::::
for

:::
the

:::::::::::
accumulation

::::
date,

:::::
when

::::::::
modelled

:::
and

:::::::::
measured

:::
HS

:::::
were

::
in

::::
good

:::::::::
agreement

:::
for

::
all

:::::::::
elevations

::::::
(Figure

::::
6a).

:::
For

:::
all

::::
dates

::::
and

:::
data

::::
sets,

:::
the

::::::::
NRMSE

:::::::
between

::::::::
modelled

:::
and

::::::::
measured

::::
HS

:::
was

:::
12

::
%

:::
and

:::
the

:::::
MPE

:::
was

:::
14

::
%.

:::::
Note

:::
that

:::::::
seasonal

:::::::::
variations

::
in

::::::::
ALS-HS

:::::
across

:::
all

::::::::
elevations

:::::
were

::::::::
generally

:::::
much

:::::
lower

::::
than

::::
those

:::
in

:::
the

::::::::
ADS-HS

::::
data.

::::
This

::::
was

::
in

::::
part

:::::::
because

:::
the

::::
time415

:::::::
intervals

:::::::
between

:::
the

:::::
three

::::
ALS

:::::
scans

:::
(20

::::::
March,

:::
31

::::::
March,

::
17

:::::
May

:::::
2017)

::::
were

::::::
shorter

::::
than

:::
for

:::
the

:::::
ADS

::::
scans

::::
(26

:::::::
January,

:
9
::::::
March

:::
and

:::
20

::::
April

::::::
2016),

:::
and

:::::
there

::::
were

::::
also

:::::
some

:::::::
snowfall

::::::
events

:::::
during

:::
the

:::::
ALS

::::::
ablation

::::::
period

::::::
(spring

:::::
2017).

4.2 Evaluation with fSCA from camera images

The high temporal resolution of daily camera-derived fSCA allows
::::::
allowed

:
us to evaluate seasonal model performances.

Overall, modelled
:::
the

:::::::
seasonal

::::::
model

::::::::::::
performance.

::::
The

:::::::
seasonal

:::::
trend

::
in

:::::::::
modelled fSCA follows the seasonal trend of420

::::
using

::::::::
JIMOSHD::::

was
::::::::
generally

::
in

::::
line

::::
with

:::
that

:::::
from camera-derived fSCA for two of the three grid cells throughout almost

all seasons well (cf. for two seasons Figure 7a,c,d,f). However, for
:::::::
(compare

:::
red

::::
and

:::::
black

::::
dots

::
in
::::::

Figure
:::

8).
::::
For the grid

cell at 2168 m
:
,
::::::::
however,

:::
the

:::::::::
agreement

::::
was

:::::::::
somewhat

::::::
poorer,

::
as
:::::

there
::::

was
::
a
:::::
delay

::
in

:::
the

:::::::::
modelled

::::
start

::
of

:
the ablation

seasonstarts much later with modelled fSCA compared to camera-derived fSCA, and modelled fSCA further overestimates

camera-derived fSCA
:::::
values

::::
were

:::
too

:::::
high during accumulation (Figure 7

:
8b,e).425

For all winter seasons (2016 to 2020and )
::::
and

:::
for the three grid cellswe obtain

:
,
:::
we

:::::::
obtained

:
a NRMSE of 22 %

::
21

:::
%,

::
a

:::::
RMSE

:::
of

::::
0.17 and a MPE of -7 % for modelled fSCA (Table 3, I ). However, interannual performances vary considerably as

well as performances
::
(I

::
in

:::::
Table

::
4).

:::::
Note

:::
that

:::
the

::::::::::
inter-annual

:::::::::::
performance

:::::
varied

:::::::::::
substantially,

::
as

:::
did

:::
the

:::::::::::
performance among

the three grid cells. For instance, for all three grid cells, we obtain the overall best performance
:::
was

:
for the season 2018 with

a NRMSE of 15 %and a MPE of
::::::::
(NRMSE

::
=

::
14

:::
%,

::::::
RMSE

::
=

:::::
0.11,

::::
MPE

::
=
:
-4 %and the worst performances for

::
),

:::::
while

:::
the430

::::
worst

:::::::::::
performance

::::
was

::
for

:::
the

:
season 2019 with a NRMSE of

:::::::
(NRMSE

::
= 25 %and a MPE of ,

::::::
RMSE

::
=
:::
0.2,

:::::
MPE

::
= -12 %and

season 2020 with a NRMSE of 23 % and a MPE of -17 %.
:
).

For winter season 2018, we used Sentinel-derived fSCA to evaluate modelled and camera-derived fSCA (Table 3, II and

III; Figure 7d,e,f). While
:::::
values.

::::::
While

::::::
overall

:::
the

::::::::
agreement

::::::::
between modelled and Sentinel-derived fSCA agree very well

(NRMSE of
:::
was

:::::
good

::::::::
(NRMSE

:
2 % and MPE of -1

:
1 %), Sentinel- and camera-derived

::
the

:::::::::
agreement

:::::::
between

:::::::
camera-

::::
and435

:::::::::::::
Sentinel-derived

:
fSCA compare less well (NRMSE of

:::
was

::::::
poorer

::::::::
(NRMSE

::
=
:
12 %and MPE of -5 %)though performances

are similar to those for ,
:::::
MPE

::
=

:
5
::::

%).
::::
The

::::
latter

:::::::::::
performance

::::::
values

:::::
were

:::::::
however

::::::::::
comparable

::
to

:::
the

:::::::::
agreement

::::::::
between

:::::::
modelled

::::
and camera-derived and modelled fSCA (NRMSE of 15 %and a MPE of

::
for

:::::
days

::::
with

::::
valid

::::::::::::::
Sentinel-derived

::::
data

::::::::
(NRMSE

:
=
:::
12

::
%,

:::::
MPE

::
= -4 %).
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We exploited the high temporal resolution of
:::
The camera-derived fSCA

:::
was

::::
also

::::
used

:
to evaluate the relevance of ap-440

plying the
:::
our

:
full seasonal fSCA algorithm

:
, as opposed to snow cover model simplifications of the fSCA algorithm,

namely fSCAseason and fSCAcurr (JIMseason
OSHD and JIMcurr

OSHD ::::::::::::
simplifications

:::
and

::::::::::
JIMSwenson*

OSHD ::::
(cf.

:::::
Table

::
1

:::
for

::::::
details). While

fSCAseason and modelled
::::::
overall fSCA agree wellwhen the snow cover is quite homogeneous, after snowfalls

::::
from

::::::::
JIMseason

OSHD

:::
and

::::::::
JIMOSHD ::::::

agreed
::::
well,

:::::
there

::::
were

::::::::::
substantial

:::::::::
differences

::::
after

::::::::
snowfall

::::::
events on partly snow-free ground , fSCAseason

can be considerably lower (yellow stars versus
::::::::
(compare

::::::
orange

::::
stars

::::
and

:
red dots in Figure 7b,c). When replacing the445

fSCA algorithm with fSCAcurr, deviations to
::
8).

:::::::::::
Specifically,

::::
after

::::
such

::
a
:::::::
snowfall

::::::
event, modelled fSCA using the full

algorithm are getting larger (blue stars versus
:::::::
JIMOSHD::::::::

generally
:::::::::
increased,

::::
while

::::::::
JIMseason

OSHD::::::::
remained

:::::::
constant.

::::::
Using

::::::::
JIMcurr

OSHD,

:::::::
modelled

:::::::
fSCA

:::::
values

:::::
were

:::
less

::
in

::::
line

::::
with

:::::
those

::::
from

::::::::
JIMOSHD::::::::

(compare
::::
light

::::
blue

::::
stars

::::
and red dots in Figure 7). Large

overestimations occur similarly after snowfall but large differences now also occur independent from snowfalls during
::
8).

:::::
While

:::::::::::
discrepancies

:::::
were

::::
again

:::::
large

::::
after

:::::::
snowfall

::::::
event,

:::
they

:::::
were

::::
also

::::::::::
pronounced

:::::
during

:::
the

:
ablation periods. The start of450

ablation season is delayed but is
::
In

::::::
general,

::::
with

::::::::
JIMcurr

OSHD:::
the

:::::::
ablation

::::::
season

:::::
started

::::
later

::::
and

:::
was

:
followed by a much steeper

melt out compared to the full
::::::
period.

:::::
Using

::::::::
JIMcurr

OSHD :::
can

:::::
result

::
in

::
a

::::::::::
substantially

::::::
shorter

:::::
snow

::::::
season

::::::::
compared

:::
to

::::::::
JIMOSHD,

::::
with

:
a
:::::::::
maximum

:::::::::
difference

::
of

:::
21

::::
days

::
at
:::::
2168

::
m

::
in
::::

the
::::::
season

:::::
2017.

:::::::
Overall,

:::::::::
compared

::
to

:::::::::::::
camera-derived

:
fSCAmodel.

Applying fSCAcurr always considerably shortens the season compared to applying the full ,
::::
both

:::::::::
simplified

::::::
models

:::::::::
performed

:::
less

::::
well

::::
than

::::::::
JIMOSHD :::::

(Table
:::

4).
::::
The

:::::::::::
performance

:::::
using

:::::::::
JIMallHelbig

OSHD :::
was

::::
very

:::::::
similar

::
to fSCA algorithm. For instance, for455

season 2016 the shortening is 46 days at 2077 m. In part, fSCAseason also shortened the ablation season compared to the

full
::::
from

:::::::::
JIMOSHD,

:::
i.e.

:::::::
applying

::::::
σHelbig
HS :::::::

instead
::
of

::::
σEgli
HS:::

for
::::::::::
fSCAnsnow:::

did
::::

not
::::::::::
substantially

::::::
affect

:::::
model

::::::::::::
performance.

:::
On

::
the

::::::::
contrary,

:
fSCA algorithm by at maximum 24 days at 2077 m in season 2016 not shown. In season

::::
from

::::::::::
JIMSwenson*

OSHD

:::
had

:::
the

:::::
worse

:::::::
overall

:::::::::::
performances

:::::
when

:::::::::
compared

::
to

:::::::::::::
camera-derived

::::::
fSCA

::::
(VII

:::
in

:::::
Table

:::
4).

