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Surface composition of debris-covered glaciers across the Himalaya
using linear spectral unmixing of Landsat 8 OLI imagery
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Abstract

The Himalaya mountain range is characterized by highly glacierized, complex, dynamic topography. The ablation area of
glaciers often features a highly heterogeneous debris mantle comprising ponds, steep and shallow slopes of various aspects,
variable debris thickness and exposed ice cliffs, associated with differing ice ablation rates. Understanding the composition of
the glacier surface is essential for a proper understanding of glacier hydrology and glacier-related hazards. Until recently,
efforts to map debris-covered glaciers from remote sensing focused primarily on glacier extent rather than surface
characteristics, and relied on traditional “whole pixel” image classification techniques. Spectral unmixing routines, rarely used
for debris-covered glaciers, allow decomposition of a pixel into constituting materials, providing a more realistic representation
of glacier surfaces. Here we use linear spectral unmixing of Landsat 8 OLI images (30 m) to obtain fractional abundance maps
of the various supraglacial surfaces (debris material, clean ice, supraglacial ponds, vegetation) across the Himalaya around the
year 2015. We focus on the debris-covered glacier extents as defined in the supraglacial debris cover database. The spectrally

unmixed surfaces are subsequently classified to obtain maps of composition of debris-covered glaciers across sample regions.

We test the unmixing approach in the Khumbu region of the central Himalaya, and we evaluate its performance for supraglacial
pond by comparison with independently mapped ponds from high-resolution Pléiades (2 m) and PlanetScope imagery (3 m)
for sample glaciers in two other regions with differing topo-climatic conditions. Spectral unmixing applied over the entire
Himalaya mountain range (a supraglacial debris cover area of 2,254 km?) indicates that at the end of the ablation season,

debris-covered glacier zones comprised 60.9 % light debris, 23.8 % dark debris, 5.6 % clean ice, 4.5 % supraglacial vegetation,

2.1 % supraglacial ponds, small amounts of cloud cover (2 %) and unclassified areas (1.2 %). Supraglacial ponds were more
prevalent in the monsoon-influenced central-eastern Himalaya (up to 4 % of the debris-covered area) compared to the
monsoon-dry transition zone (only 0.3 %) and in regions with lower glacier elevations. Climatic controls (higher average
temperatures and more abundant precipitation), coupled with higher glacier thinning rates and lower average glacier velocities,

further favour pond incidence and the development of supraglacial vegetation. The spectral unmixing performed satisfactorily
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for the supraglacial pond and vegetation classes (an Fscore of ~0.9 for both classes), and reasonably for the debris classes
(Fscore of 0.7). With continued advances in satellite data and further method refinements, the approach presented here provides

avenues towards achieving large-scale, repeated mapping of supraglacial features.

Keywords: Himalaya, debris-covered glaciers, remote sensing, spectral unmixing, supraglacial ponds

1 Introduction

High relief orogenic belts such as the Himalaya are characterized by glacierized, complex, dynamic topography and the
presence of a continuous cover of rock debris across the lowest part of the ablation zone of glaciers (Kirkbride, 2011). Globally,
supraglacial debris cover accounts for ~ 7 % of the total glacierized area (Scherler et al., 2018; Herreid and Pellicciotti, 2020).
In high mountain environments, high denudation rates and mass—wasting processes such as rock falls and rockslides from the
steep valley sides supply abundant rock debris to the glacier surface (Kirkbride, 2011; Shroder et al., 2000; Evatt et al., 2015).
This results in highly heterogeneous surfaces, consisting of debris material of various lithologies and grain sizes (sand and silt
to boulders), forming debris cones on variable but mostly shallow slopes. Some of the most notable features of such surfaces
are the supraglacial ponds and exposed ice cliffs, which have gained interest in recent years for several reasons. First, they
influence the surface energy receipts of the supraglacial debris surface and the efficiency with which atmospheric energy can
be transferred to the underlying ice and cause glacier ice ablation. While ice ablation beneath debris cover of more than a few
centimetres thick is strongly reduced (@strem, 1959; Nicholson and Benn, 2006; Reid and Brock, 2010), ice cliffs and
supraglacial ponds are local ‘hot spots’ for glacier downwasting due to enhanced energy absorption at the surface of these
features (Ragettli et al., 2016; Miles et al., 2016; Sakai et al., 2002; Buri et al., 2016; Steiner et al., 2015). Understanding their
spatial distribution is essential for a proper assessment of glacier hydrology, notably to simulate glacier-wide ablation rates
and meltwater production. Second, the current distribution and fluctuation of proglacial lakes and supraglacial pond extents is
of interest for assessing glacier-related hazards. Recent studies have reported an increase in pro- and supraglacial lake area and
number in the Himalaya and worldwide as a response to climatic changes (Shugar et al., 2020; Nie et al., 2017; Shukla et al.,
2018). Some of the supraglacial ponds coalesce and form larger supraglacial lakes, which may evolve into fully-formed
proglacial ice or moraine-dammed lakes (Benn et al., 2012; Thompson et al., 2012), with enhanced potential for producing
hazards such as glacier lake outburst floods (Benn et al., 2012; Komori, 2008; Richardson and Reynolds, 2000; Reynolds,
2014; GAPHAZ, 2017). Increasing trends of pond development of 17 to 52 % per year were reported in the Khumbu region
(2000 to 2015) (Watson et al., 2016), with a three-fold increase in pond area over three decades (1989 to 2018) (Chand and
Watanabe, 2019). Quantifying the number/area of supraglacial ponds and their evolution (Miles et al., 2017; Liu et al., 2015;
Watson et al., 2016) is important for assessing which ones might represent conditioning factors for hazards (Sakai and Fujita,
2010; Reynolds, 2000). Third, understanding the fluctuations of these surface characteristics, in particular supraglacial

vegetation, is important since vegetation expansion on debris-covered surfaces may indicate the transition from a debris-
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covered glacier to a rock glacier in a context of climate change (Shroder et al., 2000; Jones et al., 2019; Knight et al., 2019;

Monnier and Kinnard, 2017; Kirkbride, 1989).

Our understanding of the regional variability in glacier mass balance of both clean and debris-covered glaciers in the Himalaya
has improved over the last years (Dehecq et al., 2019; Brun et al., 2017; Shean et al., 2020), and the role of glacier morphology

in controlling glacier behaviour and changes has also been demonstrated in recent studies (Salerno et al., 2017; Brun et al.,

2019). However, a comprehensive assessment of the surface geomorphology, supraglacial pond coverage, moraine
characteristics and supraglacial vegetation at various temporal scales is still needed over the entire Himalaya. Until recently,
efforts to map debris-covered glaciers focused primarily on their extent rather than the surface characteristics. This was
achieved at regional scales using a combination of digital elevation models (DEMs), various spectral band ratios and terrain
curvature (Shukla et al., 2010; Bolch et al., 2007; Kamp et al., 201 1; Bishop et al., 2001; Paul et al., 2004). Attempts to improve
the accuracy of debris-covered glacier mapping included the use of thermal data. i.e., temperature differences between debris
underlined by glacier ice and the surrounding non-ice moraines (Taschner and Ranzi, 2002; Bhambri et al., 201 1a; Racoviteanu
and Williams, 2012; Alifu et al., 2016) or the use of glacier velocity (Smith et al., 2015). Considerable improvements in
monitoring capacity due to recent satellite developments and cloud-computing platforms such as Google Earth Engine allowed
exploitation of large amounts of Landsat and Sentinel-2 data. This has resulted in two recent global datasets of supraglacial
debris (Scherler et al., 2018; Herreid and Pellicciotti, 2020). While these global datasets represent an important development
in advancing the understanding of the distribution of debris-covered glaciers at a large scale, they can suffer from the use of
inconsistent methods and different temporal coverage between and/or within regions. Supraglacial debris in these databases
was mapped within the bounds of the Randolph Glacier Inventory (RGI) (Pfeffer et al., 2014), which has varying analysis
dates and accuracy. While these issues were partially mitigated in a revised dataset based on semi-automated assessments of
Landsat imagery (Herreid and Pellicciotti, 2020), improvements were limited to glaciers larger than 1 km? and were not applied

repeatedly at the global scale.

Supraglacial ponds and ice cliffs are currently not represented in either existing supraglacial debris cover datasets or in the
updated, publicly available regional glacier lake inventories (Wang et al., 2020; Shugar et al., 2020; Chen et al., 2020). The
latter tend to focus primarily on the representation of proglacial lakes and their decadal changes. A database of supraglacial
ponds at several time periods is desirable in order to complement the existing supraglacial debris and lake databases, as the
distribution of these surface features on debris-covered glacier tongues remains limited to a handful of glaciers in the Himalaya
(Watson et al., 2016, 2017a; Watson et al., 2018; Steiner et al., 2019). For example, regional studies on seasonal dynamics and
evolution of supraglacial ponds and ice cliffs tend to be biased towards the well-studied Khumbu and Langtang areas of Nepal
Himalaya (Watson et al., 2016, 2017a; Miles et al., 2017; Steiner et al., 2019). More studies are needed in other regions in

order to assess the spatial differences in their occurrence as well as to infer the long-term changes of these features.

The increased availability of high-resolution (0.5 to 5 m) remotely sensed data from Pléiades, SPOT and Quickbird satellites

etc., complemented by RapidEye, PlanetScope and SkySat images from Planet, has offered new opportunities for
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characterizing the surface of debris-covered glaciers in more detail. Supraglacial ponds and ice cliffs have been mapped using
a combination of manual digitization on high-resolution multi-spectral imagery (1-3 m) or directly on Google Earth (Brun et
al., 2018; Watson et al., 2018; Watson et al., 2017a, 2016; Steiner et al., 2019). Semi-automated mapping methods include
adaptive binary thresholding (Anderson et al., 2021), band ratios and/or morphological operators (Miles et al., 2017; Liu et al.,
2015), the normalized difference water index (NDWI) (Watson et al., 2018; Gardelle et al., 2011; Miles et al., 2017; Kneib et
al., 2020; Liu et al., 2015; Wessels et al., 2002; Narama et al., 2017), feature extraction via decision-trees and/or Object-Based
Image Analysis (OBIA) (Liu et al., 2015; Kraaijenbrink et al., 2016; Panday et al., 2011) or thermal imagery (Suzuki et al.,

2007; Foster et al., 2012). Other methods include the use of very high-resolution topographic models generated using terrestrial

structure-from-motion techniques (Westoby et al., 2014; Rounce et al., 2015; Herreid and Pellicciotti, 2018; Westoby et al.,
2020) or the use of Unmanned Aerial Vehicles (UAV) data (Kraaijenbrink et al., 2016). Synthetic Aperture Radar pvercomes
the limitations of optical remote sensing in areas with frequent cloud cover (i.e., the eastern Himalaya), and has been used to
map supraglacial ponds and track their dynamics (e.g. Strozzi et al., 2012; Wangchuk and Bolch, 2020; Zhang et al., 2021).
Despite methodological developments, a robust and transferable method for mapping ice cliffs and ponds in a systematic
manner using these high-resolution datasets does not yet exist and current methods remain computationally-intensive.
Understanding how the surface composition of the debris-covered tongues upscales in coarser resolution imagery such as
Landsat is still needed at regional scales. For example, large differences were shown between UAV-derived ponds and

RapidEye-derived ponds in other studies (cf. Kraaijenbrink et al., 2016).

