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Abstract. CE1 CE2 TS3The Himalaya mountain range is char-
acterized by highly glacierized, complex, dynamic topogra-
phy. The ablation area of glaciers often features a highly het-
erogeneous debris mantle comprising ponds, steep and shal-
low slopes of various aspects, variable debris thickness, and5

exposed ice cliffs associated with differing ice ablation rates.
Understanding the composition of the glacier surface is es-
sential for a proper understanding of glacier hydrology and
glacier-related hazards. Until recently, efforts to map debris-
covered glaciers from remote sensing focused primarily on10

glacier extent rather than surface characteristics and relied
on traditional whole-pixel image classification techniques.
Spectral unmixing routines, rarely used for debris-covered
glaciers, allow decomposition of a pixel into constituting ma-
terials, providing a more realistic representation of glacier15

surfaces. Here we use linear spectral unmixing of Landsat 8
Operational Land Imager (OLI) images (30 m) to obtain frac-
tional abundance maps of the various supraglacial surfaces
(debris material, clean ice, supraglacial ponds, vegetation)
across the Himalaya around the year 2015. We focus on the20

debris-covered glacier extents as defined in the supraglacial
debris cover database. The spectrally unmixed surfaces are
subsequently classified to obtain maps of composition of
debris-covered glaciers across sample regions.

We test the unmixing approach in the Khumbu region25

of the central Himalaya, and we evaluate its performance
for supraglacial pond by comparison with independently
mapped ponds from high-resolution Pléiades (2 m) and Plan-
etScope imagery (3 m) for sample glaciers in two other re-
gions with differing topo-climatic conditions. Spectral un-30

mixing applied over the entire Himalaya mountain range (a
supraglacial debris cover area of 2254 km2) indicates that at

the end of the ablation season, debris-covered glacier zones
comprised 60.9 % light debris, 23.8 % dark debris, 5.6 %
clean ice, 4.5 % supraglacial vegetation, 2.1 % supraglacial 35

ponds, and small amounts of cloud cover (2 %), with 1.2 %
unclassified areas. Supraglacial ponds were more prevalent
in the monsoon-influenced central-eastern Himalaya (up to
4 % of the debris-covered area) compared to the monsoon-
dry transition zone (only 0.3 %) and in regions with lower 40

glacier elevations. Climatic controls (higher average tem-
peratures and more abundant precipitation), coupled with
higher glacier thinning rates and lower average glacier ve-
locities, further favour pond incidence and the development
of supraglacial vegetation. The spectral unmixing performed 45

satisfactorily for the supraglacial pond and vegetation classes
(an F score of ∼ 0.9 for both classes) and reasonably for the
debris classes (F score of 0.7). With continued advances in
satellite data and further method refinements, the approach
presented here provides avenues towards achieving large- 50

scale, repeated mapping of supraglacial features.

1 Introduction

High relief orogenic belts such as the Himalaya are charac-
terized by glacierized, complex, dynamic topography and the
presence of a continuous cover of rock debris across the low- 55

est part of the ablation zone of glaciers (Kirkbride, 2011).
Globally, supraglacial debris cover accounts for ∼ 7 % of
the total glacierized area (Scherler et al., 2018; Herreid and
Pellicciotti, 2020). In high-mountain environments, high de-
nudation rates and mass-wasting processes such as rockfalls 60

and rockslides from the steep valley sides supply abundant
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2 A. E. Racoviteanu et al.: Surface composition of debris-covered glaciers across the Himalaya

rock debris to the glacier surface (Kirkbride, 2011; Shroder
et al., 2000; Evatt et al., 2015). This results in highly het-
erogeneous surfaces, consisting of debris material of vari-
ous lithologies and grain sizes (sand and silt to boulders),
forming debris cones on variable but mostly shallow slopes.5

Some of the most notable features of such surfaces are the
supraglacial ponds and exposed ice cliffs, which have gained
interest in recent years for several reasons. First, they in-
fluence the surface energy receipts of the supraglacial de-
bris surface and the efficiency with which atmospheric en-10

ergy can be transferred to the underlying ice and cause
glacier ice ablation. While ice ablation beneath debris cover
of more than a few centimetres thick is strongly reduced
(Østrem, 1959; Nicholson and Benn, 2006; Reid and Brock,
2010), ice cliffs and supraglacial ponds are local hot spots15

for glacier downwasting due to enhanced energy absorption
at the surface of these features (Ragettli et al., 2016; Miles
et al., 2016; Sakai et al., 2002; Buri et al., 2016; Steiner et
al., 2015). Understanding their spatial distribution is essen-
tial for a proper assessment of glacier hydrology, notably20

to simulate glacier-wide ablation rates and meltwater pro-
duction. Second, the current distribution and fluctuation of
proglacial lakes and supraglacial pond extents is of inter-
est for assessing glacier-related hazards. Recent studies have
reported an increase in pro- and supraglacial lake area and25

number in the Himalaya and worldwide as a response to cli-
matic changes (Shugar et al., 2020; Nie et al., 2017; Shukla
et al., 2018). Some of the supraglacial ponds coalesce and
form larger supraglacial lakes, which may evolve into fully
formed proglacial ice or moraine-dammed lakes (Benn et al.,30

2012; Thompson et al., 2012), with enhanced potential for
producing hazards such as glacier lake outburst floods (Benn
et al., 2012; Komori, 2008; Richardson and Reynolds, 2000;
Reynolds, 2014; GAPHAZ, 2017). Increasing trends of pond
development of 17 % to 52 % per year were reported in the35

Khumbu region (2000 to 2015) (Watson et al., 2016), with
a 3-fold increase in pond area over three decades (1989 to
2018) (Chand and Watanabe, 2019). Quantifying the num-
ber/area of supraglacial ponds and their evolution (Miles et
al., 2017TS4 ; Liu et al., 2015; Watson et al., 2016) is impor-40

tant for assessing which ones might represent conditioning
factors for hazards (Sakai and Fujita, 2010; Reynolds, 2000).
Third, understanding the fluctuations of these surface char-
acteristics, in particular supraglacial vegetation, is important
since vegetation expansion on debris-covered surfaces may45

indicate the transition from a debris-covered glacier to a rock
glacier in a context of climate change (Shroder et al., 2000;
Jones et al., 2019TS5 ; Knight et al., 2019; Monnier and Kin-
nard, 2017; Kirkbride, 1989).

Our understanding of the regional variability in glacier50

mass balance of both clean and debris-covered glaciers in
the Himalaya has improved over the last years (Dehecq et
al., 2019; Brun et al., 2017; Shean et al., 2020), and the role
of glacier morphology in controlling glacier behaviour and
changes has been demonstrated in recent studies (Salerno et55

al., 2017; Brun et al., 2019). However, a comprehensive as-
sessment of the surface geomorphology, supraglacial pond
coverage, moraine characteristics and supraglacial vegeta-
tion at various temporal scales is still needed over the en-
tire Himalaya. Until recently, efforts to map debris-covered 60

glaciers focused primarily on their extent rather than the sur-
face characteristics. This was achieved at regional scales us-
ing a combination of digital elevation models (DEMs), var-
ious spectral band ratios and terrain curvature (Shukla et
al., 2010; Bolch et al., 2007; Kamp et al., 2011; Bishop et 65

al., 2001; Paul et al., 2004). Attempts to improve the ac-
curacy of debris-covered glacier mapping included the use
of thermal data, i.e. temperature differences between de-
bris underlined by glacier ice and the surrounding non-ice
moraines (Taschner and Ranzi, 2002; Bhambri et al., 2011a; 70

Racoviteanu and Williams, 2012; Alifu et al., 2016) or the
use of glacier velocity (Smith et al., 2015TS6 ). Considerable
improvements in monitoring capacity due to recent satel-
lite developments and cloud-computing platforms such as
Google Earth Engine allowed exploitation of large amounts 75

of Landsat and Sentinel-2 data. This has resulted in two re-
cent global datasets of supraglacial debris (Scherler et al.,
2018; Herreid and Pellicciotti, 2020). While these global
datasets represent an important development in advanc-
ing the understanding of the distribution of debris-covered 80

glaciers at a large scale, they can suffer from the use of in-
consistent methods and different temporal coverage between
and/or within regions. Supraglacial debris in these databases
was mapped within the bounds of the Randolph Glacier In-
ventory (RGI) (Pfeffer et al., 2014), which has varying analy- 85

sis dates and accuracy. While these issues were partially mit-
igated in a revised dataset based on semi-automated assess-
ments of Landsat imagery (Herreid and Pellicciotti, 2020),
improvements were limited to glaciers larger than 1 km2 and
were not applied repeatedly at the global scale. 90

Supraglacial ponds and ice cliffs are currently not repre-
sented either in existing supraglacial debris cover datasets or
in the updated, publicly available regional glacier lake inven-
tories (Wang et al., 2020; Shugar et al., 2020; Chen et al.,
2021). The latter tend to focus primarily on the representa- 95

tion of proglacial lakes and their decadal changes. A database
of supraglacial ponds at several time periods is desirable
in order to complement the existing supraglacial debris and
lake databases, as the distribution of these surface features
on debris-covered glacier tongues remains limited to a hand- 100

ful of glaciers in the Himalaya (Watson et al., 2016, 2017a,
2018; Steiner et al., 2019). For example, regional studies on
seasonal dynamics and evolution of supraglacial ponds and
ice cliffs tend to be biased towards the well-studied Khumbu
and Langtang areas of Nepal Himalaya (Watson et al., 2016, 105

2017a; Miles et al., 2017; Steiner et al., 2019). More studies
are needed in other regions in order to assess the spatial dif-
ferences in their occurrence as well as to infer the long-term
changes of these features.
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The increased availability of high-resolution (0.5 to 5 m)
remotely sensed data from Pléiades, SPOT and Quick-
Bird satellites, complemented by RapidEye, PlanetScope and
SkySat images from Planet, has offered new opportunities
for characterizing the surface of debris-covered glaciers in5

more detail. Supraglacial ponds and ice cliffs have been
mapped using a combination of manual digitization on high-
resolution multi-spectral imagery (1–3 m) or directly on
Google Earth (Brun et al., 2018; Watson et al., 2018, 2017a,
2016; Steiner et al., 2019). Semi-automated mapping meth-10

ods include adaptive binary thresholding (Anderson et al.,
2021), band ratios and/or morphological operators (Miles et
al., 2017; Liu et al., 2015), the normalized difference water
index (NDWI) (Watson et al., 2018; Gardelle et al., 2011;
Miles et al., 2017; Kneib et al., 2020; Liu et al., 2015;15

Wessels et al., 2002; Narama et al., 2017), feature extrac-
tion via decision trees and/or object-based image analysis
(OBIA) (Liu et al., 2015; Kraaijenbrink et al., 2016; Pan-
day et al., 2011), or thermal imagery (Suzuki et al., 2007;
Foster et al., 2012). Other methods include the use of very-20

high-resolution topographic models generated using terres-
trial structure-from-motion techniques (Westoby et al., 2014;
Rounce et al., 2015; Herreid and Pellicciotti, 2018; Westoby
et al., 2020) or the use of unmanned aerial vehicle (UAV) data
(Kraaijenbrink et al., 2016). Synthetic aperture radar over-25

comes the limitations of optical remote sensing in areas with
frequent cloud cover (i.e. the eastern Himalaya) and has been
used to map supraglacial ponds and track their dynamics
(e.g. Strozzi et al., 2012; Wangchuk and Bolch, 2020; Zhang
et al., 2021). Despite methodological developments, a robust30

and transferable method for mapping ice cliffs and ponds
in a systematic manner using these high-resolution datasets
does not yet exist, and current methods remain computation-
ally intensive. Understanding how the surface composition
of the debris-covered tongues upscales in coarser-resolution35

imagery such as Landsat is still needed at regional scales.
For example, large differences were shown between UAV-
derived ponds and RapidEye-derived ponds in other studies
(CE3cf. Kraaijenbrink et al., 2016).