::::::
Similar

::
to
:::::::::

JIMcurr
OSHD,

:::::
using

:::::::::
JIMSwenson*

OSHD :::::::::::
considerably

::::::
delayed

:::
the

:::::::
ablation

:::::::
season,

:::::::
followed

:::
by

:
a
:::::
much

::::::
steeper

::::
melt

::::
out.

:::
The

:::::
snow

::::::
season

:::
was

:::::::::::
substantially460

::::::::
shortened

:::::
again

::
by

::
at

::::
most

:::
32

::::
days

::
in

:::
the 2017 and 2020 however, applying fSCAseason prolonged the season by at maximum

6 days at 2168 min season 2020. Overall, both simplified
:::::
season

::
at

:::::
2077

::
m.

:::::::::
Modelled fSCA models compare less well to

camera-derived
::::
using

::::::::::
JIMSwenson*

OSHD ::::
also

::::::
largely

:::::::::::
overestimates

:
fSCA than modelled

:::::
during

:::
the

::::::::::::
accumulation

:::::
period

:::::
(blue

::::
dots

::
in

:::::
Figure

:::
8).

:::::::
Overall,

:::::
using

::::::::::
JIMSwenson*

OSHD :::
led

::
to
:::::

much
:::::::

steeper
::::::::
increases

:::
and

:::::::::
decreases

::
in fSCAusing the full ,

:::
i.e.

:::
an

::::::
almost

:::::
binary

:::::::
seasonal

:::::::
fSCA

::::
trend

::::
that

:::
was

::::
not

::
in

:::
line

::::
with

:::::::::::::
camera-derived

:
fSCAalgorithm, however fSCAseason performs better465

than fSCAcurr (Table 3, I).

4.3 Evaluation with fSCA from Sentinel-2 snow products

Overall, modelled fSCA compares well to
::::
using

::::::::
JIMOSHD::::::::

compared
::::
well

::::
with

:
Sentinel-derived fSCA throughout the season

, though there is some
:
(I
::
in

:::::
Table

:::
5).

::
To

:::::::::
investigate

:::
the

:
elevation-dependent scatter

:::::::::
differences between modelled and Sentinel-

derived fSCA (Figure 8).470

In order to analyze the elevation-dependent scatter between modelled and Sentinel-derived fSCA, we derived
::
in

:::::
more

:::::
detail,

:::
we

::::::
binned

:::
the

::::
data

::
in

:::
250

::
m
::::::::

elevation
:::::
bands

:::
for

:::::
each

:::
day

:::::::::
throughout

:::
the

:::::
entire

::::::
season

:::::::
(Figure

::
9).

:::
To

:::::::
estimate

:::
the

::::
end

::
of

:::
the

:::::::::::
accumulation

::
(1

:::::
April

:::::
2018)

:::
and

:::::::
ablation

::::::
season

:::
(30

::::
June

::::::
2018),

::
we

:::::
used

::
the

:
spatial mean HS (solid curve in Figure 8).
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Table 4. Performance measures are shown for modelled fSCA and the three grid cells with (I)
:::::::
modelled

::::::
fSCA

::::
using

:::::::
JIMOSHD::::

and

camera-retrieved fSCA for the winter seasons 2016 to 2019 and for winter season 2018 with
:::::
2020, (II)

:::::::
modelled

:::::
fSCA

:::::
using

:::::::
JIMOSHD

:::
and Sentinel-derived fSCA . Performance measured are shown for all

::
the

:
three grid cells for

:::
the

:::::
winter

:::::
season

:::::
2018,

:::
(III)

:
camera-derived

fSCA with Sentinel-derived fSCA . In
::
for

:::
the

::::
three

::::
grid

::::
cells,

:::
and

:
(I

::
IV

::
to

:::
VII) statistics are also shown for

::
all

:
JIM modelled fSCA

versions , namely the algorithm component fSCAseason as well as a fSCAcurr, which uses the current σHS with current HS in Eq. (1
::
for

:::::
details

::
see

:::::
Table

:
1)modelled with JIMOSHD. Given statistics are NRMSE, RMSE, MPE

::::::
namely

::
for

:::::::
JIMseason

OSHD, MAE
::::::
JIMcurr

OSHD, K-S test statistic

:::::::
JIMallHelbig

OSHD :
and NRMSEquant::::::::

JIMSwenson*
OSHD ,

::::
with

::::::::::::
camera-derived

:::::
fSCA.

:::::
fSCA

:
NRMSE RMSE MPE MAE K-S NRMSEquant

[%] [%] %

:
I
:::::::
JIMOSHD ::

vs
:::::
camera

:

::
21

:::
0.17

: :::
-7.1

:

I
:
II
:
JIMOSHD vs camera

::::::::
Sentinel-2

fSCA 21.6
:
2
:

0.16
:::
0.02 -7.0

::
0.8

:

::
III

::::::
camera

::
vs

::::::::
Sentinel-2 0.11 0.23 9.5

fSCAseason 23.3 0.17 height -6.5
::
12 0.11 0.23 8.9

::
5.0

fSCAcurr 27.9 0.21 -8.1 height
::
IV

::::::
JIMseason

OSHD:::
vs

:::::
camera

:
0.13 0.32 18.6

II JIMOSHD vs Sentinel-2
::
22

:::
0.18

: :::
-6.1

:

fSCA
:
V
:::::::
JIMcurr

OSHD ::
vs

::::::
camera 1.8 0.02 -0.7

0.01
::
26 0.53

:::
0.21 1.03

:::
-9.2

III Sentinel-2
::
VI

::::::::
JIMallHelbig

OSHD :
vs camera

::
21

:::
0.17

: :::
-7.6

:

fSCA
::
VII

:::::::::
JIMSwenson*

OSHD ::
vs

:::::
camera

:
11.5 0.11 5.0

0.06
::
30 0.57

:::
0.25 6.5

::::
-10.6

From this we estimated the end of spatial mean
:::::
black

:::
line

::
at

::::::
bottom

::
of

::::::
Figure

:::
9).

:::::::
Overall,

:::::::::
differences

::
in

:::::::::::
performance

:::::::
between

::
the

:
accumulation and the start of spatial mean ablation period for Switzerland at 1 April 2018 (vertical dashed black line in475

Figure 8). Until the start of the ablation periodwe obtain the most scatter
:::::::
ablation

:::::
period

:::::
were

:::::
small

::
(I

::
in

:::::
Table

:::
5).

::::::::
However,

::::
there

:::::
were

::::::
marked

::::::::::
differences

::::
with

::::::::
elevation

:::::::::
throughout

::::
the

::::::
season.

:::
Up

:::
to

:::
the

:::
end

:::
of

:::
the

:::::::::::
accumulation

:::::::
period,

:::
the

::::::
largest

:::::::::
differences between modelled and Sentinel-derived fSCA

::::
were

:
at elevations lower than 1500 m, whereas at higher elevations

both
::::::::
elevations

::::::
above

::::::
around

::::
3000

:::
m

:::
the

:::::::::
agreement

:::
was

:::::
good

:::::::
(Figure

:::
9a).

:::::::
During

:::
the

:::::::
ablation

::::::
period,

::::
most

:::
of

:::
the

:::::
snow

::
at

:::::
lower

::::::::
elevations

::::
was

:::::
gone,

:::
and

::::::::
modelled

:
fSCA agree well. At 30 June about 15 % of the seasonal maximum spatial mean480

HS is left which concentrates at high elevations above about 2700 m (vertical line with stars in Figure 8). From
:::
was

::::::::
generally

:::::
larger

:::
than

::::::::::::::
Sentinel-derived

::::::
fSCA

::
at

:::::
higher

:::::::::
elevations

::
(>

:::::
2500

:::
m),

::
in

::::::::
particular

::::::
towards

:::
the

::::
end

::
of

:::
the

::::::
ablation

:::::::
season.

::::::
During

::
the

:::::::
summer

::
(30 June 2018 until

::
to 30 August

:::::
2018), i.e. during summer

::::
after

:::
the

:::
end

::
of

:::
the

:::::::
ablation

::::::
season, modelled fSCA
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Figure 8. ModelledfSCA, fSCAseason, fSCAcurr as well as camera-derived fSCA
::::::
camera- and Sentinel-derived fSCA for the three 1

km grid cells seen by
:::::
within

:::
the

:::
field

::
of
::::

view
::

of
:

the camera in Davos for two seasons: upper panel (a ), (b) and (
:
to
:

c) winter 2017, lower

panel (c), (d ) and (e
:
to

:
f) winter 2018.

.
::::

Note
::::
that,

::::
only

::
for

:::::::::
illustration,

::
we

::::
here

:::
also

:::::
show

::::::
camera-

:::
and

::::::::::::
Sentinel-derived

::::::
fSCA

:::::
(black

:::
and

::::
green

::::
dots)

:::
for

:::
grid

::::
cells

::::
with

:::::::
modelled

:::::
HS <

:
5
:::
cm.

overestimates
:::
was

:::::
larger

::::
than

:
Sentinel-derived fSCA at the highest elevations above about

:
(>

:
3500 mwhereas between

:
)

:::::::
whereas

:::::::
between

:::
the snow line and these highest elevations,

:
modelled fSCA underestimates Sentinel-derived fSCA.485

For the winter season lasting from 20 December to 30 June 2018 in Switzerland we obtain a NRMSE of 20 % and a MPE of

2 % (Table 4)
:::
was

::::::::
generally

:::::
lower.

Given the also rather high temporal resolution of the Sentinel-derived fSCA data set, we again computed
::::::::
evaluated the

fSCA model simplifications , fSCAseason and fSCAcurr. Overall errors with
::::::::
algorithm

::::::::::::
simplifications

::::
and

:::::::::
JIMSwenson*

OSHD ::::
(cf.

::::
Table

:::
1).

:::::::::
Compared

::
to

::::
our

:::::::
seasonal

::::::::::::::
implementation,

:::
the

::::::
overall

:::::::::::
performance

:::::
values

:::
of

:::
the

::::::
fSCA

::::::::
algorithm

:::::::::::::
simplifications490

::::
were

:::::::
similar,

::::::
except

:::
for

::::::::
JIMcurr

OSHD :::
and

::::::::::
JIMSwenson*

OSHD ::::::
(Table

:::
5).

