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Abstract 10 

The Himalaya mountain range is characterized by highly glacierized, complex, dynamic topography. The ablation area of 

glaciers often features a highly heterogeneous debris mantle comprising ponds, steep and shallow slopes of various aspects, 

variable debris thickness and exposed ice cliffs, associated with differing ice ablation rates. Understanding the composition of 

the glacier surface is essential for a proper understanding of glacier hydrology and glacier-related hazards. Until recently, 

efforts to map debris-covered glaciers from remote sensing focused primarily on glacier extent rather than surface 15 

characteristics, and relied on traditional “whole pixel” image classification techniques. Spectral unmixing routines, rarely used 

for debris-covered glaciers, allow decomposition of a pixel into constituting materials, providing a more realistic representation 

of glacier surfaces. Here we use linear spectral unmixing of Landsat 8 OLI images (30 m) to obtain fractional abundance maps 

of the various supraglacial surfaces (debris material, clean ice, supraglacial ponds, vegetation) across the Himalaya around the 

year 2015. We focus on the debris-covered glacier extents as defined in the supraglacial debris cover database. The spectrally 20 

unmixed surfaces are subsequently classified to obtain maps of composition of debris-covered glaciers across sample regions.  

We test the unmixing approach in the Khumbu region of the central Himalaya, and we evaluate its performance for supraglacial 

pond by comparison with independently mapped ponds from high-resolution Pléiades (2 m) and PlanetScope imagery (3 m) 

for sample glaciers in two other regions with differing topo-climatic conditions. Spectral unmixing applied over the entire 

Himalaya mountain range (a supraglacial debris cover area of 2,254 km2) indicates that at the end of the ablation season, 25 

debris-covered glacier zones comprised 60.9 % light debris, 23.8 % dark debris, 5.6 % clean ice, 4.5 % supraglacial vegetation, 

2.1 % supraglacial ponds, small amounts of cloud cover (2 %) and unclassified areas (1.2 %). Supraglacial ponds were more 

prevalent in the monsoon-influenced central-eastern Himalaya (up to 4 % of the debris-covered area) compared to the 

monsoon-dry transition zone (only 0.3 %) and in regions with lower glacier elevations. Climatic controls (higher average 

temperatures and more abundant precipitation), coupled with higher glacier thinning rates and lower average glacier velocities, 30 

further favour pond incidence and the development of supraglacial vegetation. The spectral unmixing performed satisfactorily 
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for the supraglacial pond and vegetation classes (an Fscore of ~0.9 for both classes), and reasonably for the debris classes 

(Fscore of 0.7). With continued advances in satellite data and further method refinements, the approach presented here provides 

avenues towards achieving large-scale, repeated mapping of supraglacial features. 
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1 Introduction 

High relief orogenic belts such as the Himalaya are characterized by glacierized, complex, dynamic topography and the 

presence of a continuous cover of rock debris across the lowest part of the ablation zone of glaciers (Kirkbride, 2011). Globally, 

supraglacial debris cover accounts for ~ 7 % of the total glacierized area (Scherler et al., 2018; Herreid and Pellicciotti, 2020). 40 

In high mountain environments, high denudation rates and mass–wasting processes such as rock falls and rockslides from the 

steep valley sides supply abundant rock debris to the glacier surface (Kirkbride, 2011; Shroder et al., 2000; Evatt et al., 2015). 

This results in highly heterogeneous surfaces, consisting of debris material of various lithologies and grain sizes (sand and silt 

to boulders), forming debris cones on variable but mostly shallow slopes. Some of the most notable features of such surfaces 

are the supraglacial ponds and exposed ice cliffs, which have gained interest in recent years for several reasons. First, they 45 

influence the surface energy receipts of the supraglacial debris surface and the efficiency with which atmospheric energy can 

be transferred to the underlying ice and cause glacier ice ablation. While ice ablation beneath debris cover of more than a few 

centimetres thick is strongly reduced (Østrem, 1959; Nicholson and Benn, 2006; Reid and Brock, 2010), ice cliffs and 

supraglacial ponds are local ‘hot spots’ for glacier downwasting due to enhanced energy absorption at the surface of these 

features (Ragettli et al., 2016; Miles et al., 2016; Sakai et al., 2002; Buri et al., 2016; Steiner et al., 2015). Understanding their 50 

spatial distribution is essential for a proper assessment of glacier hydrology, notably to simulate glacier-wide ablation rates 

and meltwater production. Second, the current distribution and fluctuation of proglacial lakes and supraglacial pond extents is 

of interest for assessing glacier-related hazards. Recent studies have reported an increase in pro- and supraglacial lake area and 

number in the Himalaya and worldwide as a response to climatic changes (Shugar et al., 2020; Nie et al., 2017; Shukla et al., 

2018). Some of the supraglacial ponds coalesce and form larger supraglacial lakes, which may evolve into fully-formed 55 

proglacial ice or moraine-dammed lakes (Benn et al., 2012; Thompson et al., 2012), with enhanced potential for producing 

hazards such as glacier lake outburst floods (Benn et al., 2012; Komori, 2008; Richardson and Reynolds, 2000; Reynolds, 

2014; GAPHAZ, 2017). Increasing trends of pond development of 17 to 52 % per year were reported in the Khumbu region 

(2000 to 2015) (Watson et al., 2016), with a three-fold increase in pond area over three decades (1989 to 2018) (Chand and 

Watanabe, 2019). Quantifying the number/area of supraglacial ponds and their evolution (Miles et al., 2017; Liu et al., 2015; 60 

Watson et al., 2016) is important for assessing which ones might represent conditioning factors for hazards (Sakai and Fujita, 

2010; Reynolds, 2000). Third, understanding the fluctuations of these surface characteristics, in particular supraglacial 

vegetation, is important since vegetation expansion on debris-covered surfaces may indicate the transition from a debris-
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covered glacier to a rock glacier in a context of climate change (Shroder et al., 2000; Jones et al., 2019; Knight et al., 2019; 

Monnier and Kinnard, 2017; Kirkbride, 1989).  65 

Our understanding of the regional variability in glacier mass balance of both clean and debris-covered glaciers in the Himalaya 

has improved over the last years (Dehecq et al., 2019; Brun et al., 2017; Shean et al., 2020), and the role of glacier morphology 

in controlling glacier behaviour and changes has been demonstrated in recent studies (Salerno et al., 2017; Brun et al., 2019). 

However, a comprehensive assessment of the surface geomorphology, supraglacial pond coverage, moraine characteristics 

and supraglacial vegetation at various temporal scales is still needed over the entire Himalaya. Until recently, efforts to map 70 

debris-covered glaciers focused primarily on their extent rather than the surface characteristics. This was achieved at regional 

scales using a combination of digital elevation models (DEMs), various spectral band ratios and terrain curvature (Shukla et 

al., 2010; Bolch et al., 2007; Kamp et al., 2011; Bishop et al., 2001; Paul et al., 2004). Attempts to improve the accuracy of 

debris-covered glacier mapping included the use of thermal data. i.e., temperature differences between debris underlined by 

glacier ice and the surrounding non-ice moraines (Taschner and Ranzi, 2002; Bhambri et al., 2011a; Racoviteanu and Williams, 75 

2012; Alifu et al., 2016) or the use of glacier velocity (Smith et al., 2015). Considerable improvements in monitoring capacity 

due to recent satellite developments and cloud-computing platforms such as Google Earth Engine allowed exploitation of large 

amounts of Landsat and Sentinel-2 data. This has resulted in two recent global datasets of supraglacial debris (Scherler et al., 

2018; Herreid and Pellicciotti, 2020). While these global datasets represent an important development in advancing the 

understanding of the distribution of debris-covered glaciers at a large scale, they can suffer from the use of inconsistent methods 80 

and different temporal coverage between and/or within regions. Supraglacial debris in these databases was mapped within the 

bounds of the Randolph Glacier Inventory (RGI) (Pfeffer et al., 2014), which has varying analysis dates and accuracy. While 

these issues were partially mitigated in a revised dataset based on semi-automated assessments of Landsat imagery (Herreid 

and Pellicciotti, 2020), improvements were limited to glaciers larger than 1 km2 and were not applied repeatedly at the global 

scale.  85 

Supraglacial ponds and ice cliffs are currently not represented in either existing supraglacial debris cover datasets or in the 

updated, publicly available regional glacier lake inventories (Wang et al., 2020; Shugar et al., 2020; Chen et al., 2020). The 

latter tend to focus primarily on the representation of proglacial lakes and their decadal changes. A database of supraglacial 

ponds at several time periods is desirable in order to complement the existing supraglacial debris and lake databases, as the 

distribution of these surface features on debris-covered glacier tongues remains limited to a handful of glaciers in the Himalaya 90 

(Watson et al., 2016, 2017a; Watson et al., 2018; Steiner et al., 2019). For example, regional studies on seasonal dynamics and 

evolution of supraglacial ponds and ice cliffs tend to be biased towards the well-studied Khumbu and Langtang areas of Nepal 

Himalaya (Watson et al., 2016, 2017a; Miles et al., 2017; Steiner et al., 2019). More studies are needed in other regions in 

order to assess the spatial differences in their occurrence as well as to infer the long-term changes of these features.  

The increased availability of high-resolution (0.5 to 5 m) remotely sensed data from Pléiades, SPOT and Quickbird satellites 95 

etc., complemented by RapidEye, PlanetScope and SkySat images from Planet, has offered new opportunities for 
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characterizing the surface of debris-covered glaciers in more detail. Supraglacial ponds and ice cliffs have been mapped using 

a combination of manual digitization on high-resolution multi-spectral imagery (1-3 m) or directly on Google Earth (Brun et 

al., 2018; Watson et al., 2018; Watson et al., 2017a, 2016; Steiner et al., 2019). Semi-automated mapping methods include 

adaptive binary thresholding (Anderson et al., 2021), band ratios and/or morphological operators (Miles et al., 2017; Liu et al., 100 

2015), the normalized difference water index (NDWI) (Watson et al., 2018; Gardelle et al., 2011; Miles et al., 2017; Kneib et 

al., 2020; Liu et al., 2015; Wessels et al., 2002; Narama et al., 2017), feature extraction via decision-trees and/or Object-Based 

Image Analysis (OBIA) (Liu et al., 2015; Kraaijenbrink et al., 2016; Panday et al., 2011) or thermal imagery (Suzuki et al., 

2007; Foster et al., 2012). Other methods include the use of very high-resolution topographic models generated using terrestrial 

structure-from-motion techniques (Westoby et al., 2014; Rounce et al., 2015; Herreid and Pellicciotti, 2018; Westoby et al., 105 

2020) or the use of Unmanned Aerial Vehicles (UAV) data (Kraaijenbrink et al., 2016). Synthetic Aperture Radar overcomes 

the limitations of optical remote sensing in areas with frequent cloud cover (i.e., the eastern Himalaya), and has been used to 

map supraglacial ponds and track their dynamics (e.g. Strozzi et al., 2012; Wangchuk and Bolch, 2020; Zhang et al., 2021). 
Despite methodological developments, a robust and transferable method for mapping ice cliffs and ponds in a systematic 

manner using these high-resolution datasets does not yet exist and current methods remain computationally-intensive. 110 

Understanding how the surface composition of the debris-covered tongues upscales in coarser resolution imagery such as 

Landsat is still needed at regional scales. For example, large differences were shown between UAV-derived ponds and 

RapidEye-derived ponds in other studies (cf. Kraaijenbrink et al., 2016). 

Even with the increased availability of high-resolution imagery, medium resolution data from archive Landsat series (30 m 

spatial resolution) remain a valuable data source for various regional-scale mapping applications due to their large swath width 115 

(185 km), free accessibility and acquisition time spanning four decades. One of the limitations in using these medium resolution 

data is that most studies rely on traditional “whole pixel” image classification techniques. While these classification techniques 

are advantageous for some applications, they does not reveal the constituent surfaces of image pixels on the ground nor their 

proportions (Keshava and Mustard, 2002). Spectral unmixing routines, initially described by Atkinson (1997; 2004) and Foody 

(2004), allow decomposition of a given pixel into constituting materials, providing their fractional abundance and thus 120 

generating a more realistic representation of complex surfaces (Keshava and Mustard, 2002). These have been used in 

glaciology to retrieve snow grain size and derive fractional snow covered areas from MODIS or Landsat (Painter, 2003; Painter 

et al., 2009; Sirguey et al., 2009; Veganzones et al., 2014; Rosenthal and Dozier, 1996), to map clean glacier areas or snow 

(Painter et al., 2012; Cortés et al., 2014), lakes (Zhang et al., 2004) and vegetation (Ettritch et al., 2018; Song, 2005; Xie et al., 

2008). A small number of studies used spectral unmixing to characterize the mineral composition of debris-covered glaciers 125 

(Casey and Kääb, 2012; Casey et al., 2011), to characterize lake colour, turbidity and suspended sediments (Matta et al., 2017; 

Giardino et al., 2010) and more recently to map ice cliffs (Kneib et al., 2020), but the potential of sub-pixel mapping for debris-

covered glaciers has not been fully exploited. 
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In this study, we use spectral unmixing of Landsat 8 OLI imagery to detect the surface characteristics of supraglacial debris 

cover across the Himalaya, with a particular emphasis on quantifying the supraglacial pond coverage and vegetation. We first 130 

apply and validate the spectral unmixing in the well-studied Khumbu region of the central Himalaya. Using the spectra and 

spectral unmixing parameters that were derived from the Khumbu, we infer the composition of supraglacial debris cover for 

the entire Himalaya spatial domain. We validate the pond results by comparing the supraglacial pond areas derived from 

spectral unmixing with those obtained using OBIA on high-resolution imagery for selected glaciers at three different sites. We 

use the results to assess the composition of the debris-covered glacier tongues in regions with differing topo-climatic 135 

conditions, to evaluate the distribution of supraglacial ponds and vegetation across the mountain range in relation to geographic 

location, climate, topographic characteristics, glacier mass balance and surface velocity and we discuss the potential 

relationship between these features and the temporal evolution of these glaciers. 

 

2 Data sources and methods 140 

2.1 Study area 

Our study area comprises various spatial domains (Fig. 1). The larger Himalaya domain is defined here as the region 

spanning ~ 1,500 km (~76 to 92° longitude and ~26 to 34° latitude), covering areas from Himachal/Jammu and Kashmir 

border in the west to Bhutan Himalaya in the east (Fig. 1). Glaciers in this area have been in a state of negative mass balance 

in the last decades, with accelerating trends in the 2000 to 2010 decade (Bolch et al., 2019; Brun et al., 2017; Kääb et al., 145 

2012; Maurer et al., 2019). We developed our method in the glacierized Khumbu region of Nepal, which we refer to 

hereafter as the “Khumbu domain”, although it also includes glaciers north of the divide (Fig. 2). Glaciers in the Khumbu 

have been well studied in terms of glacier mass balance using the traditional glaciologic method (Wagnon et al., 2013), the 

geodetic method (Bolch et al., 2008; Nuimura et al., 2012; Brun et al., 2017; Bolch et al., 2011; Rieg et al., 2018), energy 

balance models (Rounce and McKinney, 2014; Rounce et al., 2015; Kayastha et al., 2000), debris cover characteristics 150 

(Iwata et al., 1980; Watanabe et al., 1986; Nakawo et al., 1999; Iwata et al., 2000; Casey et al., 2011; Yukari et al., 2000) 

and surface velocity (Quincey et al., 2009). Rates of change of the debris-covered glacier areas in the Khumbu vary from 

−0.12 ± 0.05 % a-1 from 1962 to 2005 (Bolch et al., 2008) to −0.27 ± 0.06 % a-1 from 1962 to 2011 (Thakuri et al., 2014). 

Supraglacial ponds cover ~ 0.3 to 7 % of the glacierized area in the Khumbu based on high-resolution Pléiades data (Watson 

et al., 2017a; Kneib et al., 2020; Salerno et al., 2012); ice cliffs cover between 1 and 9.2 % of the glacier areas (Brun et al., 155 

2018; Watson et al., 2017a; Kneib et al., 2020). 

Fig. 1 and Fig. 2 here 

To examine and highlight regional differences in the composition of the debris-covered surfaces, we use four sub-regions 

selected across monsoonal gradients as defined in the literature, corresponding to the Landsat scenes (~32,919 km2) shown on 
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Figure 1 (Bookhagen and Burbank, 2010; Thayyen and Gergan, 2010; Barros and Lang, 2003). The Lahaul Spiti region in 160 

western Himalaya is in the “monsoon-arid” transition zone, characterized by monsoon precipitation during the summer and 

precipitation from the Westerlies in the winter (Thayyen and Gergan, 2010). The Manaslu and Khumbu regions in the central 

Himalaya, and the Bhutan region in the eastern Himalaya, are all under the influence of the Indian Summer Monsoon, which 

brings large amounts of precipitation during the summer months (June to September) (Barros and Lang, 2003; Bookhagen and 

Burbank, 2006) (Fig. 1).  165 

To validate the performance of the spectral unmixing as a basis for estimating pond coverage, we used debris-covered glacier 

zones at three validation sites (700 - 1,150 km2), selected across the wider Himalaya domain from the Khumbu, Langtang and 

Lahaul Spiti regions (Fig. 1). Supraglacial ponds on these glaciers were mapped using OBIA methods on high-resolution 

imagery (section 2.6).  

2.2 Remote sensing data 170 

The satellite data used for spectral unmixing comprises of 13 Landsat 8 OLI images covering the Himalaya domain (Fig. 1).  