Even with the increased availability of high-resolution40

imagery, medium resolution data from archive Landsat se-
ries (30 m spatial resolution) remain a valuable data source
for various regional-scale mapping applications due to their
large swath width (185 km), free accessibility and acquisition
time spanning four decades. One of the limitations in using45

these medium-resolution data is that most studies rely on tra-
ditional whole-pixel image classification techniques. While
these classification techniques are advantageous for some ap-
plications, they does not reveal the constituent surfaces of
image pixels on the ground or their proportions (Keshava50

and Mustard, 2002). Spectral unmixing routines, initially de-
scribed by Atkinson (1997, 2004)TS7 and Foody (2004)TS8 ,
allow decomposition of a given pixel into constituting mate-
rials, providing their fractional abundance and thus generat-
ing a more realistic representation of complex surfaces (Ke-55

shava and Mustard, 2002). These have been used in glaciol-
ogy to retrieve snow grain size and derive fractional snow-
covered areas from MODIS or Landsat (Painter, 2003TS9 ;
Painter et al., 2009; Sirguey et al., 2009; Veganzones et al.,
2014; Rosenthal and Dozier, 1996) and to map clean glacier 60

areas or snow (Painter et al., 2012; Cortés et al., 2014), lakes
(Zhang et al., 2004), and vegetation (Ettritch et al., 2018;
Song, 2005; Xie et al., 2008). A small number of studies used
spectral unmixing to characterize the mineral composition of
debris-covered glaciers (Casey and Kääb, 2012; Casey et al., 65

2012); to characterize lake colour, turbidity and suspended
sediments (Matta et al., 2017; Giardino et al., 2010); and
more recently to map ice cliffs (Kneib et al., 2020), but the
potential of sub-pixel mapping for debris-covered glaciers
has not been fully exploited. 70

In this study, we use spectral unmixing of Landsat 8
Operational Land Imager (OLI) imagery to detect the sur-
face characteristics of supraglacial debris cover across the
Himalaya, with a particular emphasis on quantifying the
supraglacial pond coverage and vegetation. We first ap- 75

ply and validate the spectral unmixing in the well-studied
Khumbu region of the central Himalaya. Using the spectra
and spectral unmixing parameters that were derived from
the Khumbu, we infer the composition of supraglacial de-
bris cover for the entire Himalaya spatial domain. We val- 80

idate the pond results by comparing the supraglacial pond
areas derived from spectral unmixing with those obtained us-
ing OBIA on high-resolution imagery for selected glaciers at
three different sites. We use the results to assess the composi-
tion of the debris-covered glacier tongues in regions with dif- 85

fering topo-climatic conditions to evaluate the distribution of
supraglacial ponds and vegetation across the mountain range
in relation to geographic location, climate, topographic char-
acteristics, glacier mass balance and surface velocity, and we
discuss the potential relationship between these features and 90

the temporal evolution of these glaciers.

2 Data sources and methods

2.1 Study area

Our study area comprises various spatial domains (Fig. 1).
The larger Himalaya domain is defined here as the region 95

spanning ∼ 1500 km (∼ 76 to 92◦ longitude and ∼ 26 to
34◦ latitude), covering areas from the Himachal/Jammu and
Kashmir border in the west to the Bhutan Himalaya in the
east (Fig. 1). Glaciers in this area have been in a state of
negative mass balance in the last decades, with accelerat- 100

ing trends in the 2000 to 2010 decade (Bolch et al., 2019;
Brun et al., 2017; Kääb et al., 2012; Maurer et al., 2019). We
developed our method in the glacierized Khumbu region of
Nepal, which we refer to hereafter as the “Khumbu domain”,
although it also includes glaciers north of the divide (Fig. 2). 105

Glaciers in the Khumbu have been well studied in terms of
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4 A. E. Racoviteanu et al.: Surface composition of debris-covered glaciers across the Himalaya

Figure 1. Himalaya study domain showing the large climatic regions from Bolch et al. (2019) as dotted black lines and the studied regions
(western, central and eastern). The figure also shows the selected domains across the monsoonal gradient discussed in the text, shown as
light-yellow outlines and labelled as follows: A, Lahaul–Spiti in the monsoon-arid transition zone of the western Himalaya; B, Manaslu; C,
Khumbu and parts of eastern Tibet in the central Himalaya; D, Bhutan in the eastern Himalaya. Turquoise boxes represent the pond validation
sites: 1, Lahaul–Spiti glaciers; 2, Langtang glaciers; 3, Khumbu glaciers. Image footprints are the true colour composite of Landsat 8 OLI
(bands 4,3,2) scenes used in this study and described in Table 1.

glacier mass balance using the traditional glaciologic method
(Wagnon et al., 2013), the geodetic method (Bolch et al.,
2008; Nuimura et al., 2012; Brun et al., 2017; Bolch et al.,
2011; Rieg et al., 2018), energy balance models (Rounce and
McKinney, 2014; Rounce et al., 2015; Kayastha et al., 2000),5

debris cover characteristics (Iwata et al., 1980; Watanabe et
al., 1986; Nakawo et al., 1999; Iwata et al., 2000; Casey et
al., 2012; Yukari et al., 2000) and surface velocity (Quincey
et al., 2009). Rates of change of the debris-covered glacier
areas in the Khumbu vary from −0.12± 0.05 % a−1 from10

1962 to 2005 (Bolch et al., 2008) to−0.27±0.06 % a−1 from
1962 to 2011 (Thakuri et al., 2014). Supraglacial ponds cover
∼ 0.3 % to 7 % of the glacierized area in the Khumbu based
on high-resolution Pléiades data (Watson et al., 2017a; Kneib
et al., 2020; Salerno et al., 2012); ice cliffs cover between 1 %15

and 9.2 % of the glacier areas (Brun et al., 2018; Watson et
al., 2017a; Kneib et al., 2020).

To examine and highlight regional differences in the
composition of the debris-covered surfaces, we use four
sub-regions selected across monsoonal gradients as de-20

fined in the literature, corresponding to the Landsat scenes
(∼ 32 919 km2) shown on Fig. 1 (Bookhagen and Burbank,
2010; Thayyen and Gergan, 2010; Barros and Lang, 2003).
The Lahaul–Spiti region in the western Himalaya is in the
monsoon-arid transition zone, characterized by monsoon 25

precipitation during the summer and precipitation from the
westerlies in the winter (Thayyen and Gergan, 2010). The
Manaslu and Khumbu regions in the central Himalaya, and
the Bhutan region in the eastern Himalaya, are all under the
influence of the Indian summer monsoon, which brings large 30

amounts of precipitation during the summer months (June to
September) (Barros and Lang, 2003; Bookhagen and Bur-
bank, 2006) (Fig. 1).

To validate the performance of the spectral unmixing as a
basis for estimating pond coverage, we used debris-covered 35

glacier zones at three validation sites (700–1150 km2), se-
lected across the wider Himalaya domain from the Khumbu,
Langtang and Lahaul–Spiti regions (Fig. 1). Supraglacial
ponds on these glaciers were mapped using OBIA methods
on high-resolution imagery (Sect. 2.6). 40
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A. E. Racoviteanu et al.: Surface composition of debris-covered glaciers across the Himalaya 5

Figure 2. The Khumbu test region in Nepal showing the RapidEye image of 9 October 2015 (bands 5, 4 and 3) and the Pléiades image of 7,
19 and 20 October 2015 (bands 4, 3 and 2) (yellow dotted outline). Vegetation appears in dark red/brown; ponds display various shades of
turquoise. Green dots represent the ground truth points digitized on the high-resolution images and used for the accuracy assessment of the
linear spectral unmixing.

2.2 Remote sensing data

The satellite data used for spectral unmixing comprise of
13 Landsat 8 OLI images covering the Himalaya domain
(Fig. 1). Characteristics of these images are given in Ta-
ble 1. These were top-of-atmosphere registered, radiomet-5

rically calibrated and orthorectified imagery (level L1TP -
T1), available at 30 m spatial resolution in the visible to
short-wave infrared since 2013 (Wulder et al., 2019; USGS,
2015). We selected scenes from the post-monsoon period
only (September to November) in order to minimize cloud10

and snow cover occurrence (Bookhagen and Burbank, 2006).
In addition, Landsat scenes across the domain were selected
around the same date as much as possible to minimize
seasonal differences in surface conditions, notably seasonal
changes in pond occurrence (Miles et al., 2017). All cho-15

sen images were acquired around the same time of the day
(05:00 UTC time), with similar solar azimuth (∼ 143◦) and
zenith angle (∼ 30◦). This is important to ensure that differ-
ences in surface conditions were minimal. Where the 2015
images had too much cloud or snow, we selected images for20

the same season in 2014 and 2016 (Table 1). We acknowl-
edge that this choice may introduce some uncertainties due
to the temporal difference, which we discuss later (Sect. 4.6).

The Landsat 8 OLI scene from Khumbu (30 September 2015)
was chosen as reference for method development and test- 25

ing. We also performed a second spectral unmixing on an
additional 2016 Landsat 8 OLI scene for Lahaul–Spiti in the
western Himalaya (Table 1) in order to have an analysis that
was coincident with the high-resolution data used to validate
the supraglacial pond mapping within this region. 30

For calibration and validation of the spectral unmixing
products at specific locations, we used a combination of high-
resolution optical imagery from Pléiades and Planet (Ta-
ble 1). The Pléiades 1A satellite sensor acquires tri-stereo
high-resolution data (0.5 m spatial resolution in the panchro- 35

matic band and 2 m in the multispectral bands, blue to near-
infrared), with 20 km image swath at nadir (Table 1). Three
Pléiades scenes from 2015 (7, 19 and 20 October) covered
the north, north-east, and south-east parts of Khumbu (Rieg
et al., 2018) and offered the closest match to the date of 40

the reference Landsat image (30 September 2015) (Fig. 1);
these Pléiades scenes were cloud-free and snow-free over the
debris-covered part of the glaciers. The scenes were provided
as three sets of triplets of primary data (1A) and were or-
thorectified in the Leica Photogrammetry Suite in ERDAS 45

Imagine 2013 (ERDAS, 2010TS10 ) using the Pléiades Ra-
tional Polynomial Coefficient model and the Pléiades DEM
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Table 1. Satellite imagery used in this study.

Sensor Path/row Product Date Bands Cell size (m) Swath width (km) Usage

Landsat 8 OLI

137/41

L1TPT1

25 Nov 2014 Band 1 Visible

30 185 Spectral unmixing

138/41 19 Nov 2015 0.43–0.45 µm
139/41 9 Oct 2015 Band 2 Visible
140/41 30 Sep 2015 0.450–0.51 µm
141/40 7 Oct 2015 Band 3 Visible
142/40 1 Nov 2016 0.53–0.59 µm
143/40 5 Oct 2015 Band 4 Red
144/39 10 Sep 2015 0.64–0.67 µm
145/39 3 Oct 2015 Band 5 Near-IR
146/38 8 Sep 2015 0.85–0.88 µm
147/37 15 Sep 2015 Band 6 SWIR 1
147/38 15 Sep 2015 1.57–1.65 µm
147/38 19 Oct 2016 Band 7 SWIR 2

2.11–2.29 µm

Pléiades – Level 1A

7 Oct 2015 Blue 430–550 nm

2 20

Visual checking of
19 Oct 2015 Green 490–610 nm Landsat endmembers;
20 Oct 2015 Red 600–720 nm pond validation

Near IR 750–950 nm (Khumbu area)

RapidEye Level 3A 9 Oct 2015

Green 520–590 nm

5 77

Visual checking of
Red 630–685 nm Landsat endmembers
Red edge 690–730 nm (Khumbu area)
Near-IR 760–850 nm

PlanetScope Level 3A

19 Oct 2016 Blue 455–515 nm

3 24.6× 16.4

Additional pond
20 Oct 2016 Green 500–590 nm validation (Lahaul–

Red 590–670 nm Spiti area)
Near IR 780–860 nm

(1 m) previously generated using semi-global matching (Rieg
et al., 2018). The individual image scenes were mosaicked to
a single image using nearest neighbour at 2 m spatial reso-
lution. In addition, a RapidEye level 3A analytic ortho-tile
from 9 October 2015 from Planet (Planet_Team, 2017TS11 )5

was used in addition to Pléiades in the Khumbu in order to
cover a wider region to better overlap the Landsat scene.
This RapidEye scene consists of orthorectified, surface re-
flectance data at 5 m spatial resolution and five multispectral
bands, projected to UTM coordinates. A PlanetScope ortho-10

tile from 19 October 2016 (3 m spatial resolution, 4 multi-
spectral bands) was used in the Lahaul–Spiti area to validate
the ponds resulting from unmixing the 2016 Landsat 8 scene
for this region (Table 1). Both RapidEye and PlanetScope
tiles obtained from Planet were mosaicked to single scenes15

using nearest neighbour. These have a stated positional accu-
racy of < 10 m, reported as root mean square error, RMSE
(Planet_Labs, 2021TS12 ).