::::::::
Modelled

:::::::
fSCA

:::::
values

:::::
with

::::::::
JIMcurr

OSHD :::
and

::::::::::
JIMSwenson*

OSHD :::::
were

:::::::
generally

::::::
larger

::::
than Sentinel-derived fSCAare only slightly worse than for modelled ,

::::::::
resulting

::
in

:::::
larger

:::::
MPE

::::::
values

::::
with

::
the

::::::
largest

:::::
ones

:::
for

::::::::::
JIMSwenson*

OSHD ::::::::
(compare

::
I,

::
III

::::
and

::
V
:::
in

:::::
Table

::
5).

:::::
This

::
is

::::
also

::::::
clearly

:::::::
reflected

:::
in

:::
the

:::::::::::::::::
elevation-dependent

:::::::::
differences

:::::::
between

:
fSCA using the full

:::::
using

:::::::::
JIMSwenson*

OSHD ::::
and

::::::::::::::
Sentinel-derived fSCA algorithm. We obtain a NRMSE of

20 % for fSCAseason and a NRMSE of 22 % for fSCAcurr (Table 4).495
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Figure 9.
:::::::
Difference

:::::::
between Sentinel-derived fSCA minus

::
and

:
modelled fSCA for Switzerland as a function of date and elevation z

::
(in

:::
250

::
m

:::::::
elevation

::::
bins)

:
for available satellite dates

:::
for

::
(a)

:::::::
JIMOSHD :::

and
::
(b)

:::::::::
JIMSwenson*

OSHD . Daily spatial mean snow depth HS is
:::
also shown

by the
:
(solid

::::
black linebelow

:
). Approximate end of accumulation and start of ablation season is indicated by the dashed

:::
The vertical line

whereas
::::
lines

::::::
indicate

:::
the

::::
dates

::
for

:
the approximate end of

::::::::::
accumulation

::::::
(dashed)

:::
and

:
ablation season is indicated by the vertical (line with

stars
:
)
:::::
season.

:::::::::
throughout

:::
the

::::::
season

::::::
(Figure

::::
9b).

5 Discussion

5.1 Fractional snow-covered area fSCA algorithm

We developed a
:::
Our

:
seasonal fSCA algorithm by combining a PoW σHS parameterization for mountainous terrain

::
is

:::::
based

::
on

:::
the

::::::::::
closed-form

:::::::
fSCA

::::::::::::::
parameterization

::
of

::::::::::::::::::
Helbig et al. (2015a) (Eq. (2)) and one for flat terrain (Eq. (3)) with tracking500

snow values for alternating accumulation and melt eventsthroughout the season in a closed form fSCA parameterization (Eq.

(1). Such an implementation of a seasonal fSCA algorithm has, to the best of our knowledge, not been presented in detail

so far.
::
1)

:::
and

:::::::::
combines

:::
two

::::::::
statistical

:::::::::::::::
parameterizations

:::
for

:::::
σHS :::::::

together
::::
with

::
a

:::::::
tracking

::::::
method

:::
to

::::::
account

:::
for

::::::::
changes

::
in

::::::::
maximum

:::::
snow

:::::
depth

::::
and

:::::::::::
precipitation

::::::
events. The algorithm is easy to apply and only requires storing snow history and

subgrid
:
is

::::::::
modular,

:::::::
meaning

::::
that

:::::::::
individual

::::
parts

::::
can

:::::
easily

:::
be

::::::::::::
complemented

:::
or

:::::::
replaced

::::
with

::::
new

:::::::::::::::
parameterizations

::::
e.g.505

::
for

:::::::::::
fSCAnsnow.

:::::::
Overall,

:::
our

:::::::::
algorithm

::::
only

:::::::
requires

:::::::
subgrid

:::
cell

:
summer terrain parameters, which are the

:
a slope related

parameter µ and the terrain correlation length(Section 2.2). ,
::::
and

:::::::
tracking

::::
snow

:::::::::::
information.

At the moment we use the σflat
HS parameterization

:::
We

::::::::
evaluated

:::
the

:::::::::::
performance

::
of

:::
our

:::::::
seasonal

::::::
fSCA

::::::::::::::
implementation

::
in

::::::::::
Switzerland.

:::
We

:::::
could

:::
not

::::::::
explicitly

:::::::
evaluate

:::
the

:::::::::::
performance

::
for

::::::::::
completely

:::
flat

::::
grid

::::
cells,

:::
i.e.

::::
grid

::::
cells

::::
with

:
a
:::::::
subgrid

:::::
mean

::::
slope

:::::
angle

::
of

:::::
zero.

:::::
After

::::::::
removing

::::::::::
rivers/lakes,

:::
we

::::
only

::::
had

:::
five

::
1

:::
km

::::
grid

::::
cells

:::
for

::::::::::
Switzerland

::::
with

:
a
:::::::

subgrid
:::::
mean

:::::
slope510
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Table 5. Performance measures between Sentinel-derived
::
for

::
(I)

:::::::
modelled

:
fSCA

:::
using

:::::::
JIMOSHD:and modelled

:::::::::::::
Sentinel-retrieved

:
fSCA

for
:::
the

:::::
winter

::::::
seasons

::::
2018

::
for all valid 1 km grid cells of Switzerland between

:::
and

::
for

::
all

::::
dates

:
(20 December 2017

::
to

::
30

::::
June

:::::
2018),

::
for

:::
the

::::::::::
accumulation

:::::
period

:::
(20

:::::::
December

::
to
::
1

::::
April)

:
and

::
for

:::
the

::::::
ablation

:::::
period

::
(1

::::
April

::
to 30 June2018. Given statistics are NRMSE), RMSE

:::
and

::
(II

::
to

::
V)

:::
for

::
all

:::
JIM

:::::::
modelled

::::::
fSCA

::::::
versions

:::
(for

::::::
details

::
see

:::::
Table

::
1), MPE

:::::
namely

:::
for

:::::::
JIMOSHD, MAE

::::::
JIMseason

OSHD, K-S test statistic
:::::::
JIMcurr

OSHD,

:::::::
JIMallHelbig

OSHD :
and NRMSEquant::::::::

JIMSwenson*
OSHD .

:::::
fSCA

::
vs
::::::::
Sentinel-2

:
NRMSE RMSE MPE MAE K-S NRMSEquant

[%] [%]

:
I
:::::::
JIMOSHD

::
all

::::
dates

:
%

::
12

:::
0.11

: ::
0.4

::::::::::
accumulation

:::::
period

::
11

:::
0.11

: ::
0.3

::::::
ablation

:::::
period

::
14

:::
0.12

: ::
0.5

:
II
:::::::
JIMseason

OSHD:

::
all

::::
dates

: ::
12

:::
0.12

: ::
0.4

::::::::::
accumulation

:::::
period

::
11

:::
0.11

: ::
0.3

::::::
ablation

:::::
period

::
14

:::
0.12

: ::
0.5

fSCA
::
III

::::::
JIMcurr

OSHD: 19.9 0.15

::
all

::::
dates

:
1.9

:
14

:
0.05

:::
0.13 0.39

:::
-0.8

::::::::::
accumulation

:::::
period 2.5

::
11

: :::
0.11

: ::
0.1

fSCAseason ::::::
ablation

:::::
period 20.1

::
18 0.15

:::
0.16 1.9

::
-2.4

:

::
IV

::::::::
JIMallHelbig

OSHD 0.05 0.39

::
all

::::
dates

:
2.6

:
12

: :::
0.11

: ::
0.3

fSCAcurr ::::::::::
accumulation

:::::
period 22.0

::
11

:::
0.11

: ::
0.2

::::::
ablation

:::::
period

::
14

:::
0.12

: ::
0.5

:
V
:::::::::

JIMSwenson*
OSHD

::
all

::::
dates

: ::
18

:::
0.17

: :::
-1.8

:

::::::::::
accumulation

:::::
period

::
17 0.16 1.1

::
-0.7

:

::::::
ablation

:::::
period 0.06

::
21 0.39

:::
0.19 4.5

::
-3.6

:
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::::
angle

:::
of

::::
zero,

:::
i.e.

::::
0.01

::
%

:::
of

::
all

::::
grid

:::::
cells.

:::
For

:::::
these

::::
grid

::::
cells,

:::::
using

::::::
σHelbig
HS (Eq. (3) ) to describe the spatial new snow depth

distribution σHS in Eq. (1)rather than the σtopo
HS parameterization

:
3)

::::::
always

::::::
results

:::
in

:
a
::::::
fSCA

:::
of

::::
one.

:::
As

:
a
::::

first
:::::::::
approach,

::
we

::::::::
therefore

::::::::
proposed

::
to

:::
use

:::::
σEgli
HS ::::

(Eq.
:::
4).

::::::::
Although

:::
we

:::
see

::
no

::::::
reason

::::
why

:::
our

:::::::
fSCA

::::::::
algorithm

:::::
could

:::
not

:::
be

::::
used

::
in

:::::
other

:::::::::
geographic

::::::
region,

::
it

::::::
remains

:::::::
unclear

::
at

:::
this

:::::
point

:
if
::::
our

:::::::
seasonal

::::::
fSCA

:::::::::::::
implementation

:::
can

::::
also

::
be

:::::
used

::
in

:::
flat

:::::::
regions.

:::
We

::::
used

::::
σEgli
HS:

(Eq. (2) ). Since σtopo
HS was empirically derived from PoW data we found that to describe the

::
4),

:::::
which

:::::
does515

:::
not

::::::
account

::::
for

::::::
subgrid

::::::::::
topography,

:::
to

:::::
derive

:::::::::::
fSCAnsnow.

:::
We

::::
did

:::
this

::
to
:::::::

account
:::

for
::::::::

uniform
:::::::::
blanketing

::::
after

::
a

::::::::
snowfall,

::
i.e.

:::
to

::::::
account

:::
for

::::::::
possible

:::::::
increases

:::
in

::::::
fSCA

::::
after

::
a

:::::
recent

::::::::
snowfall.

:::::
When

::::::::::
substituting

::::::
σEgli
dHS ::

by
::::::
σHelbig
dHS ::

in
:::
Eq.

:::
(6)

::::
and

:::
(7)

::::::::::
(JIMallHelbig

OSHD ,
::
cf.