Characteristics of these images are given in Table 1. These were top of atmosphere registered, radiometrically calibrated and 

orthorectified imagery (level L1TP -T1), available at 30 m spatial resolution in the visible to short-wave infrared since 2013 

(Wulder et al., 2019; USGS, 2015). We selected scenes from the post-monsoon period only (September to November) in 

order to minimize cloud and snow cover occurrence (Bookhagen and Burbank, 2006). In addition, Landsat scenes across the 175 

domain were selected around the same date as much as possible to minimize seasonal differences in surface conditions, 

notably seasonal changes in pond occurrence (Miles et al., 2017). All chosen images were acquired around the same time of 

the day (05 UTC time), with similar solar azimuth (~143 degrees) and zenith angle (~30 degrees). This is important to ensure 

that differences in surface conditions were minimal. Where the 2015 images had too much cloud or snow, we selected 

images for the same season in 2014 and 2016 (Table 1). We acknowledge that this choice may introduce some uncertainties 180 

due to the temporal difference, which we discuss later (section 4.6). The Landsat 8 OLI scene from Khumbu (September 30, 

2015) was chosen as reference for method development and testing. We also performed a second spectral unmixing on an 

additional 2016 Landsat 8 OLI scene for Lahaul Spiti in the western Himalaya (Table 1) in order to have an analysis that was 

coincident with the high-resolution data used to validate the supraglacial pond mapping within this region. 

Table 1 here 185 

For calibration and validation of the spectral unmixing products at specific locations, we used a combination of high-

resolution optical imagery from Pléiades and Planet (Table 1). The Pléiades 1A satellite sensor acquires tri-stereo high-

resolution data (0.5 m spatial resolution in the panchromatic band and 2 m in the multispectral bands, blue to near-infrared), 

with 20 km image swath at nadir (Table 1). Three Pléiades scenes from 2015 (Oct 7, 19 and 20) covered the north, northeast 

and southeast parts of Khumbu (Rieg et al., 2018) and offered the closest match to the date of the reference Landsat image 190 
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(Sept 30, 2015) (Fig. 1); these Pléiades scenes were cloud-free and snow-free over the debris-covered part of the glaciers. 

The scenes were provided as three sets of triplets of primary data (1A), and were orthorectified in the Leica Photogrammetry 

Suite in ERDAS Imagine 2013 (ERDAS, 2010) using the Pléiades Rational Polynomial Coefficient model and the Pléiades 

DEM (1 m) previously generated using semi-global matching (Rieg et al., 2018). The individual image scenes were 

mosaicked to a single image using nearest neighbour at 2 m spatial resolution. In addition, a RapidEye level 3A analytic 195 

ortho tile from Oct 9, 2015 from Planet (Planet_Team, 2017) was used in addition to Pléiades in the Khumbu in order to 

cover a wider region to better overlap the Landsat scene. This RapidEye scene consists of orthorectified, surface reflectance 

data at 5 m spatial resolution and five multispectral bands, projected to UTM coordinates. A PlanetScope ortho-tile from Oct 

19, 2016 (3 m spatial resolution, 4 multi-spectral bands) was used in Lahaul Spiti area to validate the ponds resulting from 

unmixing the 2016 Landsat 8 scene for this region (Table 1). Both RapidEye and PlanetScope tiles obtained from Planet 200 

were mosaicked to single scenes using nearest neighbour. These have a stated positional accuracy of < 10 m, reported as root 

mean square error, RMSE) (Planet_Labs, 2021).  

We co-registered all high-resolution images and the corresponding Landsat 8 OLI images using the Co-registration of Optically 

Sensed Images and Correlation (COSI-Corr) routine (Leprince et al., 2007) implemented in ENVI 5.5 Classic (L3Harris 

Geospatial, Boulder CO). For the Pléiades image, after co-registration with 20 tie points and a second-order polynomial 205 

transformation (RMSE = 1.3 m), image displacements were -0.16 m in the E/W direction and 0.12 m in the N/S direction. The 

Planet RapidEye and PlantScope scenes were co-registered on the Landsat 8 OLI with 15 and 10 tie points (RMSE = 5 m and 

1.6 m, respectively), yielding offsets of ~1.1 to 1.7 m in the E/W direction and 0.09 to 0.5 m in the N/S direction after co-

registration. These offsets were below the spatial resolution of all scenes (2 - 5 m). 

2.3 Atmospheric and topographic corrections 210 

All Landsat 8 OLI scenes were corrected to minimize atmospheric effects due to scattering or absorption from atmospheric 

gases, aerosols and clouds. We used the open-source Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI 

v 3.1.6) routine based on the 6S algorithm (Vermote et al., 1997). We applied the STDSREF option in ARCSI with the 

shadow option, which provided standardized surface reflectance products for all the scenes where deep shadows were 

masked out as NoData. ARCSI allows for global and local viewing and solar geometries using physically-based illumination 215 

and reflectance corrections based on topographic data (Shepherd and Dymond, 2003), a specified atmospheric profile, an 

Aerosol Optical Thickness (AOT) value and sensor geometry. These settings are important for minimizing differences in 

surface conditions among the various scenes. The AOT value was automatically derived in ARCSI by a numerical inversion 

of the surface reflectance on an image-basis using the simple dark object subtraction technique (DOS) from the blue band, 

yielding an AOT of 0.05 for the Sept 30, 2015 Khumbu scene. To validate the performance of the DOS technique for the 220 

atmospheric profile representation in our study area for this date, we validated the estimated AOT against level 1.5 data at 

reference wavelength of λ = 500 nm aerosol size from AERONET (https://aeronet.gsfc.nasa.gov/) (Giles et al., 2019) and 
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against daily forecast global reanalysis of total optical depth at multiple wavelengths from the Copernicus Atmospheric 

Monitoring Service (CAMS) (https://atmosphere.copernicus.eu/catalogue#/). The AOT values obtained using the DOS 

method (0.05) were consistent with the ones calculated from AERONET and CAMS (0.07 and 0.05, respectively). In the 225 

Himalaya, we can generally assume relatively clean atmospheres and thus consider that low AOT values are reasonable (P. 

Bunting, Aberystwyth Univ., personal communication, Feb. 2021). Our choice of a constant AOT value in high 

environments is in line with findings from other studies (Gillingham et al., 2013; Matta et al., 2017). Surface topography 

used for the atmospheric and topographic corrections was based on the ALOS Global Digital Surface Model (AW3D30 

version 2.2, at 30 m) (JAXA, 2019), constructed from data acquired from 2006 to 2011. The vertical accuracy of ~10 m in 230 

eastern Nepal (Tadono et al., 2014) is superior to that of Shuttle Radar Topography Mission (SRTM) DEM (23.5 m, reported 

by Mukul et al. (2017)), because it contains fewer data voids and provided better shadow rendering in our area. 

2.4 Supraglacial debris cover data 

In this study, we constrained our analysis over supraglacial debris surfaces, extracted from the database of global distribution 

of supraglacial debris cover (Scherler et al., 2018), and referred hereinafter as the “SDC”. Debris-covered glacier outlines in 235 

this dataset were derived from Landsat 8 OLI and Sentinel-2 data using automated approaches on Google Earth Engine by 

excluding clean ice and snow from glacier areas within the limits of the Randolph Glacier Inventory (RGI v.6) 

(RGI_Consortium, 2017). Outlines span the period 1998 to 2001 for the central and eastern Himalaya, the year 2002 for the 

western (monsoon-dry transition zone) and mostly the year 2010 for glaciers in China. In this study, the outlines obtained from 

the SDC dataset required pre-processing because supraglacial ponds along with other surfaces such as nunataks were 240 

represented as “holes” in this dataset. This caused “NULL geometry” errors due to unclosed polygons, duplicated vertices etc. 

We fixed these errors in the SDC polygons using the Repair Geometry command in ArcGIS v10.8., in order to “fill” the holes 

so that these were included in the SDC polygons. For the test Khumbu area, we removed supraglacial debris polygons with an 

area less than 0.01 km2, which proved to be erroneous areas upon visual examination, i.e., sliver polygons or isolated bare land 

pixels. Such unwanted small polygons typically result from polygon overlays and do not represent a physical entity on the 245 

ground (Delafontaine et al., 2009).  

2.5 Spectral unmixing background and set-up 

In remote sensing, the reflectance spectrum of any image pixel represents an average of the materials on the ground, present 

in various proportions within that pixel (Keshava and Mustard, 2002). These “mixed pixels” are a common occurrence and are 

especially a concern in low to medium resolution imagery including Landsat. In the case of debris-covered glacier tongues, 250 

constituent materials include various types of rock debris and/or ice cliffs, supraglacial ponds and vegetation in various 

proportions (Rounce et al., 2018). Spectral unmixing techniques serve to quantify mixed spectra and to decompose each pixel 

into its constituent materials based on their characteristic, distinct spectral signatures. These materials are referred to as “pure” 

endmembers (Painter et al., 2009; Keshava and Mustard, 2002) and are either extracted from the image itself before unmixing 
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using unsupervised techniques, or supplied by the user using a priori knowledge (Painter et al., 2009; Keshava and Mustard, 255 

2002; Dixit and Agarwal, 2021). The relationship between the fractional abundance of each material and its spectra is most 

often defined as a linear combination of the spectral reflectance of the distinct constituent materials. This is implemented as 

linear mixing models (LMMs), used for example to distinguish among vegetation, rock, or different snow grain sizes (Painter 

et al., 2009). LMMs are easy to implement and are therefore widely used (Dixit and Agarwal, 2021; Keshava and Mustard, 

2002). In contrast, nonlinear mixing models take into account multiple scattering between surfaces and are used in forested 260 

areas where canopy height, or particulate mineral mixtures are in close association (Roberts et al., 1993). They are more 

realistic but are also more difficult to implement (Dixit and Agarwal, 2021).  

To yield physically meaningful results, fractions obtained from spectral unmixing should ideally comply with two major 

constraints: (a) the non-negativity (or positivity) constraint (i.e. fractions should not be negative) and (b) the sum-to-unity (i.e. 

for each pixel, fractions should add up to 1) (Keshava and Mustard, 2002). The non-negativity condition is recommended 265 

because negative reflectance values have no physical meaning, and the sum-to-unity constraint is recommended when very 

dark endmembers such as shadows are targeted or for unmixing radiance or thermal infrared emissivity. Models that comply 

with both conditions (called “fully-constrained models”) are difficult to achieve because they require perfect knowledge of the 

system, which is rarely feasible. Furthermore, fully-constrained models have been shown to produce unrealistic fractions in 

poorly defined areas or areas of low illumination (Cortés et al., 2014). In this study, we applied a LMM with endmembers 270 

extracted from the Landsat 8 OLI image itself, and we constrained our analysis over the supraglacial debris cover only to 

reduce model complexity. We used the LMM implementation in the ENVI 5.5 software (L3Harris Geospatial, Boulder CO). 

2.5.1 Endmember selection and spectral signatures 

The selection of endmembers is crucial in determining the accuracy and reliability of the spectral unmixing (Song, 2005; 

Dixit and Agarwal, 2021), and it requires some trial and error as well as a priori knowledge. We selected the endmembers 275 

within the debris-covered areas in the Khumbu domain, based on the reference Landsat 8 OLI scene (Sept 30, 2015). Prior to 

this, we performed a forward Minimum Noise Fraction Transform on the Landsat scene (Green et al., 1988), which consists 

of a linear transformation of the data based on principal component analysis, and allows to estimate noise in the bands. All 

bands had eigenvalues > 1, so we determined the dimensionality of the Landsat data as n = 7. We used the unsupervised 

pixel purity index routine in ENVI to find “pure” pixels in an automated manner. This routine outputs a data cloud where the 280 

value of each point indicates the number of times each pixel was marked as extreme, thus representing pixels with the 

highest occurrence in the image. We optimized the pure pixel extraction using various numbers of iterations (20,000 to 

50,000) with thresholds ranging from 2 to 3 (i.e., two to three times the noise level in the data) until all “pure pixels” were 

detected. Larger thresholds identify more extreme pixels, but they are less likely to be “pure” endmembers. “Pure” pixels 

were identified on the Landsat 8 OLI scene as corresponding to six endmembers: clean ice, dry vegetation, clouds, light 285 
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debris, dark debris and turbid water (Fig. 3). These were checked against co-registered Pléiades and RapidEye false colour 

composites in the Khumbu in order to minimize any occurrence of “mixed pixels”.  

Fig. 3 here 

The spectra of the six endmembers (Fig. 4a) were statistically separable based on the Jeffries-Matusita and Transformed 

Divergence separability measures (Richards, 2013) (values > 1.9–2.0). We defined both light and dark debris endmembers 290 

on the basis of their spectral differences (Fig. 4a), also noted in other studies (Casey et al., 2011; Kneib et al., 2020). We 

visually compared these spectral signatures with those we acquired previously in the field on Mer de Glace (French Alps) 

using an SVC HR-1024 spectrometer (350 nm to 2500 nm) (Racoviteanu and Arnaud, 2013) (Fig. 4b), as well as with 

supraglacial debris spectra from other papers (Naegeli et al., 2015; Naegeli et al., 2017; Casey and Kääb, 2012) To minimize 

the number of endmembers, we made several choices: (a) we did not consider any snow; (b) we assumed the supraglacial 295 

ponds to be mostly of turbid type, i.e., those containing larger quantities of suspended sediments. We based this choice on 

results from Matta et al., (2017), who reported 52 % of ponds in the Himalaya to have grey waters and 24 % blueish waters; 

the water spectra in Fig. 4a corresponds well with field-based spectra for other turbid lakes in the Khumbu, such as Chola 

Lake, reported their study; (c) based on our field observations of high-altitude vegetation in the Khumbu (Fig. 3d), we 

defined the vegetation endmember as “dry vegetation”, whose spectral signature (a) corresponds roughly to the graminoid 300 

shrubs or overgrown vegetation with a grass-like appearance typically found at high altitudes (Wehn et al., 2014); (d) deep 

shadows were previously removed during the topographic corrections with ARCSI and assigned “NoData” so they were not 

considered as an endmember. We ran the LMM for various combinations and numbers of endmembers (3 to 6 endmembers) 

and recorded the model RMSE for each combination. We examined the residuals (RMSE band) provided from the unmixing 

to determine areas of missing or incorrect endmembers; when this contained distinct features, it indicated poorly defined 305 

endmembers. We excluded the endmembers one by one and ran the LMM until we obtained a “salt and pepper” with no 

distinct features, indicating that no endmembers were missing or misidentified.  

Fig. 4 here 

2.5.2 Surface classification from fractional maps 

LMM routines result in a multi-band raster containing pixel-by-pixel fractional cover values for each class, which ideally range 310 

from 0 to 1. When we obtained negative values for a class, we assumed that the material was missing and forced these values 

to zero. Positive values were normalized by dividing each endmember fraction by the sum of the endmembers, so that the sum 

of the fractions of the various materials in each pixel added up to 1. This is a common procedure suggested by previous studies 

(Rosenthal and Dozier, 1996; Quintano et al., 2012; Cortés et al., 2014) when the sum-to-one condition is not satisfied. 
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For further analysis, we require maps of the surfaces rather than just a numerical value of area, so we classified the 30 m 315 

fractional maps by applying a threshold α to produce binary maps for each class. Previous studies used a minimum threshold 

of α = 0.4 or 0.5, i.e. a pixel was assigned to a class if it contained a fraction of 40 – 50 % to 100 % of that constituent material 

(Hall, 2002). The thresholds varied by class, because any pixel contains a mixture of materials in various proportions (section 

3.1). Pixels which satisfy 2 different thresholds are categorized as ‘unclassified’. For the supraglacial ponds in the Khumbu, 

we defined the water threshold quantitatively based on comparison of the LMM-derived pond areas against those derived from 320 

Pléiades for seven glaciers (section 2.6), and we evaluated the sensitivity of the chosen water threshold. For the other classes, 

the thresholds were adjusted carefully based on visual interpretation against the Pléiades and RapidEye images in the Khumbu. 

The thresholds established for the Khumbu were applied over the entire Himalaya domain. 

 
2.5.3 Accuracy assessment  325 

The performance of the LMM was assessed both qualitatively (on the basis of visual interpretation and comparison with 

surfaces visible on the high-resolution Pléiades and RapidEye), and quantitatively (using established measures, i.e. RMSE, 

fraction value abnormalities and the residual band output in the LMM) (Gillespie et al., 1990). To quantitatively assess the 

ground accuracy of the LMM, we manually digitized 151 test pixels covering all six classes (10 – 38 pixels per class) on 

false colour composites of the Pléiades and RapidEye images in the Khumbu using a simple random sampling strategy. The 330 

reference points were chosen so that they were well distributed across the Khumbu (Fig. 2), and were taken to represent 

“ground truth”. The predicted class was compared to the ground truth at each pixel to generate a confusion matrix and to 

compute the overall accuracy of the model (percent pixels classified correctly). We also report class-specific metrics as true 

positives (number of pixels correctly classified and are found in a class, TP), true negatives (number of correctly classified 

pixels, that do not belong to a class, TN), false positives (number of pixels that were incorrectly assigned to a class, FP) and 335 

false negatives (number of pixels that were omitted from a class, FN) (Table 2). We calculated three metrics which are 

suitable for multi-class classification routines (Sokolova and Lapalme, 2009) as follows (Eq. 1-3): 

!"#$%&%'( = 	 +!
+! + -!																																					(1) 

!"#$%% = 	 ()
() + +,																																																			(2) 

+0#12" = 	 2()
2() + +) + +,																																				(3) 340 

Precision measures the agreement between ground data and classified data, i.e., the probability that a pixel classified as water, 

is indeed water on the ground. Recall measures the effectiveness of the classifier to identify a pixel in the class of interest i.e., 

the percentage of results correctly classified by the algorithm. Fscore balances precision and recall as the harmonic means of 
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the two, and measures the relation between the pixels on the ground and those classified, i.e., the model accuracy for each 

class. For all metrics, a poor score is 0.0 and a perfect score is 1.0. 345 

2.6 Validation of supraglacial ponds with high-resolution data 

We validated the performance of the spectral unmixing for supraglacial pond areas on the basis of high-resolution imagery 

for 6 to 7 debris-covered glacier extents at each of the three sites shown in Figure 1. For the Khumbu and Lahaul Spiti 

glaciers, supraglacial pond areas were mapped from Pléiades and PlanetScope imagery, respectively (Table 1) using OBIA 

techniques (Blaschke et al., 2014) implemented in the ENVI Feature Extraction Module (Harris Geospatial, 2017). In the 350 

Khumbu, the Pléiades images were acquired several weeks apart from the date of the Landsat scene in some parts of the 

region (see Table 1), but we assume minimal lateral expansion between the two dates, as discussed by Watson et al. (2018). 
For the Langtang region, we validated our LMM-derived pond areas with those reported for seven glaciers based on SPOT7 

satellite imagery in Steiner et al., (2019). The OBIA method used for Khumbu and Lahaul Spiti consisted in a ‘segmentation 

only’ extraction workflow on the visible bands of Pléiades and/or PlanetScope, with an edge algorithm (to delineate the pond 355 

segments), a fast lambda setting (to merge adjacent segments with similar colours and borders) and a texture kernel size of 3 

pixels (suitable for segmenting small areas). The scale and merge levels were adjusted against colour composites to prevent 

over-segmenting and to combine different segments into one pond. The resulting polygons were further manually corrected 

(split, merged or digitized) for any missing and/or shaded areas beneath ice cliffs as described in Watson et al. (2017a). Our 

aim was not to construct a sophisticated OBIA classification scheme but rather to use the feature extraction module as time-360 

saving strategy and to add objectivity to the manual digitization.  