We co-registered all high-resolution images and the cor-
responding Landsat 8 OLI images using the Co-registration20

of Optically Sensed Images and Correlation (COSI-Corr)
routine (Leprince et al., 2007) implemented in ENVI 5.5
Classic (L3Harris Geospatial, Boulder CO). For the Pléi-
ades image, after co-registration with 20 tie points and a
second-order polynomial transformation (RMSE= 1.3 m),25

image displacements were−0.16 m in the E/W direction and
0.12 m in the N/S direction. The Planet RapidEye and Plan-
etScope scenes were co-registered on the Landsat 8 OLI with
15 and 10 tie points (RMSE= 5 and 1.6 m, respectively),
yielding offsets of ∼ 1.1 to 1.7 m in the E/W direction and 30

0.09 to 0.5 m in the N/S direction after co-registration. These
offsets were below the spatial resolution of all scenes (2–
5 m).

2.3 Atmospheric and topographic corrections

All Landsat 8 OLI scenes were corrected to minimize at- 35

mospheric effects due to scattering or absorption from at-
mospheric gases, aerosols and clouds. We used the open-
source Atmospheric and Radiometric Correction of Satel-
lite Imagery (ARCSI v 3.1.6) routine based on the 6S al-
gorithm (Vermote et al., 1997). We applied the STDSREF 40

option in ARCSI with the shadow option, which provided
standardized surface reflectance products for all the scenes
where deep shadows were masked out as NoData. ARCSI
allows for global and local viewing and solar geometries us-
ing physically based illumination and reflectance corrections 45

based on topographic data (Shepherd and Dymond, 2003),
a specified atmospheric profile, an aerosol optical thickness
(AOT) value and sensor geometry. These settings are impor-
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tant for minimizing differences in surface conditions among
the various scenes. The AOT value was automatically derived
in ARCSI by a numerical inversion of the surface reflectance
on an image basis using the simple dark object subtraction
technique (DOS) from the blue band, yielding an AOT of5

0.05 for the 30 September 2015 Khumbu scene. To validate
the performance of the DOS technique for the atmospheric
profile representation in our study area for this date, we val-
idated the estimated AOT against level 1.5 data at reference
wavelength of λ= 500 nm aerosol size from AERONET10

(https://aeronet.gsfc.nasa.gov/, last access: TS13 ) (Giles et al.,
2019) and against daily forecast global reanalysis of total op-
tical depth at multiple wavelengths from the Copernicus At-
mospheric Monitoring Service (CAMS) (https://atmosphere.
copernicus.eu/catalogue#/, last access: TS14 ). The AOT val-15

ues obtained using the DOS method (0.05) were consistent
with the ones calculated from AERONET and CAMS (0.07
and 0.05, respectively). In the Himalaya, we can generally
assume relatively clean atmospheres and thus consider that
low AOT values are reasonable (P.TS15 Bunting, Aberyst-20

wyth Univ., personal communication, February 2021). Our
choice of a constant AOT value in high environments is
in line with findings from other studies (Gillingham et al.,
2013; Matta et al., 2017). Surface topography used for the
atmospheric and topographic corrections was based on the25

ALOS Global Digital Surface Model (AW3D30 version 2.2,
at 30 m) (JAXA, 2019TS16 ), constructed from data acquired
from 2006 to 2011. The vertical accuracy of ∼ 10 m in east-
ern Nepal (Tadono et al., 2014) is superior to that of Shuttle
Radar Topography Mission (SRTM) DEM (23.5 m, reported30

by Mukul et al., 2017), because it contains fewer data voids
and provides better shadow rendering in our area.

2.4 Supraglacial debris cover data

In this study, we constrained our analysis over supraglacial
debris surfaces, extracted from the database of global distri-35

bution of supraglacial debris cover (Scherler et al., 2018) and
referred to hereinafter as the “SDC”. Debris-covered glacier
outlines in this dataset were derived from Landsat 8 OLI
and Sentinel-2 data using automated approaches on Google
Earth Engine by excluding clean ice and snow from glacier40

areas within the limits of the Randolph Glacier Inventory
(RGI v.6) (RGI_Consortium, 2017TS17 ). Outlines span the
period 1998 to 2001 for the central and eastern Himalaya,
the year 2002 for the western Himalaya (monsoon-dry tran-
sition zone) and mostly the year 2010 for glaciers in China.45

In this study, the outlines obtained from the SDC dataset
required pre-processing because supraglacial ponds along
with other surfaces such as nunataks were represented as
“holes” in this dataset. This caused “NULL geometry” errors
due to unclosed polygons, duplicated vertices, etc. We fixed50

these errors in the SDC polygons using the Repair Geome-
try command in ArcGIS v10.8., in order to “fill” the holes
so that these were included in the SDC polygons. For the test

Khumbu area, we removed supraglacial debris polygons with
an area less than 0.01 km2, which proved to be erroneous ar- 55

eas upon visual examination, i.e. sliver polygons or isolated
bare land pixels. Such unwanted small polygons typically re-
sult from polygon overlays and do not represent a physical
entity on the ground (Delafontaine et al., 2009).

2.5 Spectral unmixing background and set-up 60

In remote sensing, the reflectance spectrum of any image
pixel represents an average of the materials on the ground,
present in various proportions within that pixel (Keshava and
Mustard, 2002). These “mixed pixels” are a common oc-
currence and are especially a concern in low- to medium- 65

resolution imagery, including Landsat. In the case of debris-
covered glacier tongues, constituent materials include vari-
ous types of rock debris and/or ice cliffs, supraglacial ponds,
and vegetation in various proportions (Rounce et al., 2018).
Spectral unmixing techniques serve to quantify mixed spec- 70

tra and to decompose each pixel into its constituent ma-
terials based on their characteristic, distinct spectral signa-
tures. These materials are referred to as “pure” endmembers
(Painter et al., 2009; Keshava and Mustard, 2002) and are ei-
ther extracted from the image itself before unmixing using 75

unsupervised techniques or supplied by the user using a pri-
ori knowledge (Painter et al., 2009; Keshava and Mustard,
2002; Dixit and Agarwal, 2021). The relationship between
the fractional abundance of each material and its spectra is
most often defined as a linear combination of the spectral re- 80

flectance of the distinct constituent materials. This is imple-
mented as linear mixing models (LMMs), used for example
to distinguish among vegetation, rock or different snow grain
sizes (Painter et al., 2009). LMMs are easy to implement and
are therefore widely used (Dixit and Agarwal, 2021; Keshava 85

and Mustard, 2002). In contrast, nonlinear mixing models
take into account multiple scattering between surfaces and
are used in forested areas where canopy height or particu-
late mineral mixtures are in close association (Roberts et al.,
1993). They are more realistic but are also more difficult to 90

implement (Dixit and Agarwal, 2021).
To yield physically meaningful results, fractions obtained

from spectral unmixing should ideally comply with two ma-
jor constraints: (a) the non-negativity (or positivity) con-
straint (i.e. fractions should not be negative) and (b) the sum 95

to unity (i.e. for each pixel, fractions should add up to 1)
(Keshava and Mustard, 2002). The non-negativity condition
is recommended because negative reflectance values have no
physical meaning, and the sum-to-unity constraint is recom-
mended when very dark endmembers such as shadows are 100

targeted or for unmixing radiance or thermal infrared emis-
sivity. Models that comply with both conditions (called “fully
constrained models”) are difficult to achieve because they re-
quire perfect knowledge of the system, which is rarely feasi-
ble. Furthermore, fully constrained models have been shown 105

to produce unrealistic fractions in poorly defined areas or ar-
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eas of low illumination (Cortés et al., 2014). In this study, we
applied a LMM with endmembers extracted from the Land-
sat 8 OLI image itself, and we constrained our analysis over
the supraglacial debris cover only to reduce model complex-
ity. We used the LMM implementation in the ENVI 5.5 soft-5

ware (L3Harris Geospatial, Boulder CO).

2.5.1 Endmember selection and spectral signatures

The selection of endmembers is crucial in determining the
accuracy and reliability of the spectral unmixing (Song,
2005; Dixit and Agarwal, 2021), and it requires some10

trial and error as well as a priori knowledge. We selected
the endmembers within the debris-covered areas in the
Khumbu domain, based on the reference Landsat 8 OLI
scene (30 September 2015). Prior to this, we performed a
forward minimum noise fraction transform on the Landsat15

scene (Green et al., 1988), which consists of a linear trans-
formation of the data based on principal component analysis
and allows us to estimate noise in the bands. All bands had
eigenvalues > 1, so we determined the dimensionality of the
Landsat data as n= 7. We used the unsupervised pixel purity20

index routine in ENVI to find pure pixels in an automated
manner. This routine outputs a data cloud where the value
of each point indicates the number of times each pixel was
marked as extreme, thus representing pixels with the highest
occurrence in the image. We optimized the pure pixel extrac-25

tion using various numbers of iterations (20 000 to 50 000)
with thresholds ranging from 2 to 3 (i.e. 2 to 3 times the
noise level in the data) until all pure pixels were detected.
Larger thresholds identify more extreme pixels, but they are
less likely to be pure endmembers. Pure pixels were identi-30

fied on the Landsat 8 OLI scene as corresponding to six end-
members: clean ice, dry vegetation, clouds, light debris, dark
debris and turbid water (Fig. 3). These were checked against
co-registered Pléiades and RapidEye false colour composites
in the Khumbu in order to minimize any occurrence of mixed35

pixels.
The spectra of the six endmembers (Fig. 4a) were statis-

tically separable based on the Jeffries–Matusita and trans-
formed divergence separability measures (Richards, 2013)
(values > 1.9–2.0). We defined both light and dark de-40

bris endmembers on the basis of their spectral differences
(Fig. 4a), also noted in other studies (Casey et al., 2012;
Kneib et al., 2020). We visually compared these spectral sig-
natures with those we acquired previously in the field on Mer
de Glace (French Alps) using an SVC HR-1024 spectrome-45

ter (350 to 2500 nm) (Racoviteanu and Arnaud, 2013TS19 )
(Fig. 4b), as well as with supraglacial debris spectra from
other papers (Naegeli et al., 2015, 2017; Casey and Kääb,
2012). To minimize the number of endmembers, we made
several choices: (a) we did not consider any snow; (b) we as-50

sumed the supraglacial ponds to be mostly of turbid type, i.e.
those containing larger quantities of suspended sediments.
We based this choice on results from Matta et al. (2017),

who reported 52 % of ponds in the Himalaya to have grey
waters and 24 % blueish waters; the water spectra in Fig. 4a 55

corresponds well with field-based spectra for other turbid
lakes in the Khumbu, such as Chola Lake, reported in their
study; (c) based on our field observations of high-altitude
vegetation in the Khumbu (Fig. 3d), we defined the vege-
tation endmember as “dry vegetation”, whose spectral sig- 60

nature (a) corresponds roughly to the graminoid shrubs or
overgrown vegetation with a grass-like appearance typically
found at high altitudes (Wehn et al., 2014); (d) deep shad-
ows were previously removed during the topographic correc-
tions with ARCSI and assigned to NoData so they were not 65

considered as an endmember. We ran the LMM for various
combinations and numbers of endmembers (three to six end-
members) and recorded the model RMSE for each combina-
tion. We examined the residuals (RMSE band) provided from
the unmixing to determine areas of missing or incorrect end- 70

members; when this contained distinct features, it indicated
poorly defined endmembers. We excluded the endmembers
one by one and ran the LMM until we obtained a “salt and
pepper”CE4 with no distinct features, indicating that no end-
members were missing or misidentified. 75

2.5.2 Surface classification from fractional maps

LMM routines result in a multi-band raster containing pixel-
by-pixel fractional cover values for each class, which ideally
range from 0 to 1. When we obtained negative values for a
class, we assumed that the material was missing and forced 80

these values to zero. Positive values were normalized by di-
viding each endmember fraction by the sum of the endmem-
bers, so that the sum of the fractions of the various materials
in each pixel added up to 1. This is a common procedure
suggested by previous studies (Rosenthal and Dozier, 1996; 85

Quintano et al., 2012; Cortés et al., 2014) when the sum-to-
one condition is not satisfied.

