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General comments 
In “A Bayesian approach towards daily pan-Arctic sea ice freeboard estimates from combined 
CryoSat-2 and Sentinel-3 satellite observations” the authors investigate the use of Bayesian 
inference to produce daily gridded pan-Arctic radar freeboard estimates. Gaussian Process 
Regression (GPR) is used to model spatio-temporal covariances between observations made by 
three ESA’s satellite altimetry missions (CryoSat-2, Sentinel-3A, and Sentinel-3B) and to make pan-
Arctic predictions of radar freeboard, with uncertainty estimates, on a given day. 
This is a novel, interesting and relevant investigation as it attempts, for the first time, to estimate 
freeboard with a daily temporal resolution based solely on satellite altimetry data. The improved 
temporal resolution of pan-Arctic freeboard could contribute to our ability to understand physical 
processes driving sea ice thickness variability on sub-monthly time scales. 
The study is generally well structured and the manuscript is clear and pleasant to read. I recommend 
this paper for publication, however, there are some points that should be addressed by the authors 
first. 
Thank you for your kind words, and for taking the time to review our work! It is very much 
appreciated. Please see our comments below, which we hope address your concerns. 
 
Specific comments 
 
Data 

• Why did you choose data between December 2018 and April 2019? By selecting e.g. the 
following season (2019/20), you could have included in the analysis the months of October 
and November and make your results representative for an entire Arctic winter season. 
The choice to perform our analysis for the 2018-2019 season was initially to compare with 
the final Operation Icebridge campaign in April 2019, however as we state in the manuscript, 
it was difficult to draw any conclusions based on so few data points. Note that we do plan to 
run this algorithm for future seasons and make the data publicly available in the near future. 

• L85-90: Hamming-weighting and zero-padding are both applied to CS2 L0 processing 
(https://wiki.services.eoportal.org/tiki-
download_wiki_attachment.php?attId=4431&page=Cryosat%20Documents&download=y). 
Please amend this statement and, if CS2 L0 data are processed using GPOD, please state the 
differences with the official Baseline-D version provided by ESA. 
We have not compared the GPOD-derived CryoSat-2 radar freeboard with the ESA L2 
baseline D product, however in Lawrence et al. (2019) they applied the same L1B -> L2 
processing to GPOD L1B and ESA L1B (baseline C) data and found a radar freeboard 
difference of ~6mm attributed to the fact that the GPOD L1B data does not contain the stack 
standard deviation (SSD) parameter which is used for filtering lead and floe waveforms in 
the ESA L1B -> L2 processing chain. As the authors remark in their paper, it was more 
important to ensure consistency between CS2 and S3 than consistency between our CS2 
radar freeboard and the ESA L2 freeboard product. However we agree that it is important to 
comment on this and we will note this difference in the revised manuscript and say that our 
combined product is preliminary and awaits the availability of ESA L2 Sentinel-3 freeboard 
which is processed in a consistent way to CS2. 
 



Method 
• How do you treat observations from different satellites in the same grid cell acquired on the 

same day (i.e. co-located in both space and time)? Do you include these as separated inputs 
or do you feed them as a single averaged estimate to the GPR algorithm? This should be 
clarified in the manuscript. 
Observations which are co-located in space and time are treated as separate inputs. The GPR 
framework assumes that these observations are independent random samples drawn from 
the same distribution (i.e., the same posterior function we are trying to learn), yet have 
independent noise contents. We will make this clearer in the revised manuscript. 
 

• As there is no general “Discussion” section, I add this comment here. Bayesian inference 
allows to estimate the optimal covariance function hyperparameters based entirely on data 
as the parameters maximising the log marginal likelihood function. Do you think that the 
tool you developed could be useful in investigating the spatial and temporal correlation 
length scales of freeboard measurements? Please add a short paragraph discussing this 
possibility. 
Indeed, for each grid cell we do retain the learned hyperparameters which maximise the log 
marginal likelihood function. This therefore allows us to construct spatial maps of each 
hyperparameter (including space and time correlation length scales - see Figure 1 below). 
We agree that this information might be useful to potential end-users of this product and so 
will include a discussion on this in the revised manuscript. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Validation 