::::::
Table

::
1),

::::
the

::::::
overall

:::::::::::
performance

:::
was

:::::
very

::::::
similar

::::::
(Table

:
4
::::

and
:::
5).

:::::
Thus,

:::::
while

::::::::
applying

:::::
σEgli
dHS:::::

might
::::

not

:::::::
describe

:::
the

:::
true

:
spatial new snow depth distributions

:::::::::
distribution

:
in mountainous terrainwhen the ground is typically almost

completely covered by snow we might need a different description. As ,
:::
the

::::::::::
formulation

::
is
::::::
simple

::::
and

::
is

:::::::
therefore

:::::
used

::::
here520

::
as a first approachwe therefore use the flat field parameterization even over mountainous terrain. Though at least at lower

elevations and during spring neglecting topographic interactions might be justified for new snow distributions, spatial snow

depth distributions before and after snowfall accumulations should be analyzed throughout the season for confirmation.

Implementing the seasonal fSCA algorithm in a distributed snow cover model allowed us to evaluate the algorithmwith

spatiotemporal measurement data.We are not aware of any seasonal
:
.
:::::
Based

:::
on

::
the

:::::::
modular

:::::::::
algorithm

:::::
setup,

:::::::
different

::::::::::
closed-form525

fSCA implementation that has been evaluated in detail by exploiting independent HS data sets in high spatial resolution and

snow products in high temporal resolution.
::::::::::::::
parameterizations

::::
can

::
be

::::::
applied

::
in
::::
our

:::::::
seasonal

:::::::::
algorithm,

:::
e.g.

:::
for

:
a
::::
flat

:::
grid

::::
cell

::
or

::
for

::::::::::
fSCAnsnow::::::::::::::::::::::::::::::::::::::::::::::::::

(for some empirical examples cf. Essery and Pomeroy, 2004).
:

5.2 Evaluation

5.2.1 Evaluation with fSCA from fine-scaleHS maps530

The evaluation of the seasonal fSCA algorithm with fSCA from fine-scale HS maps revealed overall good performances

at all six points of the season with NRMSE’s always being lower than 10 % (Table 2). Performances decreased from PoW,

to accumulation and later ablation.
::::::
showed

:::
that

::::::
overall

:::
the

::::::
model

:::::::::
performed

::::
well,

:::::::::
especially

::
at

::::::
PoW(I

::
in

:::::
Table

::
3).

:::::::::
Modelled

::::::
fSCA

:::::
using

::::::::::
JIMSwenson*

OSHD ,
:::
on

:::
the

:::::
other

:::::
hand,

::::::::
generally

::::::::::::
overestimated

::::::
fSCA

::::::::
(MPE<

::
0).

:::::
This

::::::::
algorithm

:::::::::::::::
inter-comparison

:::::
shows

::::
that

:::
the

:::::::
seasonal

::::::
fSCA

::::::::
evolution

::
is

:::::
better

::::::::
captured

::
by

:::::::::
JIMOSHD,

::::
most

:::::
likely

:::::::
because

:::
the

::::::::::
JIMSwenson*

OSHD :::::
model

:::::
does

:::
not535

:::::::::
sufficiently

:::::::
account

:::
for

::
the

:::::
high

:::::
spatial

:::::::::
variability

::
in

:::::
snow

:::::::::
distribution

::
in
::::::::
complex

::::::
terrain.

During accumulation at higher elevations, modelled fSCA overestimates
::::
using

:::::::
JIMOSHD::::::::::::

overestimated ADS-derived fSCA,

::::
even though modelled HS underestimates measured HS across all elevations (Figure 3a and 5

::::::
agreed

:::::::::
reasonably

::::
well

::::
with

:::
the

:::::::::::
measurements

:::::::
(Figure

::
4a

::::
and

:
6a). This could indicate a problem of our fSCA algorithm during accumulation. In this period

of the season snowfall events dominate, during which, we use the flat field standard deviation of HS (Eq. (3))to characterize540

fSCA even on inclined grid cells. Not accounting for the various topography interactions with wind, precipitation and radiation

shaping the snow depth distribution in mountainous terrain during accumulationmight have led to overestimations of modelled

:::
We

:::
also

:::::
used

:
a
::::::::
different

:::::
model

::::::::::::
configuration

:::::::::
(JIMallHelbig

OSHD :::
in

:::::
Table

::
1),

:::
yet

:
fSCA

:::::
values

::::
did

:::
not

::::::::::
substantially

:::::::
change

:::
for

:::
the
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:::::::::::
accumulation

::::
date [

:::
not

:::::
shown].

::::::
Based

:::
on

:::
this

:::
we

::::::
assume

::::
that

::::
both

::::
σHS:::::::::::::::

parameterizations
::::::
cannot

::::::::::
sufficiently

:::::::
describe

:::::
snow

:::::::::::
redistribution

:::::
during

::::::::::::
accumulation,

:::::
likely

::::
due

::
to

::::::
periods

::::
with

::::::
strong

:::::
winds

::::::::
following

::::::::
snowfall. The description of spatial HS545

distribution during accumulation thus requires further investigations, for which however
::::
σHS ::::::

during
:::
the

:::::::::::
accumulation

::::::
period

:::
thus

:::::
needs

::
to
:::
be

::::::::
improved.

:::::
This

::::
will,

:::::::
however,

::::::
require

:
more than one spatial HS data set acquired during accumulationwould

be needed
:::::
during

::::::::::::
accumulation.

Except for during accumulation, modelled
::
At

:::::
PoW

:::
and

::::::
during

:::
the

:::::::
ablation

::::::
season,

::::::::
JIMOSHD::::::

mostly
:::::::::::::
underestimated fSCA

rather underestimates
::::::::
compared

::
to fSCA from fine-scale HS maps. However, modelled fSCA does not show similar strong550

trends when compared to Sentinel-derived fSCA but agrees rather well with fSCA from Sentinel-2 snow products for the

three dates (Figure 4 ). Largest underestimations occur for ALS data at lower elevations and during ablation where low ,
:::::::
without

:
a
::::
clear

::::::::
elevation

:::::
trend

:::::::
(Figures

::
4

:::
and

:::
5).

::::::::::::
Discrepancies

:::::::
between

::::::::
modelled

:::
and

::::::::
measured

:
HSvalues of on average lower than

30 cm dominate ,
:::
on

:::
the

:::::
other

:::::
hand,

::::::::
generally

::::::::
increased

::::
with

::::::::
elevation

:
(Figure 6 ). We assume that the choice of a

:::
and

:::
7).

::::::::
Obviously

:::
for

::::::
larger

::::
snow

::::::
depth,

::::::::
correctly

:::::::::
modelling

:::
HS

::::
has

::::
little

:::::
effect

:::
on

:::::::
fSCA,

::::
The

::::::
overall

:::::::::::::
underestimated

::::::::
modelled555

::::::
fSCA

:::::
values

:::::
were

:::::
likely

:
a
:::::::::::
consequence

::
of

:::
the HS threshold of zero m

:
0
::
m

:::
we

::::
used

:
to decide whether or not a 2 or 5 m grid

cell was snow-covered might be one reason for the underestimations
::
or

:::
not. In reality

:
,
:::
due

::
to

:::::::::::
measurement

::::::::::::
uncertainties,

::::
both

small positive or negative
::::::::
measured

:
HS values might have been zero too. When increasing this

:::
can

:::
still

:::
be

::::::::
associated

::::
with

:::::
snow

:::
free

:::::
areas.

::::::
When

::::::::
arbitrarily

:::::::::
increasing

:::
the

::::
HS threshold to ± 10 cm resulting

:::
for

:::
the

:::::::::
ALS-data,

:::::::
modelled

:
1 km fSCA from

HS maps decreased considerably and in part large overestimations of modelled fSCA resulted at the various points in time560

of the season
:::::
values

::::
were

::::::
rather

:::::
larger

::::
than

:::
the

::::::::::::
measurements [not shown].

::::
This

::
is

:::
not

::::::::::::
contradictory,

:::
but

:::::::::
emphasizes

:::
the

:::::
need

::
to

::::::::
accurately

::::::
model

::::
HS

:::::
along

:::::
snow

::::
lines,

::::::
where

:::::
small

::::::::::
inaccuracies

:::
in

:::
HS

::::
can

::::
have

:::::
large

::::::
impacts

:::
on

:::::::
fSCA.

:::
For

::::::::
instance,

:::::
during

:::::
early

:::::::
ablation

::::::::
modelled

::
as

::::
well

::
as

::::::::
measured

::::::
fSCA

:::
are

::::::
larger

::
in

:::
the

:::::
lowest

::::::::
elevation

:::
bin

::::
than

::
at
::::::
higher

::::::::
elevations

::::
(cf.

:::
Fig.

:::
4c). Unfortunately, we currently do not have detailed snow observations available to define robust HS threshold values

which take into account the different points in time of the season as well as varying terrain slope angles
::
the

::::::::
influence

::
of

::::::
terrain565

:::
and

::::::
ground

:::::
cover. However, the overall good agreement between Sentinel- and ALS-derived fSCA (Figure 4 and Table 2,

III ) provides
:
5
::::
and

::
III

::
in
:::::

Table
:::

3)
:::::::
provides

:::::
some

:
confidence in the fine-scale HS data-derived fSCA used here to evaluate

modelled fSCA.

fSCA performances mostly improve with elevation or remain similar, except for during accumulation (Figure 3b,c and 4).

On the contrary, performances for modelled HS mostly decrease with elevation for the same points in time (Figure 5b,c and570

6). Large underestimations in modelled HS at high elevations affected modelled fSCA much less than weak overestimations

of measured HS at lower elevation during ablation. This is not contradictory but emphasizes the need of accurately modelled

HS along snow lines where small inaccuracies in HS can have large impacts. In addition, along the snow line the valid data

percentage per bin was very low with values between 1 to 5 % for all fSCA from fine-scaleHS data sets. Thus, a single outlier

along the snow line could have also degraded the performance (e.g. Figure 5c). Note that the overall tendency of modelled HS575

to underestimate measured HS at high altitudes may also originate from precipitation underestimation. As there are fewer

AWS at high elevations data assimilation cannot correct for any flawed precipitation input.
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The two benchmark fSCA models (fSCAmeasured
curr and fSCAmeasured

PoW :::::
based

::
on

:::
Eq.