2.7 Auxiliary region-wide datasets 

We explored the dependency of the resulting supraglacial pond cover incidence on topographic variables: elevation bands 

above the termini, slope and aspect of the debris cover areas. These were calculated over the debris-covered parts of the glaciers 

on the basis of the AW3D30 DEM (30 m). Only glacier polygons with area larger than 1 km2, resulting in a subset of 408 365 

glaciers were selected from the SDC database over the Himalaya domain for an in-depth glacier-by-glacier analysis. The area 

threshold was applied in order to remove spurious small bare land patches or isolated debris pixels present in the SDC database. 

While the vast majority of glaciers in the Himalaya are smaller than 1 km2, these are mostly clean glaciers (Racoviteanu et al., 

2015). In addition to the glacier-by-glacier basis analysis, we also binned the topographic variables, i.e., 100-m elevation, 2-

degree slope and 45-degree aspect, and summarized the pond incidence in each bin.  370 

We explored spatial patterns in the pond incidence and supraglacial vegetation with respect to regional climate gradients, 

average glacier mass balance and average surface velocity. Climate data (total precipitation and average temperature) were 

obtained from ERA5-Land, which provides gridded monthly average means at 0.1º x 0.1º of land surface properties 

(Copernicus Climate Change Service, 2019) (Muñoz-Sabater, 2019). Gridded glacier thickness change at 30 m resolution for 

the period 2000 – 2019 were obtained from Shean et al., (2020). Glacier surface velocities for the period 2013 – 2015 based 375 
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on Landsat data were obtained from Dehecq et al., (2015). All topo-climatic variables were binned and averaged over a 1º x 

1º grid as used in other studies other studies (e.g. Brun et al., 2017; Dehecq et al., 2019), to explore the topo-climatic controls 

on spatial trends in pond and vegetation incidence.  

3 Results  

3.1 Fractional maps 380 

Here we present results of the unconstrained LMM, because this had a lower RMSE (0.6 %) compared to the partially 

constrained model run (RMSE of 1.5 %). The normalized fractional maps of the six surface types are presented in Fig. 5; 

fractional values ranged from 0.004 to 1. Fractional water values greater than 0.5 correspond to supraglacial ponds, visible 

for example at the termini of Ngozumpa and Khumbu Glaciers (Fig. 6a,b). Light and dark debris was identified with a 

threshold of 0.25 and 0.40 respectively, defined visually on the basis of the Pléiades image. Dry vegetation patches generally 385 

exhibited pixel fractions greater than 0.65. Pixels with abnormally high positive fractional vegetation values were found in 

areas of healthy green vegetation and/or bare terrain, which should not be part of the debris-covered tongues, as will be 

discussed later (section 4.5). Cloud pixels display fractional values greater than 0.45, although some pixels were mixed with 

debris, particularly at cloud shadow areas. For clean ice, fractional values were rather low (0.20) and ranged from 0 (areas 

which might have some degree of dirty, dark ice with a lower albedo) to 1 (small number of clean ice pixels found in the 390 

upper areas of supraglacial debris).  

Fig. 5 and Fig. 6 here 

3.2 Accuracy of the LMM-based classification for the Khumbu 

Accuracy measures presented in Table 2 for the Khumbu domain show that errors were not evenly distributed among classes. 

For the water and vegetation classes, recall score was 0.83 to 0.84 respectively, with a precision of 0.94 and 0.93 respectively 395 

Table 2. For these classes, the LMM achieved a balance of precision and recall metrics, with a high Fscore of ~ 0.9 indicating 

an accurate model. For the debris classes, the model was reasonable but not outstanding, with an Fscore of ~ 0.7 and lower 

precision score for dark debris (0.56) compared to light debris (0.72) (Table 2). This suggests that in the case of dark debris, 

the LMM model was less accurate than light debris, because pixels from other classes (clean ice, water and light debris) got 

mistakenly assigned to this class. Clouds were classified with low precision and low recall scores (Fscore of ~ 0.5), which 400 

means that the LMM performed relatively poorly for this class and it also missed 50% of the cloud pixels. There was confusion 

between clean ice and cloud pixels, i.e., clean ice pixels were mistakenly included in the cloud class. Clean ice was the most 

poorly classified, with a recall score close to 0 and Fscore of 0.13; one ice pixel was correctly identified, but other surfaces 

were confounded with ice. We attribute this to the poorly defined ice class in the model data (i.e., limited number of “pure” 

ice pixels used to extract the spectral signature). Based on these measures, we note that overall, the LMM most accurately 405 
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classified the water and vegetation classes, with reasonable performance for the light debris class but poor performance for 

clean ice and clouds. The overall accuracy of the LMM-based classification of the six surfaces was 75 %; however, this is a 

rather coarse metric and it does not indicate the specific performance of the model for each class so we do not use this here as 

evaluation of the accuracy. 

Table 2 here 410 

3.3 Supraglacial pond thresholds and validation 

The sensitivity analysis of the pond areas obtained from LMM fractional maps with various thresholds (Table 3) indicates 

that there was up to 40 % variability in total pond area when compared to Pléiades-based ponds, depending on the glacier. A 

threshold of 0.5 applied to the water class (fractional water > 0.5 = supraglacial ponds) yielded the best agreement with the 

total pond areas for the seven glaciers, obtained from OBIA mapping on the Pléiades image (1.0 km2 compared to 1.1 km2 415 

for the total coverage, respectively, or a 9 % difference) (Table 4). For the Khumbu Glacier, LMM with a threshold of 0.5 

yielded a pond area of 0.20 km2 versus 0.23 km2 from Pléiades (Table 4), which is in agreement with the area reported by 

Watson et al. (2017b)(0.24 km2) using the same Pléiades image (Oct 7, 2015).  

Table 3 and Table 4 here 

In the Lahaul Spiti region, for the seven glaciers we investigated, LMM yielded a total pond area of 0.14 km2 (0.31 % of the 420 

total debris-covered area of the glaciers). The area mapped from PlanetScope image from the same date (Oct 19, 2016) using 

OBIA yielded 0.10 km2 (0.22 % of the debris-covered area) (Table 4). 

In the Langtang region, for the six glaciers investigated in Steiner et al., (2019), our LMM-derived pond areas yielded a total 

of 0.17 km2 pond area (0.64% of the debris-covered area). Steiner et al., (2019) obtained a total pond area of 0.21 km2 (0.86 

% of the debris-covered area) for the same glaciers based on manual digitization by multiple analysists from SPOT7 data for 425 

the same date as the Landsat. LMM under-estimated the pond area by 0.05 km2 (19 %), which is within the uncertainty range 

(21 %) reported for the ponds in the Langtang area by Steiner et al., (2019).  

Visually, the spectrally unmixed pond pixels correspond well with the validation dataset, although there is a difference in the 

representation of the pond surfaces due to the spatial resolution (30 m Landsat vs. 2 m Pléiades) (Fig. 6). For Lhotse Glacier, 

the supraglacial pond area was slightly under-estimated compared to Pléiades (Table 5) as can be seen on Figure 6. This is 430 

perhaps due to the predominance of darker debris type on this glacier, some of which was confused with water, as shown by 

the accuracy metrics (Table 2). Similarly, in the Lahaul Spiti region, locations of the supraglacial ponds correspond well 
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between LMM and PlanetScope on Bara Shigri Glacier (Fig. 6c), but the small ponds are not identified using the water 

threshold of 0.5, which assumes that more than 50% of the pixel area is covered by water. 

3.4 Application to regional non-glacier lake databases  435 

While supraglacial ponds are the focus of this study, we mention that LMMs can also be parameterized to map other lakes, 

by masking the debris-covered glacier areas and replacing the turbid water endmember with the clear water endmember, 

which has a lower spectral signature (Fig. 4a). This is beyond the purpose of this study, but we provide an illustration of such 

an output for the terminus of Ngozumpa Glacier (Fig. 7). We present the ponds and lakes on the debris cover and outside it 

for comparison with two existing glacial lakes databases constructed from the same year (2015 Landsat): the HMA v.1 lake 440 

dataset, derived using a normalized difference water index (Shugar et al., 2020) and HI-MAG constructed using a modified 

NDWI and manual corrections (Chen et al., 2020). A comparison with other global databases such as the Global Surface 

Water dataset (Pekel et al., 2016) was not undertaken here, as this has already been shown to underestimate the water 

occurrence over most of the Himalaya by Chen et al. (2020). With regards to HMA v.1 and HI-MAG datasets, Figure 7 

shows that the lake outlines obtained from spectral unmixing for the supra-glacier ponds at the terminus of Ngozumpa 445 

Glacier as well as the Gokyo Lakes outside the glaciers are outperforming both of the existing databases in this area. Our 

lake extents are consistent with the HMA v.1 lakes extents outside debris cover (Fig. 7), and the surface area estimates agree 

quite well, for example we calculated a difference of 5 % in the summed pond area over the three Gokyo Lakes (1.15 km2 in 

our estimates vs. 1.09 km2 in HMA v.1). The slight under-estimate in the latter is due to simplification of the raster edges in 

the vector conversion process, visible in the lake extents. With regards to supraglacial ponds, for example Spillway Lake at 450 

the terminus of Ngozumpa Glacier, our spectral unmixing technique maps most of these lakes, while both HMA v.1 and the 

HI-MAG datasets fail to detect all the supraglacial ponds. The HI-MAG detects more of the surface of Spillway Lake 

compared to HMA v.1, but the outlines are simplified and lack precision with respect to Landsat pixels (Fig. 7). We did not 

simplify the lake and pond polygons, as this can introduce significant area errors. 

Fig. 7 here 455 

3.5 Composition of the debris-cover glacier tongues: glacier to regional scale 

3.5.1 Khumbu domain 

For the seven debris-covered glacier tongues in the Khumbu (Fig. 8), the most prevalent materials detected using the LMM 

were dark and light debris, with an average of 53.7 % and 43.6 % of the supraglacial debris area, respectively (Table 5). The 

dark and light debris areas exhibit variable distribution patterns by glacier. For example, the debris-covered tongue of Nuptse 460 

Glacier in Khumbu is mostly covered by light debris (> 95 % of its area), while the opposite is true for Lhotse Glacier, which 
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is mostly composed of dark debris (> 91 %) (Table 5). Other glaciers in the eastern part of Khumbu, i.e., Kangshung Glacier 

exhibit alternating bands of light and dark debris, where darker bands represent medial moraines (Fig. 8).  

Table 5 and Fig. 8 here 

Exposed ice was detected in small quantities in the Khumbu, ranging from 0.2 % (Lhotse) to a 1.4 % (Changri Nup) with an 465 

average of 0.6 % of the debris-covered areas (Table 5 and Fig. 9). Patches of supraglacial vegetation ranged from ~ 0 % 

(Lhotse Nup Glacier) to 1.6 % (Gaunara Glacier), with an average of 0.5 % over the seven tongues (Table 5). Vegetation 

patches were found for several pixels corresponding to the lateral moraine of Ngozumpa Glacier, or larger patches at the 

terminus of Labeilong and Kazhenpu Glaciers in China (Fig. 8. and Fig. 10). The supraglacial pond area in the Khumbu in 

2015 ranged from 0.9 % (Lhotse and Nuptse Glaciers) to ~ 3 % of the debris-covered area (Ngozumpa and Khumbu 470 

Glaciers), with an average of 1.6 % over the seven debris-covered glacier tongues and glacier-by-glacier variability (Table 

5). The larger water coverage for Ngozumpa and Khumbu Glaciers is consistent with the presence of large supraglacial 

ponds at the terminus of these two glaciers shown on Figure 6.  

Fig. 9 and Fig. 10 here 

3.5.2 Himalaya domain 475 

Here we consider patterns across the whole analysed mountain range and also compare and contrast conditions in the four 

regions highlighted in Figure 1. Light debris is prevalent over the entire Himalayan domain, comprising almost three times 

the extent of dark debris (60.9 % vs. 23.8 %, respectively). There is a slight regional variability in the occurrence of light 

debris, but all regions exhibit similar patterns in terms of the proportion of light and dark debris (Table 6). Glaciers in the 

western part of the Himalaya are mostly composed of supraglacial light debris, which presumably reflects the nature of the 480 

underlying bedrock geology here (Searle et al., 1987). 

We detected a higher percent coverage of clean ice/snow within the debris-covered area for the entire range (5.6 % of the 

debris) with respect to the reference Khumbu domain (0.6 % on average) (Table 6). At the date of the analysis (September to 

October 2015), some of the debris-covered glaciers in the eastern part (Bhutan) exhibited snow on the upper parts of the 

supraglacial debris, perhaps due to early snowfalls common in this area at this time of the year. 485 

Table 6 here 

Cloud coverage amounted to 45 km2 (2.0 % of the debris-covered area) over the entire range, with less coverage in Lahaul 

Spiti and Khumbu (1.6 % and 0.6 % respectively) compared to the Bhutan domain (6 %).  

Supraglacial vegetation covered a total of 4.5 % of the debris-covered parts of glaciers over the Himalaya domain, with less 

coverage in the western part (Lahaul Spiti, 1.6 % of the debris cover) than in the central and eastern Himalaya regions (Khumbu 490 
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and Bhutan domains, at ~ 3 %). We show examples of the vegetation maps obtained from the LMM on Kazhenpu Glacier in 

China in Figure 10a. On other glaciers, such as Labeilong Glacier (Fig. 10b), these values might be slightly over-estimated 

because the SDC dataset included patches of healthy vegetation as part of the debris cover.  

The supraglacial pond dataset over the Himalaya domain consists of a total of 18325 ponds ranging in area from 0.0009 km2 

to 0.002 km2. Ponds accounted for an area of 47 km2 (2.1 % of the total supraglacial debris cover), with marked regional 495 

variability among western Himalaya (Lahaul Spiti: 0.3 % of the supraglacial debris), central Himalaya (Khumbu: 1.6 % and 

Manaslu: 2.6 %) and eastern Himalaya (Bhutan: 4.9 %) (Table 6). 

3.6 Glacier-by-glacier pond and vegetation coverage 

The 408 debris-covered glacier tongues selected from the SDC dataset for the in-depth analysis (cf. section 2.7) ranged in 

area from 1 km2 to 37 km2, with an average area of 3.9 km2 and a mean slope of 12.7º. The supraglacial pond and vegetation 500 

coverage of these glaciers shows heterogeneous patterns (Fig. 11a,b). Both supraglacial ponds and vegetation cover a 

relatively small percent of the debris-covered glacier areas in the western Himalaya (0 to 2.5 %) compared to the central and 

eastern parts. We note some clusters of higher percentage occurrence of both ponds and vegetation in these two regions (7.5 

– 10 % for ponds and 20 – 40 % for vegetation, respectively) (Fig. 11a,b). The glacier-by-glacier analysis of pond coverage 

with respect to minimum debris-covered glacier elevation did not yield a clear trend, suggesting that ponds do not occur 505 

necessarily on glaciers situated at lower altitudes. Similarly, supraglacial vegetation coverage did not display significant 

dependencies on either average slope or minimum elevation of the debris-covered tongues.  

Fig. 11 here 

The analysis of pond coverage per 100-m elevation bands over the entire range however shows clearer patterns than the 

glacier-by-glacier results: 77 % of the pond area coverage occurs within 10 % elevation from the glacier termini and then 510 

pond density decreases exponentially towards the upper part of the debris-covered tongues (0.1% of pond coverage at 75 % 

elevation upwards from the termini) (Fig. 12a).We note from Figure 12a that the largest concentration of ponds does not 

occur directly at the glacier termini, but increases within 2 % of the elevation from the terminus (i.e., within 100 m above the 

minimum elevation). The exponential fit shown in (a) and (b) could have useful predictive power, but misses the peak lake 

coverage that is typically found near the terminus and on low angle slopes. The high pond coverage near the terminus 515 

coincides with the areas of pond coalescence into large terminal lakes, which implies that an exponential fit is useful for 

capturing the percent cover of 'perched ponds' but likely not the base level lakes (cf. Benn et al., 2012). The analysis of pond 

incidence over 2º slope bands (Fig.12b) shows that 38 % of the total pond area occurs within 0 to 10º slope bins, with the 

maximum pond area coverage found at slope bins averaging 4 to 6º (9 % of the pond area) (Fig.12b). The pond incidence 

increases initially, then drops on slopes > 8 º, which is to be expected because at steeper slopes, meltwater can drain away 520 

(Reynolds, 2000). This is consistent with findings from a previous study (Scherler et al., 2011), which found that slope areas 



 18 

with gradients less than 8º were associated with stagnant ice at the terminus regions of debris-covered glaciers over the 

Himalaya. With respect to glacier aspect, we found that the maximum pond coverage occurs on slopes with an eastern 

orientation (22.5 to 67.5 º, 15.6 % of the pond area) and southeastern orientation (67.5 – 112.5, 14.2 % of the pond area), 

with less pond incidence (~ 9 %) on northern facing slopes (Fig. 12c). Although the differences in pond incidence in the 525 

different aspect bands are only within 4 %, this seems to support the fact that southern and eastern facing slopes receive 

more insolation, thus favouring ice melt and formation of ponds.  