Even with the increased availability of high-resolution imagery, medium resolution data from archive Landsat series (30 m
spatial resolution) remain a valuable data source for various regional-scale mapping applications due to their large swath width
(185 km), free accessibility and acquisition time spanning four decades. One of the limitations in using these medium resolution
data is that most studies rely on traditional “whole pixel” image classification techniques. While these classification techniques
are advantageous for some applications, they does not reveal the constituent surfaces of image pixels on the ground nor their
proportions (Keshava and Mustard, 2002). Spectral unmixing routines, initially described by Atkinson (1997; 2004) and Foody
(2004), allow decomposition of a given pixel into constituting materials, providing their fractional abundance and thus
generating a more realistic representation of complex surfaces (Keshava and Mustard, 2002). These have been used in
glaciology to retrieve snow grain size and derive fractional snow covered areas from MODIS or Landsat (Painter, 2003; Painter
et al., 2009; Sirguey et al., 2009; Veganzones et al., 2014; Rosenthal and Dozier, 1996), to map clean glacier areas or snow
(Painter et al., 2012; Cortés et al., 2014), lakes (Zhang et al., 2004) and vegetation (Ettritch et al., 2018; Song, 2005; Xie et al.,
2008). A small number of studies used spectral unmixing to characterize the mineral composition of debris-covered glaciers
(Casey and Kiib, 2012; Casey et al., 2011), to characterize lake colour, turbidity and suspended sediments (Matta et al., 2017;
Giardino et al., 2010) and more recently to map ice cliffs (Kneib et al., 2020), but the potential of sub-pixel mapping for debris-

covered glaciers has not been fully exploited.
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In this study, we use spectral unmixing of Landsat 8 OLI imagery to detect the surface characteristics of supraglacial debris
cover across the Himalaya, with a particular emphasis on quantifying the supraglacial pond coverage and vegetation. We first
apply and validate the spectral unmixing in the well-studied Khumbu region of the central Himalaya. Using the spectra and
spectral unmixing parameters that were derived from the Khumbu, we infer the composition of supraglacial debris cover for
the entire Himalaya spatial domain. We validate the pond results by comparing the supraglacial pond areas derived from
spectral unmixing with those obtained using OBIA on high-resolution imagery for selected glaciers at three different sites. We
use the results to assess the composition of the debris-covered glacier tongues in regions with differing topo-climatic

conditions, to evaluate the distribution of supraglacial ponds and vegetation across the mountain range in relation to geographic

location, climate, topographic characteristics, glacier mass balance and surface velocity and we discuss the potential

relationship between these features and the temporal evolution of these glaciers.

2 Data sources and methods
2.1  Study area

Our study area comprises various spatial domains (Fig. 1). The larger Himalaya domain is defined here as the region
spanning ~ 1,500 km (~76 to 92° longitude and ~26 to 34° latitude), covering areas from Himachal/Jammu and Kashmir
border in the west to Bhutan Himalaya in the east (Fig. 1). Glaciers in this area have been in a state of negative mass balance
in the last decades, with accelerating trends in the 2000 to 2010 decade (Bolch et al., 2019; Brun et al., 2017; Kéib et al.,
2012; Maurer et al., 2019). We developed our method in the glacierized Khumbu region of Nepal, which we refer to
hereafter as the “Khumbu domain”, although it also includes glaciers north of the divide (Fig. 2). Glaciers in the Khumbu
have been well studied in terms of glacier mass balance using the traditional glaciologic method (Wagnon et al., 2013), the
geodetic method (Bolch et al., 2008; Nuimura et al., 2012; Brun et al., 2017; Bolch et al., 2011; Rieg et al., 2018), energy
balance models (Rounce and McKinney, 2014; Rounce et al., 2015; Kayastha et al., 2000), debris cover characteristics
(Iwata et al., 1980; Watanabe et al., 1986; Nakawo et al., 1999; Twata et al., 2000; Casey et al., 2011; Yukari et al., 2000)
and surface velocity (Quincey et al., 2009). Rates of change of the debris-covered glacier areas in the Khumbu vary from
—0.12£0.05 % a’' from 1962 to 2005 (Bolch et al., 2008) to —0.27 £ 0.06 % a™' from 1962 to 2011 (Thakuri et al., 2014).
Supraglacial ponds cover ~ 0.3 to 7 % of the glacierized area in the Khumbu based on high-resolution Plé¢iades data (Watson
et al., 2017a; Kneib et al., 2020; Salerno et al., 2012); ice cliffs cover between 1 and 9.2 % of the glacier areas (Brun et al.,
2018; Watson et al., 2017a; Kneib et al., 2020).

Fig. 1 and Fig. 2 here

To examine and highlight regional differences in the composition of the debris-covered surfaces, we use four sub-regions

selected across monsoonal gradients as defined in the literature, corresponding to the Landsat scenes (~32,919 km?) shown on
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Figure 1 (Bookhagen and Burbank, 2010; Thayyen and Gergan, 2010; Barros and Lang, 2003). The Lahaul Spiti region in
western Himalaya is in the “monsoon-arid” transition zone, characterized by monsoon precipitation during the summer and
precipitation from the Westerlies in the winter (Thayyen and Gergan, 2010). The Manaslu and Khumbu regions in the central
Himalaya, and the Bhutan region in the eastern Himalaya, are all under the influence of the Indian Summer Monsoon, which
brings large amounts of precipitation during the summer months (June to September) (Barros and Lang, 2003; Bookhagen and

Burbank, 2006) (Fig. 1).

To validate the performance of the spectral unmixing as a basis for estimating pond coverage, we used debris-covered glacier
zones at three validation sites (700 - 1,150 km?), selected across the wider Himalaya domain from the Khumbu, Langtang and
Lahaul Spiti regions (Fig. 1). Supraglacial ponds on these glaciers were mapped using OBIA methods on high-resolution

imagery (section 2.6).

2.2 Remote sensing data

The satellite data used for spectral unmixing comprises of 13 Landsat 8 OLI images covering the Himalaya domain (Fig. 1).
Characteristics of these images are given in Table 1. These were top of atmosphere registered, radiometrically calibrated and
orthorectified imagery (level LITP -T1), available at 30 m spatial resolution in the visible to short-wave infrared since 2013
(Wulder et al., 2019; USGS, 2015). We selected scenes from the post-monsoon period only (September to November) in
order to minimize cloud and snow cover occurrence (Bookhagen and Burbank, 2006). In addition, Landsat scenes across the
domain were selected around the same date as much as possible to minimize seasonal differences in surface conditions,
notably seasonal changes in pond occurrence (Miles et al., 2017). All chosen images were acquired around the same time of
the day (05 UTC time), with similar solar azimuth (~143 degrees) and zenith angle (~30 degrees). This is important to ensure
that differences in surface conditions were minimal. Where the 2015 images had too much cloud or snow, we selected
images for the same season in 2014 and 2016 (Table 1). We acknowledge that this choice may introduce some uncertainties
due to the temporal difference, which we discuss later (section 4.6). The Landsat 8 OLI scene from Khumbu (September 30,
2015) was chosen as reference for method development and testing. We also performed a second spectral unmixing on an
additional 2016 Landsat 8 OLI scene for Lahaul Spiti in the western Himalaya (Table 1) in order to have an analysis that was

coincident with the high-resolution data used to validate the supraglacial pond mapping within this region.

Jable 1 here

For calibration and validation of the spectral unmixing products at specific locations, we used a combination of high-
resolution optical imagery from Pléiades and Planet (Table 1). The Pléiades 1A satellite sensor acquires tri-stereo high-
resolution data (0.5 m spatial resolution in the panchromatic band and 2 m in the multispectral bands, blue to near-infrared),
with 20 km image swath at nadir (Table 1). Three Pl¢iades scenes from 2015 (Oct 7, 19 and 20) covered the north, northeast
and southeast parts of Khumbu (Rieg et al., 2018) and offered the closest match to the date of the reference Landsat image
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(Sept 30, 2015) (Fig. 1); these Pléiades scenes were cloud-free and snow-free over the debris-covered part of the glaciers.
The scenes were provided as three sets of triplets of primary data (1A), and were orthorectified in the Leica Photogrammetry
Suite in ERDAS Imagine 2013 (ERDAS, 2010) using the Plé¢iades Rational Polynomial Coefficient model and the Pl¢iades
DEM (1 m) previously generated using semi-global matching (Rieg et al., 2018). The individual image scenes were
mosaicked to a single image using nearest neighbour at 2 m spatial resolution. In addition, a RapidEye level 3A analytic
ortho tile from Oct 9, 2015 from Planet (Planet_Team, 2017) was used in addition to Pléiades in the Khumbu in order to
cover a wider region to better overlap the Landsat scene. This RapidEye scene consists of orthorectified, surface reflectance
data at 5 m spatial resolution and five multispectral bands, projected to UTM coordinates. A PlanetScope ortho-tile from Oct
19, 2016 (3 m spatial resolution, 4 multi-spectral bands) was used in Lahaul Spiti area to validate the ponds resulting from
unmixing the 2016 Landsat 8 scene for this region (Table 1). Both RapidEye and PlanetScope tiles obtained from Planet
were mosaicked to single scenes using nearest neighbour. These have a stated positional accuracy of < 10 m, reported as yoot

mean square error, RMSE) (Planet_Labs, 2021).

We co-registered all high-resolution images and the corresponding Landsat 8 OLI images using the Co-registration of Optically
Sensed Images and Correlation (COSI-Corr) routine (Leprince et al., 2007) implemented in ENVI 5.5 Classic (L3Harris
Geospatial, Boulder CO). For the Pléiades image, after co-registration with 20 tie points and a second-order polynomial
transformation (RMSE = 1.3 m), image displacements were -0.16 m in the E/W direction and 0.12 m in the N/S direction. The
Planet RapidEye and PlantScope scenes were co-registered on the Landsat 8 OLI with 15 and 10 tie points (RMSE = 5 m and
1.6 m, respectively), yielding offsets of ~1.1 to 1.7 m in the E/W direction and 0.09 to 0.5 m in the N/S direction after co-

registration. These offsets were below the spatial resolution of all scenes (2 - 5 m).

2.3 Atmospheric and topographic corrections

All Landsat 8 OLI scenes were corrected to minimize atmospheric effects due to scattering or absorption from atmospheric
gases, aerosols and clouds. We used the open-source Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI
v 3.1.6) routine based on the 6S algorithm (Vermote et al., 1997). We applied the STDSREF option in ARCSI with the
shadow option, which provided standardized surface reflectance products for all the scenes where deep shadows were
masked out as NoData. ARCSI allows for global and local viewing and solar geometries using physically-based illumination
and reflectance corrections based on topographic data (Shepherd and Dymond, 2003), a specified atmospheric profile, an
Aerosol Optical Thickness (AOT) value and sensor geometry. These settings are important for minimizing differences in
surface conditions among the various scenes. The AOT value was automatically derived in ARCSI by a numerical inversion
of the surface reflectance on an image-basis using the simple dark object subtraction technique (DOS) from the blue band,
yielding an AOT of 0.05 for the Sept 30, 2015 Khumbu scene. To validate the performance of the DOS technique for the
atmospheric profile representation in our study area for this date, we validated the estimated AOT against level 1.5 data at

reference wavelength of A = 500 nm aerosol size from AERONET (https:/aeronet.gsfc.nasa.gov/) (Giles et al., 2019) and
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against daily forecast global reanalysis of total optical depth at multiple wavelengths from the Copernicus Atmospheric
Monitoring Service (CAMS) (https://atmosphere.copernicus.eu/catalogue#/). The AOT values obtained using the DOS
method (0.05) were consistent with the ones calculated from AERONET and CAMS (0.07 and 0.05, respectively). In the
Himalaya, we can generally assume relatively clean atmospheres and thus consider that low AOT values are reasonable (P.
Bunting, Aberystwyth Univ., personal communication, Feb. 2021). Our choice of a constant AOT value in high
environments is in line with findings from other studies (Gillingham et al., 2013; Matta et al., 2017). Surface topography
used for the atmospheric and topographic corrections was based on the ALOS Global Digital Surface Model (AW3D30
version 2.2, at 30 m) (JAXA, 2019), constructed from data acquired from 2006 to 2011. The vertical accuracy of ~10 m in
eastern Nepal (Tadono et al., 2014) is superior to that of Shuttle Radar Topography Mission (SRTM) DEM (23.5 m, reported

by Mukul et al. (2017)), because it contains fewer data voids and provided better shadow rendering in our area.