For further analysis, we require maps of the surfaces rather
than just a numerical value of area, so we classified the 30 m
fractional maps by applying a threshold α to produce bi- 90

nary maps for each class. Previous studies used a minimum
threshold of α = 0.4 or 0.5; i.e. a pixel was assigned to a
class if it contained a fraction of 40 %–50 % to 100 % of that
constituent material (Hall, 2002TS20 ). The thresholds varied
by class, because any pixel contains a mixture of materials in 95

various proportions (Sect. 3.1). Pixels which satisfy two dif-
ferent thresholds are categorized as “unclassified”. For the
supraglacial ponds in the Khumbu, we defined the water
threshold quantitatively based on comparison of the LMM-
derived pond areas against those derived from Pléiades for 100

seven glaciers (Sect. 2.6), and we evaluated the sensitivity of
the chosen water threshold. For the other classes, the thresh-
olds were adjusted carefully based on visual interpretation
against the Pléiades and RapidEye images in the Khumbu.
The thresholds established for the Khumbu were applied over 105

the entire Himalaya domain.
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Figure 3. Types of surfaces present in the study area: (a) light debris cover (quartz, feldspar); (b) darker schistic debris with ice cliff; (c) clean
ice with crevasses in the glacier ablation area; (d) graminoid shrub type vegetation (dry); (e) supraglacial lakes with different turbidity levels;
(f) valley clouds. All photos were taken in the Khumbu region. Photo credit: Adina E.TS18 Racoviteanu.

Table 2. Summary of accuracy metrics per class for the Khumbu area, calculated based on the confusion matrix, including true positives
(TP), false positives (FP), false negatives (FN) and true negatives (TN).

Class TP FP FN TN Recall Precision F score

Clean ice 1 0 13 112 0.07 1.00 0.13
Water (turbid) 32 2 6 81 0.84 0.94 0.89
Debris (dark) 29 23 0 84 1.00 0.56 0.72
Debris (light) 21 8 9 62 0.70 0.72 0.71
Clouds 5 3 5 92 0.50 0.63 0.56
Vegetation (dry) 25 2 5 88 0.83 0.93 0.88

2.5.3 Accuracy assessment

The performance of the LMM was assessed both qualita-
tively (on the basis of visual interpretation and compari-
son with surfaces visible on the high-resolution Pléiades and
RapidEye) and quantitatively (using established measures,5

i.e. RMSE, fraction value abnormalities and the residual
band output in the LMM) (Gillespie et al., 1990). To quanti-
tatively assess the ground accuracy of the LMM, we manu-
ally digitized 151 test pixels covering all six classes (10–38
pixels per class) on false colour composites of the Pléiades10

and RapidEye images in the Khumbu using a simple ran-
dom sampling strategy. The reference points were chosen so
that they were well distributed across the Khumbu (Fig. 2)
and were taken to represent ground truth. The predicted class
was compared to the ground truth at each pixel to generate15

a confusion matrix and to compute the overall accuracy of
the model (percent pixels classified correctly). We also re-

port class-specific metrics as true positives (number of pixels
correctly classified and found in a class, TP), true negatives
(number of correctly classified pixels that do not belong to a 20

class, TN), false positives (number of pixels that were incor-
rectly assigned to a class, FP) and false negatives (number of
pixels that were omitted from a class, FN) (Table 2). We cal-
culated three metrics which are suitable for multi-class clas-
sification routines (Sokolova and Lapalme, 2009) as follows 25

(Eqs. 1–3):

Precision=
TP

TP+FP
, (1)

Recall=
TP

TP+FN
, (2)

F score=
2TP

2TP+FP+FN
. (3)

Precision measures the agreement between ground data and 30

classified data, i.e. the probability that a pixel classified as

https://doi.org/10.5194/tc-15-1-2021 The Cryosphere, 15, 1–31, 2021
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Figure 4. (a) Spectral signatures of endmembers extracted from
Landsat 8 OLI bands 1 to 7 (30 September 2015 Khumbu image)
after the atmospheric and topographic corrections; (b) field spectra
from the debris cover part of Mer de Glace Glacier (France) shown
for comparison purposes only.

water is indeed water on the ground. Recall measures the ef-
fectiveness of the classifier to identify a pixel in the class of
interest, i.e. the percentage of results correctly classified by
the algorithm. F score balances precision and recall as the
harmonic means of the two and measures the relation be-5

tween the pixels on the ground and those classified, i.e. the
model accuracy for each class. For all metrics, a poor score
is 0.0 and a perfect score is 1.0.

2.6 Validation of supraglacial ponds with
high-resolution data10

We validated the performance of the spectral unmixing for
supraglacial pond areas on the basis of high-resolution im-
agery for 6 to 7 debris-covered glacier extents at each of the
three sites shown in Fig. 1. For the Khumbu and Lahaul–Spiti
glaciers, supraglacial pond areas were mapped from Pléi-15

ades and PlanetScope imagery, respectively (Table 1), using
OBIA techniques (Blaschke et al., 2014) implemented in the
ENVI Feature Extraction Module (Harris_Geospatial, 2017).
In the Khumbu, the Pléiades images were acquired several
weeks apart from the date of the Landsat scene in some parts20

of the region (see Table 1), but we assume minimal lateral
expansion between the two dates, as discussed by Watson et
al. (2018). For the Langtang region, we validated our LMM-
derived pond areas with those reported for seven glaciers
based on SPOT7 satellite imagery in Steiner et al. (2019).25

The OBIA method used for Khumbu and Lahaul–Spiti con-

sisted in a segmentation-only extraction workflow on the vis-
ible bands of Pléiades and/or PlanetScope, with an edge algo-
rithm (to delineate the pond segments), a fast lambda setting
(to merge adjacent segments with similar colours and bor- 30

ders) and a texture kernel size of 3 pixels (suitable for seg-
menting small areas). The scale and merge levels were ad-
justed against colour composites to prevent over-segmenting
and to combine different segments into one pond. The result-
ing polygons were further manually corrected (split, merged 35

or digitized) for any missing and/or shaded areas beneath ice
cliffs as described in Watson et al. (2017a). Our aim was not
to construct a sophisticated OBIA classification scheme but
rather to use the feature extraction module as a time-saving
strategy and to add objectivity to the manual digitization. 40

2.7 Auxiliary region-wide datasets

We explored the dependency of the resulting supraglacial
pond cover incidence on topographic variables: elevation
bands above the termini, slope and aspect of the debris cover
areas. These were calculated over the debris-covered parts 45

of the glaciers on the basis of the AW3D30 DEM (30 m).
Only glacier polygons with area larger than 1 km2, result-
ing in a subset of 408 glaciers, were selected from the SDC
database over the Himalaya domain for an in-depth glacier-
by-glacier analysis. The area threshold was applied in order 50

to remove spurious small bare land patches or isolated debris
pixels present in the SDC database. While the vast majority
of glaciers in the Himalaya are smaller than 1 km2, these are
mostly clean glaciers (Racoviteanu et al., 2015). In addition
to the glacier-by-glacier basis analysis, we also binned the 55

topographic variables, i.e. 100 m elevation, 2◦ slope and 45◦

aspect, and summarized the pond incidence in each bin.
We explored spatial patterns in the pond incidence and

supraglacial vegetation with respect to regional climate
gradients, average glacier mass balance and average sur- 60

face velocity. Climate data (total precipitation and aver-
age temperature) were obtained from ERA5-Land, which
provides gridded monthly average means at 0.1◦× 0.1◦ of
land surface properties (Copernicus Climate Change Ser-
vice, 2019TS21 ) (Muñoz-Sabater, 2019TS22 ). Gridded glacier 65

thickness change at 30 m resolution for the period 2000–2019
was obtained from Shean et al. (2020). Glacier surface veloc-
ities for the period 2013–2015 based on Landsat data were
obtained from Dehecq et al. (2015). All topo-climatic vari-
ables were binned and averaged over a 1◦× 1◦ grid as used 70

in other studies (e.g. Brun et al., 2017; Dehecq et al., 2019) to
explore the topo-climatic controls on spatial trends in pond
and vegetation incidence.
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3 Results

3.1 Fractional maps

Here we present results of the unconstrained LMM, because
this had a lower RMSE (0.6 %) compared to the partially con-
strained model run (RMSE of 1.5 %). The normalized frac-5

tional maps of the six surface types are presented in Fig. 5;
fractional values ranged from 0.004 to 1. Fractional water
values greater than 0.5 correspond to supraglacial ponds, vis-
ible for example at the termini of Ngozumpa and Khumbu
glaciers (Fig. 6a and b). Light and dark debris was identi-10

fied with a threshold of 0.25 and 0.40, respectively, defined
visually on the basis of the Pléiades image. Dry vegetation
patches generally exhibited pixel fractions greater than 0.65.
Pixels with abnormally high positive fractional vegetation
values were found in areas of healthy green vegetation and/or15

bare terrain, which should not be part of the debris-covered
tongues, as will be discussed later (Sect. 4.5). Cloud pixels
display fractional values greater than 0.45, although some
pixels were mixed with debris, particularly at cloud shadow
areas. For clean ice, fractional values were rather low (0.20)20

and ranged from 0 (areas which might have some degree of
dirty, dark ice with a lower albedo) to 1 (small number of
clean ice pixels found in the upper areas of supraglacial de-
bris).

3.2 Accuracy of the LMM-based classification for the25

Khumbu

Accuracy measures presented in Table 2 for the Khumbu do-
main show that errors were not evenly distributed among
classes. For the water and vegetation classes, recall score
was 0.83 to 0.84, respectively, with a precision of 0.94 and30

0.93, respectively (Table 2). For these classes, the LMM
achieved a balance of precision and recall metrics, with a
high F score of ∼ 0.9 indicating an accurate model. For the
debris classes, the model was reasonable but not outstand-
ing, with an F score of ∼ 0.7 and lower precision score for35

dark debris (0.56) compared to light debris (0.72) (Table 2).
This suggests that in the case of dark debris, the LMM model
was less accurate than light debris, because pixels from other
classes (clean ice, water and light debris) got mistakenly as-
signed to this class. Clouds were classified with low preci-40

sion and low recall scores (F score of ∼ 0.5), which means
that the LMM performed relatively poorly for this class and
it also missed 50 % of the cloud pixels. There was confu-
sion between clean ice and cloud pixels, i.e. clean ice pixels
were mistakenly included in the cloud class. Clean ice was45

the most poorly classified, with a recall score close to 0 and
F score of 0.13; one ice pixel was correctly identified, but
other surfaces were confounded with ice. We attribute this
to the poorly defined ice class in the model data (i.e. lim-
ited number of pure ice pixels used to extract the spectral50

signature). Based on these measures, we note that overall

Table 3. Sensitivity analysis of the supraglacial pond area for the
seven reference glaciers in the Khumbu domain, obtained using var-
ious thresholds applied to the fractional water maps.

Glacier Surface area (km2)

Fractional Fractional Fractional
water water water
> 0.4 > 0.45 > 0.5

Khumbu 0.45 0.32 0.20
Lhotse 0.07 0.06 0.05
Lhotse Nup 0.03 0.03 0.02
Ngozumpa 0.79 0.66 0.50
Nuptse 0.09 0.05 0.03
Changri Nup 0.25 0.19 0.09
Gaunara 0.16 0.12 0.07
Total pond coverage 1.8 1.4 1.0

the LMM most accurately classified the water and vegeta-
tion classes, with reasonable performance for the light de-
bris class but poor performance for clean ice and clouds. The
overall accuracy of the LMM-based classification of the six 55

surfaces was 75 %; however, this is a rather coarse metric,
and it does not indicate the specific performance of the model
for each class, so we do not use this here as evaluation of the
accuracy.

3.3 Supraglacial pond thresholds and validation 60

The sensitivity analysis of the pond areas obtained from
LMM fractional maps with various thresholds (Table 3) in-
dicates that there was up to 40 % variability in total pond
area when compared to Pléiades-based ponds, depending
on the glacier. A threshold of 0.5 applied to the water 65

class (fractional water > 0.5= supraglacial ponds) yielded
the best agreement with the total pond areas for the seven
glaciers, obtained from OBIA mapping on the Pléiades im-
age (1.0 km2 compared to 1.1 km2 for the total coverage, re-
spectively, or a 9 % difference) (Table 4). For the Khumbu 70

Glacier, LMM with a threshold of 0.5 yielded a pond area of
0.20 km2 versus 0.23 km2 from Pléiades (Table 4), which is
in agreement with the area reported by Watson et al. (2017b)
(0.24 km2) using the same Pléiades image (7 October 2015).