Fig.12 here 

3.7 Supraglacial pond and vegetation distribution over the large domain 

Here we present the large-scale patterns of pond and vegetation occurrence on debris-covered glacier tongues over the 530 

Himalaya domain with respect to topo-climatic variables averaged and binned at 1x1 degrees (~111 km) (Fig. 13). 

Fig. 13 here 

 

Binned supraglacial ponds and vegetation over the Himalaya domain exhibit clear spatial patterns (Fig. 13a,b). With regards 

to geographical location, the pond coverage in the western Himalaya is rather homogenous (ranging from 0.1 to 1.5% of the 535 

debris-covered areas) and is more pronounced and variable in the eastern Himalaya (2.4 to 4.3 % of the debris-covered area) 

(Fig.13a). Pond incidence is positively correlated with longitude (Pearson’s r = 0.82) and negatively correlated with latitude 

(Pearson’s = -0.72). Both correlations were significant at 95 % confidence interval) (Table 7). Similarly, supraglacial 

vegetation is positively correlated with longitude (Pearsons’ r = 0.40) and negatively correlated with latitude (Pearson’s r = -

0.28) (Fig.13b) and exhibits less pronounced occurrence in the north-western part of the domain. The correlations are 540 

significant at 90 % confidence interval (p-value < 0.1) but are weaker than those for the pond incidence. The surface trend 

analysis of pond incidence and supraglacial vegetation shows that these both increase in the east-west direction at the rate of 

+0.23 % and +0.72 % per degree longitude, respectively. 

 

Pond occurrence is positively correlated with average temperature (Pearson’s r = 0.40) and with precipitation Pearson’s r = 545 

0.53), with correlations significant at 90 % and 95 % confidence intervals (p < 0.1; p< 0.05), respectively. Furthermore, pond 

occurrence is negatively correlated with glacier thickness change (Pearson’s r = -0.37, p < 0.1) (Table 7). We did not find 

significant correlations of pond and supraglacial vegetation occurrence with percentage of debris cover on the glacier area, 

termini elevation or average glacier velocity (Table 7). Supraglacial vegetation had a week positive correlation with 

precipitation, but it was not significant. 550 

 

Table 7 here 
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4 Discussion  

4.1 Controls on mountain-range scale supraglacial pond and vegetation distribution 

The topo-climatic conditions for the occurrence of supraglacial ponds on the surface of debris-covered glaciers have been 555 

addressed in previous studies (e.g. Sakai, 2012; Sakai and Fujita, 2010). While our results show that both ponds and 

vegetation tend to develop on stagnant, low angle slopes of the debris-covered tongues (Sakai and Fujita, 2010; Reynolds, 

2000; Quincey et al., 2007) and at lower elevations, which would favour increased temperature and therefore enhanced 

surface melt, these trends were not statistically significant when considered on a glacier-by-glacier basis. This implies that at 

the mountain range scale, the distribution of supraglacial features may be governed by more complex factors, which include 560 

geomorphologic, glaciologic and climatic patterns. Understanding the spatial trends in supraglacial pond and vegetation 

noted in Figures 13a,b requires first a consideration of the topographic conditions, i.e., regional differences in the occurrence 

of supraglacial debris and the elevations at which debris-covered glaciers are found and glacier regimes. Here we discuss the 

occurrence of supraglacial ponds and vegetation in light of regional topo-climatic and topographic conditions.  

A first observation is that supraglacial debris covers a larger part of the glacierized areas in the central and eastern Himalaya 565 

compared to the western extremities, decreasing linearly from the southwest to northeast, with more pronounced trends 

eastwards (-2.7 % per degree longitude) than northwards (-0.6 % per degree latitude) (Fig. 13c). At the same time, the 

elevation of the debris-covered glacier termini increases strongly northwards towards the Tibetan plateau (+ 354 m per 

degree latitude) and from west to east (+114 m per degree longitude) (Fig.13d). The increasing trends in both pond and 

vegetation coverage towards the eastern Himalaya noted earlier (Fig.13a,b) are consistent with the presence of lower glacier 570 

termini and higher rates of debris in the eastern part compared to the western part, noted in this study. Overall, debris-

covered glacier tongues descend to lower elevations in the central - eastern Himalaya region (~3,700 m to 4,400 m) 

compared to the western part (~ 4,700 to 4,900 m). While our results show that the control of glacier termini elevation on 

pond occurrence is very weak and not significant (Table 7), vegetation occurrence is moderately correlated with termini 

elevation and precipitation. While the elevation control on vegetation is not statistically significant, it appears that the lower 575 

elevations at which supraglacial debris is found might favour to some extent vegetation growth on these tongues.  

Development of supraglacial vegetation (mostly shrubs) has been noted on stagnant, thick debris-covered tongues in other 

areas of the world (Xie et al., 2020; Tampucci et al., 2016). Increasing trends in supraglacial vegetation in other glacierized 

areas such as the Alps as a consequence to climatic change (Vezzola et al., 2016). As supraglacial vegetation typically only 

develops on stagnant surfaces that are no longer undergoing substantial gravitational reworking, its presence may also 580 

constitute an indication of glacier inactivity and later stages of decay. We observed an increased vegetation occurrence towards 

the eastern Himalaya (Fig.13b), where a clear west to east pattern in negative glacier surface elevation changes is also observed 

in this study based on analysis of the 2000 – 2018 dataset (Shean et al., 2020)(Fig.13e). Surface changes become increasingly 
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more negative towards the east at the rate of 0.02 m per degree longitude (Fig.13e). This is consistent with the slightly negative 

glacier mass balance reported in this area in other regional studies (Berthier and Brun, 2019; Brun et al., 2017). This glacier 585 

surface thinning, and the resulting glacier mass balance is consistent with the eastward increase in both pond and vegetation 

incidence observed in this study. We note however that the direct dependence of supraglacial vegetation on glacier thinning 

noted in this study is rather weak (Table 7). 

In addition, the eastward decrease in average glacier velocities (-0.2 m a-1 per degree longitude and -0.1 m a-1 per degree 

latitude), based on the trend analysis of 2013 -2015 datasets from Dehecq et al. (2015) (Fig. 13f) show a tendency for stagnating 590 

debris-covered glacier tongues towards the north and towards the east. Stagnant glaciers were reported for the northern parts 

of the central Himalaya (Scherler et al., 2011) and were attributed to topographic differences, i.e., low slope angles on the 

northern slopes of the range promoting development of stagnant ice, Such patterns are in contrast with more rugged, steeper 

terrain of the southern slopes, which favours more dynamic glacier environments (Scherler et al., 2011). The stagnating trends 

coupled with higher percentage of supraglacial debris correlate with the higher incidence of vegetation towards the east 595 

(Fig.13b), supporting the idea that debris cover of sufficient stability favour plant colonization (Fickert et al., 2007). Such 

patterns point to a potential transition of debris-covered glaciers in certain areas towards vegetated glaciers as noted in other 

studies (Fickert et al., 2007). It has been noted in recent studies that supraglacial ponds can enhance local ablation rates by up 

to three times (Brun et al., 2016; Miles et al., 2018; Irvine-Fynn et al., 2017).The slightly more negative mass balances and 

lower surface velocities towards the east may indicate the transition of debris-covered glaciers to inactive debris-covered 600 

glacier tongue or a rock glacier in this part of the Himalaya (Jones et al., 2019; Monnier and Kinnard, 2017). However, we 

note that the control of glacier velocities on ponds and vegetation noted here are not statistically significant and may not be 

fully conclusive.  

Climate factors (temperature and precipitation) may also  favour pond incidence over some parts of the domain, i.e., higher 

temperatures and therefore more dynamic environments could favour increased surface melt and pond formation (Herreid 605 

and Pellicciotti, 2020). In the case of the Himalaya, gridded average temperatures for the month of Oct. 2015 exhibit a 

southwest to northeast decreasing trend, with a stronger decrease in the south to north direction (-2.3 ºC per degree latitude) 

(Fig.13g). Total gridded precipitation for the same month increases in the eastern direction at the rate of -0.06 mm per degree 

latitude and decreases towards the drier, colder regions of Tibetan plateau with a stronger gradient northward (-0.23 mm per 

degree latitude) (Fig. 13h). On the contrary, the warmer and wetter areas of the eastern Himalaya seem to favour higher pond 610 

coverage, as also suggested in other studies (Herreid and Pellicciotti, 2020). At larger scales, it has been shown that certain 

conditions related to topography and lithology could offset this dependency, but at the range of the Himalaya, this climatic 

dependency holds. Climatic conditions and glacier characteristics in the western Himalaya are more similar to those in the 

Karakoram where glaciers have undergone less shrinkage (Brun et al., 2017; Kääb et al., 2012; Gardelle et al., 2013) than 

those in the central and eastern, monsoon-influenced Himalaya, which exhibit higher temperatures and larger precipitation 615 

amounts, and where debris-covered glacier termini are found at lower elevations.   
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The controls on debris-covered glacier surface evolution are a complex combination of cumulative debris-supply, mass-

balance condition, debris cover expansion, stagnation and total lowering.  Studies have noted that surface types are related to 

the evolutionary stage of a debris-covered glacier (cf. Thompson et al., 2016), in that debris thickness variability, local 

topography, degree of downwasting, and glacier tongue slope are all potentially at least partially related to the time-lapsed 620 

since debris cover formation (Sakai and Fujita, 2010; Nicholson et al., 2018). Relatedly, Herreid and Pellicciotti (2020) 

introduce the term of debris-covered glacier 'stage' ranging from 0 to 1 as a percentage of the full, 2D ‘debris-cover carrying 

capacity’ of a glacier, such that if 100% of the ablation zone is debris-covered, then the debris-covered area cannot expand 

further without up-glacier migration of the equilibrium line. Further analysis is needed to accurately capture the complex 

combination of topographic and climatic factors that contribute to the development of ponds and vegetation on supraglacial 625 

debris cover using the most recent publicly available and corrected datasets (Herreid and Pellicciotti, 2020) and a carefully 

quality-controlled output of the method proposed here. A complete understanding of the occurrence of surface features may 

also require a treatment of transient glacier and supraglacial debris cover co-evolution in order to quantify the time-dependent 

controls on pond formation and vegetation growth as the debris cover and glacier geometry in specific catchments develop 

over time. 630 

4.2 Spatial and spectral limitations of the Landsat data  

Our analysis of surface composition of the debris-covered glacier tongues is subject to several limitations related to the spectral 

and spatial resolution of the input Landsat data. While linear spectral unmixing is a relatively straightforward routine to 

implement once the endmembers and their spectra are selected, using Landsat data at 30 m spatial resolution and spectral 

dimensionality for spectral unmixing has its limitations. While Landsat 8 is superior to the previous Landsat missions in terms 635 

of its calibration, geometry and radiometric resolution (Irons et al., 2012), its spectral dimensionality remains an issue, 

particularly with respect to mapping of the various types of debris material and/or supraglacial ponds with various degrees of 

turbidity. Previous studies in the Himalaya (Casey and Kääb, 2012; Casey et al., 2011; Matta et al., 2017) suggest that the 

spectral dimensionality of these two surfaces is greater than the dimensionality of the Landsat 8 OLI bands available for 

unmixing. Landsat has limited spectral resolution data (7 bands available for unmixing) compared to hyperspectral data (for 640 

example AVIRIS, 224 bands). Both the partially constrained and the unconstrained LMMs yielded negative abundances in our 

study, with larger positive values (> 3) especially for the vegetation class. Since our fractions did not satisfy the sum-to-unity 

condition, normalization of the classes was necessary, which may have introduced further uncertainty in our results because 

some classes had higher positive values than others. However, previous studies showed that these negative values do not 

necessarily affect the ability to discriminate between surfaces (Klein and Isacks, 1999).  645 

Limitations posed by the spatial resolution of Landsat data (30 m) affected the accuracy of the selected endmembers. While 

we used the pixel purity index to automate the selection of endmembers, we acknowledge that some mixture may still occur 

at 30 m spatial resolution. Furthermore, the 30-m spatial resolution does not allow us to detect supraglacial features such as 
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ice cliffs or small ponds which can span only a few square meters. Improvements envisioned here include applying the spectral 

unmixing Sentinel-2 imagery, which has a better spectral, spatial and temporal resolution (13 bands in the visible to shortwave 650 

infrared, 10 – 20 m, 5-day revisit time) compared to Landsat (7 bands in the visible to shortwave, 30 m, 16-day revisit time). 

This would allow for better definition of endmembers, facilitating more accurate and repeated mapping in the future. 

Furthermore, the 30 m spatial resolution of the DEM does not allow us to infer the precise control of topographic factors 

such as slope and aspect on pond formation or a full quantification of the small-scale controls of pond incidence, but only 

provides a mountain-range scale of the pond distribution. 655 

4.3 Limitations in the endmember definition 

In this study, we utilized the maximum numbers of endmembers (n = 6) allowed by the spectral resolution of the Landsat 8 

OLI data (7 bands), in an attempt to capture the variability of the system and to avoid high RMSE of the model which may 

occur due to missing classes. The main difficulty here consisted in capturing the wide variability of the materials present across 

the mountain range, for example different lithologies, while ensuring a “valid” LMM. This is defined as one where fractional 660 

values do not exceed 1.01 (under strict constraint rules) or 2.01 (under looser rules) and where RMSE is less than 2.5% (Painter 

et al., 2009). Our choice of debris endmembers was limited to “light” and “dark” debris, and  these may not cover the wide 

spectrum of lithology present across the Himalaya. With regards to the on-the ground spectral characteristics of the debris 

material in the Khumbu region, Casey et al. (2011) showed that these vary due to the presence of various of minerals, notably 

distinct granitic (lighter) vs. schistic (darker) debris types with different compositions. However, spectral differences in these 665 

two classes can also be related to debris water content especially on very thin debris (as for thinly debris-covered ice cliffs) 

and is associated with grain size, i.e., fine-grained sediments have a greater capacity for water retention (Juen et al., 2013; 

Collier et al., 2014). We also noted such differences in the spectra for wet fine debris and dry coarse debris with large grain 

sizes on Mer de Glace (Fig. 4b); however, the limited Landsat spectral resolution implies that we could not define separate 

endmembers for each. Using only two endmembers for debris cannot capture the various types of debris with different mineral 670 

and geochemical composition, nor distinguish between debris with various degrees of water content, which has a different 

spectral signature compared to dry debris (Fig. 4b). Furthermore, we could not take into consideration bare illuminated non-

glacierized surfaces including nunataks which were occasionally mistakenly included within the polygons in the SDC dataset. 

As a result, these areas were also associated with some high positive fractional values, which might have affected the overall 

RMSE of our model, and particularly the sum-to-unity condition. 675 

Although we defined the water endmember on the basis of turbid water (greyish-blue ponds), supraglacial ponds of various 

turbidity levels are present across the mountain range, due to various degrees of suspended sediments. The color of these 

ponds can range from grey to turquoise and reddish shades in various proportions (Matta et al., 2017) to small clear water 

supraglacial ponds (Takeuchi et al., 2012; Giardino et al., 2010), as observed in the field (Fig. 3e). Each type of pond has 

different spectral signatures, but the limited spectral resolution of Landsat does not allow to use concomitantly both a clear 680 
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and a variable turbid water endmember in the spectral unmixing. Nevertheless, as shown in Figure 7, the majority of the 

turbid supraglacial ponds are connected to the exposed ice and glacier drainage network (hence larger suspended sediment), 

and are expected to be most relevant to glacier evolution and may be of concern for outburst flood potential. Our clear water 

algorithm nicely picks out the small number of isolated non-turbid ponds at the terminus of the Ngozumpa Glacier (Fig. 7), 

highlighting the success of different end-member selection for addressing other scientific questions. With further testing, 685 

fractional water maps obtained from spectral unmixing techniques can be used to characterize the state of lakes and ponds in 

terms of their turbidity (Matta et al., 2017; Giardino et al., 2010) i.e., by quantifying the fraction of a pixel covered by water, 

light and/or dark debris. In this regard, repeated monitoring of pond turbidity using these combined tools allows changes in 

suspended sediment load to be tracked over time, which are considered direct indicators of glacier wasting processes and 

glacier–lake interaction (Giardino et al., 2010). This aspect is not fully explored in this study, but can be further investigated 690 

by combining LMMs with field spectra of ponds and lakes to characterize the various degrees of turbidity across the 

mountain range. Since lake turbidity is temporally highly variable and since our current dataset is a snapshot of pond density, 

it cannot be used to infer any variability in sediment concentration, but it provided the basis for tracking changes in glacier 

area, which has important applications. 

Similarly, we could not define a healthy vegetation endmember whose spectral signature (not shown here) differs from that of 695 

the “dry vegetation” endmember we selected. However, small amounts of healthy vegetation do occur on debris-covered 

glaciers in the eastern part of the Khumbu domain, and these were indeed detected by the LMM (Fig. 10).  

The cloud and clean ice detection based on LMM were not accurate in this particular configuration. While some isolated pixels 

were classified as clouds, others pixels were confounded with other types of surfaces, notably debris (Table 2). While the cloud 

distribution noted in this study correspond to local meteorology, i.e. more frequent cloud cover in the eastern Himalaya until 700 

later fall months compared to the western part (Thayyen and Gergan, 2010), we are less confident in the actual estimations of 

the cloud cover areas so we do not wish to over-interpret these. Applying algorithms such as Fmask (Zhu et al., 2015) to mask 

the clouds resulted in misclassification of the entire glacierized surface as cloud, which is a well-documented issue (Stillinger 

et al., 2019), so we could not mask the clouds prior to the spectral unmixing. 