2.4 Supraglacial debris cover data

In this study, we constrained our analysis over supraglacial debris surfaces, extracted from the database of global distribution
of supraglacial debris cover (Scherler et al., 2018), and referred hereinafter as the “SDC”. Debris-covered glacier outlines in
this dataset were derived from Landsat 8 OLI and Sentinel-2 data using automated approaches on Google Earth Engine by
excluding clean ice and snow from glacier areas within the limits of the Randolph Glacier Inventory (RGI v.6)
(RGI_Consortium, 2017). Outlines span the period 1998 to 2001 for the central and eastern Himalaya, the year 2002 for the

western (monsoon-dry transition zone) and mostly the year 2010 for glaciers in China. In this study. the outlines pbtained from

(oetete 1

the SDC dataset required pre-processing because supraglacial ponds along with other surfaces such as nunataks were
represented as “holes” in this dataset. This caused “NULL geometry” errors due to unclosed polygons, duplicated vertices etc.
We fixed these errors in the SDC polygons using the Repair Geometry command in ArcGIS v10.8., in order to “fill” the holes
so that these were included in the SDC polygons. For the test Khumbu area, we removed supraglacial debris polygons with an
area less than 0.01 km?, which proved to be erroneous areas upon visual examination, i.e., sliver polygons or isolated bare land
pixels. Such unwanted small polygons typically result from polygon overlays and do not represent a physical entity on the

ground (Delafontaine et al., 2009).

2.5  Spectral unmixing background and set-up

In remote sensing, the reflectance spectrum of any image pixel represents an average of the materials on the ground, present
in various proportions within that pixel (Keshava and Mustard, 2002). These “mixed pixels’ are a common occurrence and are
especially a concern in low to medium resolution imagery including Landsat. In the case of debris-covered glacier tongues,
constituent materials include various types of rock debris and/or ice cliffs, supraglacial ponds and vegetation in various
proportions (Rounce et al., 2018). Spectral unmixing techniques serve to quantify mixed spectra and to decompose each pixel
into its constituent materials based on their characteristic, distinct spectral signatures. These materials are referred to as “pure”

endmembers (Painter et al., 2009; Keshava and Mustard, 2002) and are either extracted from the image itself before unmixing
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using unsupervised techniques, or supplied by the user using a priori knowledge (Painter et al., 2009; Keshava and Mustard,
2002; Dixit and Agarwal, 2021). The relationship between the fractional abundance of each material and its spectra is most
often defined as a linear combination of the spectral reflectance of the distinct constituent materials. This is implemented as
linear mixing models (LMMs), used for example to distinguish among vegetation, rock, or different snow grain sizes (Painter

et al., 2009). LMMs are easy to implement and are therefore widely used (Dixit and Agarwal, 2021; Keshava and Mustard,

2002). In contrast, nonlinear mixing models take into account multiple scattering between surfaces and are used in forested
areas where canopy height, or particulate mineral mixtures are in close association (Roberts et al., 1993). They are more

realistic but are also more difficult to implement (Dixit and Agarwal, 2021).

To yield physically meaningful results, fractions obtained from spectral unmixing should ideally comply with two major
constraints: (a) the non-negativity (or positivity) constraint (i.e. fractions should not be negative) and (b) the sum-to-unity (i.e.
for each pixel, fractions should add up to 1) (Keshava and Mustard, 2002). The non-negativity condition is recommended
because negative reflectance values have no physical meaning, and the sum-to-unity constraint is recommended when very
dark endmembers such as shadows are targeted or for unmixing radiance or thermal infrared emissivity. Models that comply
with both conditions (called “fully-constrained models”) are difficult to achieve because they require perfect knowledge of the
system, which is rarely feasible. Furthermore, fully-constrained models have been shown to produce unrealistic fractions in
poorly defined areas or areas of low illumination (Cortés et al., 2014). In this study, we applied 2 LMM with endmembers
extracted from the Landsat 8 OLI image itself, and we constrained our analysis over the supraglacial debris cover only to

reduce model complexity. We used the LMM implementation in the ENVI 5.5 software (L3Harris Geospatial, Boulder CO).
2.5.1 Endmember selection and spectral signatures

The selection of endmembers is crucial in determining the accuracy and reliability of the spectral unmixing (Song, 2005;
Dixit and Agarwal, 2021), and it requires some trial and error as well as a priori knowledge. We selected the endmembers
within the debris-covered areas in the Khumbu domain, based on the reference Landsat 8 OLI scene (Sept 30, 2015). Prior to
this, we performed a forward Minimum Noise Fraction Transform on the Landsat scene (Green et al., 1988), which consists

of alinear transformation of the data based on principal component analysis, and allows to estimate noise in the bands. All

bands had eigenvalues > 1, so we determined the dimensionality of the Landsat data as n = 7. We used the unsupervised
pixel purity index routine in ENVI to find “pure” pixels in an automated manner. This routine outputs a data cloud where the
value of each point indicates the number of times each pixel was marked as extreme, thus representing pixels with the
highest occurrence in the image. We optimized the pure pixel extraction using various numbers of iterations (20,000 to
50,000) with thresholds ranging from 2 to 3 (i.e., two to three times the noise level in the data) until all “pure pixels” were
detected. Larger thresholds identify more extreme pixels, but they are less likely to be “pure” endmembers. “Pure” pixels

were identified on the Landsat 8 OLI scene as corresponding to six endmembers: clean ice, dry vegetation, clouds, light
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debris, dark debris and turbid water (Fig. 3). These were checked against co-registered Pléiades and RapidEye false colour

composites in the Khumbu in order to minimize any occurrence of “mixed pixels”.

Fig. 3 here

The spectra of the six endmembers (Fig. 4a) were statistically separable based on the Jeffries-Matusita and Transformed
Divergence separability measures (Richards, 2013) (values > 1.9-2.0). We defined both light and dark debris endmembers
on the basis of their spectral differences (Fig. 4a), also noted in other studies (Casey et al., 2011; Kneib et al., 2020). We
visually compared these spectral signatures with those we acquired previously in the field on Mer de Glace (French Alps)
using an SVC HR-1024 spectrometer (350 nm to 2500 nm) (Racoviteanu and Arnaud, 2013) (Fig. 4b), as well as with
supraglacial debris spectra from other papers (Naegeli et al., 2015; Naegeli et al., 2017; Casey and Kéab, 2012) To minimize
the number of endmembers, we made several choices: (a) we did not consider any snow; (b) we assumed the supraglacial
ponds to be mostly of turbid type, i.e., those containing larger quantities of suspended sediments. We based this choice on
results from Matta et al., (2017), who reported 52 % of ponds in the Himalaya to have grey waters and 24 % blueish waters;
the water spectra in Fig. 4a corresponds well with field-based spectra for other turbid lakes in the Khumbu, such as Chola
Lake, reported their study; (c) based on our field observations of high-altitude vegetation in the Khumbu (Fig. 3d), we
defined the vegetation endmember as “dry vegetation”, whose spectral signature (a) corresponds roughly to the graminoid
shrubs or overgrown vegetation with a grass-like appearance typically found at high altitudes (Wehn et al., 2014); (d) deep
shadows were previously removed during the topographic corrections with ARCSI and assigned “NoData” so they were not
considered as an endmember. We ran the LMM for various combinations and numbers of endmembers (3 to 6 endmembers)
and recorded the model RMSE for each combination. We examined the residuals (RMSE band) provided from the unmixing
to determine areas of missing or incorrect endmembers; when this contained distinct features, it indicated poorly defined
endmembers. We excluded the endmembers one by one and ran the LMM until we obtained a “salt and pepper” with no

distinct features, indicating that no endmembers were missing or misidentified.

Fig. 4 here

2.5.2 Surface classification from fractional maps

LMM routines result in a multi-band raster containing pixel-by-pixel fractional cover values for each class, which ideally range
from O to 1. When we obtained negative values for a class, we assumed that the material was missing and forced these values
to zero. Positive values were normalized by dividing each endmember fraction by the sum of the endmembers, so that the sum
of the fractions of the various materials in each pixel added up to 1. This is a common procedure suggested by previous studies

(Rosenthal and Dozier, 1996; Quintano et al., 2012; Cortés et al., 2014) when the sum-to-one condition is not satisfied.
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For further analysis, we require maps of the surfaces rather than just a numerical value of area, so we classified the 30 m
fractional maps by applying a threshold o to produce binary maps for each class. Previous studies used a minimum threshold
of a=04o0r0.5,i.e.a pixel was assigned to a class if it contained a fraction of 40 — 50 % to 100 % of that constituent material
(Hall, 2002). The thresholds varied by class, because any pixel contains a mixture of materials in various proportions (section

3.1). Pixels which satisfy 2 different thresholds are categorized as ‘unclassified’. For the supraglacial ponds in the Khumbu,

we defined the water threshold quantitatively based on comparison of the LMM-derived pond areas against those derived from
Pléiades for seven glaciers (section 2.6), and we evaluated the sensitivity of the chosen water threshold. For the other classes,
the thresholds were adjusted carefully based on visual interpretation against the Pléiades and RapidEye images in the Khumbu.

The thresholds established for the Khumbu were applied over the entire Himalaya domain.

2.5.3 Accuracy assessment

The performance of the LMM was assessed both qualitatively (on the basis of visual interpretation and comparison with
surfaces visible on the high-resolution Pléiades and RapidEye), and quantitatively (using established measures, i.e., RMSE,
fraction value abnormalities and the residual band output in the LMM) (Gillespie et al., 1990). To quantitatively assess the
ground accuracy of the LMM, we manually digitized 151 test pixels covering all six classes (10 — 38 pixels per class) on
false colour composites of the Plé¢iades and RapidEye images in the Khumbu using a simple random sampling strategy. The
reference points were chosen so that they were well distributed across the Khumbu (Fig. 2), and were taken to represent
“ground truth”. The predicted class was compared to the ground truth at each pixel to generate a confusion matrix and to
compute the overall accuracy of the model (percent pixels classified correctly). We also report class-specific metrics as true
positives (number of pixels correctly classified and are found in a class, TP), true negatives (number of correctly classified
pixels, that do not belong to a class, TN), false positives (number of pixels that were incorrectly assigned to a class, FP) and
false negatives (number of pixels that were omitted from a class, FN) (Table 2). We calculated three metrics which are

suitable for multi-class classification routines (Sokolova and Lapalme, 2009) as follows (Eq. 1-3):

. TP
Precision = m (1)
TP
Recall = TPYFN 2)
2TP
Fscore = —m———— 3)

2TP + FP+ FN

(Deleted: root mean square error —

Precision measures the agreement between ground data and classified data,j.c., the probability that a pixel classified as water,

(Deleted: for example

is indeed water on the ground. Recall measures the effectiveness of the classifier to identify a pixel in the class of interest. i.e

lgorithm. Fscore balances precision and recall as the harmonic means of
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the two, and measures the relation between the pixels on the ground and those classified, i.e., the model accuracy for each

class. For all metrics, a poor score is 0.0 and a perfect score is 1.0.