In the Lahaul–Spiti region, for the seven glaciers we inves- 75

tigated, LMM yielded a total pond area of 0.14 km2 (0.31 %
of the total debris-covered area of the glaciers). The area
mapped from PlanetScope image from the same date (19 Oc-
tober 2016) using OBIA yielded 0.10 km2 (0.22 % of the
debris-covered area) (Table 4). 80

In the Langtang region, for the six glaciers investigated in
Steiner et al. (2019), our LMM-derived pond areas yielded
a total of 0.17 km2 pond area (0.64 % of the debris-covered
area). Steiner et al. (2019) obtained a total pond area of
0.21 km2 (0.86 % of the debris-covered area) for the same 85

glaciers based on manual digitization by multiple analyses
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Figure 5. Fractional maps obtained from the LMM routine for a subset of the Khumbu area. Colour bars show the percentage covered by
each type of material on a pixel-by-pixel basis: (a) clean ice; (b) turbid water; (c) dark debris; (d) light debris; (e) clouds; (f) dry vegetation.

from SPOT7 data for the same date as the Landsat. LMM
underestimated the pond area by 0.05 km2 (19 %), which is
within the uncertainty range (21 %) reported for the ponds in
the Langtang area by Steiner et al. (2019).

Visually, the spectrally unmixed pond pixels correspond5

well with the validation dataset, although there is a differ-
ence in the representation of the pond surfaces due to the spa-
tial resolution (30 m Landsat vs. 2 m Pléiades) (Fig. 6). For
Lhotse Glacier, the supraglacial pond area was slightly un-
derestimated compared to Pléiades (Table 5) as can be seen10

on Fig. 6. This is perhaps due to the predominance of darker
debris type on this glacier, some of which was confused with
water, as shown by the accuracy metrics (Table 2). Simi-
larly, in the Lahaul–Spiti region, locations of the supraglacial
ponds correspond well between LMM and PlanetScope on15

Bara Shigri Glacier (Fig. 6c), but the small ponds are not
identified using the water threshold of 0.5, which assumes
that more than 50 % of the pixel area is covered by water.

3.4 Application to regional non-glacier lake databases

While supraglacial ponds are the focus of this study, we20

mention that LMMs can also be parameterized to map other
lakes, by masking the debris-covered glacier areas and re-
placing the turbid water endmember with the clear water end-
member, which has a lower spectral signature (Fig. 4a). This

is beyond the purpose of this study, but we provide an il- 25

lustration of such an output for the terminus of Ngozumpa
Glacier (Fig. 7). We present the ponds and lakes on the de-
bris cover and outside it for comparison with two existing
glacial lake databases constructed from the same year (2015
Landsat): the HMA v.1 lake dataset, derived using a normal- 30

ized difference water index (Shugar et al., 2020), and HI-
MAG constructed using a modified NDWI and manual cor-
rections (Chen et al., 2021). A comparison with other global
databases such as the Global Surface Water dataset (Pekel et
al., 2016) was not undertaken here, as this has already been 35

shown to underestimate the water occurrence over most of
the Himalaya by Chen et al. (2021). With regards to HMA
v.1 and HI-MAG datasets, Fig. 7 shows that the lake out-
lines obtained from spectral unmixing for the supra-glacier
ponds at the terminus of Ngozumpa Glacier and the Gokyo 40

Lakes outside the glaciers are outperforming both of the ex-
isting databases in this area. Our lake extents are consistent
with the HMA v.1 lake extents outside debris cover (Fig. 7),
and the surface area estimates agree quite well; for exam-
ple, we calculated a difference of 5 % in the summed pond 45

area over the three Gokyo Lakes (1.15 km2 in our estimates
vs. 1.09 km2 in HMA v.1). The slight underestimate in the
latter is due to simplification of the raster edges in the vec-
tor conversion process, visible in the lake extents. With re-
gards to supraglacial ponds, for example Spillway Lake at 50
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Table 4. Validation of the Landsat spectral unmixing for supraglacial pond coverage at selected glaciers at three sites across the Himalaya
domain, shown in Fig. 1.

Khumbu Landsat 8 spectral unmixing Pléiades OBIA

Glacier Debris area Pond area % Date Pond area % Date
(km2) (km2) coverage (km2) coverage

Khumbu 7.50 0.20 2.80

30 Sep 2015

0.21 2.70

7 Oct 2015

Lhotse 5.20 0.05 0.90 0.08 1.70
Lhotse Nup 1.50 0.02 1.00 0.02 1.60
Ngozumpa 19.40 0.50 2.70 0.59 3.00
Nuptse 2.90 0.03 0.90 0.03 1.00
Changri Nup & Shar 7.30 0.09 1.30 0.11 1.50
Gaunara 5.20 0.07 1.40 0.09 1.70
Total 49.00 1.00 2.04 1.10 2.24

Langtang Landsat 8 spectral unmixing SPOT 7 manual digitization (from Steiner et al., 2019)

Lirung 1.44 0.00 0.00

7 Oct 2015

0.00 2.70

6 Oct 2015

GhanaCE5 0.69 0.00 0.00 0.00 1.70
Langshisha 4.46 0.01 0.20 0.01 1.60
Langtang 16.17 0.15 0.92 0.18 3.00
SabalchumCE6 3.44 0.01 0.33 0.02 1.00
Lirung 1.44 0.00 0.00 0.00 1.50
Total 26.20 0.17 0.64 0.21 0.86

Lahaul–Spiti Landsat 8 spectral unmixing PlanetScope OBIA

Yichu CE7 5.7 0.002 0.000

19 Oct 2016

0.001 0.000

19 Oct 2016

Dibi KaCE8 5.6 0.004 0.000 0.009 0.000
Bara Shigri 21.3 0.126 0.027 0.076 0.016
Sara Umga 7.8 0.007 0.001 0.012 0.001
G077666E32079N 0.7 0.000 0.000 0.000 0.000
G077559E32106N 3.2 0.000 0.000 0.000 0.000
G077698E32078N 1.2 0.001 0.000 0.000 0.000
Total 45.5 0.14 0.31 0.10 0.22

Table 5. Composition of the seven debris-covered tongues in Khumbu, expressed as percent coverage of each material with respect to the
debris-covered zones of each glacier.

Glacier Clean ice (%) Water turbid (%) Debris dark (%) Debris light (%) Cloud (%) Vegetation dry (%)

Khumbu 0.4 2.8 17.2 79.3 0.0 0.3
Lhotse 0.2 0.9 91.1 7.5 0.0 0.4
Lhotse Nup 0.7 1.0 69.1 29.2 0.0 0.0
Ngozumpa 0.4 2.7 54.2 42.2 0.1 0.5
Nuptse 0.3 0.9 2.7 95.8 0.0 0.3
Changri Nup 1.4 1.3 76.0 20.9 0.0 0.5
Gaunara 0.9 1.4 65.6 30.5 0.0 1.6
Average 0.6 1.6 53.7 43.6 0.0 0.5

the terminus of Ngozumpa Glacier, our spectral unmixing
technique maps most of these lakes, while both HMA v.1
and the HI-MAG datasets fail to detect all the supraglacial
ponds. The HI-MAG detects more of the surface of Spillway
Lake compared to HMA v.1, but the outlines are simplified5

and lack precision with respect to Landsat pixels (Fig. 7).

We did not simplify the lake and pond polygons, as this can
introduce significant area errors.
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Figure 6. Comparison of the Landsat sub-pixel classified fractional
ponds (dark blue) with OBIA pond outlines (light blue) based on
high-resolution data for the termini of three glaciers: (a) Ngozumpa
Glacier, (b) Khumbu Glacier and (c) Bara Shigri Glacier. The back-
ground images are colour composites (bands 1,2,3) of Pléiades im-
agery (a, b) and PlanetScope imagery (c). Glacier outlines are from
the SDC dataset (Scherler et al., 2018).

3.5 Composition of the debris cover glacier tongues:
glacier to regional scale

3.5.1 Khumbu domain

For the seven debris-covered glacier tongues in the Khumbu
(Fig. 8), the most prevalent materials detected using the5

LMM were dark and light debris, with an average of 53.7 %
and 43.6 % of the supraglacial debris area, respectively (Ta-
ble 5). The dark and light debris areas exhibit variable dis-
tribution patterns by glacier. For example, the debris-covered
tongue of Nuptse Glacier in Khumbu is mostly covered by10

light debris (> 95 % of its area), while the opposite is true

Figure 7. Comparison of the fractional ponds from this study with
two recent lake datasets based on 2015 Landsat imagery (same
as our study) for the Spillway Lake at the terminus of Ngozumpa
Glacier and the Gokyo Lakes, with the Landsat colour composite of
bands 5, 4 and 3 overlaid on shaded relief.

for Lhotse Glacier, which is mostly composed of dark de-
bris (> 91 %) (Table 5). Other glaciers in the eastern part of
Khumbu, i.e. Kangshung Glacier, exhibit alternating bands
of light and dark debris, where darker bands represent me- 15

dial moraines (Fig. 8).
Exposed ice was detected in small quantities in the

Khumbu, ranging from 0.2 % (Lhotse) to 1.4 % (Changri
Nup) with an average of 0.6 % of the debris-covered ar-
eas (Table 5 and Fig. 9). Patches of supraglacial vegetation 20

ranged from ∼ 0 % (Lhotse Nup Glacier) to 1.6 % (Gaunara
Glacier), with an average of 0.5 % over the seven tongues
(Table 5). Vegetation patches were found for several pixels
corresponding to the lateral moraine of Ngozumpa Glacier,
or larger patches at the terminus of Labeilong and Kazhenpu 25

glaciers in China (Figs. 8. and 10). The supraglacial pond
area in the Khumbu in 2015 ranged from 0.9 % (Lhotse
and Nuptse glaciers) to ∼ 3 % of the debris-covered area
(Ngozumpa and Khumbu glaciers), with an average of 1.6 %
over the seven debris-covered glacier tongues and glacier-by- 30

glacier variability (Table 5). The larger water coverage for
Ngozumpa and Khumbu glaciers is consistent with the pres-
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Figure 8. Composition of debris-covered glacier tongues shown
for two of the domains showing glaciers discussed in the text:
(a) subset of the Khumbu domain (NG: Ngozumpa Glacier; GA:
Gaunara Glacier; CN: Changri Nup Glacier; CS: Changri Shar
Glacier; KH: Khumbu Glacier; N: Nuptse Glacier; LN: Lhotse Nup
Glacier; L: Lhotse Glacier; KA: Kangshung Glacier; KZ: Kazhenpu
GlacierCE9 ; LA: Labeilong GlacierCE10 ) and (b) subset of the
Lahaul–Spiti area (BS: Bara Shigri Glacier; S: Sara Umga Glacier;
Y: Yichu Glacier; DK: Dibi Ka Glacier). Surfaces are shown on
shaded relief from the AW3D30 DEM, with debris cover glaciers
from the SDC dataset (Scherler et al., 2018). Note that the extent of
Changri Nup incorrectly includes the inactive part of the glacier in
this global dataset.

ence of large supraglacial ponds at the terminus of these two
glaciers shown on Fig. 6.

3.5.2 Himalaya domain

Here we consider patterns across the whole analysed moun-
tain range and also compare and contrast conditions in the5

four regions highlighted in Fig. 1. Light debris is preva-
lent over the entire Himalayan domain, comprising almost
3 times the extent of dark debris (60.9 % vs. 23.8 %, respec-
tively). There is a slight regional variability in the occurrence
of light debris, but all regions exhibit similar patterns in terms10

of the proportion of light and dark debris (Table 6). Glaciers

in the western part of the Himalaya are mostly composed of
supraglacial light debris, which presumably reflects the na-
ture of the underlying bedrock geology here (Searle et al.,
1987). 15

We detected a higher percent coverage of clean ice/snow
within the debris-covered area for the entire range (5.6 % of
the debris) with respect to the reference Khumbu domain
(0.6 % on average) (Table 6). At the date of the analysis
(September to October 2015), some of the debris-covered 20

glaciers in the eastern part (Bhutan) exhibited snow on the
upper parts of the supraglacial debris, perhaps due to early
snowfalls common in this area at this time of the year.