Likewise, clean ice was poorly classified, mostly likely due to its poor representation in the dataset (i.e., limited number of 705 

clean ice “pure” pixels). While our results hint at the presence of ice to some extent, we are not confident about these results. 

Some pixels correspond indeed to location of ice cliffs which were perhaps exposed at the end of the ablation season (cf. Fig. 

9); others correspond mostly to clean ice patches at the upper limit of supraglacial debris which were included in the input 

data, which dated from previous years, or seasonal snow. While we chose our images at the end of the ablation season, post-

monsoon the snow cover is usually minimal, but early snowfalls can occur. Other features such as the ice “sails” (Evatt et al., 710 

2017) may not be extracted at the resolution of spatial resolution of the Landsat imagery, since these features often span only 

several square meters. At the same time, the LMM algorithm in its current parameterization cannot detect ice cliffs dusted with 
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fine debris, which have a lower albedo than clean ice (Naegeli et al., 2015). Targeting exposed but dusted ice features within 

the debris cover in addition to clean ice would need some refinement of the algorithm using Sentinel -2 imagery with better 

spectral resolution and better parameterization (Kneib et al., 2020), optical thresholding of band ratios using high-resolution 715 

imagery (Anderson et al., 2021) and/or feature detection based on OBIA (Kraaijenbrink et al., 2016; Watson et al., 2017a; 

Mölg et al., 2019). 

4.4 Uncertainty due to the thresholds applied to fractional maps 

Selection of the thresholds used to classify the fractional maps to obtain the final maps of each surface is another source of 

uncertainty in our method. Previous spectral unmixing studies (Hall, 2002; Rittger et al., 2013), justified using a threshold of 720 

0.5 for the classifying fractional maps for various types of surfaces, while they also tested thresholds as low as 0.15 (Rittger 

et al., 2013). While we applied a threshold of 0.5 and 0.65 to our water and vegetation classes, respectively, for the other 

classes the fractional thresholds were ultimately determined using visual inspection, which introduced a certain degree of 

subjectivity into our study. 

4.5 Quality of input SDC dataset 725 

Due to the spectral limitations of Landsat, in this study we applied the unmixing only to the debris-covered areas of glaciers 

to reduce model complexity. Therefore, model performance is to some extent subject to the quality of the input dataset. At 

the onset of our study, the only global database of supraglacial debris was the SDC dataset (Scherler et al., 2018), and 

although Herreid and Pellicciotti (2020) provide updated supraglacial debris outlines, these were not available at the onset of 

our study and are not currently incorporated in the standardized RGI dataset. Debris outlines in the SDC dataset constitute a 730 

multi-time stamp dataset, based on data spanning 1998 to 2015, while our Landsat data was based primarily on 2015. This 

may introduce uncertainties in the calculation of pond coverage. For example, we assumed that any changes at the termini of 

the debris-covered areas would have occurred within these older outlines, since surge-type glaciers, and hence apparent 

glacier “advance” are rare or non-existent in the Himalaya region, contrary to the Karakoram (Sevestre and Benn, 2015). 

However, recent studies have reported an upward expansion of the debris cover in the Himalaya (Xie et al., 2020; Thakuri et 735 

al., 2014; Bhambri et al., 2011b; Kamp et al., 2011), which we do not account for here. As such, in these areas, our pond 

density may be underestimated, and this would need a more in-depth analysis and the availability of multi-temporal 

supraglacial debris datasets. Furthermore, our study revealed some important issues with the input SDC dataset used to 

constrain the spectral unmixing, particularly the inclusion of patches of healthy vegetation and bare bright steep terrain. The 

spurious vegetated areas present within the debris cover outlines (Fig. 10b) may have affected to some extent the quality of 740 

the spectral unmixing, i.e., the non-negativity and the sum-to-unity conditions, because it produced large negative and 

positive fractional vegetation values. We were able to identify theses as being healthy vegetation on non-glacierized terrain. 

On the other hand, some of the high percentage of supraglacial vegetation in some of the eastern parts is attributed to errors 

in the input supraglacial dataset, and we are hesitant to over-interpret the vegetation analysis. However, we note the potential 
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of the fractional vegetation maps for identifying mapping errors in SDC dataset. Because these “abnormal values” served to 745 

identify errors in the existing SDC dataset, they constitute a valuable tool to correct and refine these global databases.  

4.6 Wider applicability of the method 

In this study we demonstrated the transferability of a method developed on a single region for the year 2015 (Khumbu) by 

applying it to a Landsat 8 OLI scene from a different area (Lahaul Spiti) for the same season (post-monsoonal) but a different 

year (2016), and validating the ponds with PlanetScope data. In the light of the spatial and spectral limitations of Landsat data 750 

discussed above, the applicability of our approach for multitemporal analyses requires careful considerations. When 

transferring methods from one scene to others, illumination differences and shadow effects across the scenes need to be 

resolved, particularly if the scenes are not acquired on the same date. In this study, we attempted to minimize these effects by 

applying atmospheric and topographic corrections and implicitly assumed that the set of endmembers defined for the Khumbu 

could be applied to the entire Himalaya. However, in some areas, some spectral differences may remain, leading to confusion 755 

between the water / light debris / ice classes and hence some over-estimation of the pond coverage, particularly in some areas 

of the western Himalaya. While these pond areas require further quality control prior to their inclusion in regional datasets, 

they are within the uncertainties reported at other sites, for example Langtang (Steiner et al., 2019). Furthermore, if the 

approach is used over the same area for multi-temporal pond or vegetation analysis, the geolocation accuracy of the Landsat 

can be a concern, because the pixels can be slightly misaligned from acquisition to acquisition, resulting in potentially very 760 

different compositions and unmixing results. This needs to be mitigated by co-registration of the scenes prior to unmixing and 

performing the change analysis. Further uncertainty is introduced in our study by the fact that for certain areas of the Himalaya, 

Landsat cloud-free and snow-free scenes were not available for the year 2015, and we used scenes from 2014 and 2016 (cf. 

Table 1). We assumed that surface conditions were similar, but acknowledge that pond areas are dynamic and can change from 

year to year. Furthermore, this study does not account for the seasonality of supraglacial ponds, but provides a methodological 765 

basis for their identification. 

5 Summary and further work 

In this study, we estimated the spatial distribution of surface characteristics on debris-covered glaciers (various types of debris, 

clean ice, supraglacial ponds and vegetation) at subpixel scale using 30 m fractional maps obtained from a spectral linear 

mixing model. We tested the approach in the Khumbu region comprising eastern Nepal and parts of China using Landsat 8 770 

OLI imagery, and then applied it over the entire Himalaya to evaluate its performance over a larger domain. Pléiades and 

Planet high-resolution imagery were used to assess the endmember selection and to validate the mapped supraglacial pond 

areas using OBIA techniques. Our key findings can be summarised as follows: 

• We demonstrate the use of Landsat spectral unmixing in determining the surface properties of debris-covered glaciers, 

which holds great potential for mapping the dynamic changes in surface conditions at a regional scale. While we present 775 
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a method that holds promise for effectively partitioning the surface properties of debris covered glaciers, we recommend 

that future analysis of the potential drivers and controls on the observed surface types and their regional variation 

revealed by this method be carried out on a further quality-controlled data set, to avoid over-interpretation of any errors 

within the datasets used; 

•  We show that spectral signatures derived from the Landsat 8 OLI imagery and cross-checked using high-resolution 780 

Pléiades can be applied at the mountain range scale provided that all images are atmospherically and topographically 

corrected to reduce differences in illumination patterns, and that images are acquired around the same date. While the 

limited Landsat spectral resolution did not allow for a very fine definition of the wide spectrum of all the different debris 

lithologies and ice types present on debris-covered tongues across the study area, LMM successfully distinguished 

among broad categories, and convincingly reproduced independently mapped supraglacial pond areas. Overall, we 785 

consider the spectral unmixing method presented here a promising approach to add to the suite of tools that are valuable 

in analyzing the dynamic surfaces of debris-covered glaciers; 

• One of the major contributions of the current study is that we produced a supraglacial pond inventory for the entire 

Himalaya for the year 2015, based on spectral unmixing of coarse resolution and freely available Landsat 8 OLI satellite 

imagery. We consider that this approach can provide more detail, and thus outperform other analyses of supraglacial 790 

pond identification and classification performed on similar Landsat data for the same period but based on normalized 

difference water indices (Shugar et al., 2020) or manual delineation (Chen et al., 2020). The method and results are 

comparable to mapping quality from higher resolution, allowing improved analysis of multitemporal change in pond 

incidence and size in a future study. The dataset of supraglacial ponds is available in public domain via Zenodo data 

repository (DOI:10.5281/zenodo.4421857); 795 

• Regional trend analysis on gridded data indicates that higher average temperatures and more abundant precipitation 

strongly favour pond occurrence but did not have a significant control on supraglacial vegetation. The extent of the 

supraglacial debris and the elevation of the termini exhibited a weak control on supraglacial pond coverage, and a 

moderate control on supraglacial vegetation. In terms of glacier regimes, we found that higher thinning rates coupled 

with lower average glacier velocities are consistent with pond incidence and seem to favour the development of 800 

supraglacial vegetation. Climatic controls (higher average temperatures and more abundant precipitation) also favour 

pond occurrence but influence to a lesser extent the supraglacial vegetation occurrence.  

Future developments to overcome the current limitations of this study include the use of more sophisticated non-linear mixing 

models, which would allow to discriminate materials of interest in more detail. Work is ongoing to make the unmixing step 

approach fully automated by integrating it within scripting routines (e.g. Bunting et al., 2014), so that it can be applied in the 805 

future to derive supraglacial pond outlines at multi-temporal scales and monitor pond development over time. Given that these 

surface ponds are ephemeral and change rapidly, automated multi-temporal scale mapping is highly desirable to track their 

evolution over time in various regions. The analysis presented here complements and expands the existing proglacial lake 
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databases for the year 2015 by providing supraglacial pond extents. With continued advances in satellite data in the near future, 

the methodology developed here provides avenues towards achieving large-scale, repeated mapping of supraglacial features. 810 
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7 Code availability 
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supraglacial ponds and vegetation, along with the fractional maps are available via Zenodo data repository 

(DOI:10.5281/zenodo.4421857). 

9 Competing interests 830 

The authors declare that they have no conflict of interest. 
 

10 Acknowledgements 

This research received funding from the European Union's Horizon 2020 research and innovation programme under the Marie 

Skłodowska-Curie grant agreement No 663830. LN was supported by the Austrian Science Fund (FWF) Grant P28521. Access 835 

to Pléiades imagery was provided through the Österreichische Forschungsförderungsgesellschaft (FFG) project “High-

resolution spaceborne studies of mass balance processes on glaciers of the Khumbu Himal, Nepal” (GlHima-Sat). We 



 28 

acknowledge the BritInn Fellowship programme which funded AR’s work visit to Univ. of Innsbruck to develop this research 

with LN in 2018. We are grateful to United States Geological Survey and to Planet API program for providing free access to 

Landsat and RapidEye imagery. Thanks for Lorenzo Rieg and Christoph Klug of the University of Innsbruck for processing 840 

of the Pléiades DEMs. 

List of References 

Alifu, H., Johnson, B., and Tateishi, R.: Delineation of Debris-Covered Glaciers Based on a Combination of 
Geomorphometric Parameters and a TIR/NIR/SWIR Band Ratio, IEEE J Sel Top Appl, 9, 781-792, 
10.1109/JSTARS.2015.2500906, 2016. 845 

Anderson, L. S., Armstrong, W. H., Anderson, R. S., and Buri, P.: Debris cover and the thinning of Kennicott Glacier, 
Alaska: in situ measurements, automated ice cliff delineation and distributed melt estimates, The Cryosphere, 15, 265-282, 
10.5194/tc-15-265-2021, 2021. 

Barros, A. P., and Lang, T. J.: Monitoring the Monsoon in the Himalayas: Observations in Central Nepal, June 2001, Mon 
Weather Rev, 1408-1427, 2003. 850 

Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L. I., Quincey, D., Thompson, S., Toumi, R., and 
Wiseman, S.: Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for 
outburst flood hazards, Earth-Science Reviews, 114, 156-174, https://doi.org/10.1016/j.earscirev.2012.03.008, 2012. 

Berthier, E., and Brun, F.: Karakoram geodetic glacier mass balances between 2008 and 2016: persistence of the anomaly 
and influence of a large rock avalanche on Siachen Glacier, J. Glaciol., 65, 494-507, 10.1017/jog.2019.32, 2019. 855 

Bhambri, R., Bolch, T., and Chaujar, R. K.: Mapping of Debris-covered Glaciers in the Garhwal Himalayas using ASTER 
DEMs and Thermal Data, Int J Rem Sens, 32, 8095–8119, 10.1080/01431161.2010.532821, 2011a. 

Bhambri, R., Bolch, T., Chaujar, R. K., and Kulshreshtha, S. C.: Glacier changes in the Garhwal Himalaya, India, from 1968 
to 2006 based on remote sensing, J. Glaciol., 57, 543 - 556, 2011b. 

Bishop, M. P., Bonk, R., Kamp, U., and J.F. Shroder, J.: Terrain analysis and data modeling for alpine glacier mapping, 860 
Polar Geogr, 25, 182 - 201, 2001. 

Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van der Meer, F., van der Werff, 
H., van Coillie, F., and Tiede, D.: Geographic Object-Based Image Analysis – Towards a new paradigm, ISPRS J Photogram 
Rem Sens, 87, 180-191, https://doi.org/10.1016/j.isprsjprs.2013.09.014, 2014. 

Bolch, T., Buchroithner, M. F., Kunert, A., and Kamp, U.: Automated delineation of debris-covered glaciers based on 865 
ASTER data, Geoinformation in Europe (Proc. of 27th EARSel Symposium, 04 -07 June 2007), Bozen, Italy, 403 - 410, 
2007. 

Bolch, T., Buchroithner, M. F., Pieczonka, T., and Kunert, A.: Planimetric and Volumetric Glacier Changes in the Khumbu 
Himalaya since 1962 Using Corona, Landsat TM and ASTER Data., J Glaciol, 54, 592 - 600, 2008. 

Bolch, T., Pieczonka, T., and Benn, D. I.: Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived 870 
from stereo imagery, The Cryosphere, 5, 349-358, 10.5194/tc-5-349-2011, 2011. 

Bolch, T., Shea, J. M., Liu, S., Azam, F. M., Gao, Y., Gruber, S., Immerzeel, W. W., Kulkarni, A., Li, H., Tahir, A. A., 
Zhang, G., and Zhang, Y.: Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya Region, in: The 
Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People, edited by: Wester, P., Mishra, 
A., Mukherji, A., and Shrestha, A. B., Springer International Publishing, Cham, 209-255, 2019. 875 



 29 

Bookhagen, B., and Burbank, D. W.: Topography, relief and TRMM-derived rainfall variations along the Himalaya, Geoph 
Res Lett, 33, doi::10.1029/2006gl026037, 2006. 

Bookhagen, B., and Burbank, D. W.: Toward a complete Himalyan hydrological budget: spatiotemporal distribution of 
snowmlet ad rainfall and their impact on river discharge, J. Geoph Res, 115, doi:10.1029/2009JF001426, 2010. 

Brun, F., Buri, P., Miles, E. S., Wagnon, P., Steiner, J., Berthier, E., Ragettli, S., Kraaijenbrink, P., Immerzeel, W. W., and 880 
Pellicciotti, F.: Quantifying volume loss from ice cliffs on debris-covered glaciers using high-resolution terrestrial and aerial 
photogrammetry, J. Glaciol., 62, 684-695, 10.1017/jog.2016.54, 2016. 

Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A spatially resolved estimate of High Mountain Asia glacier 
mass balances from 2000 to 2016, Nature Geosci, 10, 668-673, 10.1038/ngeo2999, 2017. 

Brun, F., Wagnon, P., Berthier, E., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P. D. A., Vincent, C., Reverchon, C., 885 
Shrestha, D., and Arnaud, Y.: Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central 
Himalaya, The Cryosphere, 12, 3439-3457, 10.5194/tc-12-3439-2018, 2018. 

Brun, F., Wagnon, P., Berthier, E., Jomelli, V., Maharjan, S. B., Shrestha, F., and Kraaijenbrink, P. D. A.: Heterogeneous 
Influence of Glacier Morphology on the Mass Balance Variability in High Mountain Asia, J Geoph Res : Earth Surf, 124, 
1331-1345, https://doi.org/10.1029/2018JF004838, 2019. 890 

Bunting, P., Clewley, D., Lucas, R. M., and Gillingham, S.: RSGISLib software, C, Pergamon Press, Inc., 216–226 pp., 
2014. 

Buri, P., Miles, E. S., Steiner, J. F., Immerzeel, W. W., Wagnon, P., and Pellicciotti, F.: A physically based 3-D model of ice 
cliff evolution over debris-covered glaciers, J Geoph Res : Earth Surf, 121, 2471-2493, 10.1002/2016JF004039, 2016. 

Casey, K., and Kääb, A.: Estimation of Supraglacial Dust and Debris Geochemical Composition via Satellite Reflectance 895 
and Emissivity, Rem Sens, 4, 2554-2575, 10.3390/rs4092554, 2012. 

Casey, K. A., Kaab, A., and Benn, D. I.: Characterization of glacier debris cover via in situ and optical remote sensing 
methods: a case study in the Khumbu Himalaya, Nepal, The Cryosphere, 5, 2011. 

Chand, B. M., and Watanabe, T.: Development of Supraglacial Ponds in the Everest Region, Nepal, between 1989 and 2018, 
Rem Sens, 11, 10.3390/rs11091058, 2019. 900 

Chen, F., Zhang, M., Guo, H., Allen, S., Kargel, J. S., Haritashya, U. K., and Watson, C. S.: Annual 30-meter Dataset for 
Glacial Lakes in High Mountain Asia from 2008 to 2017, Earth Syst. Sci. Data Discuss., 2020, 1-29, 10.5194/essd-2020-57, 
2020. 