2.6  Validation of supraglacial ponds with high-resolution data

We validated the performance of the spectral unmixing for supraglacial pond areas on the basis of high-resolution imagery

for 6 to 7 debris-covered glacier extents at each of the three sites shown in Figure 1. For the Khumbu and Lahaul Spiti (Deleted: selected from

glaciers, supraglacial pond areas were mapped from Pléiades and PlanetScope imagery, respectively (Table 1) using OBIA
techniques (Blaschke et al., 2014) implemented in the ENVI Feature Extraction Module (HarrisGeospatial, 2017). In the
Khumbu, the Pléiades images were acquired several weeks apart from the date of the Landsat scene in some parts of the
region (see Table 1), but we assume minimal lateral expansion between the two dates, as discussed by Watson et al. (2018).
For the Langtang region, we validated our LMM-derived pond areas with those reported for seven glaciers based on SPOT7
satellite imagery in Steiner et al., (2019). The OBIA method used for Khumbu and Lahaul Spiti consisted in a ‘segmentation
only” extraction workflow on the visible bands of Pléiades and/or PlanetScope, with an edge algorithm (to delineate the pond
segments), a fast lambda setting (to merge adjacent segments with similar colours and borders) and a texture kernel size of 3
pixels (suitable for segmenting small areas). The scale and merge levels were adjusted against colour composites to prevent
over-segmenting and to combine different segments into one pond. The resulting polygons were further manually corrected
(split, merged or digitized) for any missing and/or shaded areas beneath ice cliffs as described in Watson et al. (2017a). Our
aim was not to construct a sophisticated OBIA classification scheme but rather to use the feature extraction module as time-

saving strategy and to add objectivity to the manual digitization.

2.7  Auxiliary region-wide datasets

We explored the dependency of the resulting supraglacial pond cover incidence on topographic variables: elevation bands

above the termini, slopeand aspect of the debris cover areas. These were calculated over the debris-covered parts of the glaciers (Deleted: gradient

on the basis of the AW3D30 DEM (30 m). Only glacier polygons with area larger than 1 km?, resulting in a subset of 408
glaciers were selected from the SDC database over the Himalaya domain for an in-depth glacier-by-glacier analysis. The area

threshold was applied in order to remove spurious small bare land patches or isolated debris pixels present in the SDC database.

While the vast majority of glaciers in the Himalaya are smaller than 1 km?, these are mostly clean glaciers (Racoviteanu et al., (Deleted: numerous

2015). In addition to the glacier-by-glacier basis analysis, we also binned the topographic variables, i.e., 100-m elevation, 2-
degree slope and 45-degree aspect, and summarized the pond incidence in each bin.

We explored spatial patterns in the pond incidence and supraglacial vegetation with respect to regional climate gradients,
average glacier mass balance and average surface velocity. Climate data (total precipitation and average temperature) were
obtained from ERAS-Land, which provides gridded monthly average means at 0.1° x 0.1° of land surface properties
(Copernicus Climate Change Service, 2019) (Mufioz-Sabater, 2019). Gridded glacier thickness change at 30 m resolution for
the period 2000 — 2019 were obtained from Shean et al., (2020). Glacier surface velocities for the period 2013 — 2015 based
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on Landsat data were obtained from Dehecq et al., (2015). All topo-climatic variables were binned and averaged over a 1° x

1° grid to explore the topo-climatic controls on spatial trends in pond and vegetation incidence and to allow comparison with

other studies (e.g. Brun et al., 2017; Dehecq et al., 2019).
3 Results

3.1  Fractional maps

Here we present results of the unconstrained LMM, because this had a lower RMSE (0.6 %) compared to the partially
constrained model run (RMSE of 1.5 %). The normalized fractional maps of the six surface types are presented in Fig. 5;
fractional values ranged from 0.004 to 1. Fractional water values greater than 0.5 correspond to supraglacial ponds, visible
for example at the termini of Ngozumpa and Khumbu Glaciers (Fig. 6a,b). Light and dark debris was identified with a
threshold of 0.25 and 0.40 respectively, defined visually on the basis of the Pléiades image. Dry vegetation patches generally
exhibited pixel fractions greater than 0.65. Pixels with abnormally high positive fractional vegetation values were found in
areas of healthy green vegetation and/or bare terrain, which should not be part of the debris-covered tongues, as will be
discussed later (section 4.5). Cloud pixels display fractional values greater than 0.45, although some pixels were mixed with
debris, particularly at cloud shadow areas. For clean ice, fractional values were rather low (0.20) and ranged from 0 (areas
which might have some degree of dirty, dark ice with a lower albedo) to 1 (small number of clean ice pixels found in the

upper areas of supraglacial debris).

Fig. 5 and Fig. 6 here

3.2 Accuracy of the LMM-based classification for the Khumbu

Accuracy measures presented in Table 2 for the Khumbu domain show that errors were not evenly distributed among classes.
For the water and vegetation classes, recall score was 0.83 to 0.84 respectively, with a precision of 0.94 and 0.93 respectively
Table 2. For these classes, the LMM achieved a balance of precision and recall metrics, with a high Fscore of ~ 0.9 indicating
an accurate model. For the debris classes, the model was reasonable but not outstanding, with an Fscore of ~ 0.7 and lower
precision score for dark debris (0.56) compared to light debris (0.72) (Table 2). This suggests that in the case of dark debris,
the LMM model was less accurate than light debris, because pixels from other classes (clean ice, water and light debris) got
mistakenly assigned to this class. Clouds were classified with low precision and low recall scores (Fscore of ~ 0.5), which
means that the LMM performed relatively poorly for this class and it also missed 50% of the cloud pixels. There was confusion
between clean ice and cloud pixels, i.e., clean ice pixels were mistakenly included in the cloud class. Clean ice was the most
poorly classified, with a recall score close to 0 and Fscore of 0.13; one ice pixel was correctly identified, but other surfaces
were confounded with ice. We attribute this to the poorly defined ice class in the model data (i.e., limited number of “pure”

ice pixels used to extract the spectral signature). Based on these measures, we note that overall, the LMM most accurately
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classified the water and vegetation classes, with reasonable performance for the light debris class but poor performance for
clean ice and clouds. The overall accuracy of the LMM-based classification of the six surfaces was 75 %; however, this is a
rather coarse metric and it does not indicate the specific performance of the model for each class so we do not use this here as

evaluation of the accuracy.

Table 2 here
3.3  Supraglacial pond thresholds and validation
The sensitivity analysis of the pond areas obtained from LMM fractional maps with various thresholds (Table 3) indicates (Deleted: Table 3

that there was up to 40 % variability in total pond area when compared to Pléiades-based ponds, depending on the glacier. A
threshold of 0.5 applied to the water class (fractional water > 0.5 = supraglacial ponds) yielded the best agreement with the
total pond areas for the seven glaciers, obtained from OBIA mapping on the Pléiades image (1.0 km? compared to 1.1 km?
for the total coverage, respectively, or a 9 % difference) (Table 4). For the Khumbu Glacier, LMM with a threshold of 0.5
yielded a pond area of 0.20 km? versus 0.23 km? from Pléiades (Table 4), which is in agreement with the area reported by

Watson et al. (2017b)(0.24 km?) using the same Pléiades image (Oct 7, 2015).

Table 3 and Table 4, here (Deleted: Table 3

(Deleted: Table 4

NN

In the Lahaul Spiti region, for the seven glaciers we investigated, LMM yielded a total pond area of 0.14 km? (0.31 % of the

total debris-covered area of the glaciers). The area mapped from PlanetScope image from the same date (Oct 19, 2016) using

OBIA yielded 0.10 km? (0.22 % of the debris-covered area) (Table 4).

In the Langtang region, for the six glaciers investigated in Steiner et al., (2019), our LMM-derived pond areas yielded a total
0f 0.17 km? pond area (0.64% of the debris-covered area). Steiner et al., (2019) obtained a total pond area of 0.21 km? (0.86
% of the debris-covered area) for the same glaciers based on manual digitization by multiple analysists from SPOT7 data for
the same date as the Landsat. LMM under-estimated the pond area by 0.05 km? (19 %), which is within the uncertainty range
(21 %) reported for the ponds in the Langtang area by Steiner et al., (2019).

Visually, the spectrally unmixed pond pixels correspond well with the validation dataset, although there is a difference in the
representation of the pond surfaces due to the spatial resolution (30 m Landsat vs. 2 m Pléiades) (Fig. 6). For Lhotse Glacier,
the supraglacial pond area was slightly under-estimated compared to Plé¢iades (Table 5) as can be seen on Figure 6. This is

perhaps due to the predominance of darker debris type on this glacier, some of which was confused with water, as shown by

the accuracy metrics (Table 2). Similarly, in the Lahaul Spiti region, locations of the supraglacial ponds correspond well
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between LMM and PlanetScope on Bara Shigri Glacier (Fig. 6¢), but the small ponds are not identified using the water

threshold of 0.5, which assumes that more than 50% of the pixel area is covered by water.

3.4  Application to regional non-glacier lake databases

While supraglacial ponds are the focus of this study, we mention that LMMs can also be parameterized to map other lakes,
by masking the debris-covered glacier areas and replacing the turbid water endmember with the clear water endmember,
which has a lower spectral signature (Fig. 4a). This is beyond the purpose of this study, but we provide an illustration of such
an output for the terminus of Ngozumpa Glacier (Fig. 7). We present the ponds and lakes on the debris cover and outside it
for comparison with two existing glacial lakes databases constructed from the same year (2015 Landsat): the HMA v.1 lake
dataset, derived using a normalized difference water index (Shugar et al., 2020) and HI-MAG constructed using a modified
NDWTI and manual corrections (Chen et al., 2020). A comparison with other global databases such as the Global Surface
Water dataset (Pekel et al., 2016) was not undertaken here, as this has already been shown to underestimate the water
occurrence over most of the Himalaya by Chen et al. (2020). With regards to HMA v.1 and HI-MAG datasets, Figure 7

shows that the lake outlines obtained from spectral unmixing for the supra-glacier ponds at the terminus of Ngozumpa

Glacier as well as the Gokyo Lakes outside the glaciers are outperforming both of the existing databases in this area. Our

lake extents are consistent with the HMA v.1 lakes extents outside debris cover (Fig. 7), and the surface area estimates agree
quite well, for example we calculated a difference of 5 % in the summed pond area over the three Gokyo Lakes (1.15 km? in
our estimates vs. 1.09 km? in HMA v.1). The slight under-estimate in the latter is due to simplification of the raster edges in
the vector conversion process, visible in the lake extents. With regards to supraglacial ponds, for example Spillway Lake at
the terminus of Ngozumpa Glacier, our spectral unmixing technique maps most of these lakes, while both HMA v.1 and the
HI-MAG datasets fail to detect all the supraglacial ponds. The HI-MAG detects more of the surface of Spillway Lake
compared to HMA v.1, but the outlines are simplified and lack precision with respect to Landsat pixels (Fig. 7). We did not

simplify the lake and pond polygons, as this can introduce significant area errors.

Fig. 7 here

3.5  Composition of the debris-cover glacier tc glacier to r 1 scale

5! =4

3.5.1 Khumbu domain

For the seven debris-covered glacier tongues in the Khumbu (Fig. 8), the most prevalent materials detected using the LMM
were dark and light debris, with an average of 53.7 % and 43.6 % of the supraglacial debris area, respectively (Table 5). The
dark and light debris areas exhibit variable distribution patterns by glacier. For example, the debris-covered tongue of Nuptse

Glacier in Khumbu is mostly covered by light debris (> 95 % of its area), while the opposite is true for Lhotse Glacier, which
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is mostly composed of dark debris (> 91 %) (Table 5). Other glaciers in the eastern part of Khumbu, i.e., Kangshung Glacier

exhibit alternating bands of light and dark debris, where darker bands represent medial moraines (Fig. 8).
Table 5 and Fig. 8 here

Exposed ice was detected in small quantities in the Khumbu, ranging from 0.2 % (Lhotse) to a 1.4 % (Changri Nup) with an
average of 0.6 % of the debris-covered areas (Table 5 and Fig. 9). Patches of supraglacial vegetation ranged from ~ 0 %
(Lhotse Nup Glacier) to 1.6 % (Gaunara Glacier), with an average of 0.5 % over the seven tongues (Table 5). Vegetation
patches were found for several pixels corresponding to the lateral moraine of Ngozumpa Glacier, or larger patches at the
terminus of Labeilong and Kazhenpu Glaciers in China (Fig. 8. and Fig. 10). The supraglacial pond area in the Khumbu in
2015 ranged from 0.9 % (Lhotse and Nuptse Glaciers) to ~ 3 % of the debris-covered area (Ngozumpa and Khumbu
Glaciers), with an average of 1.6 % over the seven debris-covered glacier tongues and glacier-by-glacier variability (Table
5). The larger water coverage for Ngozumpa and Khumbu Glaciers is consistent with the presence of large supraglacial

ponds at the terminus of these two glaciers shown on Figure 6.
Fig. 9 and Fig. 10 here

3.5.2 Himalaya domain

Here we consider patterns across the whole analysed mountain range and also compare and contrast conditions in the four
regions highlighted in Figure 1. Light debris is prevalent over the entire Himalayan domain, comprising almost three times
the extent of dark debris (60.9 % vs. 23.8 %, respectively). There is a slight regional variability in the occurrence of light
debris, but all regions exhibit similar patterns in terms of the proportion of light and dark debris (Table 6). Glaciers in the
western part of the Himalaya are mostly composed of supraglacial light debris, which presumably reflects the nature of the

underlying bedrock geology here (Searle et al., 1987).