Cloud coverage amounted to 45 km2 (2.0 % of the debris-
covered area) over the entire range, with less coverage in 25

Lahaul–Spiti and Khumbu (1.6 % and 0.6 %, respectively)
compared to the Bhutan domain (6 %).

Supraglacial vegetation covered a total of 4.5 % of the
debris-covered parts of glaciers over the Himalaya domain,
with less coverage in the western part (Lahaul–Spiti, 1.6 % 30

of the debris cover) than in the central and eastern Himalaya
regions (Khumbu and Bhutan domains, at ∼ 3 %). We show
examples of the vegetation maps obtained from the LMM on
Kazhenpu Glacier in China in Fig. 10a. On other glaciers,
such as Labeilong Glacier (Fig. 10b), these values might 35

be slightly overestimated because the SDC dataset included
patches of healthy vegetation as part of the debris cover.

The supraglacial pond dataset over the Himalaya do-
main consists of a total of 18 325 ponds ranging in area
from 0.0009 to 0.002 km2. Ponds accounted for an area 40

of 47 km2 (2.1 % of the total supraglacial debris cover),
with marked regional variability among western Himalaya
(Lahaul–Spiti: 0.3 % of the supraglacial debris), central Hi-
malaya (Khumbu: 1.6 % and Manaslu: 2.6 %) and eastern Hi-
malaya (Bhutan: 4.9 %) (Table 6). 45

3.6 Glacier-by-glacier pond and vegetation coverage

The 408 debris-covered glacier tongues selected from the
SDC dataset for the in-depth analysis (cf. Sect. 2.7) ranged in
area from 1 to 37 km2, with an average area of 3.9 km2 and
a mean slope of 12.7◦. The supraglacial pond and vegeta- 50

tion coverage of these glaciers shows heterogeneous patterns
(Fig. 11a and b). Both supraglacial ponds and vegetation
cover a relatively small percent of the debris-covered glacier
areas in the western Himalaya (0 % to 2.5 %) compared to
the central and eastern parts. We note some clusters of higher 55

percentage occurrence of both ponds and vegetation in these
two regions (7.5 %–10 % for ponds and 20 %–40 % for vege-
tation, respectively) (Fig. 11a and b). The glacier-by-glacier
analysis of pond coverage with respect to minimum debris-
covered glacier elevation did not yield a clear trend, suggest- 60

ing that ponds do not occur necessarily on glaciers situated at
lower altitudes. Similarly, supraglacial vegetation coverage
did not display significant dependencies on either average
slope or minimum elevation of the debris-covered tongues.
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Figure 9. Ice pixels detected by the LMM at the surface of Ngozumpa Glacier in the Khumbu region. (a) Landsat 8 OLI false colour
composite bands 5, 4, 3 and unmixing results for ice, water and vegetation classes only; (b) Pléiades colour composite (bands 4, 3, 2) shown
for comparison, with vegetation shown as red shades. Ice cliffs display the typical crescent moon shape. White pixels in panel (a) correspond
to NoData in areas of topographic shadows, resulting from the topographic correction routine.

Table 6. Composition of the debris-covered glaciers over the entire Himalaya domain and four selected sub-domains along the monsoonal
gradient and for the entire domain, listed from west to east. Debris-covered glacier areas are based on the SDC dataset (Scherler et al., 2018).

Lahaul–Spiti Manaslu Khumbu Bhutan Entire domain

Area % Area % Area % Area % Area %
(km2) (km2) (km2) (km2) (km2)

Clean ice 10.2 5.0 7.1 6.9 2.7 0.9 10.1 7.8 126.5 5.6
Clouds 3.3 1.6 2.9 2.8 0.6 0.2 7.8 6.0 45.0 2.0
Debris (dark) 26.6 13.1 14.9 14.6 148.1 48.9 19.5 15.0 535.4 23.8
Debris (light) 151.4 74.4 70.1 68.6 130.2 43.0 83.1 64.1 1371.0 60.9
Turbid water 0.6 0.3 2.7 2.6 4.9 1.6 5.2 4.0 47.0 2.1
Vegetation (dry) 3.3 1.6 4.5 4.4 9.6 3.2 4.1 3.1 101.7 4.5
Unclassified 8 4 16 16 6.9 6 0.0 0.0 26.0 1.2
Total debris cover 204 100 118 100 303 100 130 100 2253 100

The analysis of pond coverage per 100 m elevation bands
over the entire range, however, shows clearer patterns than
the glacier-by-glacier results: 77 % of the pond area cover-
age occurs within 10 % elevation from the glacier termini,
and then pond density decreases exponentially towards the5

upper part of the debris-covered tongues (0.1 % of pond cov-
erage at 75 % elevation upwards from the termini) (Fig. 12a).
We note from Fig. 12a that the largest concentration of ponds
does not occur directly at the glacier termini but rather within
2 % of the elevation from the terminus, i.e. within 100 m10

above the minimum elevation. The exponential fit shown in
Fig. 12a could have useful predictive power but misses the
peak pond coverage that is typically found near the glacier
terminus, where ponds coalesce into large terminal lakes.

This implies that the exponential fit is useful for capturing 15

the ponds perched found above the terminus on thicker ice
but likely does not capture the water level representing the
hydrological base level in the depressions found in thinner
ice at the terminus (cf. Benn et al., 2012; Miles et al., 2017b).

The analysis of pond incidence with regards to slope 20

(Fig. 12b) shows that 38 % of the total pond area occurs
on 0 to 10◦ slope bins, with the maximum pond area cov-
erage found at slope bins averaging 4 to 6◦ (9 % of the pond
area). The pond incidence increases initially and then drops
on slopes > 8◦ (Fig. 12b), which is to be expected because 25

at steeper slopes meltwater can drain away (Reynolds, 2000).
This is consistent with findings from a previous study (Scher-
ler et al., 2011), which found that slope areas with gradients
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Figure 10. Examples of the supraglacial vegetation maps for two glaciers in the eastern Himalaya: (a) Kazhenpu Glacier; (b) Labeilong
Glacier. Left panels show the Landsat 8 OLI colour composite (bands 5, 4, 3) draped onto a shaded relief map from the ALOS DEM. Middle
panels show fractional vegetation, and black arrows point to identified errors (bare land and/or healthy vegetation) in the SDC dataset. Right
panels show the pixels containing more than 65 % fractional vegetation.

less than 8◦ were associated with stagnant ice at the termi-
nus regions of debris-covered glaciers over the Himalaya.
With respect to glacier aspect, we found that the maximum
pond coverage occurs on slopes with an eastern orientation
(22.5 to 67.5◦, 15.6 % of the pond area) and south-eastern5

orientation (67.5 %–112.5 %TS23 , 14.2 % of the pond area),
with less pond incidence (∼ 9 %) on northern-facing slopes
(Fig. 12c). Although the differences in pond incidence in the
different aspect bands are only within 4 %, this seems to sup-
port the fact that southern- and eastern-facing slopes receive10

more insolation, thus favouring ice melt and formation of
ponds.

3.7 Supraglacial pond and vegetation distribution over
the large domain

Here we present the large-scale patterns of pond and vege-15

tation occurrence on debris-covered glacier tongues over the
Himalaya domain with respect to topo-climatic variables av-
eraged and binned at 1× 1◦ (∼ 111 km) (Fig. 13).

Binned supraglacial ponds and vegetation over the Hi-
malaya domain exhibit clear spatial patterns (Fig. 13a and 20

b). With regards to geographical location, the pond coverage
in the western Himalaya is rather homogenous (ranging from
0.1 % to 1.5 % of the debris-covered areas) and is more pro-
nounced and variable in the eastern Himalaya (2.4 % to 4.3 %
of the debris-covered area) (Fig. 13a). Pond incidence ex- 25

hibits a strong positive correlation with longitude (r = 0.82,
p < 0.01) and a strong negative correlation with latitude
(r =−0.72, p < 0.01) (Table 7). Supraglacial vegetation in-
cidence is less pronounced in the north-western part of the
domain (Fig. 13b) and increases significantly with longitude 30

(r = 0.40, p < 0.10) and decreases with latitude (r =−0.28,
p < 0.10) (Table 7). The surface trend analysis of pond and
supraglacial vegetation incidence shows that these increase
in the east–west direction at the rate of+0.23 % and+0.72 %
per degree longitude, respectively. 35

Pond occurrence is positively correlated with average tem-
perature (r = 0.40, p < 0.1) and with precipitation (r =
0.53, p < 0.05). Furthermore, pond occurrence is negatively
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Table 7. Correlation matrix for topo-climatic and geographic controls on pond and vegetation coverage based on Pearson’s r value. Blue
shades represent positive correlations and red shades represent negative correlations. “∗∗∗” denotes significant correlations at the 99 %
confidence level (p value < 0.01), “∗∗” denotes significant correlations at the 95 % confidence level (p value < 0.05) and “∗” denotes
significant correlations at the 90 % confidence level (p value < 0.10).

Figure 11. Distribution of (a) supraglacial pond coverage and
(b) supraglacial vegetation, expressed as percent of each debris-
covered area on a glacier-by-glacier basis for the 408 sampled
glaciers.

correlated with glacier thickness change (r =−0.37, p <
0.10) (Table 7). We did not find significant correlations
of pond and vegetation occurrence with supraglacial debris
cover, glacier termini elevation or average glacier velocity

(Table 7). Supraglacial vegetation had a weak non-significant 5

positive correlation with precipitation and termini elevation.

4 Discussion

4.1 Controls on mountain-range-scale supraglacial
pond and vegetation distribution

The topo-climatic conditions for the occurrence of 10

supraglacial ponds on the surface of debris-covered
glaciers have been addressed in previous studies (e.g. Sakai,
2012; Sakai and Fujita, 2010), but supraglacial vegetation
and its controls have rarely been addressed. Previous studies
showed that both ponds and vegetation tend to develop on 15

stagnant, low-angle slopes of the debris-covered tongues
(Sakai and Fujita, 2010; Reynolds, 2000; Quincey et al.,
2007). Furthermore, we would expect to find more ponds and
lakes on debris-covered glacier tongue glaciersCE11 situated
at lower elevations, which experience increased temperature 20

and therefore enhanced surface melt. However, our analysis
on a glacier-by-glacier did not yield significant spatial trends
in pond and vegetation occurrence with respect to these
controls. This implies that at the mountain-range scale the
distribution of supraglacial features may be governed by 25

more complex factors, such as geomorphologic, glaciologic
and climatic patterns. Here we discuss the occurrence
of supraglacial ponds and vegetation in light of regional
topo-climatic conditions averaged over 1× 1◦ cells.

A first observation is that supraglacial debris covers a 30

larger part of the glacierized areas in the central and east-
ern Himalaya compared to the western extremities (Fig. 13c).
Supraglacial debris decreases linearly from the south-west
to north-east, and it is significantly correlated with latitude
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Figure 12. Plots of supraglacial pond coverage summarized over
(a) elevation bands expressed as percent above terminus, (b) slope
expressed as 2◦ bins and (c) glacier aspect expressed as 45◦ bins.

(p = 0.47, p < 0.05). At the same time, the elevation of the
debris-covered glacier termini increases northwards towards
the Tibetan Plateau (+354 m per degree latitude) and to a
lesser extent from west to east (+114 m per degree longi-
tude) (Fig. 13d, Table 7). The increasing trends in both pond5

and vegetation coverage towards the eastern Himalaya noted
earlier (Fig. 13a, b) are consistent with the presence of lower

glacier termini and higher rates of debris in the eastern part
compared to the western part. Overall, debris-covered glacier
tongues descend to lower elevations in the central and eastern 10

Himalaya regions (∼ 3700 to 4400 m) compared to the west-
ern part (∼ 4700 to 4900 m). Our results show that glacier
termini elevation exhibits only a very weak negative control
on pond occurrence (Table 7) and a slightly larger but not
significant control on vegetation coverage. It appears that the 15

elevations at which supraglacial debris is found do not signif-
icantly influence pond occurrence vegetation growth on these
tongues.