Collier, E., Nicholson, L. I., Brock, B. W., Maussion, F., Essery, R., and Bush, A. B. G.: Representing moisture fluxes and 
phase changes in glacier debris cover using a reservoir approach, The Cryosphere, 8, 1429-1444, 10.5194/tc-8-1429-2014, 905 
2014. 

Cortés, G., Girotto, M., and Margulis, S. A.: Analysis of sub-pixel snow and ice extent over the extratropical Andes using 
spectral unmixing of historical Landsat imagery, Rem Sens Environ, 141, 64-78, https://doi.org/10.1016/j.rse.2013.10.023, 
2014. 

Dehecq, A., Gourmelen, N., and Trouve, E.: Deriving large-scale glacier velocities from a complete satellite archive : 910 
Application to the Pamir-Karakoram-Himalaya, Rem Sens Environ, 162, 55-66, 10.1016/j.rse.2015.01.031, 2015. 

Dehecq, A., Gourmelen, N., Gardner, A. S., Brun, F., Goldberg, D., Nienow, P. W., Berthier, E., Vincent, C., Wagnon, P., 
and Trouvé, E.: Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia, Nature Geosci, 12, 22-
27, 10.1038/s41561-018-0271-9, 2019. 

Delafontaine, M., Nolf, G., van de Weghe, N., Antrop, M., and de Maeyer, P.: Assessment of sliver polygons in 915 
geographical vector data, Int J Geogr Inf Sci, 23, 719-735, 10.1080/13658810701694838, 2009. 



 30 

Dixit, A., and Agarwal, S.: Non-linear spectral unmixing of hyperspectral data using Modified PPNMM, Applied Computing 
and Geosciences, 9, 100053, https://doi.org/10.1016/j.acags.2021.100053, 2021. 

Ettritch, G., Bunting, P., Jones, G., and Hardy, A.: Monitoring the coastal zone using earth observation: application of linear 
spectral unmixing to coastal dune systems in Wales, Rem Sens Ecol Cons, 4, 303-319, 10.1002/rse2.79, 2018. 920 

Evatt, G. W., Abrahams, D., Heil, M., Mayer, C., Kingslake, J., Mitchell, S. L., Fowler, A. C., and Clark, C. D.: Glacial melt 
under a porous debris layer, J. Glaciol., 61, doi: 10.3189/2015JoG14J235, 2015. 

Evatt, G. W., Mayer, C., Mallinson, A. M. Y., Abrahams, I. D., Heil, M., and Nicholson, L.: The secret life of ice sails, J. 
Glaciol., 63, 1049-1062, 10.1017/jog.2017.72, 2017. 

Fickert, T., Friend, D., Grüninger, F., Molnia, B., and Richter, M.: Did Debris-Covered Glaciers Serve as Pleistocene 925 
Refugia for Plants? A New Hypothesis Derived from Observations of Recent Plant Growth on Glacier Surfaces, AAAR, 39, 
245-257, 10.1657/1523-0430(2007)39[245:DDGSAP]2.0.CO;2, 2007. 

Foster, L. A., Brock, B. W., Cutler, M. E. J., and Diotri, F.: A physically based method for estimating supraglacial debris 
thickness from thermal band remote-sensing data, J. Glaciol., 58, 677 - 690, 2012. 

GAPHAZ: Assessment of Glacier and Permafrost Hazards in Mountain Regions – Technical Guidance Document, Zurich, 930 
Switzerland / Lima, Peru, 72, 2017. 

Gardelle, J., Arnaud, Y., and Berthier, E.: Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain 
range between 1990 and 2009, Glob Planet Ch, 75, doi:10.1016/j.gloplacha.2010.1010.1003, 2011. 

Gardelle, J., Berthier, E., Arnaud, Y., and Kääb, A.: Region-wide glacier mass balances over the Pamir-Karakoram-
Himalaya during 1999-2011, The Cryosphere, 7, 1263-1286, 10.5194/tc-7-1263-2013, 2013. 935 

Giardino, C., Oggioni, A., Bresciani, M., and Yan, H.: Remote Sensing of Suspended Particulate Matter in Himalayan 
Lakes, Mt Res Dev, 30, 157-168, 10.1659/MRD-JOURNAL-D-09-00042.1, 2010. 

Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., 
Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic 
Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud 940 
screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169-209, 10.5194/amt-
12-169-2019, 2019. 

Gillespie, A. R., Smith, M. O., Adams, J. B., Willis, S. C., Fischer, A. F., III,, and Sabol, D. E.: Interpretation of residual 
images: spectral mixture analysis of AVIRIS images, Owens Valley, California, Proceedings of the Second Air- borne 
Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, 1990, 243–270,  945 

Gillingham, S. S., Flood, N., and Gill, T. K.: On determining appropriate aerosol optical depth values for atmospheric 
correction of satellite imagery for biophysical parameter retrieval: requirements and limitations under Australian conditions, 
Int J Rem Sens, 34, 2089-2100, 10.1080/01431161.2012.738945, 2013. 

Green, A. A., Berman, M., Switzer, P., and Craig, M. D.: A transformation for ordering multispectral data in terms of image 
quality with implications for noise removal, IEEE Trans Geosci Rem Sens, 26, 65-74, 10.1109/36.3001, 1988. 950 

Hall, D. K. R., George A.; Salomonson, Vincent V.; DiGirolamo, Nicolo E.; and Bayr, Klaus J.: MODIS Snow-Cover 
Products, Remote  Sensing of the Environment, 83, 88 - 89, 2002. 

Harris Geospatial. ENVI Feature Extraction module: 
https://www.l3harrisgeospatial.com/Portals/0/pdfs/HG_ENVI_FX_module_data-sheet_WEB.pdf, access: 25-04, 2017. 

Herreid, S., and Pellicciotti, F.: Automated detection of ice cliffs within supraglacial debris cover, The Cryosphere, 12, 955 
1811-1829, 10.5194/tc-12-1811-2018, 2018. 



 31 

Herreid, S., and Pellicciotti, F.: The state of rock debris covering Earth’s glaciers, Nature Geosci, 13, 621-627, 
10.1038/s41561-020-0615-0, 2020. 

Irons, J. R., Dwyer, J. L., and Barsi, J. A.: The next Landsat satellite: The Landsat Data Continuity Mission, Rem Sens 
Environ, 122, 11-21, https://doi.org/10.1016/j.rse.2011.08.026, 2012. 960 

Irvine-Fynn, T. D. L., Porter, P. R., Rowan, A. V., Quincey, D. J., Gibson, M. J., Bridge, J. W., Watson, C. S., Hubbard, A., 
and Glasser, N. F.: Supraglacial ponds regulate runoff from Himalayan debris-covered glaciers, Geoph Res Lett, 44, 11,894-
811,904, https://doi.org/10.1002/2017GL075398, 2017. 

Iwata, S., Watanabe, O., and Fushimi, H.: Surface morphology in the ablation area of the Khumbu glacier, J. Japan Soc. 
Snow Ice (Seppyo), 41, 9 -17, 1980. 965 

Iwata, S., Aoki, T., Kadota, T., Seko, K., and Yamaguchi, S.: Morphological evolution of the debris cover on Khumbu 
Glacier, Nepal, between 1978 and 1995, in: Debris-covered glaciers, edited by: Nakawo, M., Raymond, C. F., and Fountain, 
A., IAHS, 2000. 

Juen, M., Mayer, C., Lambrecht, A., Wirbel, A., and Kueppers, U.: Thermal properties of a supraglacial debris layer with 
respect to lithology and grain size, Geografiska Annaler: Series A, Physical Geography, 95, 197-209, 10.1111/geoa.12011, 970 
2013. 

Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y.: Contrasting patterns of early twenty-first-century glacier mass 
change in the Himalayas, Nature, 488, 495-498, 10.1038/nature11324, 2012. 

Kamp, U., Byrne, M., and Bolch, T.: Glacier fluctuations between 1975 and 2008 in the Greater Himalaya Range of 
Zanskar, southern Ladakh, J Mt Sci, 8, 374 - 389, 2011. 975 

Kayastha, R. B., Takeuchi, Y., Nakawo, M., and Ageta, Y.: Practical prediction of ice melting beneath various thickness of 
debris cover on Khumbu Glacier, Nepal, using a positive degree-day factor, in: Debris-Covered Glaciers, edited by: 
Raymond, C. F., Nakawo, M., Fountain, A., IAHS, Wallingford, UK, 71 - 81, 2000. 

Keshava, N., and Mustard, J. F.: Spectral unmixing, IEEE Signal Processing Magazine, 19, 44-57, 10.1109/79.974727, 2002. 

Kirkbride, M.: About the concepts of continuum and age, Boreas, 18, 87-88, https://doi.org/10.1111/j.1502-980 
3885.1989.tb00376.x, 1989. 

Kirkbride, M. P.: Debris-Covered Glaciers, in: Encyclopedia of Snow, Ice and Glaciers, edited by: Singh, V. P., Singh, P., 
and Haritashya, U. K., Springer Netherlands, Dordrecht, 180-182, 2011. 

Klein, A. G., and Isacks, B. L.: Spectral mixture analysis of Landsat thematic mapper images applied to the detection of the 
transient snowline on tropical Andean glaciers, Glob Planet Ch, 22, 139-154, https://doi.org/10.1016/S0921-8181(99)00032-985 
6, 1999. 

Kneib, M., Miles, E. S., Jola, S., Buri, P., Herreid, S., Bhattacharya, A., Watson, C. S., Bolch, T., Quincey, D., and 
Pellicciotti, F.: Mapping ice cliffs on debris-covered glaciers using multispectral satellite images, Rem Sens Environ, 
112201, https://doi.org/10.1016/j.rse.2020.112201, 2020. 

Knight, J., Harrison, S., and Jones, D. B.: Rock glaciers and the geomorphological evolution of deglacierizing mountains, 990 
Geomorphology, 324, 14-24, 2019. 

Komori, J.: Recent expansions of glacial lakes in the Bhutan Himalayas, Quaternary International, 184, 177-186, 
https://doi.org/10.1016/j.quaint.2007.09.012, 2008. 

Kraaijenbrink, P. D. A., Shea, J. M., Pellicciotti, F., Jong, S. M. d., and Immerzeel, W. W.: Object-based analysis of 
unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier, Rem Sens Environ, 995 
186, 581-595, https://doi.org/10.1016/j.rse.2016.09.013, 2016. 



 32 

Leprince, S., Ayoub, F., Klinger, Y., and Avouac, J.: Co-Registration of Optically Sensed Images and Correlation (COSI-
Corr): an operational methodology for ground deformation measurements, 2007 IEEE International Geoscience and Remote 
Sensing Symposium, IGARSS, Barcelona, Spain, 2007, 1943-1946,  

Liu, Q., Mayer, C., and Liu, S.: Distribution and interannual variability of supraglacial lakes on debris-covered glaciers in 1000 
the Khan Tengri-Tumor Mountains, Central Asia, Env Res let, 10, 014014: 014011-014010, 10.1088/1748-
9326/10/1/014014, 2015. 

Matta, E., Giardino, C., Boggero, A., and Bresciani, M.: Use of Satellite and In Situ Reflectance Data for Lake Water Color 
Characterization in the Everest Himalayan Region, Mt Res Dev, 37, 16-23, 10.1659/MRD-JOURNAL-D-15-00052.1, 2017. 

Maurer, J. M., Schaefer, J. M., Rupper, S., and Corley, A.: Acceleration of ice loss across the Himalayas over the past 40 1005 
years, Science Advances, 5, eaav7266, 10.1126/sciadv.aav7266, 2019. 

Miles, E. S., Pellicciotti, F., Willis, I. C., Steiner, J. F., Buri, P., and Arnold, N. S.: Refined energy-balance modelling of a 
supraglacial pond, Langtang Khola, Nepal, Ann Glaciol, 57, 29-40, 10.3189/2016AoG71A421, 2016. 

Miles, E. S., Ian C. Willis, Neil S. Arnold, Steiner, J., and Pellicciotti, F.: Spatial, seasonal and interannual variability of 
supraglacial ponds in the Langtang Valley of Nepal, 1999–2013, J. Glaciol., 63, 88–105, 2017. 1010 

Miles, E. S., Willis, I., Buri, P., Steiner, J. F., Arnold, N. S., and Pellicciotti, F.: Surface Pond Energy Absorption Across 
Four Himalayan Glaciers Accounts for 1/8 of Total Catchment Ice Loss, Geoph Res Lett, 45, 10,464-410,473, 
10.1029/2018GL079678, 2018. 

Mölg, N., Bolch, T., Walter, A., and Vieli, A.: Unravelling the evolution of Zmuttgletscher and its debris cover since the end 
of the Little Ice Age, The Cryosphere, 13, 1889-1909, 10.5194/tc-13-1889-2019, 2019. 1015 

Monnier, S., and Kinnard, C.: Pluri-decadal (1955–2014) evolution of glacier–rock glacier transitional landforms in the 
central Andes of Chile (30–33 ° S), Earth Surf. Dynam., 5, 493-509, 10.5194/esurf-5-493-2017, 2017. 

Mukul, M., Srivastava, V., Jade, S., and Mukul, M.: Uncertainties in the Shuttle Radar Topography Mission (SRTM) 
Heights: Insights from the Indian Himalaya and Peninsula, Scientific Reports, 7, 41672, 10.1038/srep41672, 2017. 

Naegeli, K., Damm, A., Huss, M., Schaepman, M., and Hoelzle, M.: Imaging spectroscopy to assess the composition of ice 1020 
surface materials and their impact on glacier mass balance, Rem Sens Environ, 168, 388-402, 
https://doi.org/10.1016/j.rse.2015.07.006, 2015. 

Naegeli, K., Damm, A., Huss, M., Wulf, H., Schaepman, M., and Hoelzle, M.: Cross-Comparison of Albedo Products for 
Glacier Surfaces Derived from Airborne and Satellite (Sentinel-2 and Landsat 8) Optical Data, Rem Sens, 9, 
10.3390/rs9020110, 2017. 1025 

Nakawo, M., Yabuki, H., and Sakai, A.: Characteristics of Khumbu Glacier, Nepal Himalaya: recent change in the debris-
covered area, in: Ann Glaciol, Annals of Glaciology, 118-122, 1999. 

Narama, C., Daiyrov, M., Tadono, T., Yamamoto, M., Kääb, A., Morita, R., and Ukita, J.: Seasonal drainage of supraglacial 
lakes on debris-covered glaciers in the Tien Shan Mountains, Central Asia, Geomorphology, 286, 133-142, 
https://doi.org/10.1016/j.geomorph.2017.03.002, 2017. 1030 

Nicholson, L., and Benn, D. I.: Calculating ice melt beneath a debris layer using meteorological data, J. Glaciol., 52, 463-
470, 10.3189/172756506781828584, 2006. 

Nicholson, L. I., McCarthy, M., Pritchard, H. D., and Willis, I.: Supraglacial debris thickness variability: impact on ablation 
and relation to terrain properties, The Cryosphere, 12, 3719-3734, 10.5194/tc-12-3719-2018, 2018. 

Nie, Y., Sheng, Y., Liu, Q., Liu, L., Liu, S., Zhang, Y., and Song, C.: A regional-scale assessment of Himalayan glacial lake 1035 
changes using satellite observations from 1990 to 2015, Rem Sens Environ, 189, 1-13, 
https://doi.org/10.1016/j.rse.2016.11.008, 2017. 



 33 

Nuimura, T., Fujita, K., Yamaguchi, S., and Sharma, R. R.: Elevation changes of glaciers revealed by multitemporal digital 
elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 19922008, J. Glaciol., 58, 648-656, 
2012. 1040 

Østrem, G.: Ice Melting under a Thin Layer of Moraine, and the Existence of Ice Cores in Moraine Ridges, Geografiska 
Annaler, 41, 228-230, 1959. 

Painter, T. H., Rittger, K., McKenzie, C., Slaughter, P., Davis, R. E., and Dozier, J.: Retrieval of subpixel snow covered 
area, grain size, and albedo from MODIS, Rem Sens Environ, 113, 868-879, http://dx.doi.org/10.1016/j.rse.2009.01.001, 
2009. 1045 

Painter, T. H., Brodzik, M. J., Racoviteanu, A., and Armstrong, R.: Automated mapping of Earth's annual minimum exposed 
snow and ice with MODIS, Geoph Res Lett, 39, n/a-n/a, 10.1029/2012GL053340, 2012. 

Painter, T. H., Jeff Dozier, Dar A. Roberts, Robert E. Davis, Robert O. Green: Retrieval of subpixel snow-covered area and 
grain size from imaging spectrometer data, Rem Sens Environ, 85, 64 - 77, 2003. 

Panday, P., Bulley, H., Haritashya, U., and Ghimire, B.: Supraglacial Lake Classification in the Everest Region of Nepal 1050 
Himalaya, in: Geospatial Techniques for Managing Environmental Resources, edited by: J.K. Thakur et al. (eds.), Capital 
Publishing Company, 2011. 

Paul, F., Huggel, C., and Kääb, A.: Combining satellite multispectral image data and a digital elevation model for mapping 
debris-covered glaciers, Rem Sens Environ, 89, 510-518, 2004. 

Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution mapping of global surface water and its long-term 1055 
changes, Nature, 540, 418-422, 10.1038/nature20584, 2016. 

Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J. O., Hock, R., Kaser, G., Kienholz, 
C., Miles, E. S., Moholdt, G., Mölg, N., Paul, F., Radić, V., Rastner, P., Raup, B. H., Rich, J., Sharp, M. J., and 
Randolph_Consortium: The Randolph Glacier Inventory: a globally complete inventory of glaciers, J. Glaciol., 60, doi: 
10.3189/2014JoG13J176, 2014. 1060 

Quincey, D. J., Richardson, S. D., Luckman, A., Lucas, R. M., Reynolds, J. M., Hambrey, M. J., and Glasser, N. F.: Early 
recognition of glacial lake hazards in the Himalaya using remote sensing datasets, Glob Planet Ch, 56, 137 - 152, 2007. 