:::
(1) using measured HS compare better

to fSCA derived from
:::::
rather

::::
than

::::::::
modelled HS data than

::::::::::::
(fSCAmeasured

curr ::::
and

::::::::::::
fSCAmeasured

PoW )
::::::::
generally

::::::
showed

::::::
similar

::::::
trends

::
as

::::::::::
HS-derived

::::
and modelled fSCA using JIMOSHD. This result confirms the previously derived functional tanh-form (Eq.580

(1))for fSCA at PoW for a seasonal application. While at the date of early ablation of ALS data, modelled
::::::
(Figure

::
4

:::
and

:::
5).

::
At

:::::
PoW,

:::::::::::
fSCAmeasured

curr ::::::
agreed

::::
less

::::
well

::::
with

::::::::
measured

:
fSCA performed better, this might be due to snowfalls after the date

at approximate PoWwith consecutive melt (
:::
than

:::
our

::::::::
seasonal

:::::::::::::
implementation

:::
(cf. Figure 4b

:::
and

:::
5a). This may have altered the

actual PoW snow depth distribution compared to the ALS-measured σHS at approximate date of PoW. Except for the lowest

elevation bin, performances among both benchmark models are quite similar. While we would have expected at least a better585

performance of fSCAmeasured
PoW during ablation, fSCAmeasured

curr performs slightly better during early ablation. The reason for this

is most likely the same than why modelled
::::::
indicate

:::::::::::
uncertainties

::
in

:::
the

::::::::
empirical fSCA outperformed both benchmark models

at that early ablation date (Figure 4
:::::::::::::
parameterization

::::
(Eq.

:::
1),

:::::
which

:::::::
requires

::::::
further

::::::::::
investigation

:::
of

:::::
spatial

::::
HS

::::
data

:::
sets

::::::
during

:::::::::::
accumulation.

::::::
During

::::::::
ablation,

:::
we

:::::::
expected

::::
that

:::::::::::
fSCAmeasured

PoW ::::::
would

::
be

:::::
closer

::
to

::::::::
measured

::::::
fSCA

::::
than

::::::::::::
fSCAmeasured

curr ,
::::::
which

:::
was

:::::::
however

::::
not

:::
the

::::
case

:::
(cf.

::::::
Figure

::
4c

::::
and

:
5b). Due to snowfalls after the approximate date of PoW of ALS data, at some590

elevations, the actual PoWsnow depth distribution does not agree with the one at approximate date of PoW of ALS data at these

elevations anymore. Applying a snow cover model that tracks the history of HS to derive seasonal fSCA is thus beneficial.

Evaluating the benchmark fSCA models with
:::::
Since

:::
the

:::
true

:::::
PoW

::::
date

::
is

:::::::
elevation

::::
and

:::::
aspect

::::::::::
dependent,

::
we

::::::
cannot

:::::::
assume

:::
that

::::
one

::::
date

:::
for

:::::
PoW

::
is

:::::::::::
representative

::::
for

:::
the

:::::
entire

::::::::::
catchment,

:::::::
covering

:::::::
several

:::::::
hundred

::
of

::::::
square

:::::::::
kilometers

::::
and

:::::
large

:::::::
elevation

:::::::::
gradients.

::::
Thus,

:::::::::
measured

::::
σHS ::

at
:::
the

:::
date

:::
we

:::::::
defined

::
as

::::
PoW,

::::::
might

:::
not

::::
have

::::
been

::::::::::::
representative

::
for

:::
the

::::
true

::::::
σHSmax595

::
in

::::
each

::::
grid

:::
cell

::
as

:::::::
required

:::
by

:::
Eq.

::::
(5).

::::::
Besides

::::::::
possible

::::::::::
uncertainties

:::
in

:::
the

::::::::
empirical fSCA derived from

::::::::::::::
parameterization

:::
(Eq.

:::
1),

:::
we

::::::
assume

::::
this

::
is

:::
the

::::
main

::::::
reason

::::
why

:::::
these

:::
two

::::::::::
benchmark

::::::
models

:::::
using

::::::::
measured

:
HS data confirmed the overall

applicability of
::
did

:::
not

::::::::::
outperform

:::
our

::::::::
seasonal

:::::::::::::
implementation.

:::::::
Overall,

:::::
these

::::::::::
comparisons

:::::::::
emphasize

:::
the

:::::
need

:::
for

:::::::
tracking

::::
snow

::::::::::
information

:::
per

::::
grid

::::
cell,

::
as

::
is

::::
done

:::
by our seasonal fSCA algorithm.

5.2.2 Evaluation with camera-derived fSCA600

While the evaluation of the seasonal fSCA algorithm with fSCA from
:::
The

:::::::::
evaluation

::::
with

:
fine-scale HS maps revealed

overall good performances
:::::
model

::::::::::
performance

:
at six points in time, seasonal performances could not be evaluated continuously

:
.
:
It
::::
was

:::::::
however

:::
not

:::::::
possible

::
to

::::::::::::::
comprehensively

:::::::
evaluate

:::
the

:::::::::::
performance

:
over the season. Evaluating with

:::
For

::::
this,

:::
we

::::
used

daily camera-derived fSCAdemonstrated that modelled
:
,
:::::::
showing

::::
that

:::
the

::::::::
modelled

::::::::
seasonal

:
fSCA was able to mostly

reproduce well the seasonal trend (Figure 7
::::
trend

:::
was

::::::
mostly

::
in
::::
line

::::
with

::::::::::
observations

:::::::
(Figure

:
8).605

However, overall, modelled fSCA compared less well to
:::::
Model

::::::::::
performance

:::::::::
compared

::
to

:::
the camera-derived fSCA than

modelled fSCA compared
:::::
values

::::
was

::::::
overall

:::::
worse

::::
than

:::::
when

:::::::::
comparing to HS-derived fSCA (e.g. NRMSE of 22 %

::
21

::
%

::
for

:
I
::
in
:::::
Table

::
4 compared to NRMSE to 9 % ; Table 2, I versus Table 2 , I) . These overall larger errors most likely originate in an

::
of

:
7
::
%

:::
for

:
I
::
in

:::::
Table

:::
3).

:::::
Since

:::
the

:::::
higher

::::::::
temporal

::::::::
resolution

::
of

:::
the

:::::::
camera

:::
data

:::
set

:::::
leads

::
to

:::
the

:::::
largest

::::::
spread

::
in

::::::
fSCA

::::::
values

::::::::
compared

::
to

:::
the

:::::
other

:::
two

::::
data

::::
sets

:::
(cf.

:::::
Table

::
2
:::
and

::::
Fig.

:::
3),

:
a
::::::
larger

::::::
portion

::
of

:::::::::::
intermediate

::::::
fSCA

::::::
values

::::
(e.g.

:::::
close

::
to

:::
the610

::::
snow

::::
line)

:::
are

:::::::
included

::::::
which

:::
are

:::::::
generally

:::::
more

:::::::
difficult

::
to

:::::
model

::::::::
correctly

:::
than

::::::
fSCA

::::::
values

::::
close

::
to
::::
one.

::::
The

:::::
poorer

::::::
model
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::::::::::
performance

::
is

:::::::
however

::::::
likely

:::
also

:::
be

:::
due

:::
to

:::
the overall lower accuracy of camera-derived fSCAcompared to fSCA from

fine-scale HS maps. For instance, the projection of the 2D-camera image to a 3D DEM may introduce errors and distortions.

Furthermore, when deriving fSCA from camera images, clouds/fog and uneven illuminationdue to for instance
:
,
:::
for

:::::::
instance

:::
due

::
to shading or partial cloud covermay compromise the possibility of detecting snow by the snow classification algorithm of615

Salvatori et al. (2011) and can
:
,
::::
may deteriorate the accuracy (e.g. Farinotti et al., 2010; Fedorov et al., 2016; Härer et al., 2016;

Portenier et al., 2020). The choice of the threshold method when automatically deriving fSCA from the images also introduces

uncertainty. Here, we decided that the method proposed by Salvatori et al. (2011) followed the seasonal modelled fSCA trend

best though some uncertainty remained. For instance, the decreased performances by about 10 % of the NRMSE in season

2019 and 2020 could stem from an increase in
::::::
Another

:::::
factor

::::::::
affecting

:::
the

:::::::::::
performance

::::::::
measures

::::
was

:::
the

::::::::
threshold

:::
for the620

number of image pixels when the camera was upgraded. This may have led to more detailed information when e.g. small

vegetation is resolved. The overall better agreement between modelled and Sentinel-derived fSCA than between between

Sentinel- and camera-derived fSCA (NRMSE of 2 % versus 12 %, cf. Table 2) similarly indicates some larger uncertainties

in the camera-derived
::::
valid

::::::::
fine-scale

::::
data

:::
per

::
1

:::
km

::::
grid

::::
cell.

:::::
When

::::::::::
aggregating

::
to

:
1
::::
km fSCA data set. For instance, while

::::
maps

:::
for

:::
the

::::::::::::::
Sentinel-derived

::::::
values,

:
we required at least 50 % valid fine-scale information for the Sentinel-derived fSCA625

when aggregating to 1 km fSCA maps, this
::::
data.

::::
This requirement could not be met for camera-derived fSCA. For the three

1 km model grid cells
:
,
::
as

:
the projected fractions of the camera FOV are

::
on

:::
the

:
1
:::
km

::::::
model

::::
grid

::::
cells

::::
were

:::::
only 9 %, 13 %

and 14 %, which is much lower than the 50 % but is also used to evaluate modelled fSCA for the full grid cell area. On the

other hand, while it seems that there is a .
::::
This

::
is

:::::::
reflected

::
in
:::
the

:
better agreement between

:::::::
modelled

::::
and Sentinel-derived and

modelled fSCA than between camera-derived and modelled
::::::
camera-

::::
and

::::::::::::::
Sentinel-derived fSCA ,

::::::::
(NRMSE

::
of

::
2
::
%

::::::
versus630

::
12

::
%

::
in

:::::
Table

:::
4).