Development of supraglacial vegetation (mostly shrubs)
has been noted on stagnant, thick debris-covered tongues in 20

various areas of the world (Xie et al., 2020; Tampucci et al.,
2016). Increasing trends in supraglacial vegetation in other
glacierized areas such as the Alps are a consequence of cli-
matic change (Vezzola et al., 2016). As supraglacial vege-
tation typically only develops on stagnant surfaces that are 25

no longer undergoing substantial gravitational reworking, its
presence may also constitute an indication of glacier inac-
tivity and later stages of decay. The increased vegetation oc-
currence towards the eastern Himalaya (Fig. 13b) observed
in this study coincides with a clear west-to-east pattern in 30

negative glacier surface elevation changes based on Shean’s
et al. (2020) dataset (Fig. 13e). Glacier surface changes be-
come increasingly more negative towards the east at the rate
of 0.02 m per degree longitude. Spatial patterns in glacier
surface thinning and the resulting mass balance is consistent 35

with the eastward increase in both pond and vegetation in-
cidence observed in this study. In this study, however, the
direct dependence of supraglacial vegetation on glacier thin-
ning patterns is rather weak (Table 7).

In addition, the eastward decrease in average glacier veloc- 40

ities (−0.2 m a−1 per degree longitude and −0.1 m a−1 per
degree latitude), based on the trend analysis of 2013–2015
datasets from Dehecq et al. (2015) (Fig. 13f), shows a ten-
dency for stagnating debris-covered glacier tongues towards
the north and towards the east. Stagnant glaciers were re- 45

ported for the northern parts of the central Himalaya (Scher-
ler et al., 2011) and were attributed to topographic differ-
ences, i.e. low slope angles on the northern slopes of the
range promoting development of stagnant ice. Such patterns
are in contrast with more rugged, steeper terrain of the south- 50

ern slopes, which favours more dynamic glacier environ-
ments (Scherler et al., 2011). The stagnating trends cou-
pled with a higher percentage of supraglacial debris corre-
late with the higher incidence of vegetation towards the east
(Fig. 13b), supporting the idea that debris cover of sufficient 55

stability favours plant colonization (Fickert et al., 2007).
Such patterns point to a potential transition of debris-covered
glaciers in certain areas towards vegetated glaciers as noted
in other studies (Fickert et al., 2007). It has been noted in
recent studies that supraglacial ponds can enhance local ab- 60

lation rates by up to 3 times (Brun et al., 2016; Miles et al.,
2018; Irvine-Fynn et al., 2017). The slightly more negative
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Figure 13. Plots of (a) LMM-derived ponds, (b) LMM-derived vegetation, (c) debris cover expressed as percent of the glacierized area,
(d) minimum elevation of debris cover, (e) average temperature from ERA5-Land (October 2015), (f) total precipitation from ERA5-Land
(October 2015), (g) thickness change trends 2000–2018 from Shean et al. (2020) and (f) average velocity trends 2013–2015 from Dehecq et
al. (2015). All variables were averaged over the glacierized areas and gridded over 1× 1◦ grid cells.

mass balances and lower surface velocities towards the east
may indicate the transition of debris-covered glaciers to in-
active debris-covered glacier tongue or a rock glacier in this
part of the Himalaya (Jones et al., 2019TS24 ; Monnier and
Kinnard, 2017).5

Climate factors (i.e. higher temperatures and precipitation)
induce more dynamic environments and could favour in-
creased surface melt and pond formation (Herreid and Pellic-
ciotti, 2020). In the case of the Himalaya, we observed a sig-
nificant south-west-to-north-east decreasing trend in gridded 10
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average temperatures, with a stronger decrease in the south-
to-north direction (−2.3 ◦C per degree latitude) (Fig. 13g and
Table 7). Total gridded precipitation for the same month in-
creases in the eastern direction at the rate of −0.06 mm per
degree latitude and significantly decreases towards the drier,5

colder regions of the Tibetan Plateau with a stronger gradi-
ent northward (−0.23 mm per degree latitude) (Fig. 13h and
Table 7). On the contrary, the warmer and wetter areas of
the eastern Himalaya seem to favour higher pond coverage,
as also suggested in other studies (Herreid and Pellicciotti,10

2020). At larger scales, it has been shown that certain con-
ditions related to topography and lithology could offset this
dependency, but at the range of the Himalaya, this climatic
dependency holds. Climatic conditions and glacier character-
istics in the western Himalaya are more similar to those in the15

Karakoram, where glaciers have undergone less shrinkage
(Brun et al., 2017; Kääb et al., 2012; Gardelle et al., 2013),
than those in the central and eastern, monsoon-influenced
parts of the Himalaya, which exhibit higher temperatures and
larger precipitation amounts.20

The controls on debris-covered glacier surface evolution
are a complex combination of the cumulative debris-supply,
mass-balance condition, debris cover expansion, stagnation
and total lowering. Studies have noted that surface types
are related to the evolutionary stage of a debris-covered25

glacier (cf. Thompson et al., 2016), in that debris thickness
variability, local topography, degree of downwasting, and
glacier tongue slope are all potentially, at least partially, re-
lated to the time lapsed since debris cover formation (Sakai
and Fujita, 2010; Nicholson et al., 2018). Relatedly, Herreid30

and Pellicciotti (2020) introduce the term of debris-covered
glacier stage ranging from 0 to 1 as a percentage of the full,
2D debris cover carrying capacity of a glacier, such that if
100 % of the ablation zone is debris-covered, then the debris-
covered area cannot expand further without up-glacier mi-35

gration of the equilibrium line. Further analysis is needed to
accurately capture the complex combination of topographic
and climatic factors that contribute to the development of
ponds and vegetation on supraglacial debris cover using the
most recent publicly available and corrected datasets (Her-40

reid and Pellicciotti, 2020) and a carefully quality-controlled
output of the method proposed here. A full understanding of
the occurrence of surface features also requires knowledge of
the transient co-evolution of glacier extents and debris cover.
This would allow us to quantify better the controls on pond45

formation and vegetation growth in specific catchments as
the debris cover and glacier geometry develop over time.

4.2 Spatial and spectral limitations of the Landsat data

Our analysis of surface composition of the debris-covered
glacier tongues is subject to several limitations related to50

the spectral and spatial resolution of the input Landsat data.
While linear spectral unmixing is a relatively straightforward
routine to implement once the endmembers and their spectra

are selected, using Landsat data at 30 m spatial resolution and
spectral dimensionality for spectral unmixing has its limita- 55

tions. While Landsat 8 is superior to the previous Landsat
missions in terms of its calibration, geometry and radiomet-
ric resolution (Irons et al., 2012), its spectral dimensional-
ity remains an issue, particularly with respect to mapping of
the various types of debris material and/or supraglacial ponds 60

with various degrees of turbidity. Previous studies in the Hi-
malaya (Casey and Kääb, 2012; Casey et al., 2012; Matta et
al., 2017) suggest that the spectral dimensionality of these
two surfaces is greater than the dimensionality of the Land-
sat 8 OLI bands available for unmixing. Landsat has lim- 65

ited spectral resolution data (7 bands available for unmixing)
compared to hyperspectral data (e.g. AVIRIS, 224 bands).
Both the partially constrained and the unconstrained LMMs
yielded negative abundances in our study, with larger posi-
tive values (> 3) especially for the vegetation class. Since our 70

fractions did not satisfy the sum-to-unity condition, normal-
ization of the classes was necessary, which may have intro-
duced further uncertainty in our results because some classes
had higher positive values than others. However, previous
studies showed that these negative values do not necessar- 75

ily affect the ability to discriminate between surfaces (Klein
and Isacks, 1999).

Limitations posed by the spatial resolution of Landsat data
(30 m) affected the accuracy of the selected endmembers.
While we used the pixel purity index to automate the selec- 80

tion of endmembers, we acknowledge that some mixture may
still occur at 30 m spatial resolution. Furthermore, the 30 m
spatial resolution does not allow us to detect supraglacial
features such as ice cliffs or small ponds which can span
only a few square metres. Improvements envisioned here 85

include applying the spectral unmixing Sentinel-2 imagery,
which has a better spectral, spatial and temporal resolution
(13 bands in the visible to short-wave infrared, 10–20 m, 5 d
revisit time) compared to Landsat (7 bands in the visible to
short wave, 30 m, 16 d revisit time). This would allow for bet- 90

ter definition of endmembers, facilitating more accurate and
repeated mapping in the future.

Furthermore, the 30 m spatial resolution of the DEM does
not allow us to infer the precise control of topographic factors
such as slope and aspect on pond formation or a full quantifi- 95

cation of the small-scale controls of pond incidence but only
provides a mountain-range scale of the pond distribution.

4.3 Limitations in the endmember definition

In this study, we utilized the maximum number of endmem-
bers (n= 6) allowed by the spectral resolution of the Land- 100

sat 8 OLI data (7 bands), in an attempt to capture the vari-
ability of the system and to avoid high RMSE of the model
which may occur due to missing classes. The main difficulty
here consisted in capturing the wide variability of the mate-
rials present across the mountain range, for example differ- 105

ent lithologies, while ensuring a “valid” LMM. This is de-
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fined as one where fractional values do not exceed 1.01 (un-
der strict constraint rules) or 2.01 (under looser rules) and
where RMSE is less than 2.5 % (Painter et al., 2009). Our
choice of debris endmembers was limited to light and dark
debris, and these may not cover the wide spectrum of lithol-5

ogy present across the Himalaya. With regards to the on-the-
ground spectral characteristics of the debris material in the
Khumbu region, Casey et al. (2012) showed that these vary
due to the presence of various of minerals, notably distinct
granitic (lighter) vs. schistic (darker) debris types with dif-10

ferent compositions. However, spectral differences in these
two classes can also be related to debris water content espe-
cially on very thin debris (as for thinly-debris-covered ice
cliffs) and are associated with grain size, i.e. fine-grained
sediments have a greater capacity for water retention (Juen15

et al., 2013; Collier et al., 2014). We also noted such differ-
ences in the spectra for wet fine debris and dry coarse debris
with large grain sizes on Mer de Glace (Fig. 4b); however,
the limited Landsat spectral resolution implies that we could
not define separate endmembers for each. Using only two20

endmembers for debris cannot capture the various types of
debris with different mineral and geochemical composition,
nor can it distinguish between debris with various degrees of
water content, which has a different spectral signature com-
pared to dry debris (Fig. 4b). Furthermore, we could not take25

into consideration bare illuminated non-glacierized surfaces
including nunataks, which were occasionally mistakenly in-
cluded within the polygons in the SDC dataset. As a result,
these areas were also associated with some high positive frac-
tional values, which might have affected the overall RMSE of30

our model and particularly the sum-to-unity condition.
Although we defined the water endmember on the basis of

turbid water (greyish-blue ponds), supraglacial ponds of var-
ious turbidity levels are present across the mountain range,
due to various degrees of suspended sediments. The colour35

of these ponds can range from grey to turquoise and red-
dish shades in various proportions (Matta et al., 2017) to
small clear water supraglacial ponds (Takeuchi et al., 2012;
Giardino et al., 2010), as observed in the field (Fig. 3e).
Each type of pond has different spectral signatures, but the40

limited spectral resolution of Landsat does not allow us to
use concomitantly both a clear and a variable turbid wa-
ter endmember in the spectral unmixing. Nevertheless, as
shown in Fig. 7, the majority of the turbid supraglacial ponds
are connected to the exposed ice and glacier drainage net-45

work (hence larger suspended sediment), are expected to be
most relevant to glacier evolution and may be of concern
for outburst flood potential. Our clear water algorithm nicely
picks out the small number of isolated non-turbid ponds at
the terminus of the Ngozumpa Glacier (Fig. 7), highlighting50

the success of different endmember selection for addressing
other scientific questions. With further testing, fractional wa-
ter maps obtained from spectral unmixing techniques can be
used to characterize the state of lakes and ponds in terms of
their turbidity (Matta et al., 2017; Giardino et al., 2010), i.e.55

by quantifying the fraction of a pixel covered by water, light
and/or dark debris. In this regard, repeated monitoring of
pond turbidity using these combined tools allows changes in
suspended sediment load to be tracked over time, which are
considered direct indicators of glacier wasting processes and 60

glacier–lake interaction (Giardino et al., 2010). This aspect
is not fully explored in this study but can be further investi-
gated by combining LMMs with field spectra of ponds and
lakes to characterize the various degrees of turbidity across
the mountain range. Since lake turbidity is temporally highly 65

variable and since our current dataset is a snapshot of pond
density, it cannot be used to infer any variability in sediment
concentration, but it provided the basis for tracking changes
in glacier area, which has important applications.