Quincey, D. J., Luckman, A., and Benn, D.: Quantification of Everest region glacier velocities between 1992 and 2002, 
using satellite radar interferometry and feature tracking, J. Glaciol., 55, 596-606, 2009. 

Quintano, C., Fernández-Manso, A., Shimabukuro, Y. E., and Pereira, G.: Spectral unmixing, Int J Rem Sens 33, 5307-5340, 1065 
10.1080/01431161.2012.661095, 2012. 

Racoviteanu, A. E., and Williams, M. W.: Decision tree and texture analysis for mapping debris-covered glaciers: a case 
study from Kangchenjunga, eastern Himalaya, Rem Sens Special Issue, 4, 3078-3109, doi:3010.3390/rs4103078, 2012. 

Racoviteanu, A. E., Arnaud, Y., Williams, M. W., and Manley, W. F.: Spatial patterns in glacier characteristics and area 
changes from 1962 to 2006 in the Kanchenjunga‚ Sikkim area, eastern Himalaya, The Cryosphere, 9, 505-523, 10.5194/tc-9-1070 
505-2015, 2015. 

Ragettli, S., Bolch, T., and Pellicciotti, F.: Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal., 
The Cryosphere, 10, 2075 - 2097, doi: 10.5194/tc-2016-25), 2016. 

Reid, T. D., and Brock, B. W.: An energy-balance model for debris-covered glaciers including heat conduction through the 
debris layer, J. Glaciol., 56, 903-916, 10.3189/002214310794457218, 2010. 1075 

Reynolds, J.: On the formation of supraglacial lakes on debris-covered glaciers, in: Debris-covered glaciers, edited by: M. 
Nakawo, C. F. R., and A. Fountain, IAHS, Wallingsford, 153 - 161, 2000. 



 34 

Reynolds, J. M.: Assessing glacial hazards for hydropower development in the Himalayas, Hindu Kush and Karakoram, Int 
J. Hydropower & Dams, 21, 60-65, 2014. 

Richards, J.: Remote Sensing Digital Image Analysis, Springer-Verlag,, Berlin,, 2013. 1080 

Richardson, S., and Reynolds, J.: An overview of glacial hazards in the Himalayas, Quaternary International, 65-66 (37), 31-
47, 10.1016/S1040-6182(99)00035-X, 2000. 

Rieg, L., Klug, C., Nicholson, L., and Sailer, R.: Pléiades Tri-Stereo Data for Glacier Investigations—Examples from the 
European Alps and the Khumbu Himal, Rem Sens, 10, 10.3390/rs10101563, 2018. 

Rittger, K., Painter, T. H., and Dozier, J.: Assessment of methods for mapping snow cover from MODIS, Adv Water Resour, 1085 
51, 367-380, https://doi.org/10.1016/j.advwatres.2012.03.002, 2013. 

Roberts, D. A., Smith, M. O., and Adams, J. B.: Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data, 
Rem Sens Environ, 44, 255-269, https://doi.org/10.1016/0034-4257(93)90020-X, 1993. 

Rosenthal, W., and Dozier, J.: Automated Mapping of Montane Snow Cover at Subpixel Resolution From the Landsat 
Thematic Mapper, Water Res Res, 32, 115-130, 10.1029/95WR02718, 1996. 1090 

Rounce, D. R., and McKinney, D. C.: Debris thickness of glaciers in the Everest area (Nepal Himalaya) derived from 
satellite imagery using a nonlinear energy balance model, The Cryosphere, 8, 1317-1329, 10.5194/tc-8-1317-2014, 2014. 

Rounce, D. R., Quincey, D. J., and McKinney, D. C.: Debris-covered glacier energy balance model for Imja–Lhotse Shar 
Glacier in the Everest region of Nepal, The Cryosphere, 9, 2295-2310, 10.5194/tc-9-2295-2015, 2015. 

Rounce, D. R., King, O., McCarthy, M., Shean, D. E., and Salerno, F.: Quantifying Debris Thickness of Debris-Covered 1095 
Glaciers in the Everest Region of Nepal Through Inversion of a Subdebris Melt Model, J Geoph Res : Earth Surf, 123, 1094-
1115, 10.1029/2017JF004395, 2018. 

Sakai, A., Nakawo, M., and Fujita, K.: Distribution Characteristics and Energy Balance of Ice Cliffs on Debris-Covered 
Glaciers, Nepal Himalaya, AAAR, 34, 12 - 19, 2002. 

Sakai, A., and Fujita, K.: Correspondence: Formation conditions of supraglacial lakes on debris covered glaciers in the 1100 
Himalaya, J. Glaciol., 56, 177 - 181, 2010. 

Sakai, A.: Glacial lakes in the Himalayas: a review on formation and expansion processes, Global Environmental Research 
23 - 30, 2012. 

Salerno, F., Thakuri, S., D’Agata, C., Smiraglia, C., Manfredi, E. C., Viviano, G., and Tartari, G.: Glacial lake distribution in 
the Mount Everest region: Uncertainty of measurement and conditions of formation, Glob Planet Ch, 92-93, 30-39, 1105 
https://doi.org/10.1016/j.gloplacha.2012.04.001, 2012. 

Salerno, F., Thakuri, S., Tartari, G., Nuimura, T., Sunako, S., Sakai, A., and Fujita, K.: Debris-covered glacier anomaly? 
Morphological factors controlling changes in the mass balance, surface area, terminus position, and snow line altitude of 
Himalayan glaciers, Earth Planet Sci Let, 471, 19-31, https://doi.org/10.1016/j.epsl.2017.04.039, 2017. 

Scherler, D., Bookhagen, B., and Strecker, M. R.: Spatially variable response of Himalayan glaciers to climate change 1110 
affected by debris cover, Nature Geosci, 4, 156, 10.1038/ngeo1068, 2011. 

Scherler, D., Wulf, H., and Gorelick, N.: Global Assessment of Supraglacial Debris-Cover Extents, Geoph Res Lett, 45, 
11,798-711,805, 10.1029/2018GL080158, 2018. 

Searle, M. P., Windley, B. F., Coward, M. P., Cooper, D. J. W., Rex, A. J., Rex, D., Tingdong, L. I., Xuchang, X., Jan, M. 
Q., Thakur, V. C., and Kumar, S.: The closing of Tethys and the tectonics of the Himalaya, GSA Bulletin, 98, 678-701, 1115 
10.1130/0016-7606(1987)98<678:TCOTAT>2.0.CO;2, 1987. 

Sevestre, H., and Benn, D.: Climatic and geometric controls on the global distribution of surge-type glaciers: Implications 
for a unifying model of surging, J. Glaciol., 61, 646-662, 10.3189/2015JoG14J136, 2015. 



 35 

Shean, D. E., Bhushan, S., Montesano, P., Rounce, D. R., Arendt, A., and Osmanoglu, B.: A Systematic, Regional 
Assessment of High Mountain Asia Glacier Mass Balance, Front. Earth Sci., 7, 363, 2020. 1120 

Shepherd, J. D., and Dymond, J. R.: Correcting satellite imagery for the variance of reflectance and illumination with 
topography, Int. J. Rem Sens, 24, 3503-3514, 10.1080/01431160210154029, 2003. 

Shroder, J. F., Bishop, M. P., Copland, L., and Sloan, V. F.: Debris-covered Glaciers and Rock Glaciers in the Nanga Parbat 
Himalaya, Pakistan, Geografiska Annaler: Series A, Physical Geography, 82, 17-31, https://doi.org/10.1111/j.0435-
3676.2000.00108.x, 2000. 1125 

Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S., Kennedy, M. C., Bevington, A. R., Betts, R. A., 
Harrison, S., and Strattman, K.: Rapid worldwide growth of glacial lakes since 1990, Nat Clim Change, 10, 939-945, 
10.1038/s41558-020-0855-4, 2020. 

Shukla, A., Arora, M. K., and Gupta, R. P.: Synergistic approach for mapping debris-covered glaciers using optical-thermal 
remote sensing data with inputs from geomorphometric parameters, Rem Sens Environ, 114, 1378-1387, 2010. 1130 

Shukla, A., Garg, P. K., and Srivastava, S.: Evolution of Glacial and High-Altitude Lakes in the Sikkim, Eastern Himalaya 
Over the Past Four Decades (1975–2017), Front. Env. Science, 6, 81, 2018. 

Sirguey, P., Mathieu, R., and Arnaud, Y.: Subpixel monitoring of the seasonal snow cover with MODIS at 250¬†m spatial 
resolution in the Southern Alps of New Zealand: Methodology and accuracy assessment, Rem Sens Environ, 113, 160-181, 
http://dx.doi.org/10.1016/j.rse.2008.09.008, 2009. 1135 

Sokolova, M., and Lapalme, G.: A systematic analysis of performance measures for classification tasks, Information 
Processing & Management, 45, 427-437, https://doi.org/10.1016/j.ipm.2009.03.002, 2009. 

Song, C.: Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate 
endmember variability?, Rem Sens Environ, 95, 248-263, https://doi.org/10.1016/j.rse.2005.01.002, 2005. 

Steiner, J., Pellicciotti, F., Buri, P., Miles, E., Immerzeel, W. W., and Reid, T.: Modelling ice-cliff backwasting on a debris-1140 
covered glacier in the Nepalese Himalaya, J. Glaciol., 61, 889-907, 10.3189/2015JoG14J194, 2015. 

Steiner, J. F., Buri, P., Miles, E. S., Ragettli, S., and Pellicciotti, F.: Supraglacial ice cliffs and ponds on debris-covered 
glaciers: spatio-temporal distribution and characteristics, J. Glaciol., 65, 617-632, 10.1017/jog.2019.40, 2019. 

Stillinger, T., Roberts, D. A., Collar, N. M., and Dozier, J.: Cloud Masking for Landsat 8 and MODIS Terra Over Snow-
Covered Terrain: Error Analysis and Spectral Similarity Between Snow and Cloud, Water Res Res, 55, 6169-6184, 1145 
https://doi.org/10.1029/2019WR024932, 2019. 

Strozzi, T., Wiesmann, A., Kääb, A., Joshi, S., and Mool, P.: Glacial lake mapping with very high resolution satellite SAR 
data, Nat Haz Earth Sys Sci, 12, 2487-2498, 10.5194/nhess-12-2487-2012, 2012. 

Suzuki, R., Fujita, K., and Ageta, Y.: Spatial distribution of thermal properties on debris-covered glaciers in the Himalayas 
derived from ASTER data, Bull Glacier Res, 24, 13 - 22, 2007. 1150 

Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., and Iwamoto, H.: Precise global DEM generation by ALOS 
PRISM, ISPRS Ann Photogram Rem Sens, II-4, 10.5194/isprsannals-II-4-71-2014, 2014. 

Takeuchi, N., Kohshima, S., Fujita, K., and Nakawo, M.: Variation in suspended sediment concentration of supraglacial 
lakes on debris-covered area of Lirung Glacier in Nepali Himalayas, Glob Env Res, 16, 95-104, 2012. 

Tampucci, D., Citterio, C., Gobbi, M., and Caccianiga, M.: Vegetation outlines of a debris-covered glacier descending below 1155 
the treeline, Plant Sociology, 53, 43-52, 10.7338/pls2016531/03, 2016. 

Taschner, S., and Ranzi, R.: Landsat-TM and ASTER data for monitoring a debris covered glacier in the Italian Alps within 
the GLIMS project, Proc IGARSS, 4, 1044–1046, 2002. 



 36 

Thakuri, S., Salerno, F., Smiraglia, C., Bolch, T., D'Agata, C., Viviano, G., and Tartari, G.: Tracing glacier changes since the 
1960s on the south slope of Mt. Everest (central Southern Himalaya) using optical satellite imagery, The Cryosphere 8, 1297 1160 
- 1315, doi:10.5194/tc-8-1297-2014, 2014. 

Thayyen, R. J., and Gergan, J. T.: Role of glaciers in watershed hydrology: a preliminary study of a "Himalayan catchment", 
The Cryosphere, 4, 115-128, 10.5194/tc-4-115-2010, 2010. 

Thompson, S., Benn, D., Mertes, J., and Luckman, A.: Stagnation and mass loss on a Himalayan debris-covered glacier: 
Processes, patterns and rates, J. Glaciol., 62, 1-19, 10.1017/jog.2016.37, 2016. 1165 

Thompson, S. S., Benn, D. I., Dennis, K., and Luckman, A.: A rapidly growing moraine-dammed glacial lake on Ngozumpa 
Glacier, Nepal, Geomorphology, 145, 1-11, 2012. 

Landsat processing details: https://landsat.usgs.gov/Landsat-Processing-Details, access: 2019-28-03, 2015. 

Veganzones, M., Dalla Mura, M., Dumont, M., Zin, I., and Chanussot, J.: Improved subpixel monitoring of seasonal snow 
cover: A case study in the Alps, Int Geosci Rem Sens Symposium (IGARSS), 10.1109/IGARSS.2014.6947356, 2014. 1170 

Vermote, E. F., Tanre, D., Deuze, J. L., Herman, M., and Morcette, J.: Second Simulation of the Satellite Signal in the Solar 
Spectrum, 6S: an overview, IEEE Trans Geosci Rem Sens, 35, 675-686, 10.1109/36.581987, 1997. 

Vezzola, L. C., Diolaiuti, G. A., D’Agata, C., Smiraglia, C., and Pelfini, M.: Assessing glacier features supporting 
supraglacial trees: A case study of the Miage debris-covered Glacier (Italian Alps), The Holocene, 26, 1138-1148, 
10.1177/0959683616632883, 2016. 1175 

Wagnon, P., Vincent, C., Arnaud, Y., Berthier, E., Vuillermoz, E., Gruber, S., Menegoz, M., Gilbert, A., Dumont, M., Shea, 
J. M., Stumm, D., and Pokhrel, B. K.: Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) 
since 2007, Cryosphere, 7, 1769-1786, 10.5194/tc-7-1769-2013, 2013. 

Wang, X., Guo, X., Yang, C., Liu, Q., Wei, J., Zhang, Y., Liu, S., Zhang, Y., Jiang, Z., and Tang, Z.: Glacial lake inventory 
of high-mountain Asia in 1990 and 2018 derived from Landsat images, Earth Syst. Sci. Data, 12, 2169-2182, 10.5194/essd-1180 
12-2169-2020, 2020. 

Wangchuk, S., and Bolch, T.: Mapping of glacial lakes using Sentinel-1 and Sentinel-2 data and a random forest classifier: 
Strengths and challenges, Science of Remote Sensing, 2, 100008, https://doi.org/10.1016/j.srs.2020.100008, 2020. 

Watanabe, O., Iwata, S., and Fushimi, H.: Topographic characteristics in the ablation area of the Khumbu glacier, Nepal 
Himalaya, Ann Glaciol, 8, 177 - 180, 1986. 1185 

Watson, C. S., Quincey, D. J., Carrivick, J. L., and Smith, M. W.: The dynamics of supraglacial ponds in the Everest region, 
central Himalaya, Glob Planet Ch, 142, 14-27, https://doi.org/10.1016/j.gloplacha.2016.04.008, 2016. 

Watson, C. S., Quincey, D. J., Carrivick, J. L., and Smith, M. W.: Ice cliff dynamics in the Everest region of the Central 
Himalaya, Geomorph., 278, 238-251, https://doi.org/10.1016/j.geomorph.2016.11.017, 2017a. 

Watson, C. S., Quincey, D. J., Smith, M. W., Carrivick, J. L., Rowan, A. V., and James, M. R.: Quantifying ice cliff 1190 
evolution with multi-temporal point clouds on the debris-covered Khumbu Glacier, Nepal, J. Glaciol., 63, 823-837, 
10.1017/jog.2017.47, 2017b. 

Watson, C. S., King, O., Miles, E. S., and Quincey, D. J.: Optimising NDWI supraglacial pond classification on Himalayan 
debris-covered glaciers, Rem Sens Environ, 217, 414-425, https://doi.org/10.1016/j.rse.2018.08.020, 2018. 

Wehn, S., Lundemo, S., and Holten, J. I.: Alpine vegetation along multiple environmental gradients and possible 1195 
consequences of climate change, Alpine Botany, 124, 155-164, 10.1007/s00035-014-0136-9, 2014. 

Wessels, R. L., Kargel, J. S., and Kieffer, H. H.: ASTER measurement of supraglacial lakes in the Mount Everest region of 
the Himalaya, Ann Glaciol, 34, 399-408, 2002. 



 37 

Westoby, M. J., Glasser, N. F., Brasington, J., Hambrey, M. J., Quincey, D. J., and Reynolds, J. M.: Modelling outburst 
floods from moraine-dammed glacial lakes, Earth-Science Reviews, 134, 137-159, 1200 
https://doi.org/10.1016/j.earscirev.2014.03.009, 2014. 

Westoby, M. J., Rounce, D. R., Shaw, T. E., Fyffe, C. L., Moore, P. L., Stewart, R. L., and Brock, B. W.: Geomorphological 
evolution of a debris-covered glacier surface, Earth Surface Processes and Landforms, 45, 3431-3448, 
https://doi.org/10.1002/esp.4973, 2020. 

Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., Allen, R. G., Anderson, M. C., 1205 
Belward, A. S., Cohen, W. B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T., Hipple, J. D., Hostert, P., 
Hughes, M. J., Huntington, J., Johnson, D. M., Kennedy, R., Kilic, A., Li, Z., Lymburner, L., McCorkel, J., Pahlevan, N., 
Scambos, T. A., Schaaf, C., Schott, J. R., Sheng, Y., Storey, J., Vermote, E., Vogelmann, J., White, J. C., Wynne, R. H., and 
Zhu, Z.: Current status of Landsat program, science, and applications, Rem Sens Environ, 225, 127-147, 
https://doi.org/10.1016/j.rse.2019.02.015, 2019. 1210 

Xie, F., Liu, S., Wu, K., Zhu, Y., Gao, Y., Qi, M., Duan, S., Saifullah, M., and Tahir, A. A.: Upward Expansion of Supra-
Glacial Debris Cover in the Hunza Valley, Karakoram, during 1990 ∼ 2019, Front. Earth Sci., 8, 10.3389/feart.2020.00308, 
2020. 