We detected a higher percent coverage of clean ice/snow within the debris-covered area for the entire range (5.6 % of the
debris) with respect to the reference Khumbu domain (0.6 % on average) (Table 6). At the date of the analysis (September to
October 2015), some of the debris-covered glaciers in the eastern part (Bhutan) exhibited snow on the upper parts of the

supraglacial debris, perhaps due to early snowfalls common in this area at this time of the year,

Table 6 here

Cloud coverage amounted to 45 km? (2.0 % of the debris-covered area) over the entire range, with less coverage in Lahaul

Spiti and Khumbu (1.6 % and 0.6 % respectively) compared to the Bhutan domain (6 %).,

Supraglacial vegetation covered a total of 4.5 % of the debris-covered parts of glaciers over the Himalaya domain, with less

coverage in the western part (Lahaul Spiti, 1.6 % of the debris cover) than in the central and eastern Himalaya regions (Khumbu
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and Bhutan domains, at ~ 3 %). We show examples of the vegetation maps obtained from the LMM on Kazhenpu Glacier in
China in Figure 10a. On other glaciers, such as Labeilong Glacier (Fig. 10b), these values might be slightly over-estimated
because the SDC dataset included patches of healthy vegetation as part of the debris cover.,,

The supraglacial pond dataset over the Himalaya domain consists of a total of 18325 ponds ranging in area from 0.0009 km?
to 0.002 km?. Ponds accounted for an area of 47 km? (2.1 % of the total supraglacial debris cover), with marked regional
variability among western Himalaya (Lahaul Spiti: 0.3 % of the supraglacial debris), central Himalaya (Khumbu: 1.6 % and
Manaslu: 2.6 %) and eastern Himalaya (Bhutan: 4.9 %) (Table 6).

3.6  Glacier-by-glacier pond and vegetation coverage

The 408 debris-covered glacier tongues selected from the SDC dataset for the in-depth analysis (cf. section 2.7) ranged in

area from 1 km? to 37 km?, with an average area of 3.9 km? and a mean slope of 12.7°. The supraglacial pond and vegetation

coverage of these glaciers shows heterogeneous patterns (Fig. 11a,b). Both supraglacial ponds and vegetation cover a
relatively small percent of the debris-covered glacier areas in the western Himalaya (0 to 2.5 %) compared to the central and
eastern parts. We note some clusters of higher percentage occurrence of both ponds and vegetation in these two regions (7.5
— 10% for ponds and 20 — 40 % for vegetation, respectively) (Fig. 11a,b). The glacier-by-glacier analysis of pond coverage
with respect to minimum debris-covered glacier elevation did not yield a clear trend, suggesting that ponds do not occur
necessarily on glaciers situated at lower altitudes. Similarly, supraglacial vegetation coverage did not display significant

dependencies on either average slope or minimum elevation of the debris-covered tongues. ,

Fig. 11 here

Analysis of pond coverage per 100-m elevation bands over the entire range however shows clearer patterns than glacier-by-
glacier results: 77 % of the pond area coverage occurs within 10 % elevation from the glacier termini and decreases
exponentially towards the upper part of the debris-covered tongues (0.1% of pond coverage at 75% up the debris area) (Fig.

12a). We note from Figure 12a that the largest concentration of ponds does not occur directly at the glacier termini, but
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expected because at steeper slopes, meltwater can drain away (Reynolds, 2000),, This is consistent with findings from a

previous study (Scherler et al., 2011), which found that slope areas with gradients less than 8° were associated with stagnant

ice at the terminus regions of debris-covered glaciers over the Himalaya. With respect to glacicr aspect, we found that the
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bins between 2 and 8° (8 to 9 % of the pond area) (Fig. 12b)

maximum pond coverage occurs on slopes with an eastern orientation (22.5 to 67.5 °, 15.6 % of the pond area) and
southeastern orientation (67.5 — 112.5, 14.2 % of the pond area), with less pond incidence (~ 9 %) on northern facing slopes
(Fig. 12¢). Although the differences in pond incidence in the different aspect bands are only within 4 %, this seems to
support the fact that southern and eastern facing slopes receive more insolation, thus favouring ice melt and formation of

ponds.
Fig. 12 here

3.7 Supraglacial pond and vegetation distribution over the large domain

Here we present the large-scale patterns of pond and vegetation occurrence on debris-covered glacier tongues over the

’ (Deleted: slope

Himalaya domain with respect to topo-climatic variables averaged and binned at 1x1 degrees (~111 km)(Fig. 13).

Fig. 13 here

Binned supraglacial ponds and vegetation over the Himalaya domain exhibit clear spatial patterns (Fig. 13a,b). With regards

to geographical location, the pond coverage in the western Himalaya is rather homogenous (ranging from 0.1 to 1.5% of the

debris-covered areas) and is the more pronounced and more heterogenous in the eastern Himalaya (2.4 to 4.3 % of the

debris-covered area) (Fig.13a). Pond incidence is positively correlated with longitude (Pearson’s » = 0.82) and negatively

correlated with latitude (Pearson’s = -0.72), with both correlations significant.at 95 % confidence interval (Table 7).

Similarly, supraglacial ation is positively correlated with longitude (Pea r = 0.40) and negatively correlated with

latitude (Pearson’s r = -0.28) (Fig.13b) and exhibits less pronounced occurrence in the north-western part nfthe domain. The

correlations are significant at 90 % confidence interval (p-value < 0.1) but are weaker than those for the 1cidence. The

surface trend analysis of pond incidence and st acial vegetation shows that these hoth increase in the east-west direction

at the rate of +0.23 % and +0.72 % per degree longitude, respectively.

Pond occurrence is positively correlated with average temperature (Pearson’s r = 0.40) and with precipitation Pearson’s r =

0.53), with correlations significant at 90 % (p < 0.1) and 95% (p <0.05) confidence intervals, respectively 1ermore.
pond occurrence is negatively correlated with glacier thickness change (Pearson’s r 7.p<0.1) (Table 7). We did not

find significant correlations of pond and supraglacial vegetation occurrence with percentage of debris cover on the glacier

area, termini elevation or average glacier velocity (Table 7). Supraglacial vegetation had a week positive correlation with

precipitation, but it was not significant.
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4 Discussion
4.1  Controls on mountain-range scale supraglacial pond and vegetation distribution

The topo-climatic conditions for the occurrence of supraglacial ponds on the surface of debris-covered glaciers have been

addressed in a small number of studies (e.g. Sakai, 2012; Sakai and Fujita, 2010). While we could hypothesize that both

ponds and vegetation tend to develop on stagnant, low angle (< 2°) areas of the debris-covered tongues (Sakai and Fujita,

2010; Reynolds, 2000; Quincey et al., 2007) and at lower elevations, which would favour increased temperature and

therefore increase surface melt. that trends were not statistically significant when considered on a glacier-by-glacier basis.

This implies that af the mounte 1 12 ge scale, the distribution of supraglacial features may be governed by more complex

factors which include geomorphologic, glaciologic and climatic patterns. Understanding these spatial trends in pond and

vegeta on 1 quires first a consideration of the topographic conditions, i.e., regional differences in the occurrence of

supraglacial debris and the elevations at which debris-covered glaciers are found and glacier regimes. Here we discuss the

occurrence of supraglacial ponds and vegetation in light of regional topo-climat ditions.

A first observation is that supraglacial debris covers a larger part of the glacierized areas in the central and eastern Himalaya

compared to the western extremities, decreasing linearly from the southwest to northeast, with more pronounced trends
eastwards (-2.7 % per degree longitude) than northwards (-0.6 % per degree latitude) (Fig. 13c). At the same time, the
elevation of the debris-covered glacier termini increases strongly northwards towards the Tibetan plateau (+ 354 m per

degree latitude) and from west to east (+114 m per degree longitude) (Fig.13d). The increasing trends in both pond and

vegetation coverage towards the eastern Himalaya noted earlier are consistent with the presence of lower glacier termini and

higher rates of debris in the eastern part compared to the western part noted in this study. Overall, debris-covered glacier

tongues descend to lower elevations in the central - eastern Himalaya rcoic n (3,700 m to 4.400 m) compared to the western

part (~ 4,700 to 4.900 m). While our results show

he control of glacier termini elevation on pond occurrence is very

weak and not significant, vegetation occurrence is moderately correlated with termini elevation and precipitation. While their

control on vegetation is not statistically significant, it appears that the lower elevations at which supraglacial debris is fo

might favour vegetation growth on these tongues, as noted on Figures 13b and 13d.

Development of supraglacial vegetation (mostly shrubs) has been noted on stagnant, thick debris-covered tongues in other

areas of the world (Xie et al., 2020; Tampucci et al., 2016). Increasing trendsjn other glacierized areas such as the Alps are a

consequence of climatic change and declining glaciation (Vc7/>la et al., 2016). As supraglacial vegetation typically only

develops on stagnant surfaces that are no longer undergoing substantial gravitational reworking, its presence ynay also

constitute an indication of glacier inactivity and later stages of decay. We observe increased vegetation occurrence towards

the eastern Himalaya in 2015 (Fig.13b) where more negative surface elevation changes are also observed (Fig.13e). Gridded
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average glacier thickness changes over the 2000 — 2018 period based on Shean et al. (2020) dataset show a clear west to east

linear pattern in the thinning rates, with thinning rates becoming increasingly more negativ ards the east, at the rate of

n per degree longitude (Fig.13e). This is consistent with the slightly negative glacier mass balance reported.in this area

in other regional studies (Berthier and Brun, 2019; Brun et al., 2017), This surface thinning is consistent with t tward

increase in both pond and vegetation incidence noted earlier. i.e.. the eastern areas are associated with increased glacier

thinning rates which result in more negative glacier mass balan addition, trend analysis of the average gridded glacier

towards the north and east. Stagnant glaciers were reported for the northern parts of the central Himalaya (Scherler et al.. 2011)

and were attributed to topographic differences. i.e.. low slope angles on the northern slopes of the range promoting

development of stagnant ice. in contrast with more rugged. steeper terrain of the southern slopes which favours more dynamic

glacier environments (Scherler et al.. 2011). This correlates with the higher incidence of vegetation in these areas (Fig.13b)

supporting the idea that stagnating glaciers display higher vegetation growth and point to a potential transition of debris-

covered glaciers in certain areas towards vegetated glaciers as noted in other studies (Fickert et al.. 2007). At the same time

higher thinning trends are consistent with higher supraglacial pond coverage, since ponds can enhance local ablation rates by

up to three times (Brun et al., 2016; Miles et al., 2018; Irvine-Fynn et al., 2017). While we only note a week direct dependence
of glacier thinning on supraglacial vegetation (Table 7), he slightly more negative mass balances and lower surface velocities
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glacier velocities on ponds and vegetation noted here are not statistically significant and may not be conclusive.