Similarly, we could not define a healthy vegetation end- 70

member whose spectral signature (not shown here) differs
from that of the dry vegetation endmember we selected.
However, small amounts of healthy vegetation do occur on
debris-covered glaciers in the eastern part of the Khumbu do-
main, and these were indeed detected by the LMM (Fig. 10). 75

The cloud and clean ice detection based on LMM was
not accurate in this particular configuration. While some iso-
lated pixels were classified as clouds, others pixels were con-
founded with other types of surfaces, notably debris (Ta-
ble 2). While the cloud distribution noted in this study corre- 80

sponds to local meteorology, i.e. more frequent cloud cover
in the eastern Himalaya until later fall months compared to
the western part (Thayyen and Gergan, 2010), we are less
confident in the actual estimations of the cloud cover areas,
so we do not wish to over-interpret these. Applying algo- 85

rithms such as Fmask (Zhu et al., 2015) to mask the clouds
resulted in misclassification of the entire glacierized surface
as cloud, which is a well-documented issue (Stillinger et al.,
2019), so we could not mask the clouds prior to the spectral
unmixing. 90

Likewise, clean ice was poorly classified, mostly likely
due to its poor representation in the dataset (i.e. limited num-
ber of clean ice pure pixels). While our results hint at the
presence of ice to some extent, we are not confident about
these results. Some pixels correspond indeed to location of 95

ice cliffs which were perhaps exposed at the end of the ab-
lation season (cf. Fig. 9); others correspond mostly to clean
ice patches at the upper limit of supraglacial debris which
were included in the input data, which dated from previous
years, or seasonal snow. While we chose our images at the 100

end of the ablation season, post-monsoon the snow cover is
usually minimal, but early snowfalls can occur. Other fea-
tures such as the ice sails (Evatt et al., 2017) may not be ex-
tracted at the spatial resolution of the Landsat imagery, since
these features often span only several square metres. At the 105

same time, the LMM algorithm in its current parameteriza-
tion cannot detect ice cliffs dusted with fine debris, which
have a lower albedo than clean ice (Naegeli et al., 2015).
Targeting exposed but dusted ice features within the debris
cover in addition to clean ice would need some refinement of 110
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the algorithm using Sentinel-2 imagery with better spectral
resolution and better parameterization (Kneib et al., 2020),
optical thresholding of band ratios using high-resolution im-
agery (Anderson et al., 2021) and/or feature detection based
on OBIA (Kraaijenbrink et al., 2016; Watson et al., 2017a;5

Mölg et al., 2019).

4.4 Uncertainty due to the thresholds applied to
fractional maps

Selection of the thresholds used to classify the fractional
maps to obtain the final maps of each surface is another10

source of uncertainty in our method. Previous spectral un-
mixing studies (Hall, 2002; Rittger et al., 2013) justified us-
ing a threshold of 0.5 for the classifying fractional maps for
various types of surfaces, while they also tested thresholds as
low as 0.15 (Rittger et al., 2013). While we applied a thresh-15

old of 0.5 and 0.65 to our water and vegetation classes, re-
spectively, for the other classes the fractional thresholds were
ultimately determined using visual inspection, which intro-
duced a certain degree of subjectivity into our study.

4.5 Quality of input SDC dataset20

Due to the spectral limitations of Landsat, in this study we
applied the unmixing only to the debris-covered areas of
glaciers to reduce model complexity. Therefore, model per-
formance is to some extent subject to the quality of the input
dataset. At the onset of our study, the only global database25

of supraglacial debris was the SDC dataset (Scherler et al.,
2018), and although Herreid and Pellicciotti (2020) provide
updated supraglacial debris outlines, these were not available
at the onset of our study and are not currently incorporated
in the standardized RGI dataset. Debris outlines in the SDC30

dataset constitute a multi-time stamp dataset, based on data
spanning 1998 to 2015, while our Landsat data were based
primarily on 2015. This may introduce uncertainties in the
calculation of pond coverage. For example, we assumed that
any changes at the termini of the debris-covered areas would35

have occurred within these older outlines, since surge-type
glaciers and hence apparent glacier advance are rare or non-
existent in the Himalaya region, contrary to the Karakoram
(Sevestre and Benn, 2015). However, recent studies have re-
ported an upward expansion of the debris cover in the Hi-40

malaya (Xie et al., 2020; Thakuri et al., 2014; Bhambri et
al., 2011b; Kamp et al., 2011), which we do not account
for here. As such, in these areas, our pond density may be
underestimated, and this would need a more in-depth analy-
sis and the availability of multi-temporal supraglacial debris45

datasets. Furthermore, our study revealed some important is-
sues with the input SDC dataset used to constrain the spec-
tral unmixing, particularly the inclusion of patches of healthy
vegetation and bare bright steep terrain. The spurious vege-
tated areas present within the debris cover outlines (Fig. 10b)50

may have affected to some extent the quality of the spectral

unmixing, i.e. the non-negativity and the sum-to-unity con-
ditions, because it produced large negative and positive frac-
tional vegetation values. We were able to identify theses as
being healthy vegetation on non-glacierized terrain. On the 55

other hand, some of the high percentage of supraglacial veg-
etation in some of the eastern parts is attributed to errors in
the input supraglacial dataset, and we are hesitant to over-
interpret the vegetation analysis. However, we note the po-
tential of the fractional vegetation maps for identifying map- 60

ping errors in the SDC dataset. Because these abnormal val-
ues served to identify errors in the existing SDC dataset, they
constitute a valuable tool to correct and refine these global
databases.

4.6 Wider applicability of the method 65

In this study we demonstrated the transferability of a method
developed on a single region for the year 2015 (Khumbu) by
applying it to a Landsat 8 OLI scene from a different area
(Lahaul–Spiti) for the same season (post-monsoonal) but a
different year (2016) and validating the ponds with Plan- 70

etScope data. In the light of the spatial and spectral lim-
itations of Landsat data discussed above, the applicability
of our approach for multitemporal analyses requires careful
considerations. When transferring methods from one scene
to others, illumination differences and shadow effects across 75

the scenes need to be resolved, particularly if the scenes are
not acquired on the same date. In this study, we attempted
to minimize these effects by applying atmospheric and to-
pographic corrections and implicitly assumed that the set of
endmembers defined for the Khumbu could be applied to the 80

entire Himalaya. However, in some areas, some spectral dif-
ferences may remain, leading to confusion between the wa-
ter/light debris/ice classes and hence some overestimation of
the pond coverage, particularly in some areas of the west-
ern Himalaya. While these pond areas require further quality 85

control prior to their inclusion in regional datasets, they are
within the uncertainties reported at other sites, for example
Langtang (Steiner et al., 2019). Furthermore, if the approach
is used over the same area for multi-temporal pond or vegeta-
tion analysis, the geolocation accuracy of the Landsat can be 90

a concern, because the pixels can be slightly misaligned from
acquisition to acquisition, resulting in potentially very differ-
ent compositions and unmixing results. This needs to be mit-
igated by co-registration of the scenes prior to unmixing and
performing the change analysis. Further uncertainty is intro- 95

duced in our study by the fact that for certain areas of the Hi-
malaya, Landsat cloud-free and snow-free scenes were not
available for the year 2015, and we used scenes from 2014
and 2016 (cf. Table 1). We assumed that surface conditions
were similar but acknowledge that pond areas are dynamic 100

and can change from year to year. Furthermore, this study
does not account for the seasonality of supraglacial ponds
but provides a methodological basis for their identification.
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5 Summary and further work

In this study, we estimated the spatial distribution of surface
characteristics on debris-covered glaciers (various types of
debris, clean ice, supraglacial ponds and vegetation) at the
subpixel scale using 30 m fractional maps obtained from a5

spectral linear mixing model. We tested the approach in the
Khumbu region comprising eastern Nepal and parts of China
using Landsat 8 OLI imagery and then applied it over the
entire Himalaya to evaluate its performance over a larger do-
main. Pléiades and Planet high-resolution imagery was used10

to assess the endmember selection and to validate the mapped
supraglacial pond areas using OBIA techniques. Our key
findings can be summarized as follows.

– We demonstrate the use of Landsat spectral unmixing
in determining the surface properties of debris-covered15

glaciers, which holds great potential for mapping the
dynamic changes in surface conditions at a regional
scale. While we present a method that holds promise for
effectively partitioning the surface properties of debris-
covered glaciers, we recommend that future analysis of20

the potential drivers and controls on the observed sur-
face types and their regional variation revealed by this
method be carried out on a further-quality-controlled
dataset to avoid over-interpretation of any errors within
the datasets used.25

– We show that spectral signatures derived from the
Landsat 8 OLI imagery and cross-checked using high-
resolution Pléiades images can be applied at the
mountain-range scale provided that all images are at-
mospherically and topographically corrected to reduce30

differences in illumination patterns and that images are
acquired around the same date. While the limited Land-
sat spectral resolution did not allow for a very fine def-
inition of the wide spectrum of all the different de-
bris lithologies and ice types present on debris-covered35

tongues across the study area, LMM successfully distin-
guished among broad categories and convincingly re-
produced independently mapped supraglacial pond ar-
eas. Overall, we consider the spectral unmixing method
presented here a promising approach to add to the suite40

of tools that are valuable in analysing the dynamic sur-
faces of debris-covered glaciers.

– One of the major contributions of the current study
is that we produced a supraglacial pond inventory for
the entire Himalaya for the year 2015, based on spec-45

tral unmixing of coarse-resolution and freely avail-
able Landsat 8 OLI satellite imagery. We consider that
this approach can provide more detail and thus out-
perform other analyses of supraglacial pond identifi-
cation and classification performed on similar Land-50

sat data for the same period but based on normal-
ized difference water indices (Shugar et al., 2020) or

manual delineation (Chen et al., 2021). The method
and results are comparable to mapping quality from
higher resolution, allowing improved analysis of mul- 55

titemporal change in pond incidence and size in a fu-
ture study. The dataset of supraglacial ponds is avail-
able in the public domain via the Zenodo data repository
(https://doi.org/10.5281/zenodo.4421857).

– Regional trend analysis of gridded data indicates that 60

higher average temperatures and more abundant precip-
itation have a strong influence on pond development
and to a much lesser extent on supraglacial vegeta-
tion occurrence. Higher glacier thinning rates coupled
with lower average glacier velocities are consistent with 65

pond incidence and seem to favour the development of
supraglacial vegetation. The extent of the supraglacial
debris and the elevation of the termini exhibit a weak
control on supraglacial pond coverage and a moderate
control on supraglacial vegetation. 70

Future developments to overcome the current limitations of
this study include the use of more sophisticated non-linear
mixing models, which would allow us to discriminate ma-
terials of interest in more detail. Work is ongoing to make
the unmixing step approach fully automated by integrating 75

it within scripting routines (Bunting et al., 2014), so that it
can be applied in the future to derive supraglacial pond out-
lines at multi-temporal scales and monitor pond development
over time. Given that these surface ponds are ephemeral and
change rapidly, automated multi-temporal-scale mapping is 80

highly desirable to track their evolution over time in various
regions. The analysis presented here complements and ex-
pands the existing proglacial lake databases for the year 2015
by providing supraglacial pond extents. With continued ad-
vances in satellite data in the near future, the methodology 85

developed here provides avenues towards achieving large-
scale, repeated mapping of supraglacial features.

Code availability. Atmospheric and topographic corrections were
performed using the ARCSI routine, embedded in the freely avail-
able, python-based RSGISLib software available freely (Bunting et 90

al., 2014). The code for batch processing of the Landsat 8 OLI im-
ages for the entire Himalaya can be provided upon request. Post-
processing of the spectrally unmixed Landsat 8 OLI maps was done
using the Python module ArcPy from ESRI ArcGIS. The steps for
loop processing (normalizing the fractional raster files, classifying 95

the surfaces and extracting the composition of the debris-covered
glaciers from the fractional maps) can be provided upon request.

Data availability. Landsat 8 OLI data used in this study can
be obtained at no cost from the USGS EarthExplorer (https:
//earthexplorer.usgs.gov/, last access: TS25 ). All versions of the 100

NASA SRTM Global 1 arc second DEMs are available from the
Earthdata platform (https://earthdata.nasa.gov/, last access: TS26 ).
All versions of the ALOS Global Digital Surface Model, in-
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cluding the one used in this paper, are available from https://
www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm (last access: TS27 ).
Datasets of supraglacial ponds and vegetation, along with the
fractional maps, are available via the Zenodo data reposi-
tory (https://doi.org/10.5281/zenodo.4421857, Racoviteanu et al.,5

2021).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-15-1-2021-supplement.
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