Xie, Y., Sha, Z., and Yu, M.: Remote sensing imagery in vegetation mapping: a review, Journal of Plant Ecology, 1, 9-23, 
10.1093/jpe/rtm005, 2008. 1215 

Yukari, T., Kayastha, R. B., and M, N.: Characteristics of ablation and heat balance in debris-free and debris-covered areas 
on Khumbu Glacier, Nepal Himalayas, in the pre-monsoon season, in: Debris-covered glacier, edited by: Nakawo, M., 
Raymond, C. F., and Fountain, A. G., 2000. 

Zhang, B., Liu, G., Zhang, R., Fu, Y., Liu, Q., Cai, J., Wang, X., and Li, Z.: Monitoring Dynamic Evolution of the Glacial 
Lakes by Using Time Series of Sentinel-1A SAR Images, Rem Sens, 13, 10.3390/rs13071313, 2021. 1220 

Zhang, H., Suhong, L., Qizhong, L., and Jiacheng, S.: Sub-pixel lake mapping in Tibetan Plateau, IEEE Trans Geosci Rem 
Sens, 0-7803-8742-2/04, 3073 - 3076, 2004. 

Zhu, Z., Wang, S., and Woodcock, C. E.: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and 
snow detection for Landsats 4–7, 8, and Sentinel 2 images, Rem Sens Environ, 159, 269-277, 
https://doi.org/10.1016/j.rse.2014.12.014, 2015. 1225 

 

  



 38 

 

List of tables 

Table 1 Satellite imagery used in this study.  1230 

 

Sensor 
Path/ 

Row 
Product Date Bands 

Cell 

size 

(m) 

Swath 

width 

(km) 

Usage 

 

 

 

 

 

 

Landsat 8 

OLI 

 

137/41  

 

 

 

 

 

L1TPT1 

 

 

 

 

 

 

 

 

 

 

2014-11-25 Band 1 Visible  
0.43 - 0.45 µm 
 
Band 2 Visible 
0.450 - 0.51 µm 
 
Band 3 Visible  
0.53 - 0.59 µm 
 
Band 4 Red 
0.64 - 0.67 µm 
 
Band 5 Near-IR 
0.85 - 0.88 µm 
 
Band 6 SWIR 1 
1.57 - 1.65 µm 
 
Band 7 SWIR 2 
2.11 - 2.29 µm) 
 

 

VIS, NIR, 

SWIR 

 

 

 

 

 

 

 

 

 

 

 

30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

185 

 

 

 

 

 

 

 

 

 

 

 

Spectral unmixing 

138/41 2015-11-19 

139/41 2015-10-09 

140/41 2015-09-30 

141/40 2015-10-07 

142/40 2016-11-01 

143/40 2015-10-05 

144/39 2015-09-10 

145/39 2015-10-03 

146/38 2015-09-08 

147/37 2015-09-15 

147/38 2015-09-15 

147/38 2016-10-19 

16 

Pléiades 

- 

Level 1A 

2015-10-07 

2015-10-19 

2015-10-20 

Blue 430-550 nm 

Green 490-610 nm 

Red 600-720 nm 

Near IR 750-950 nm 

2 20 

Visual checking of 

Landsat endmembers; 

Pond validation 

(Khumbu area)  

Rapid- 

Eye 
 Level 3A  2015-10-09 

Green 520-590 nm 

Red 630-685 nm 

Red edge 690-730nm 

Near-IR 760-850 nm 

5 77 

Visual checking of 

Landsat endmembers 

(Khumbu area)  

Planet-

Scope 
 

Level 3A 

 

2016-10-19 

2016-10-20 

 

Blue 455 – 515 nm 

Green 500 – 590 nm  

Red 590 – 670 nm  

Near IR 780 – 860 nm 

3 

24.6 x 

16.4 

 

Additional pond 

validation (Lahaul 

Spiti area) 
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Table 2 Summary of accuracy metrics per class for the Khumbu area, calculated based on the confusion matrix, including 

true positives (TP), false positives (FP), false negatives (FN) and true negatives (TN).  

 1235 
Class TP FP FN TN Recall Precision F-score 

clean ice 1 0 13 112 0.07 1.00 0.13 

water (turbid) 32 2 6 81 0.84 0.94 0.89 

debris (dark) 29 23 0 84 1.00 0.56 0.72 

debris (ight) 21 8 9 62 0.70 0.72 0.71 

clouds 5 3 5 92 0.50 0.63 0.56 

vegetation (dry) 25 2 5 88 0.83 0.93 0.88 
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Table 3 Sensitivity analysis of the supraglacial pond area for the seven reference glaciers in the Khumbu domain, obtained 

using various thresholds applied to the fractional water maps.   1240 

 

 

 

 

 1245 

 

 

 

 

 1250 

 

  

Glacier 

Surface area (km2) 

Fractional 

water > 0.4 

Fractional 

water > 0.45 

Fractional 

water > 0.5 

Khumbu 0.45 0.32 0.20 

Lhotse 0.07 0.06 0.05 

Lhotse Nup 0.03 0.03 0.02 

Ngozumpa 0.79 0.66 0.50 

Nuptse 0.09 0.05 0.03 

Changri Nup 0.25 0.19 0.09 

Gaunara 0.16 0.12 0.07 

Total pond 

coverage 
1.8 1.4     1.0 
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Table 4 Validation of the Landsat spectral unmixing for supraglacial pond coverage at selected glaciers at three sites across 

the Himalaya domain, shown in Figure 1. 

 1255 Khumbu  Landsat 8 spectral unmixing Pléiades OBIA  

Glacier 
Debris 

area (km2) 

Pond 

area 

(km2) 

% 

coverage 
Date 

Pond 

area 

(km2) 

% 

coverage 
Date 

Khumbu 7.50 0.20 2.80 

 

30 Sept 

2015 
 

0.21 2.70 

 

7 Oct 

2015 
 

Lhotse 5.20 0.05 0.90 0.08 1.70 

Lhotse Nup 1.50 0.02 1.00 0.02 1.60 

Ngozumpa 19.40 0.50 2.70 0.59 3.00 

Nuptse 2.90 0.03 0.90 0.03 1.00 

Changri Nup 

& Shar 
7.30 0.09 1.30 0.11 

1.50 

Gaunara 5.20 0.07 1.40 0.09 1.70 

Total       49.00 1.00 2.04    1.10      2.24 

Langtang  Landsat 8 spectral unmixing 
SPOT 7 manual digitization 

(from Steiner et al., 2019) 

Lirung 1.44 0.00 0.00 

 

7 Oct 

2015 
 

0.00 2.70 

 

6 Oct 

2015 
 

Ghanna 0.69 0.00 0.00 0.00 1.70 

Langshisha 4.46 0.01 0.20 0.01 1.60 

Langtang 16.17 0.15 0.92 0.18 3.00 

Sabalchum 3.44 0.01 0.33 0.02 1.00 

Lirung 1.44 0.00 0.00 0.00 1.50 

Total 26.20 0.17 0.64  0.21 0.86 
Lahaul Spiti  Landsat 8 spectral unmixing PlanetScope OBIA 

Yichu 5.7 0.002 0.000 

19 Oct 

2016 

0.001 0.000 

19 Oct 

2016 

Dibi Ka 5.6 0.004 0.000 0.009 0.000 

Bara Shigri 21.3 0.126 0.027 0.076 0.016 

Sara Umga 7.8 0.007 0.001 0.012 0.001 

G077666E32079N 0.7 0.000 0.000 0.000 0.000 

G077559E32106N 3.2 0.000 0.000 0.000 0.000 

G077698E32078N 1.2 0.001 0.000 0.000 0.000 

Total 45.5 0.14 0.31 0.10 0.22 
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Table 5 Composition of the seven debris-covered tongues in Khumbu, expressed as percent coverage of each material with 

respect to the debris-covered zones of each glacier.  

Glacier 

Clean 

ice (%) 

Water 

turbid (%) 

Debris 

dark (%) 

Debris light 

(%) 

Cloud 

(%) 

Vegetation 

dry (%) 

Khumbu 0.4 2.8 17.2 79.3 0.0 0.3 

Lhotse 0.2 0.9 91.1 7.5 0.0 0.4 

Lhotse Nup 0.7 1.0 69.1 29.2 0.0 0.0 

Ngozumpa 0.4 2.7 54.2 42.2 0.1 0.5 

Nuptse 0.3 0.9 2.7 95.8 0.0 0.3 

Changri Nup 1.4 1.3 76.0 20.9 0.0 0.5 

Gaunara 0.9 1.4 65.6 30.5 0.0 1.6 

Average 0.6 1.6 53.7 43.6 0.0 0.5 

 

Table 6 Composition of the debris-covered glaciers over the entire Himalaya domain and four selected sub-domains along the 

monsoonal gradient and for the entire domain, listed from west to east. Debris-covered glacier areas are based on the SDC 1260 

dataset (Scherler et al., 2018). 

 
Lahaul Spiti Manaslu Khumbu Bhutan Entire domain  

Area 
(km2) % Area 

(km2) % Area 
(km2) % Area 

(km2) % Area 
(km2) % 

Clean ice 10.2 5.0 7.1 6.9 2.7 0.9 10.1 7.8 126.5 5.6 

Clouds 3.3 1.6 2.9 2.8 0.6 0.2 7.8 6.0 45.0 2.0 

Debris (dark) 26.6 13.1 14.9 14.6 148.1 48.9 19.5 15.0 535.4 23.8 

Debris (light) 151.4 74.4 70.1 68.6 130.2 43.0 83.1 64.1 1371.0 60.9 

Turbid water 0.6 0.3 2.7 2.6 4.9 1.6 5.2 4.0 47.0 2.1 
Vegetation 

(dry) 3.3 1.6 4.5 4.4 9.6 3.2 4.1 3.1 101.7 4.5 

Unclassified 8 4 16 16 6.9 6 0.0 0.0 26.0 1.2 
Total debris 

cover 204 100 118 100 303 100 130 100 2253 100 
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Table 7 Correlation matrix for topo-climatic and geographic controls on pond and vegetation coverage based on Pearson’s r. ** denotes 1265 

correlations significant at 95% confidence interval (p-value < 0.05); * denotes correlations significant at 90 % confidence interval (p-value < 

0.01). 

 
 

  Ponds Vegeta-
tion 

Debris 
cover % 

Termini 
elevation 

Tempe-
rature 

Precipi-
tation 

Thickness 
change Velocity Longitude Latitude 

Ponds 1.00          

Vegetation 0.21 1.00         

Debris cover 0.05 -0.25 1.00        

Termini 
elevation -0.03 0.24   -0.51** 1.00       

Temperature 0.40* 0.12 0.39 -0.29 1.00      

Precipitation   0.53** 0.29 0.32    -0.53**    0.51** 1.00     

Thickness 
change -0.37* -0.01 -0.30 -0.18 -0.04 -0.12 1.00    

Velocity     0.18 -0.18 0.30   -0.76** 0.21   0.54** 0.11 1.00   

Longitude  0.82** 0.40 0.27 -0.07    0.42**  0.74**    -0.42** 0.24 1.00  

Latitude -0.72** -0.28*  -0.47** 0.32  -0.73** -0.78** 0.25  -0.37* -0.88 1.00 

  1270 
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List of figures 

Fig. 1 Himalaya study domain showing the large climatic regions from Bolch et al. (2019) as dotted black lines and the studied regions (western, 

central and eastern). The figure also shows the selected domains across the monsoonal gradient discussed in the text, shown as light-yellow 1275 

outlines and labeled as: A – Lahaul Spiti in the “monsoon-arid” transition zone of the western Himalaya; B – Manaslu; C – Khumbu and parts of 

eastern Tibet in the central Himalaya and D – Bhutan in the eastern Himalaya. Turquoise boxes represent the pond validation sites: 1 – Lahaul 

Spiti 

glaciers; 2- 

Langtang 1280 

glaciers; 3- 

Khumbu 

glaciers. 

Image 

footprints 1285 

are true 

colour 

composite of 

Landsat 8 

OLI (bands 1290 

4,3,2) scenes 

used in this 

study and 

described in 

Table 1.  1295 
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 1300 

 
 
 
Fig. 2 The Khumbu test region in Nepal showing the RapidEye image of Oct 9, 2015 (bands 5, 4 and 3) and the Pléiades image of Oct 7, 19 and 

20, 2015 (bands 4, 3 and 2) (yellow dotted outline). Vegetation appears in dark red/brown; ponds display various shades of turquoise. Green dots 1305 

represent the ground truth points digitized on the high-resolution images and used for the accuracy assessment of the linear spectral unmixing.
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Fig. 3 Types of surfaces present in the study area: a) light debris cover (quartz, feldspar); b) darker schistic debris with ice 

cliff; c) clean ice with crevasses in the glacier ablation area; d) graminoid shrub type vegetation (dry); e) supraglacial lakes 1310 

with different turbidity levels; f) valley clouds. All photos were taken in the Khumbu region. Photo credit: A. Racoviteanu 
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 Fig. 4 a) Spectral signatures of endmembers extracted from Landsat 8 OLI bands 1 to 7 (Sept 30, 2015 Khumbu image) 1315 

after the atmospheric and topographic corrections; b) field spectra from the debris-cover part of Mer de Glace Glacier 

(France) shown for comparison purposes only. 
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Fig. 5 Fractional maps obtained from the LMM routine for a subset of the Khumbu area. Colour bars show the percentage 

covered by each type of material on a pixel-by pixel basis: a) clean ice; b) turbid water; c) dark debris; d) light debris; e) 

clouds; f) dry vegetation. 
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Fig. 6 Comparison of the Landsat 

sub-pixel classified fractional ponds 1340 

(dark blue) with OBIA pond outlines 

(light blue) based on high-resolution 

data for the termini of three glaciers: 

a) Ngozumpa Glacier; b) Khumbu 

Glacier and c) Bara Shigri Glacier. 1345 

The background images are colour 

composites (bands 1,2,3) of Pleiades 

imagery (a-b) and PlanetScope 

imagery (c). Glacier outlines are 

from the SDC dataset (Scherler et 1350 

al., 2018).  
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Fig. 7 Comparison of the fractional ponds from this study with two recent lake datasets based on 2015 Landsat imagery 

(same as our study) for the Spillway Lake at the terminus of Ngozumpa Glacier and the Gokyo Lakes, with the Landsat 

colour composite of bands 5, 4 and 3 overlaid on shaded relief. 1355 
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Fig. 8 Composition of debris-

covered glacier tongues shown 

two of the domains showing 

glaciers discussed in the text: a) 1360 

subset of the Khumbu domain 

(NG – Ngozumpa Glacier, GA 

– Gaunara Glacier; CN – 

Changri Nup Glacier; CS – 

Changri Shar Glacier, KH-1365 

Khumbu Glacier, N – Nuptse 

Glacier;  LN- Lhotse Nup 

Glacier; L – Lhotse Glacier, 

KA –  Kangshung Glacier; KZ 

– Kazhenpu Glacier; LA – 1370 

Labeilong Glacier and b) subset 

of the Lahaul Spiti area (BS – 

Bara Shigri Glacier, S – Sara 

Umga Glacier, Y – Yichu 

Glacier and DK – Dibi Ka 1375 

Glacier). Surfaces are shown on 

shaded relief from the 

AW3D30 DEM, with debris-

cover glaciers from the SDC 

dataset (Scherler et al. 2018). 1380 

Note that the extent of Changri 

Nup incorrectly includes the 

inactive part of the glacier in 

this global dataset. 
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Fig. 9 Ice pixels detected by the LMM at the surface of Ngozumpa Glacier in the Khumbu region. a) Landsat 8 OLI false  

colour composite bands 5,4,3 and unmixing results for ice, water and vegetation classes only; b) Pléiades colour composite 1390 

(bands 4,3,2) shown for comparison, with vegetation shown as red shades. Ice cliffs display the typical crescent moon shape. 

White pixels in (a) correspond to NoData in areas of topographic shadows, resulting from the topographic correction routine. 
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 1395 

Fig. 10 Examples of the supraglacial vegetation maps for two glaciers in eastern Himalaya: a) Kazhenpu Glacier; b) 

Labeilong Glacier. Left panels show the Landsat 8 OLI colour composite (bands 5,4,3) draped onto a shaded relief map from 

the ALOS DEM. Middle panels show fractional vegetation and black arrows point to identified errors (bare land and/or 

healthy vegetation) in the SDC dataset. Right panels show the pixels containing more than 65 % fractional vegetation. 

  1400 
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Fig. 11 Distribution of (a) supraglacial pond coverage and (b) supraglacial vegetation, expressed as percent of each debris-

covered area on a glacier-by-glacier basis for the 408 sampled glaciers. 
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Fig. 12 Plots of supraglacial pond coverage summarized 

over (a) elevation bands expressed as % above terminus, 

(b) slope expressed as 2-degree bins and (c) glacier aspect, 1405 

expressed as 45-degree bins.  
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Fig. 13 Plots of : (a) 

LMM-derived 

ponds; (b) LMM-1410 

derived vegetation; 

(c) debris cover 

expressed as % of 

the glacieized area; 

(d) minimim 1415 

elevation of debris 

cover; e) average 

temperature from 

ERA5-Land (Oct 

2015); f) total 1420 

precipation from 

ERA5-Land (Oct. 

2015); g) Thickness 

change trends 2000 – 

2018 from Shean et 1425 

al. (2020) and f) 

average velocity 

trends 2013 – 2015 

from Dehecq et al. 

(2015). All variables 1430 

were avearged over 

the glacierized areas 

and gridded over 1x1 

degree grid cells. 