• How do you think a different grid resolution would affect your results in Section 4, e.g., by 
using a 25x25 km grid instead? Also, please repeat in the conclusions that the validation 
presented in Section 4 is based on a 50x50 km grid. 
In Figure 2 below, we show an example of the training error distribution for one day (1st of 
December 2018), where interpolations were run at 25, 50 and 100 km spatial resolution.  
Here we can see that increasing/decreasing the resolution does not result in a systematic 
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Figure 1 showing the zonal (X), meridional (Y) and temporal (T) freeboard correlation length scales which 
maximise the log marginal likelihood function, for each grid cell when generating predictions for the 1st of 
December 2018. 



increase or decrease in the average error. We do however see that the spread in error is 
larger for finer resolutions, which is perhaps expected as the coarser resolution data will 
have averaged out much of the noise content within the data. On this note, we think that it 
is worth including some sensitivity tests as supplementary material for this manuscript, 
including tests where we vary the spatial grid resolution of the input data, and also vary the 
number of days in the training  – see more below. 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• The results in Table 1 show a slight but systematically lower freeboard mean difference 
between CS2S3 and S3B compared with CS2S3-CS2 and CS2S3-S3A. While rounding might 
play a role in this comparison, do you have any idea why CS2S3 tends to best fit S3B data for 
every month of your analysis? 
Having since gone back and checked our calculations we have noticed a small error in the 
derivation of the mean and standard deviation statistics presented in Figures 4 and 5, and 
Tables 1 and 2. The revised statistics are given below for Tables 1 and 2:  

Table 1 
Date 

 µ 
CS2-
CS3S3 

 s 
CS2-
CS3S3 

 µ 
S3A-
CS3S3 

 s 
S3A-
CS3S3 

 µ 
S3B-
CS3S3 

 s 
S3B-
CS3S3 

RMSE 
CS2-
CS3S3 

RMSE 
S3A-
CS3S3 

RMSE 
S3B-
CS3S3 

201812 0.001 0.051 0.000 0.057 -0.001 0.057 0.051 0.057 0.057 
201901 0.001 0.049 0.001 0.056 -0.002 0.055 0.049 0.056 0.055 
201902 0.000 0.050 0.000 0.055 -0.001 0.055 0.050 0.055 0.055 
201903 0.001 0.050 0.000 0.056 -0.001 0.057 0.050 0.056 0.057 
201904 0.001 0.053 0.000 0.061 -0.001 0.061 0.053 0.061 0.061 
all months 0.001 0.051 0.000 0.057 -0.001 0.057 0.051 0.057 0.057 
Table 2 
Date 

 µ 
S3A-
CS3S3(-
S3) 

 s 
S3A-
CS3S3(-
S3) 

 µ 
S3B-
CS3S3(-
S3) 

 s 
S3B-
CS3S3(-
S3) 

 µ 
S3A-
CS3S3(-
S3A) 

 s 
S3A-
CS3S3(-
S3A) 

 µ 
S3B-
CS3S3(-
S3B) 

 s 
S3B-
CS3S3(-
S3B) 

201812 -0.002 0.073 -0.004 0.072 0.001 0.072 -0.002 0.072 
201901 -0.001 0.071 -0.004 0.071 0.002 0.070 -0.003 0.070 
201902 -0.002 0.072 -0.003 0.071 0.000 0.071 -0.002 0.070 
201903 -0.003 0.074 -0.005 0.075 0.000 0.072 -0.004 0.0073 
201904 -0.002 0.079 -0.005 0.076 0.001 0.076 -0.003 0.076 
all months -0.002 0.074 -0.004 0.073 0.001 0.072 -0.003 0.072 
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Figure 2 showing the error distributions between training data (CS2 and S3) and CS2S3 interpolated freeboards 
for the 1st of December 2018. Each distribution shows the error for interpolations performed at different spatial 
resolutions, with (a) 25x25 km, (b) 50x50 km, (c) 100x100 km. 