Climate factors (temperature and precipitation) may also favour pond incidence over some parts of the domain, i.e., higher
temperatures and therefore more dynamic environments could favour increased surface melt and pond formation (Herreid
and Pellicciotti, 2020). In the case of the Himalaya, gridded average temperatures for the month of Oct. 2015 exhibit a
southwest to northeast decreasing trend, with a stronger decrease in the south to north direction (-2.3 °C per degree latitude)

(Fig,13g). Total gridded precipitation for the same month increases in the eastern direction at the rate of -0.06 mm per degree

latitude and decreases towards the drier, colder regions of Tibetan plateau with a stronger gradient northward (-0.23 mm per

degree latitude) (Fig. 13h). On the contrary, the warmer and wetter areas of the eastern Himalaya seem to favour higher pond

coverage, as also suggested in other studies (Herreid and Pellicciotti, 2020). At larger scales, it has been shown that certain
conditions related to topography and lithology could offset this dependency, but at the range of the Himalaya, this climatic
dependency holds. Climatic conditions and glacier characteristics in the western Himalaya are more similar to those in the
Karakoram where glaciers have undergone less shrinkage (Brun et al., 2017; Kéib et al., 2012; Gardelle et al., 2013), than
those in the central and eastern, monsoon-influenced Himalaya, which exhibit higher temperatures and larger precipitation

amounts, and where debris-covered glacier termini are found at lower elevations. ,
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combination of topographic and climatic factors that contribute to the development of ponds and vegetation on debris cover. |

Studies have noted that surface types are related to the evolutionary stage of a debris-covered glacier (cf. Thompson et al.,
2016), in that debris thickness variability, local topography, degree of downwasting, and glacier tongue gradient are all
potentially at least partially related to the time-lapsed since debris cover formation (Sakai and Fujita, 2010; Nicholson et al.,
2018). Relatedly, Herreid and Pellicciotti (2020) introduce the term of debris-covered glacier 'stage' ranging from 0 to 1 as a
percentage of the full, 2D “debris-cover carrying capacity’ of a glacier, such that if 100% of the ablation zone is debris-covered,
then the debris-covered area cannot expand further without up-glacier migration of the equilibrium line. Robustly analysing
controls and drivers of debris covered glacier surface proportions would require controlling for these time-dependent aspects,
which is beyond the scope of this contribution, in which we aim to showcase the potential of the method in mapping surface
types. Such an analysis of the controls and drivers is worthy of a stand-alone publication, using the most recent publicly
available and corrected datasets (Herreid and Pellicciotti, 2020) and a carefully quality-controlled output of the method

nranosed here. A complete understanding of the occurrence of surface features may also require a treatment of transient glacier

upraglacial debris cover co-evolution in order to quantify the time-dependent controls on pond formation and vegetation
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growth as the debris cover and glacier geometry in specific catchments develop over time*

4.2 Spatial and spectral limitations of the Landsat data

Our analysis of surface composition of the debris-covered glacier tongues is subject to several limitations related to the spectral
and spatial resolution of the input Landsat data. While linear spectral unmixing is a relatively straightforward routine to
implement once the endmembers and their spectra are selected, using Landsat data at 30 m spatial resolution and spectral
dimensionality for spectral unmixing has its limitations. While Landsat 8 is superior to the previous Landsat missions in terms
of its calibration, geometry and radiometric resolution (Irons et al., 2012), its spectral dimensionality remains an issue,
particularly with respect to mapping of the various types of debris material and/or supraglacial ponds with various degrees of
turbidity. Previous studies in the Himalaya (Casey and Kaéb, 2012; Casey et al., 2011; Matta et al., 2017) suggest that the
spectral dimensionality of these two surfaces is greater than the dimensionality of the Landsat 8 OLI bands available for

unmixing. Landsat has limited spectral resolution data (7 bands available for unmixing) compared to hyperspectral data (for

example AVIRIS, 224 bands). Both the partially constrained and the unconstrained LMMs yielded negative abundances in our

study, with larger positive values (> 3) especially for the vegetation class. Since our fractions did not satisfy the sum-to-unity
condition, normalization of the classes was necessary, which may have introduced further uncertainty in our results because
some classes had higher positive values than others. However, previous studies showed that these negative values do not

necessarily affect the ability to discriminate between surfaces (Klein and Isacks, 1999).
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Limitations posed by the spatial resolution of Landsat data (30 m) affected the accuracy of the selected endmembers. While
we used the pixel purity index to automate the selection of endmembers, we acknowledge that some mixture may still occur
at 30 m spatial resolution. Furthermore, the 30-m spatial resolution does not allow us to detect supraglacial features such as
ice cliffs or small ponds which can span only a few square meters. Improvements envisioned here include applying the spectral
unmixing Sentinel-2 imagery, which has a better spectral, spatial and temporal resolution (13 bands in the visible to shortwave
infrared, 10 — 20 m, 5-day revisit time) compared to Landsat (7 bands in the visible to shortwave, 30 m, 16-day revisit time).

This would allow for better definition of endmembers, facilitating more accurate and repeated mapping in the future.

Furthermore, the 30 m spatial resolution of the DEM does not allow us to infer the precise control of topographic factors «

(" leted: However, as with the slope analysis, the

such as slope and aspect on pond formation or a full quantification of the small-scale controls of pond incidence, but only

provides a mountain-range scale of the pond distribution,,
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4.3  Limitations in the endmember definition

In this study, we utilized the maximum numbers of endmembers (n = 6) allowed by the spectral resolution of the Landsat 8
OLI data (7 bands), in an attempt to capture the variability of the system and to avoid high RMSE of the model which may
occur due to missing classes. The main difficulty here consisted in capturing the wide variability of the materials present across
the mountain range, for example different lithologies, while ensuring a “valid” LMM. This is defined as one where fractional

values dp not exceed 1.01 (under strict constraint rules) or 2.01 (under looser rules) and where RMSE is less than 2.5% (Painter

et al., 2009). Our choice of debris endmembers was limited to “light” and “dark™ debris, and ,these ynay not cover the wide

)
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spectrum of lithology present across the Himalaya. With regards to the on-the ground spectral characteristics of the debris
material in the Khumbu region, Casey et al. (2011) showed that these vary due to the presence of various of minerals, notably
distinct granitic (lighter) vs. schistic (darker) debris types with different compositions. However, spectral differences in these
two classes can also be related to debris water content especially on very thin debris (as for thinly debris-covered ice cliffs)
and is associated with grain size, i.e., fine-grained sediments have a greater capacity for water retention (Juen et al., 2013;
Collier et al., 2014). We also noted such differences in the spectra for wet fine debris and dry coarse debris with large grain
sizes on Mer de Glace (Fig. 4b); however, the limited Landsat spectral resolution implies that we could not define separate
endmembers for each. Using only two endmembers for debris cannot capture the various types of debris with different mineral
and geochemical composition, nor distinguish between debris with various degrees of water content, which has a different
spectral signature compared to dry debris (Fig. 4b). Furthermore, we could not take into consideration bare illuminated non-
glacierized surfaces including nunataks which were occasionally mistakenly included within the polygons in the SDC dataset.
As a result, these areas were also associated with some high positive fractional values, which might have affected the overall

RMSE of our model, and particularly the sum-to-unity condition.

Although we defined the water endmember on the basis of turbid water (greyish-blue ponds), supraglacial ponds of various

turbidity levels are present across the mountain range, due to various degrees of suspended sediments. The color of these
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ponds can range from grey to turquoise and reddish shades in various proportions (Matta et al., 2017) to small clear water
supraglacial ponds (Takeuchi et al., 2012; Giardino et al., 2010), as observed in the field (Fig. 3e). Each type of pond,has
different spectral signatures, but the limited spectral resolution of Landsat does not allow to use concomitantly both a clear

and a variable turbid water endmember in the spectral unmixing. Nevertheless, as shown in Figure 7, the majority of the

turbid supraglacial ponds are connected to the exposed ice and glacier drainage network (hence larger suspended sediment),
and are expected to be most relevant to glacier evolution and may be of concern for outburst flood potential. Our clear water
algorithm nicely picks out the small number of isolated non-turbid ponds at the terminus of the Ngozumpa Glacier (Fig. 7),
highlighting the success of different end-member selection for addressing other scientific questions. With further testing,
fractional water maps obtained from spectral unmixing techniques can be used to characterize the state of lakes and ponds in
terms of their turbidity (Matta et al., 2017; Giardino et al., 2010) i.e., by quantifying the fraction of a pixel covered by water,
light and/or dark debris. In this regard, repeated monitoring of pond turbidity using these combined tools allows changes in
suspended sediment load to be tracked over time, which are considered direct indicators of glacier wasting processes and
glacier—lake interaction (Giardino et al., 2010). This aspect is not fully explored in this study, but can be further investigated
by combining LMMs with field spectra of ponds and lakes to characterize the various degrees of turbidity across the

is temporally highly variable and since our current dataset is a snapshot of pond density,

mountain range. Since lake turbidit

it cannot be used to infer any variability in sediment concentration, but it provided the basis for tracking changes in glacier

Similarly, we could not define a healthy vegetation endmember whose spectral signature (not shown here) differs from that of
the “dry vegetation” endmember we selected. However, small amounts of healthy vegetation do occur on debris-covered

glaciers in the eastern part of the Khumbu domain, and these were indeed detected by the LMM (Fig. 10).

The cloud and clean ice detection based on LMM were not accurate in this particular configuration. While some isolated pixels

were classified as clouds, others pixels were confounded with other types of surfaces, notably debris (Table 2). While the cloud
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distribution noted in this study correspond to local meteorology. j.e. more frequent cloud cover in the eastern Himalaya until

later fall months compared to the western part (Thayyen and Gergan, 2010), we are less confident in the actual estimations of

the cloud cover areas so we do not wish to over-interpret these. Applying algorithms such as Fmask (Zhu et al., 2015) to mask

the clouds resulted in misclassification of the entire glacierized surface as cloud, which is a well-documented issue (Stillinger

et al., 2019), so we could not mask the clouds prior to the spectral unmixing.

Likewise, clean ice was poorly classified, mostly likely due to its poor representation in the dataset (i.e., limited number of
clean ice “pure” pixels). While our results hint at the presence of ice to some extent, we are not confident about these results.
Some pixels correspond indeed to location of ice cliffs which were perhaps exposed at the end of the ablation season (cf. Fig.
9); others correspond mostly to clean ice patches at the upper limit of supraglacial debris which were included in the input

data, which dated from previous years, or seasonal snow. While we chose our images at the end of the ablation season, post-
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monsoon the snow cover is usually minimal, but early snowfalls can occur. Other features such as the ice “sails” (Evatt et al.,

2017) ynay not be extracted at the resolution of spatial resolution of the Landsat imagery, since these features often span only

several square meters. At the same time, the LMM algorithm in its current parameterization cannot detect ice cliffs dusted with
fine debris, which have a lower albedo than clean ice (Naegeli et al., 2015). Targeting exposed but dusted ice features within
the debris cover in addition to clean ice would need some refinement of the algorithm using Sentinel -2 imagery with better
spectral resolution and better parameterization (Kneib et al., 2020), optical thresholding of band ratios using high-resolution
imagery (Anderson et al., 2021) and/or feature detection based on OBIA (Kraaijenbrink et al., 2016; Watson et al., 2017a;
Molg et al., 2019).

4.4  Uncertainty due to the thresholds applied to fractional maps

Selection of the thresholds used to classify the fractional maps to obtain the final maps of each surface is another source of
uncertainty in our method. Previous spectral unmixing studies (Hall, 2002; Rittger et al., 2013), justified using a threshold of
0.5 for the classifying fractional maps for various types of surfaces, while they also tested thresholds as low as 0.15 (Rittger
et al., 2013). While we applied a threshold of 0.5 and 0.65 to our water and vegetation classes, respectively, for the other
classes the fractional thresholds were ultimately determined using visual inspection, which introduced a certain degree of

subjectivity into our study.