::::::
Finally,

::
as

:::
the

::::::
camera

::::
was

:::::::
installed

::
at

:::::
valley

:::::::
bottom,

::::
steep

:::::
slope

:::::::
sections

:::::
cover

:::::
larger

::::
areas

::
of

:::
the

:::::
FOV,

:::::
while

:::::
flatter

::::
slope

:::::
parts

::::::
remain

::::::::
invisible.

::::
This

:::::
likely

:::
lead

::
to
:::::::::::::
underestimated

::::::
fSCA

::::::
values.

:::
On

:::
the

:::::
other

:::::
hand, valid Sentinel-derived

fCSA
::::::
fSCA

:
has a much lower temporal resolution and did not cover the entire ablation period. Instead, Sentinel-derived

fSCA was often available throughout the period when fSCA was rather close to one (cf. Figure 7
:
8d,e). Thus, while there is

likely more uncertainty in camera-derived fSCA, the snow cover model might have also underestimated snow melt which led635

to overestimated modelled HS and thus fSCA at the beginning of ablation (cf. Figure 7e).

The high temporal resolution of
:::
this

:::::::
product

::::
still

::::::::
provides

:::::::
valuable

::::::::::
information

:::
on

::::::
model

:::::::::::
performance

:::::::::
throughout

::::
the

::::::
season.

:::
We

::::
used

:::
the camera-derived fSCA allowed us to evaluate modelled simplifications of the

:
to
::::
also

:::::::
evaluate

:::::::::::::
simplifications

::
of

:::
our

:
seasonal fSCA algorithm , i.e. fSCAseason and fSCAcurr (JIMseason

OSHD and JIMcurr
OSHD). While the overall performance640

decrease is rather low with for instance an increase in NRMSE by 1 % for JIMseason
OSHD and by 6 % for JIMcurr

OSHD compared to

the full fSCA model, seasonal performance trends are clearly poorer than when applying the full fSCA model (Figure 7).

The reason that this deterioration is not seen in the overall error measures is most likely due to less frequent camera-derived

fSCA at time steps during or following snowfall events when clouds or bad illumination might have prevented deriving valid

fSCA from images. While the in part large overestimations of camera-derived
::
as

::::
well

::
as

:::::::::
JIMSwenson*

OSHD ::::::
(Table

:::
1).

:::::::::
Compared

::
to645

:::
our

:::::::
seasonal fSCA increase from JIMseason

OSHD to
:::::::::::::
implementation,

:::
the

::::
more

::::::
simple

::::::::::::::
implementations

:::
did

:::
not

::::::
capture

:::
the

::::::::
seasonal
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:::::::
variation

::
as

::::
well

:::::::
(Figure

::
8).

:::::
With JIMcurr

OSHD, with JIMcurr
OSHD the start of the ablation season is not only delayedbut

:::
was

::::::::
delayed,

:::
and the ablation season is

:::
was also considerably shortened, by up to 46

::
21 days. In principle, fSCAcurr describes seasonal

:::
this

::::::
respect,

:::
the

::::::
results

::
for

::::::::::
JIMSwenson*

OSHD ::::
were

::::
very

:::::::
similar,

::
as

::::::
overall

:::
the

:::::::
increases

::::
and

::::::::
decreases

::
of fSCA as if staying continuously

at peak winter, though for various HS values. However, this leads to sudden jumps when current HS approaches zero, as650

seen by the steep melt outs of
::::
were

::::
very

:::::
steep,

:::::::
leading

::
to

::::::::
shortened

:::::
snow

:::::::
seasons

:::
and

::::::
poorer

:::::::::::
performances

::::
(cf.

:::::
Table

::
4).

:::
In

::::::::
principle, JIMcurr

OSHD , or when current
::::::::
considers

::::
each

::::
day

::
as

:::::
PoW,

::::::
leading

::
to

:::::
rapid

:::::::
changes

::
in

:::::::
fSCA,

::
in

::::::::
particular

:::::
when

:
HS

raises from no snow to a value larger than zero following snowfall events on bare ground, as seen during accumulation for

JIMcurr
OSHD. Thus, while including the tracking of current seasonal maximum

:::::
values

:::
are

:::
low

::::
(i.e.

::::
early

::::::::::::
accumulation

::
or

:::::::
ablation

::::::
season).

:::
In

::::::::
JIMseason

OSHD,
:::
the

:::::::
seasonal

:::::::::
maximum

:::::
value

::
of HS to derive the current maximum σHS already improved the seasonal655

trends (fSCAseason), additional accounting for fSCAnsnow is able to overcome the remaining differences between fSCAseason

and modelled
:::
was

::::::::::
additionally

:::::::
tracked,

:::::::::::
substantially

:::::::::
improving

:::
the

::::::::
seasonal fSCA derived by the full

:::::
trend,

::
in
:::::::::

particular

:::::
during

:::
the

:::::::
ablation

::::::
season.

:::::::::
However,

:::::::
changes

::
in fSCA algorithm

:::
due

::
to

:::::::
snowfall

::::::
events

::::
were

::::
still

:::
not

:::::::
captured

::::
well

::::
with

::::
this

:::::::::::::
implementation,

:::::::
showing

::::
that

:::
our

::::
new

:::::
snow

::::::::
tracking

::::::::
algorithm

::::::
further

::::::::
improves

:::
the

:::::::
overall

:::::
model

:::::::::::
performance.

::::::
Since

:::
the

:::::
impact

:::
of

:::::
using

:::::::::
JIMallHelbig

OSHD ::
on

::::::::
modelled

::::::
fSCA

::
is
::::::
mainly

::::::::
restricted

:::
to

:::::::
snowfall

::::::::
following

::::
melt

:::::::
periods,

::::::
overall

::::::::::::
performances660

::::
were

::::
very

::::::
similar

::
to

::::::::
JIMOSHD:::

(cf.
:::::
Table

::
4
:::
and

:::
5).

::::
This

:::::
again

::::::::
indicates

:::
that

:::
the

::::::::::
description

::
of

::::
σHS:::::::::

following
:::::::
snowfall

::::::
events

::::::
requires

::::::
further

:::::::::::
investigation.

5.2.3 Evaluation with Sentinel-derived fSCA

By including Sentinel-derived fSCA in our evaluationdata set to evaluate modelled fSCA, we added a data set that unites

a rather high temporal data resolution with
::::
with

::::
both

:
a
::::
high

::::::::
temporal

::::::::
resolution

::::
and a much larger spatial coverage than was665

inherent in the two other evaluation data sets (cf. Table 1
:
2). The Sentinel-derived fSCA data set comprises about 275

:::::::::
comprised

::::
about

::::
217’000 1 km grid cells covering a

::::
wide

:
range in terrain elevations, slope angles and terrain aspects. This variety was

not achieved for the high-temporal evaluation with camera-derived fSCA limited to one southeast-facing slope with overall

similar elevations between 2077 m and 2367 m and slope angles between 27 and 39 (cf. Figure 2b).

For the one winter seasoninvestigated, we obtained
:::::::::
investigated

::::::
winter

:::::::
season,

::::::
results

:::::::
showed an overall good seasonal670

agreement across Switzerland, though
::::
there

:::
was

:
some elevation-dependent scatter exists (Figure 8). The majority of the largest

scatter occurs during the accumulation period
::::::
(Figure

::::
9a).

::::::::::::
Discrepancies

::::::
during

:::::::::::
accumulation

::::::::
occurred

::::::
mostly

:::::
along

::::
the

:::::::
snowline

:
at lower elevations,

:
where lower spatial HS values as well as more cloudy weather prevail during accumulation. By

neglecting all 1 km domains with modelled HS lower than 5 cm, which would also resemble the preprocessing of fine-scale

HS-derived fSCA (cf. Section 3.3), the scatter between modelled
::::
Both

:::
can

::::
lead

::
to

:::::::::
inaccurate

::::::::
modelled and Sentinel-derived675

fSCA.
:::::::::::
Furthermore,

:::
we

::::::
assume

::::
that

:::::
some

::
of

:::
the

:::::::::::::
overestimations

::
in

::::::::
modelled

::::::
fSCA

:
at these lower

:::::
higher

:
elevations during

accumulation reduced considerably and the overall performances improved substantially. For instance the NRMSE reduced

from 20 % to 12 % and the MPE from 1.9 % to 0.23 %.
:::::
could

::::
also

::::
stem

:::::
from

:::::::::::::
underestimated

::::
σHS::::::

during
:::::::
periods

:::::
when

:::::
strong

::::::
winds

:::::
follow

::::::::
snowfall

::::::
events,

:::
as

:::
was

::::
also

::::::::
observed

:::
in

:::
the

::::
HS

::::
data

:::
sets

:::::::
(Figure

:::
4a

:::
and

:::::::
Section

::::::
5.2.1).

:
The scatter

at higher elevations during summer might originate from underestimated
:::
high

:::::::::
elevations

::::::
during

:::::::
ablation

:::
and

::::::::
summer

:::::
likely680
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::::::::
originates

::::
from

:::::
lower

:
modelled fSCA due to underestimated precipitation(

:
,
::
as

:::::
there

:::
are fewer AWS at high elevations ).

:::
for

:::
data

::::::::::
assimilation

:::
in

:::
our

::::::
model.

Similar than for camera-derived fSCA the overall performance decrease when using JIMseason
OSHD and JIMcurr

OSHD is rather low

with for instance an increase in NRMSE by 0.2 % for JIMseason
OSHD and by 2 % for JIMcurr

OSHD compared to the full fSCA model.