We now notice that CS2S3 freeboards are generally higher than S3B (given by the negative 
bias for both training and cross-validation comparisons, across all months). The model now 
appears to fit S3A better than S3B. Rounding does indeed play a role in these statistics, for 
example, if we increase the number of significant figures for the ‘all months’ cases µCS2-CS2S3 

and µS3A-CS2S3 in Table 1, we see that µCS2-CS2S3 = 0.00078 m and µS3A-CS2S3 = 0.00024 m. Hence 
these round to 1 mm and 0 mm respectively. To address the question as to whether the 
difference in mean between any of the error distributions is significant (e.g., between µCS2-

CS2S3 and µS3A-CS2S3), we can use a statistical Z-test. This can be computed through the 
following equation: 

𝑍 = 	
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#
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where 𝑛' and 𝑛#	are the number of samples which make up the CS2-CS2S3 and S3A-CS2S3 
error distributions respectively. The Z-test allows us to determine whether, based on the 
available samples from CS2-CS2S3 and S3A-CS2S3, the true means of the two error 
distributions are likely to be the same (i.e., the true zero-mean Gaussian noise 
distribution). Note that the Z-test assumes that samples are independent random variables 
– which is what assume the noise to be. In the example above we find that Z is equal to 
2.38, which is equivalent to >99% significance. We therefore do not have evidence to reject 
the null hypothesis here, and can conclude that the two true means are highly likely to be 
the same. 

• I understand the authors’ choice of the cross-validation method, however, I think that both 
section 4.2 and the conclusions should clearly state that the given estimates of prediction 
error are based only on validation data from regions below 81.5.N and with a sea ice 
concentration larger than 75%, since these correspond to areas where the absolute 
uncertainty is usually the lowest (exception made for the Canadian Archipelago and the Fram 
Strait, as the authors nicely point out in Section 5). Regions above 81.5.N and with ice 
concentration between 15% and 75% (including the marginal ice zone) are systematically 
left out of the cross-validation since: 

o only S3 data are used as a validation 
o according to Lawrence et al. (2019a), diffuse waveforms within grid cells with ice 

concentration lower than 75% are discarded, which means that no freeboard 
estimates are available from any of the satellites on a given day where ice 
concentration falls below 75%. 

Thank you for raising this crucial point. We will make sure the manuscript reflects this in the 
revised version. 

• I would have expected a more significant difference in performance when training the model 
with CS2 data only, given the lower spatio-temporal coverage when compared with a 
combined CS2/S3A/S3B training data set. According to your results, a GPR based on CS2 
observations alone is able to predict radar freeboard at unobserved locations pretty well 
(with a 3-4% RMSE increase, from 5.9 to 6.1 cm, when compared to the multi-satellite 
solution). Do you think this is related to the relatively coarse (50x50 km) grid chosen for your 
cross-validation? I suggest to add a paragraph in your discussion elaborating on this matter 
and on the actual advantage of including S3 data in your model training compared with using 
only CS2 data. In the light of these results, it would also be interesting to discuss the 
possibility of using data from the three satellites while reducing the number of days used for 
model training. 



With regards to the benefits of including Sentinel-3 data during the model training, we do 
see clear improvements in the derived freeboard estimates (see Figure 3 below). In 
particular, we notice how without S3 data, features such as the ‘monkey tail’ in the Beaufort 
sea are less well defined, and in some cases interpolation artefacts are present (particularly 
the CS2S3(-S3) case). Furthermore, we also importantly see reduced uncertainty in 
freeboard by the inclusion of all satellites in the training (see Figure 4 below). 
With regards to reducing the number of days for model training, we generated sensitivity 
tests where we ran interpolations using 3, 5 and 9 days of observations during training (see 
Figure 5 below). Generally, we see that using only 3 days results in interpolation artefacts in 
some regions, which are significantly reduced (but not entirely eliminated) by increasing to 
5 days. With 9 days of data, we see improved prediction performance and also, on average, 
reduced prediction uncertainty (see Figure 6 below). We will include a paragraph with some 
images on this in the revised manuscript. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 showing interpolated radar freeboards for the 1st of December 2018 at 50x50km grid resolution, and 
using 9 days of data during model training. Tests compare excluding different combinations of Sentinel-3 data 
from the training, as per the cross-validation tests of the manuscript.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 5 showing interpolated radar freeboards for the 1st of December 2018 at 25x25km resolution, where the 
interpolation was performed by using (a) 3 days, (b) 5 days, and (c) 9 days of training data. 
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Figure 4 showing differences in prediction uncertainty relative to CS2S3 (trained with 9 days of data), for 
cross validation tests with (a) CS2S3(-S3A), (b) CS2S3(-S3B), (c) CS2S3(-S3). Blue colours represent lower 
uncertainty in the model trained using CS2 and S3. The average difference is given for each case (-3 mm, -2 
mm, and -7 mm respectively). 