4.5  Quality of input SDC dataset

Due to the spectral limitations of Landsat, in this study we applied the unmixing only to the debris-covered areas of glaciers
to reduce model complexity. Therefore, model performance is to some extent subject to the quality of the input dataset. At
the onset of our study, the only global database of supraglacial debris was the SDC dataset (Scherler et al., 2018), and
although Herreid and Pellicciotti (2020) provide updated supraglacial debris outlines, these were not available at the onset of
our study and are not currently incorporated in the standardized RGI dataset. Debris outlines in the SDC dataset constitute a
multi-time stamp dataset, based on data spanning 1998 to 2015, while our Landsat data was based primarily on 2015. This
may introduce uncertainties in the calculation of pond coverage. For example, we assumed that any changes at the termini of
the debris-covered areas would have occurred within these older outlines, since surge-type glaciers, and hence apparent
glacier “advance” are rare or non-existent in the Himalaya region, contrary to the Karakoram (Sevestre and Benn, 2015).
However, recent studies have reported an upward expansion of the debris cover in the Himalaya (Xie et al., 2020; Thakuri et
al., 2014; Bhambiri et al., 2011b; Kamp et al., 2011), which we do not account for here. As such, in these areas, our pond
density may be underestimated, and this would need a more in-depth analysis and the availability of multi-temporal
supraglacial debris datasets. Furthermore, our study revealed some important issues with the input SDC dataset used to
constrain the spectral unmixing, particularly the inclusion of patches of healthy vegetation and bare bright steep terrain. The
spurious vegetated areas present within the debris cover outlines (Fig. 10b) may have affected to some extent the quality of

the spectral unmixing, i.e., the non-negativity and the sum-to-unity conditions, because it produced large negative and
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positive fractional vegetation values. We were able to identify theses as being healthy vegetation on non-glacierized terrain.

On the other hand, some of the high percentage of supraglacial vegetation in some of the eastern parts is attributed to errors

in the input supraglacial dataset, and we are hesitant to over-interpret the vegetation analysis. However, we note the potential

of the fractional vegetation maps for identifying mapping errors in SDC dataset. Because these “abnormal values” served to

identify errors in the existing SDC dataset, they constitute a valuable tool to correct and refine these global databases.

4.6  Wider applicability of the method

In this study we demonstrated the transferability of a method developed on a single region for the year 2015 (Khumbu) by
applying it to a Landsat 8 OLI scene from a different area (Lahaul Spiti) for the same season (post-monsoonal) but a different
year (2016), and validating the ponds with PlanetScope data. In the light of the spatial and spectral limitations of Landsat data
discussed above, the applicability of our approach for multitemporal analyses requires careful considerations. When
transferring methods from one scene to others, illumination differences and shadow effects across the scenes need to be
resolved, particularly if the scenes are not acquired on the same date. In this study, we attempted to minimize these effects by
applying atmospheric and topographic corrections and implicitly assumed that the set of endmembers defined for the Khumbu

could,be applied to the entire Himalaya. However, jn some areas, some spectral differences may remain, leading to confusion

( Deleted: Considerations regarding the
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between the water / light debris / ice classes and hence some over-estimation of the pond coverage, particularly in some areas
of the western Himalaya. While these pond areas require further quality control prior to their inclusion in regional datasets,
they are within the uncertainties reported at other sites, for example Langtang (Steiner et al., 2019). Furthermore, if the
approach is used over the same area for multi-temporal pond or vegetation analysis, the geolocation accuracy of the Landsat
can be a concern, because the pixels can be slightly misaligned from acquisition to acquisition, resulting in potentially very
different compositions and unmixing results. This needs to be mitigated by co-registration of the scenes prior to unmixing and
performing the change analysis. Further uncertainty is introduced in our study by the fact that for certain areas of the Himalaya,
Landsat cloud-free and snow-free scenes were not available for the year 2015, and we used scenes from 2014 and 2016 (cf.
Table 1). We assumed that surface conditions were similar, but acknowledge that pond areas are dynamic and can change from
year to year. Furthermore, this study does not account for the seasonality of supraglacial ponds, but provides a methodological

basis for their identification.

5 Summary and further work

In this study, we estimated the spatial distribution of surface characteristics on debris-covered glaciers (various types of debris,
clean ice, supraglacial ponds and vegetation) at subpixel scale using 30 m fractional maps obtained from a spectral linear
mixing model. We tested the approach in the Khumbu region comprising eastern Nepal and parts of China using Landsat 8
OLI imagery, and then applied it over the entire Himalaya to evaluate its performance over a larger domain. Pl¢iades and
Planet high-resolution imagery were used to assess the endmember selection and to validate the mapped supraglacial pond

areas using OBIA techniques. Our key findings can be summarised as follows:
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e We demonstrate the use of Landsat spectral unmixing in determining the surface properties of debris-covered glaciers,
which holds great potential for mapping the dynamic changes in surface conditions at a regional scale. While we present
a method that holds promise for effectively partitioning the surface properties of debris covered glaciers, we recommend
that future analysis of the potential drivers and controls on the observed surface types and their regional variation
revealed by this method be carried out on a further quality-controlled data set, to avoid over-interpretation of any errors
within the datasets used;

e We show that spectral signatures derived from the Landsat 8 OLI imagery and cross-checked using high-resolution
Pléiades can be applied at the mountain range scale provided that all images are atmospherically and topographically
corrected to reduce differences in illumination patterns, and that images are acquired around the same date. While the
limited Landsat spectral resolution did not allow for a very fine definition of the wide spectrum of all the different debris
lithologies and ice types present on debris-covered tongues across the study area, LMM successfully distinguished
among broad categories, and convincingly reproduced independently mapped supraglacial pond areas. Overall, we
consider the spectral unmixing method presented here a promising approach to add to the suite of tools that are valuable
in analyzing the dynamic surfaces of debris-covered glaciers;

e One of the major contributions of the current study is that we produced a supraglacial pond inventory for the entire

Himalaya for the year 2015, based on spectral unmixing of coarse resolution and freely available Landsat 8 OLI satellite

imagery. We consider that this approach can provide more detail, and thus outperform other analyses of supraglacial
pond identification and classification performed on similar Landsat data for the same period but based on normalized
difference water indices (Shugar et al., 2020) or manual delineation (Chen et al., 2020). The method and results are
comparable to mapping quality from higher resolution, allowing improved analysis of multitemporal change in pond
incidence and size in a future study. The dataset of supraglacial ponds is available in public domain via Zenodo data
repository (DOI:10.5281/zenodo.4421857);

e  Regional trend analysis on gridded data indicates that higher average temperatures and more abundant precipitation

strongly favour pond occurrence but did.nta have a significant control on supraglacial vegetation. The extent of the

supraglacial debris and the elevation of mini did exhibited a weak control on supraglacial pond coverage, and a

moderate control on supraglacial vegetation. In terms of glacier regimes, we found that higher thinning rates coupled

with lower average glacier velocities are consistent with pond incidence and seem to favour the development of

supraglacial vegetation. Climatic controls (higher average temperatures and more abundant precipitation) also favour

pond occurrence.,

Future developments to overcome the current limitations of this study include the use of more sophisticated non-linear mixing
models, which would allow to discriminate materials of interest in more detail. Work is ongoing to make the unmixing step

approach fully automated by integrating it within scripting routines (e.g. Bunting et al., 2014), so that it can be applied in the

future to derive supraglacial pond outlines at multi-temporal scales and monitor pond development over time. Given that these
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surface ponds are ephemeral and change rapidly, automated multi-temporal scale mapping is highly desirable to track their
evolution over time in various regions. The analysis presented here complements and expands the existing proglacial lake
databases for the year 2015 by providing supraglacial pond extents. With continued advances in satellite data in the near future,

the methodology developed here provides avenues towards achieving large-scale, repeated mapping of supraglacial features.

6 Author contributions

AR conceiving the idea, designed the spectral unmixing experiments, led this work, obtained and processed the Landsat and
the high-resolution images and wrote the paper with input from co-authors. LN provided Pléiades imagery, discussed the
research strategy and helped select endmembers based on field expertise. NG supervised the study and provided

geomorphology expertise. All authors contributed to writing the paper.

7 Code availability

Atmospheric and topographic corrections have been performed using the ARCSI routine, which is embedded in the freely
available, python-based RSGISLIB software available freely (Bunting et al., 2014). The code for batch processing of the
Landsat 8 OLI images for the entire Himalaya can be provided upon request. Post-processing of the spectrally unmixed Landsat
8 OLI maps was done using the Python module ArcPy from ESRI ArcGIS. The steps for loop processing (normalizing the
fractional raster files, classifying the surfaces, and extracting the composition of the debris-covered glaciers from the fractional

maps) can be provided upon request.

8 Data availability

Landsat 8 OLI data used in this study can be obtained at no cost from the USGS Earth Explorer
(https://earthexplorer.usgs.gov/). All versions of the NASA SRTM Global 1-arc second DEMs are available from the
EarthData platform (https:/earthdata.nasa.gov/). All versions of the ALOS Global Digital Surface Model, including the one
used in this paper, are available from https:/www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm. Preliminary datasets of
supraglacial ponds and vegetation, along with the fractional maps are available via . o data repository

(DOI:10.5281/zenodo.4421857).
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List of tables

Table 1 Satellite imagery used in this study.

Cell | Swath
Path/
Sensor R Product Date Bands size | width Usage
ow
(m) | (km)
137/41 2014-11-25 | Band 1 Visible
138/41 2015-11-19 | (43 - 045 um
139/41 2015-10-09 | Band 2 Visible
0.450 - 0.51 um
140/41 2015-09-30
141/40 2015-10-07 | Band 3 Visible
0.53 - 0.59 um
142/40 2016-11-01
Landsat 8 143/40 L1TPT1 2015-10-05 Band 4 Red 30 185 Spectral unmixing
0.64 - 0.67 um
OLI 144/39 2015-09-10
145/39 2015-10-03 | Band 5 Near-IR
0.85-0.88 um
146/38 2015-09-08
Band 6 SWIR 1
147/37 2015-09-15 1.57 - 1.65 um
147/38 2015-09-15
Band 7 SWIR 2
147/38 2016-10-19 | 511599 wm)
- Blue 430-550 nm Visual checking of
2015-10-07
Green 490-610 nm Landsat endmembers;
Pléiades Level 1A | 2015-10-19 2 20
Red 600-720 nm Pond validation
2015-10-20
Near IR 750-950 nm (Khumbu area)
Green 520-590 nm Visual checking of
Rapid- Red 630-685 nm Landsat endmembers
Level 3A | 2015-10-09 5 71
Eye Red edge 690-730nm (Khumbu area)
Near-IR 760-850 nm
Blue 455 — 515 nm Additional pond
2016-10-19 24.6 x
Planet- Level 3A Green 500 — 590 nm validation (Lahaul
2016-10-20 3 164
Scope Red 590 - 670 nm Spiti area)
Near IR 780 — 860 nm
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1420 Table 2 Summary of accuracy metrics per class for the Khumbu area, calculated based on the confusion matrix, including

true positives (TP), false positives (FP), false negatives (FN) and true negatives (TN).

Class TP FP FN TN Recall Precision F-score
clean ice 1 0 13 112 0.07 1.00 0.13
water (turbid) 32 6 81 0.84 0.94 0.89
debris (dark) 29 23 0 84 1.00 0.56 0.72
debris (ight) 21 8 9 62 0.70 0.72 0.71
clouds 5 5 92 0.50 0.63 0.56
vegetation (dry) 25 2 5 88 0.83 0.93 0.88



1425

Table 3 Sensitivity analysis of the supraglacial pond area for the seven reference glaciers in the Khumbu domain, obtained

using various thresholds applied to the fractional water maps.