When binned per elevation for Switzerland a small increase in scatter only appeared between modelled fSCA and fSCAcurr685

towards the end of the season not shown. While we in part obtained large differences for individual grid cells between the three

modelled fSCA and camera-derived fSCA, performances between modelled and Sentinel-derived fSCA only improved

slightly compared to when applying JIMseason
OSHD or JIMcurr

OSHD over a much larger spatial coverage. We assume that the lack of

a stronger improvement in the overall error measures is due to more missing valid satellite coverage during clouded periods

that typically occur during or after snowfalls. Yet exactly during these periods we would expect larger differences due to the690

missing new snow fSCA updates when e.g. reducing the full fSCA model to fSCAseason (cf. Figure 7b,c). Overall, we

obtained poorer performance measures between modelled fSCA and Sentinel- as well as camera-derived fSCA compared to

between modelled fSCA and fSCA
::::::::::
Performance

::::::::
measures

:::::
were

::::::::
somewhat

::::::
poorer

:::
as

::::
those

:
from fine-scale HS maps (e.g.

a NRMSE of 20 % for Sentinel-2 fSCA, of 22 % for camera fSCA and of 9 % for
:::::::
NRMSE

::
of

:::
12

::
%

:::
for

:::::::
Sentinel

::::::
versus

:
7
::
%

:::
for

:
fSCA from

:::
for HS data). Uncertainties introduced by reduced visibility in the snow products of Sentinel-2 and the695

camera are most likely the reason
:::
are

:::
the

::::
most

:::::
likely

::::::
reason

:::
for

:::
this. Both, our camera- as well as the Sentinel-2 data set cover

long time periods in higher temporal resolution, i.e. they include also periods under unfavorable weather conditions. On the

contrary, clear sky dates were carefully selected for the on-demand high-quality data acquisitions from the air for our fSCA

data sets derived from fine-scale HS maps. Nevertheless, the camera- as well as the Sentinel-2 data set enabled us to evaluate

seasonal fSCA model trends which would not have been possible alone from the
::::
from

::::
only six fSCA data sets derived from700

HS data.

:::::
When

:::::::::
evaluating

:::
the

:::::::::
simplified

:::::::
fSCA

:::::::::
algorithms

::::
and

::::::::::
JIMSwenson*

OSHD ,
::::::

model
:::::::::::
performance

::::::::
measures

:::::
were

::::::::::
comparable

:::
to

:::
our

:::::::
seasonal

:::::::::::::
implementation

::::::
except

:::
for

::::::::
JIMcurr

OSHD::::
and

::::::::::
JIMSwenson*

OSHD ::::::
(Table

:::
5),

::
as

::::
was

::::
also

:::
the

::::
case

:::
for

:::
the

::::::::::
comparison

:::::
with

::::::::::::
camera-derived

:::::::
fSCA

:::::
(Table

:::
4).

:::
For

::::::::
Sentinel-

::::
and

:::::::::::::
camera-derived

::::::
fSCA,

:::
the

:::::
main

::::::
reason

::
is

:::::
likely

:::
the

::::::
limited

::::::::::
availability

::
of

::::::
fSCA

::::
data

:::::
during

:::
or

::::::
shortly

::::
after

::::::::
snowfall,

:::
due

::
to

:::
bad

::::::::
visibility

:::
and

:::::::
clouds.

:::::::::::
Additionally,

:::
for

::
the

::::::::::::::
Sentinel-derived

:::::::
fSCA,705

::::
local

::::::::::
performance

::::::::::
differences

:::::
across

::::::::::
Switzerland

:::
are

:::::
likely

::::::::
averaged

::::
out.

:::::::::::
Nevertheless,

::::::
fSCA

:::::
values

:::::
when

:::::
using

::::::::::
JIMSwenson*

OSHD

::::
were

::::::::::::
overestimated

::::::::
compared

::
to

::::::::::::::
Sentinel-derived

:::::
values

:::::::
(Figure

:::
9b,

:::
and

:::::::
negative

:::::
MPE

:::
for

::
V

::
in

:::::
Table

::
5).

:::::::
Similar

:::::
results

:::::
were

:::
also

::::::::
observed

:::::
when

:::::
using

::::::::
JIMcurr

OSHD:::
(cf.

::::::::
negative

::::
MPE

:::
for

:::
III

::
in

:::::
Table

:::
5).

::::::
These

:::::
biases

:::
are

:::::
most

:::::
likely

::::::
related

::
to

:::
the

::::::
rather

::::
steep

::::::::
increases

:::
and

::::::::
decreases

::
of

::::::::
modelled

::::::
fSCA

::::
over

:::
the

::::::
season,

:::
as

::
we

::::
also

::::::::
observed

::::
with

:::
the

::::::::::::
camera-derived

::::::
fSCA

:::::::
(Figure

::
8).

:::
We

::::::
further

:::::::
assume

::::
that

:::::::::::
overestimated

::::::
fSCA

:::::
using

::::::::::
JIMSwenson*

OSHD ::
at

::::::
higher

:::::::::
elevations,

:::
due

:::
to

:::::::::::::
underestimating

::::::
spatial

:::::
snow710

::::
depth

:::::::::
variability

::
in

:::::::
complex

:::::::
terrain,

:::
may

:::::
have

:::::::::::
compensated

::
for

:::::
other

::::::::
modelled

::::::
fSCA

::::
error

:::::::
sources

::::
(e.g.

::::
from

:::::::::::::
underestimated

::::::::::
precipitation

:::::
input

::
at

::::
these

::::::::::
elevations)

::::::
leading

::
to

:::
an

::::::
overall

:::::
lower

::::
bias

::
at

:::::
higher

:::::::::
elevations

::::::
during

:::::::::::
accumulation

:::::::::
compared

::
to

:::
our

::::::
fSCA

:::::::::::::
implementation.

:::::::
Finally,

::::
note

:::
that

:::
the

::::::
scatter

:::::
above

::::
zero

::::::::
between

:::::::::::::
Sentinel-derived

::::
and

:::::::::
JIMSwenson*

OSHD ::::::
fSCA

:::::::
(Figure

:::
9b)

:::::
almost

:::::::::
disappears

:::::
when

:::
we

::::::
neglect

:::
all

:
1
:::
km

::::::::
domains

::::
with

:::::::
modelled

::::::
HS <

::
5

:::
cm

::::
using

::::::::::
JIMSwenson*

OSHD [
:::
not

:::::
shown].

::::::
While

:::
the

:::::
overall

::::::::
NRMSE

:::::
values

:::
for

::::::::::
JIMSwenson*

OSHD :::
are

::::
then

:::::::::
comparable

::
to
:::
our

::::::::
seasonal

:::::::::::::
implementation

::::
(e.g.

:::::::
NRMSE

::
of

:::
12

::
%

:::
for

::
all

:::::
dates715
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::::::
instead

::
of

:::
18

:::
%;

::
cf.

::
V
:::
in

:::::
Table

::
5),

::
it
::::::
reveals

:::
the

:::::::
overall

::::::::::::
overestimation

::
of

::::::::::
JIMSwenson*

OSHD ::::
(e.g.

:::::::::
increased

:::::::
negative

:::::
MPE

::
of

::::
-4.1

::
%

:::
for

::
all

:::::
dates

::::::
instead

::
of

::::
-1.8

:::
%).

:::::::
Clearly,

:::
our

::::::::
seasonal

::::::
fSCA

:::::::::::::
implementation

::
is

:::::
better

:::::
suited

::
to

:::::
more

::::::::::
realistically

::::::::
represent

:::::::
seasonal

:::::::
changes

::
in

:::::::::::
mountainous

::::::
terrain,

::
in

::::::::
particular

::::::::
following

::::::::
snowfall

:::
and

::::::
during

:::
the

:::::::
ablation

::::::
period.

6 Conclusions

We presented a seasonal fractional snow-covered area (fSCA) algorithm based on the fSCA parameterization of Helbig et al.720

(2015b, 2021). The seasonal algorithm is based on trackingHS and SWE values accounting for alternating snow accumulation

and melt events. Two empirical parameterizations are applied
:::
were

:::::
used to describe the spatial snow depth distribution, one

for mountainous terrain at PoW and one for flat terrain during a snowfall
:::
and

::::
one

:::
not

:::::::::
accounting

:::
for

:::::::
subgrid

:::::::::
topography. An

implementation in a multilayer energy balance snow cover model system (JIMOSHD; JIM, JULES investigation model (Essery

et al., 2013)) allowed us to evaluate seasonally modelled fSCA for Switzerland.725

Compiling independent fSCA data sets
:::
with

::::::::
different

:::::::::::::
spatiotemporal

::::::::::::
characteristics enabled a thorough spatiotemporal

analysis of the seasonal fSCA algorithm
::
in

:::::::::::
mountainous

::::::
terrain

::
of

:::::
daily

::::::::::
1km-fSCA

::::::
values. While the evaluation with the

three data sets showed overall good seasonal performance, each of the evaluation data sets allowed to draw additional
:::::::
drawing

::::::
specific

:
conclusions. The evaluation with fine-scale spatialHS-derived fSCA showed that snow depth

:::
HS

:
uncertainties along

the snow line likely contributed to the largest
::::
most

::
to

:::::::::::::
underestimation

:::
of fSCA underestimations during ablation compared to730

the overall best agreement at PoW
:::::
during

:::::::
ablation

:::
and

:::::
PoW,

:::::::::::
emphasizing

:::
the

::::
need

::
to

:::::::::
accurately

:::::
model

::::
HS

:::::
along

:::::
snow

::::
lines.

The camera-derived fSCA data set, with the highest temporal resolution , confirmed the need for trackingHS over the season

as well as accounting for intermediate snowfalls to avoid a delayed melt start and a drastically
:::::
drastic shortening of the ablation

season. The Sentinel-derived fSCA data set, with the largest spatial coverage together with a rather high temporal resolution,

demonstrated that the seasonal fSCA algorithm performs well across a range of elevations, slope angles, terrain aspects and735

snow regimes. This comparison showed that there were some differences at low elevation coinciding with very
::
or

:::::
along

:::
the

:::::::
snowline

:::::::::
coinciding

::::
with

:
low HSearly in the season, while discrepancies occured

:::::::
occurred

:
mostly at high elevations towards

the end of the season,
:
respectively during summer.

Overall,
:

NRMSE’s for seasonally modelled fSCA increased from 9
:
7 % for HS data-derived fSCA, to 20

::
12

:
% for

Sentinel-derived fSCA and to 22
::
21 % for camera-derived fSCA. While the large margin

:::::::
variation

:
in performance measures740

is likely tied to the various temporal and spatial resolutions of the data sets leading to different data
:::
and

:::::::::::
measurement

:
uncer-

tainties, it also demonstrates the difficulties in drawing conclusions when evaluating a model algorithm with evaluation data

from different acquisition platforms. Nevertheless, this comparison with data covering a wide range of spatiotemporal scales

allowed us to obtain a comprehensive overview of the strength and weaknesses of our seasonal fSCA implementation.
:::
We

::
are

:::
not

::::::
aware

::
of

:::
any

:::::::
seasonal

::::::
fSCA

:::::::::::::
implementation

::::
that

:::
has

::::
been

::::::::
evaluated

::
in
:::::
such

::::
detail

:::
by

::::::::
exploiting

:::::::::::
independent

:::
HS

::::
and745

::::
snow

:::::::
product

::::
data

:::
sets

::
in

::::
high

::::::
spatial

:::
and

::::::::
temporal

:::::::::
resolution.