Figure 6 showing the difference in prediction uncertainty between the model trained with 9 days of data and 
(a) model trained with 5 days of data, (b) model trained with 3 days of data. The average difference is given for 
each case (-2 mm and -5 mm respectively). Note that uncertainty at the polar hole increases with more days of 
training data as no observations are ever recorded here. 



Assessment of temporal variability 
• This is a nice section highlighting daily variations of regional freeboard estimates and larger 

discrepancies between CS2S3 predictions and satellite data for sectors like the GIN and the 
CAA. I suggest to add a couple of statements about the ‘Baffin & Hudson’ sector. While the 
average CS2 and S3 freeboard over the entire period agree within 5 mm, they show 
differences of ~1 cm in December 2018 and March 2019. What do you think might be the 
reason for this more significant, with respect to other sectors, difference? 
Similar to the regions where we also see differences of ~1cm, e.g. GIN and CAA, we 
hypothesise that differences in the Baffin & Hudson sector are also a combination of lower 
latitudes, and therefore sparser sampling and higher uncertainties in interpolated sea level 
anomalies. We will incorporate this point into the revised manuscript. 
 

• I would rephrase line 253 to reflect that the comparison of mean freeboard estimates over 
the entire observational period performed in this section is mainly a confirmation of your 
cross-validation results—the average value of a time series alone does not say a lot about 
temporal variability. I suggest something like: “… Generally, the mean of the CS2S3 time 
series lies within 3 mm of CS2 and S3, in line with the results of the cross-validation 
presented in section 4.2. However, ...”. 
Thank you for the suggestion, we will amend this statement in the revised manuscript. 

 
 
Technical corrections 
 

We will amend all of the technical corrections below in the revised manuscript. 
• L43: according to Lawrence et al. (2019a), the CS2 daily Arctic coverage is lower than 20% 

up to 82-83.N, not at all latitudes. Also, Tilling et al. (2016) shows Arctic coverage down to a 
minimum of two days, not one. Please amend this sentence to reflect the content of the 
cited publications 

• L66/378: the DOI provided for Rasmussen and Williams (2006), a book, points to an article 
by Matthias Seeger with same title. Please correct the reference 

• L104: if you want to be consistent with the platform/sensor notation used for the OSI SAF 
product, this line should perhaps read: “… from the Nimbus-7/SMMR, DMSP/SSM/I, and 
DMSP/SSMIS, which are ...” → (see https://nsidc.org/data/nsidc-0051 for reference) 

• L108: you probably mean OSI-403-c? The 403-b product has been superseded and did not 
include AMSR-2 data 

• L138: “For now...” → “For now, ...” 
• L190: “corresponds” → “correspond” 
• L291: add comma after “Greenland” → “… and the Greenland, Iceland and Norwegian Seas, 

...” 
• L301: I suggest not use “K” in the final statement → “… and the fact that the covariance 

structure can take any form, so long as the covariance matrix is symmetric, positive, and 
semi-definite, means ...” 

• Figure 1: please state which day the sea ice concentration, type (FYI/MYI boundary) and 
radar freeboard refer to in the example 

• Figure 3: please add the grid resolution (25x25 km) and the day which the radar freeboard 
estimates and uncertainty correspond to 

• Figure 6: if the benchmark time series is not explained in the caption, please add a reference 
to the section 5 



• Figure 7: please write the name of the sectors in full and provide the abbreviations, when 
used in the text and/or in Figure 6, in parentheses 
 
We would like to again thank the reviewer for their invested time in reviewing this work. 