Surface area (km?)

Glacier
Fractional Fractional Fractional
water > 0.4 water > 0.45 water > 0.§430
Khumbu 0.45 0.32 0.20
Lhotse 0.07 0.06 0.05
Lhotse Nup 0.03 0.03 0.02
Ngozumpa 0.79 0.66 0.50
1435
Nuptse 0.09 0.05 0.03
Changri Nup  0.25 0.19 0.09
Gaunara 0.16 0.12 0.07
Total pond
1.8 14 1.0
coverage
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1440  Table 4 Validation of the Landsat spectral unmixing for supraglacial pond coverage at selected glaciers at three sites across

the Himalaya domain, shown in Figure 1.

Khumbu Landsat 8 spectral unmixing Pléiades OBIA
Pond Pond
Debris % %
Glacier area Date area Date
area (km?) coverage coverage
(km?) (km?)

Khumbu 7.50 0.20 2.80 0.21 2.70
Lhotse 5.20 0.05 0.90 0.08 1.70
Lhotse Nup 1.50 0.02 1.00 0.02 1.60
Ngozumpa 19.40 0.50 2.70 0.59 3.00

30 Sept 7 Oct
Nuptse 2.90 0.03 0.90 0.03 1.00

2015 2015
Changri Nup
7.30 0.09 1.30 0.11
& Shar 1.50
Gaunara 5.20 0.07 1.40 0.09 1.70
Total 49.00 1.00 2.04 1.10 2.24
SPOT 7 manual digitization
Langtang Landsat 8 spectral unmixing
(from Steiner et al., 2019)

Lirung 1.44 0.00 0.00 0.00 2.70
Ghanna 0.69 0.00 0.00 0.00 1.70
Langshisha 4.46 0.01 0.20 0.01 1.60

7 Oct 6 Oct
Langtang 16.17 0.15 0.92 0.18 3.00

2015 2015
Sabalchum 3.44 0.01 0.33 0.02 1.00
Lirung 1.44 0.00 0.00 0.00 1.50
Total 26.20 0.17 0.64 0.21 0.86
Lahaul Spiti Landsat 8 spectral unmixing PlanetScope OBIA
Yichu 5.7 0.002 0.000 0.001 0.000
Dibi Ka 5.6 0.004 0.000 0.009 0.000
Bara Shigri 21.3 0.126 0.027 0.076 0.016
Sara Umga 7.8 0.007 0.001 190ct 0012  0.001  190ct
GO077666E32079N 0.7 0.000 0.000 2016 0.000 0.000 2016
GO077559E32106N 32 0.000 0.000 0.000 0.000
G077698E32078N 12 0.001 0.000 0.000 0.000
Total 45.5 0.14 0.31 0.10 0.22
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1450

Table 5 Composition of the seven debris-covered tongues in Khumbu, expressed as percent coverage of each material with

respect to the debris-covered zones of each glacier.

Glacier
Khumbu
Lhotse
Lhotse Nup
Ngozumpa
Nuptse
Changri Nup
Gaunara

Average

Clean
ice (%)
0.4

0.2

0.7

0.4

0.3

1.4

0.9

0.6

Water Debris
turbid (%) dark (%)
2.8 17.2

0.9 91.1

1.0 69.1

2.7 54.2

0.9 2.7

1.3 76.0

1.4 65.6

1.6 53.7

Debris light Cloud

(%)
79.3
7.5

29.2
422
95.8
20.9
30.5
43.6

(%)
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0

Vegetation

dry (%)

0.3
0.4
0.0
0.5
0.3
0.5
1.6
0.5

Table 6 Composition of the debris-covered glaciers over the entire Himalaya domain and four selected sub-domains along the

monsoonal gradient and for the entire domain, listed from west to east. Debris-covered glacier areas are based on the SDC

dataset (Scherler et al., 2018).

Lahaul Spiti M: 1 Khumbu Bhutan Entire domain

Area o Area o Area o Area o Area o
Gm) % gmy) P gm)  * wmy) P gy P
Clean ice 102 50 71 69 27 09 10.1 78 1265 56
Clouds 33 16 29 28 06 02 78 6.0 450 20
Debris (dark) 266 131 149 146 1481 489 195 150 5354 238
Debris (lighty 1514 744 701 686 1302 430 831 641 13710 609
Turbid water 06 03 27 26 49 16 52 40 470 21
Vegetation 33 16 45 44 96 32 4.1 3.1 1017 45

(dry)

Unclassified 8 4 16 16 6.9 6 0.0 0.0 20 12
foaldebris 204 100 118 100 303 100 130 100 2253 100
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Table 7 Correlation matrix for topo-climatic and geographic controls on pond and vegetation coverage based on Pearson’s r. ** denotes «

correlations significant at 95% confidence interval (p-value < 0.05); * denotes correlations significant at 90 % confidence interval (p-value <
0.01

Vegeta-  Debris Termini Tempe- Precipi- Thickness
tion cover % elevation rature tation change

Ponds

Velocity Longitude Latitude

Ponds
Vegetation
Debris cover
Termini
elevation
Temperature
Precipitation =~ 0.53** 0.51**
Thickness

037* 001 030 -0.04 -0.12
change
Velocity ~ 0.18 018 o030 [076 o021 0.54%*
Longitude 040* 027 -0.07 0.42%*
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Fig. 1 Himalaya study domain showing the large climatic regions from Bolch et al. (2019) as dotted black lines and the studied regions (western, .- (Deleted: (western, central and eastern regions)

central and eastern). The figure also shows the selected domains across the monsoonal gradient discussed in the text, shown as light-yellow

outlines and labeled as: A - Lahaul Spiti in the “monsoon-arid” transition zone of the western Himalaya; B — Manaslu; C -, Khumbu and parts of

eastern Tibet in the central Himalaya,and D — Bhutan in the eastern Himalaya, Turquoise boxes rep: the pond validation sites: 1 — Lahaul

Spiti

AN A

glaciers; 2-

35°N Langtang
glaciers; 3-
Khumbu
glaciers.
Image
footprints

are true

colour
30°N composite of
Landsat 8
OLI (bands
4,3,2) scenes
used in this
study and
described in
Table 1.
25°N
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Fig. 2 The Khumbu test region in Nepal showing the RapidEye image of Oct 9, 2015 (bands 5, 4 and 3) and the Pléiades image of Oct 7, 19 and

28°0'N-

g,

Validation points ¢

Pleiades extent

|

20, 2015 (bands 4, 3 and 2) (yellow dotted outline). Vegetation appears in dark red; ponds display various shades of turquoise. Green dots Deleted:
represent the ground truth points digitized pn the high-resolution images and used for the accuracy assessment of the linear spectral unmixing. oy : %Deleted: turquoise
Deleted: Red
(Deleted: for
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1505

1510

Fig. 3 Types of surfaces present in the study area: a) light debris cover (quartz, feldspar); b) darker schistic debris with ice
cliff; ) clean ice with crevasses in the glacier ablation area; d) graminoid shrub type vegetation (dry); e) supraglacial lakes

with different turbidity levels; f) valley clouds. All photos were taken in the Khumbu region. Photo credit: A. Racoviteanu
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Fig. 4 a) Spectral signatures of endmembers extracted from Landsat 8 OLI bands 1 to 7 (Sept 30, 2015 Khumbu image)
after the atmospheric and topographic corrections; b) field spectra from the debris-cover part of Mer de Glace Glacier

1515 (France) shown for comparison purposes only.
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1520  Fig. 5 Fractional maps obtained from the LMM routine for a subset of the Khumbu area. Colour bars show the percentage
covered by each type of material on a pixel-by pixel basis: a) clean ice; b) turbid water; c¢) dark debris; d) light debris; e)

clouds; f) dry vegetation.
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N L L

0.75

1.5
I

A Il LMM ponds [

OBIA ponds

Debris-covered glacier outlines

Fig. 6 Comparison of the Landsat
sub-pixel classified fractional ponds
(dark blue) with OBIA pond outlines
(light blue) based on high-resolution
data for the termini of three glaciers:
a) Ngozumpa Glacier ; b) Khumbu
Glacier and c) Bara Shigri Glacier.
The background images are colour
composites (bands 1,2,3) of Pleiades
imagery (a-b) and PlanetScope
imagery (c). Glacier outlines are
from the SDC dataset (Scherler et
al., 2018).
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cover (%) [_1Other lakes (this study)
. 1 HI-MAG glacial lakes (Chen et al. 2020)

040 HMA v.1 glacial lakes (Shugar et al. 2020)

Fig. 7 Comparison of the fractional ponds from this study with two recent lake datasets based on 2015 Landsat imagery
(same as our study) for the terminus of Ngozumpa Glacier and the Gokyo Lakes in Khumbu, with the Landsat colour

composite of bands 5, 4 and 3 overlaid on shaded relief.
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Fig. 8 Composition of debris-
covered glacier tongues shown
two of the domains showing
glaciers discussed in the text: a)
subset of the Khumbu domain
(NG — Ngozumpa Glacier, GA
— Gaunara Glacier; CN —
Changri Nup Glacier; CS —
Changri Shar Glacier, KH-
Khumbu Glacier, N — Nuptse
Glacier; LN- Lhotse Nup
Glacier; L — Lhotse Glacier,
KA — Kangshung Glacier; KZ
— Kazhenpu Glacier; LA —
Labeilong Glacier and b) subset
of the Lahaul Spiti area (BS —
Bara Shigri Glacier, S — Sara
Umga Glacier, Y — Yichu
Glacier and DK — Dibi Ka
Glacier). Surfaces are shown on
shaded relief from the
AW3D30 DEM, with debris-
cover glaciers from the SDC
dataset (Scherler et al. 2018).
Note that the extent of Changri
Nup incorrectly includes the
inactive part of the glacier in

this global dataset.
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1585

Fig. 9 Ice pixels detected by the LMM at the surface of Ngozumpa Glacier in the Khumbu region. a) Landsat 8 OLI false
colour composite bands 5,4,3 and unmixing results for ice, water and vegetation classes only; b) Pléiades colour composite
1590 (bands 4,3,2) shown for comparison, with vegetation shown as red shades. Ice cliffs display the typical crescent moon shape.

White pixels in (a) correspond to NoData in areas of topographic shadows, resulting from the topographic correction routine.
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1595 Fig. 10 Examples of the supraglacial vegetation maps for two glaciers in eastern Himalaya: a) Kazhenpu Glacier; b)
Labeilong Glacier. Left panels show the Landsat 8 OLI colour composite (bands 5,4,3) draped onto a shaded relief map from
the ALOS DEM. Middle panels show fractional vegetation and black arrows point to identified errors (bare land and/or

healthy vegetation) in the SDC dataset. Right panels show the pixels containing more than 65 % fractional vegetation.
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Fig. 11 Distribution of (a) supraglacial pond coverage and (b) supraglacial vegetation, expressed as percent of each debris-

1,000 Km
]

covered area on a glacier-by-glacier basis for the 408 sampled glaciers.
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Fig. 12 Plots of supraglacial pond coverage summarized
over (a) elevation bands expressed as % above terminus,

(b) slope gxpressed as 2-degree bins and (c) glacier

aspect, expressed as 45-degree bins.
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variables were avearged over the glacierized areas and gridded over 1x1 degree grid cells.

Fig. 13 Plots of :
(a) LMM-derived
ponds; (b) LMM-
derived
vegetation; (c)
debris cover
expressed as %
of the glacieized
area; (d)
minimim

elevation of

debris cover; )

Thickness change
trends 2000 —
2018 from Shean
et al. (2020) and
f) average
velocity trends
2013 -2015
from Dehecq et
al. (2015). g)
average
temperature from
ERAS5-Land (Oct
2015); h) total
precipation from
ERAS-Land

Oct. 2015); All
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