::
By

::::::::::::
implementing

:::
the

::::::
fSCA

:::::::::::::::
parameterizations

:::::::
applied

::
in

:::::::
CLM5.0

::::::::::::::::::::
(Lawrence et al., 2018)

::
in

::::::::
JIMOSHD,

:::
we

::::
also

::::::::
evaluated

:::::::
modelled

:::::::
fSCA

::::
using

:::::::::::
JIMSwenson*

OSHD .
::::
This

::::::
showed

::::
that

:::
our

:::::::
seasonal

:::::::
fSCA

::::::::
algorithm

:::::::
captures

:::
the

:::::::
seasonal

::::::::
variation

::::
best,

::::
and
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:::
that

:::::::
seasonal

::::::::
variation

::
in

:::::::::
JIMSwenson*

OSHD ::::
was

::::::
limited.

::::::::::
JIMSwenson*

OSHD :::::::
resulted

::
in

::::
often

::::::::::::
overestimated

::::::
fSCA

::::::
values,

:::::
likely

:::::::
because

:::
the

::::
high

:::::
spatial

:::::::::
variability

::
in

:::::
snow

:::::
depth

:::::::::
distribution

::
in
::::::::
complex

:::::
terrain

::
is
:::
not

::::::::::
sufficiently

::::::::
described.

:
750

The implementation of the seasonal fSCA algorithm in a model only requires tracking HS and SWE for a coarse grid cell

as well as deriving subgrid summer
::::::
subgrid

:
terrain parameters from a fine-scale summer DEM

::
in

::::::::::
combination

:::::
with

:::::::
tracking

:::
HS

::::
and

:::::
SWE

:::
for

::::::
coarse

::::
grid

:::::
cells.

::::
The

::::::::
algorithm

::
is

:::
set

::
up

:::::
such

:::
that

::::::::::::
improvements

:::
or

:::::::::
adaptations

:::
of

::::::::
individual

:::::::::
algorithm

::::
parts

:::
can

::::::
easily

::
be

::::::::::::
implemented. The PoW fSCA parameterization of Helbig et al. (2021)

:::::::::::::::::
Helbig et al. (2015b) forms the

centerpiece of the presented seasonal fSCA algorithm. The recent evaluation
:::::::::::
re-evaluation with various spatial PoW snow755

depth data sets from 7 geographic regions showed an overall NRMSE of only 2 %
::::::::::::::::
(Helbig et al., 2021). This detailed evaluation

at PoW in different geographic regions and the seasonal evaluation
:::::::
together

::::
with

:::
the

:::::::
seasonal

:::::::::
assessment

:
with the three fSCA

data pools presented here, suggests that the seasonal fSCA algorithm may perform similar in most
::::
also

::
be

:::::
used

::
in

:
other

geographic regions. However, further investigations, once more spatial HS data sets before and after snowfalls in complex

topography become available, would be advantageous for improvements of our seasonal fSCA algorithmduring a snowfall
:
,760

::::::::
especially

::::::
during

:::
the

:::::::::::
accumulation

::::::
period.
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6.1 Appendix: Technical aspects - Seasonal fSCA implementation

The technical aspects of the different fSCA (cf. box in the middle of in Figure 1), i.e. the seasonal fSCA (fSCAseason)

and the fSCA for snowfall events (fSCAnsnow), are given here. This description gives the necessary details to implement

the seasonal fSCA algorithm in a snow cover model. We first present some pseudocode and then give a detailed text

description. !! Seasonal fSCA algorithm1 for each grid cell do 2 !! Update SWE history (buffer) from past 14775
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days with current SWE3 SWEbuffer(current)=SWE4 !! Calculate max, min and recent min indices in 14 days

SWEbuffer5 maxbuff, minbuff, recentminbuff6 !! Apply indices to finding new snow depth changes ∆HS7 !!

New snow amount in 14 days buffer 8 14 day ∆HS = HS - HS(minbuff)9 !! Recent new snow amount in 14 days

buffer10 recent ∆HS = HS - HS(recentminbuff)11 !! Max snow depth change in 14 days buffer12 max

∆HS = HS(maxbuff) - HS(minbuff)13 !! Find current absolute max and pseudo-min SWE values14 IF SWE is780

zero, set SWEmax and SWEpseudo-min to zero15 IF SWE ≥ SWEmax, set SWEmax and SWEpseudo-min to SWE16 IF

SWE < SWEmax and SWE < SWEpseudo-min, set SWEpseudo-min = SWE17 set HSmax, HSpseudo-min according to

SWEmax,SWEpseudo-min18 !! Start calculating fSCA19 !! fSCAseason using Eq. (1)-(3) 20 IF grid cell is

flat21 σHSseason := Eq. (3) withHSmax22 ELSE 23 σHSseason := Eq. (2) withHSmax24 fSCAseason:=

Eq. (1) with σHSseason and HSpseudo-min25 !! fSCA14daynsnow using Eq. (1) and (3)26 σHS14d := Eq. (3) with785

max ∆HS27 fSCA14daynsnow:= Eq. (1) with σHS14d and 14 day ∆HS28 !! fSCArecentnsnow using Eq. (1) and

(3)29 σHSrecent := Eq. (3) with recent ∆HS30 fSCArecentnsnow:= Eq. (1) with σHSrecent and recent ∆HS31 !!

Deriving fSCAnsnow32 fSCAnsnow =max(fSCA14daynsnow,fSCArecentnsnow)33 !! Reset fSCAseason, if new snow is

really melting34 IF fSCAnsnow > 0 and fSCAnsnow < fSCAseason35 SWEpseudo-min = SWE andHSpseudo-min =HS36 !!

Calculate coefficient of variation from seasonal values37 CVseason = σHSseason/HSmax 38 !! Recalculate790

current absoluteHSmax39 HSmax = 1.3HSpseudo-min/(CVseasonatanh(fSCAseason)) 40 !! Recalculate

current absolute SWEmax41 SWEmax = ρmaxHSmax 42 !! Recalculate fSCAseason43 IF

grid cell is flat44 σHSseason := Eq. (3) withHSmax45 ELSE 46 σHSseason :=

Eq. (2) withHSmax47 fSCAseason:= Eq. (1) with σHSseason andHSpseudo-min48 fSCAnsnow:=049 !!

Calculate final fSCA50 fSCA=max(fSCAseason,fSCAnsnow)795

Following new snow accumulation, the ground is almost completely covered by snow, which may lead to a different spatial

snow depth variability than at PoW. We account for this by using σflat
HS rather than σtopo

HS for the derivation of fSCAnsnow to

avoid introducing topography interactions in new snow σHS which were derived for PoW σHS . To calculate fSCAnsnow we

insert new snow amounts in Eq. (1)-(3). Thus, fSCAnsnow describes the contribution to fSCA solely from the new snow, i.e.

as if the new snow fell on bare ground. Two fSCAnsnow are derived: fSCA14daynsnow for a new snow event within the last800

14 days and a fSCArecentnsnow for the most recent new snow event. To calculate both, fSCA14daynsnow and fSCArecentnsnow,

we store HS of the last 14 days. For fSCA14daynsnow we derive the absolute maximum as well as the absolute minimum

from this time window. The difference between these two extreme HS values is used to compute the corresponding σHS and

the difference between current and absolute minimum HS is inserted in the numerator to obtain fSCA14daynsnow as fSCA.

To compute fSCArecentnsnow we determine the first local HS minimum from the 14 days time window by going back in805

time. The difference between current and this local minimum HS is used to derive σHS and is also used in the numerator of

fSCArecentnsnow. The maximum of fSCA14daynsnow and fSCArecentnsnow gives us fSCAnsnow for that time step and grid cell.

To describe the overall seasonal fSCA development we use a fSCAseason which we compute with σtopo
HS . For grid cells with

slope angles equal to zero we use σflat
HS .
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To compute fSCAseason we use current seasonal maximum HS to derive σtopo
HS or σflat

HS . In the numerator of fSCAseason810

we use a HS variable which we call a pseudo-minimum HS solely to differentiate it from real global and local minima. The

pseudo-minimum HS is used in fSCAseason to derive a fSCA as if there was no previous snowfall. We do this to obtain

two separate fSCA, one fSCAnsnow and one fSCAseason, which will be compared afterwards. During accumulation, the

pseudo-minimumHS is the currentHS up until a snow event starts, following a previous melt period. Then the pseudo-minimum

HS keeps the pre-snow event HS value up until current HS reaches the current seasonal maximum HS again. From815

then on the pseudo-minimum HS is the current HS again. During ablation, the pseudo-minimum HS matches, similar

as during accumulation, the current HS up until a snow event starts. Then the pseudo-minimum HS keeps the pre-snow

event HS value up until current HS falls below the pre-snow HS value again or increases up to a new current seasonal

maximum HS. However, once the fSCAnsnow is again lower than fSCAseason and the newly fallen snow has started to melt

(SWEt−1−SWEt > 2 mm), we recalculate the current seasonal maximum HS. Then, we update fSCAseason using the new820

current seasonal maximumHS for σHS and the pseudo-minimumHS taking the currentHS in the numerator. We perform the

recalculation of the seasonal maximum HS to account for an increased seasonal σHS caused by the intermediate snow event.

The recalculated seasonal maximum HS takes that value that allows to arrive at the current HS by melt only, i.e. without

intermediate snowfall. For the recalculation procedure we solve the seasonal CV from before the snow event, i.e. σHS /HS

both using the previous seasonal maximum HS, for σHS and insert it in fSCAseason. By further using the pseudo-minimum825

HS (which was set to the current HS) in fSCAseason we derive a new seasonal maximum HS. At the end of this adjustment

fSCAnsnow is set to zero and an updated (larger) seasonal maximum HS with a similar or slightly lower fSCAseason results.
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