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Response to Editor  
Many thanks to the two reviewers for their detailed and constructive comments on the 
manuscript. Our revisions include major modifications to the introduction and discussion, 
new analyses to capture the impact of forest canopy on snow depth, and improvements to 
the clarity, importance, and target audience of the paper.  
 
As outlined in more detail in our responses to the review comments, the most major 
revisions are new analyses to test how well the ground results match each other as a 
function of canopy and ground characteristics. The results reveal distinct snow conditions 
by vegetation cover (field, coniferous forest, and deciduous forest) as well as slope. We 
use methods from forest ecology to use our snow-off lidar survey to construct maps of 
vegetation cover type using a Canopy Height Model (CHM) to distinguish the upper level 
intact coniferous canopy from other forest cover. Ground and canopy height profiles 
derived from the lidar dataset are also used to explain differences in lidar derived 
observations and performance. The use of lidar returns to characterize the forest canopy 
along side estimates of snow depth is an important strategy for the snow community 
seeking insight to snow-vegetation interactions and is now highlighted in the revised 
manuscript.  
 
We also note that Harder et al.’s (2020) UAV lidar manuscript was published on June 
15th and found by the author team as we were finalizing our comments. The author team 
has included references to this Harder et al. (2020) in our revisions. 
 
Our response to each comment is outlined below in bold. Revised text is in red with line 
numbers referenced to the manuscript without track changes. We hope these responses 
are clear, and we look forward to submitting the revised manuscript.  
	
Harder,	P.,	Pomeroy,	J.	W.,	and	Helgason,	W.	D.:	Improving	sub-canopy	snow	depth	mapping	with	
unmanned	aerial	vehicles:	lidar	versus	structure-from-motion	techniques,	The	Cryosphere,	14,	1919-
1935,	2020.	
 
 
Anonymous Referee #1 
 
Thank you for the detailed comments and the opportunity to clarify that this article is the 
first to present snow depth maps measured with UAS-based lidar. We have provided 
detailed responses to the reviewer following each of the reviewer’s comments. 
 
Received and published: 4 May 2020 
Jacobs et al. present snow depth maps measured with a lidar onboard an unmanned aerial 
system (UAS). The snow depth are calculated as the difference between a snow- on and a 
snow-off DTM. They study a shallow snowpack with snow depth inferior to 20 cm in a 
flat open terrain and forested terrain. The lidar snow depth are compared to in situ 
magnaprobe measurements. They also provide some insights on what controls the lidar 
precision. The article is innovative as results are obtained with a new combination of 
sensors and platform which is lidar and UAS. This was, to my knowledge, only suggested 
by Vander Jagt et al. (2015) but not yet tested. Although this article focuses on shallow 
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snowpack, it can be inferred that this method is promising for deeper snowpacks in open 
terrain. I see two points which should be addressed before I would recommend this article 
for publication. 
 
1. The novelty of this work is not well highlighted. L 95, the authors state: “However, to 
date there are few previous studies that estimate snow depth using UAS-based lidar 
(Vander jagt et al., 2013(5!)).”. In my understanding Vander Jagt et al. did not use UAS-
based lidar and no other study ever did. The authors should verify the method in Vander 
Jagt et al. (2015) and cite the “few previous studies” that did similar work, if they exist. If 
this article is the first to present snow depth maps measured with UAS-based lidar, this 
should be clearly stated. 
 
A. We reviewed the earlier manuscript and concur that our manuscript is the first 
UAS-based lidar snow depth mapping manuscript when it was reviewed and during 
our revision. Shortly prior to resubmission, on June 15th, Harder et al. 2020 was 
published. There is a notable difference in systems between our study and their 
study. They also used a considerably more expensive system  (~$300K Canadian). 
We modified the abstract and the introduction to clarify.  
 
Lines 17-19 This paper provides some of the earliest snow depth mapping results on the 
landscape scale that were measured using lidar on a UAV. The system, which uses 
modest cost, commercially available components, was assessed in a mixed deciduous and 
coniferous forest and open field for a thin snowpack (< 20 cm). 
 
Lines 99-103 However, to date there is only one other published study that estimated 
snow depth using UAS-based lidar (Harder et al., 2020). However, to date there are no 
published studies that estimate snow depth using UAS-based lidar.  The purpose of this 
paper is to assess the ability of a UAS platform to provide snow depth using a modest 
cost UAS-based lidar. The pilot study described here serves as a proof-of-concept for 
providing a high vertical resolution snowpack dataset in open terrain and forests in the 
north-eastern United States. 
 
2. The main drawback which should be resolved is the way the “precision” and “ac- 
curacy” of the lidar snow depth maps are presented through the article. First, these two 
terms are not clearly defined. “Precision of the mean snow depth" is found first at L 232 
and compared to “one-sided confidence interval”. However, this last term is defined as 
equivalent to “the uncertainty of the lidar estimate of the snow depth” L181 in a 
confusing paragraph. Following this, it seems like we end up comparing “accu- racy” and 
“precision” of the snow depth (L232) which I do not think was the initial goal. I rather 
understood that the authors intend to compare i) the accuracy calculated by comparing 
lidar and magnaprobe snow depth to ii) the lidar precision defined as the one-sided 
confidence interval. If I understood correctly, this need to be clearly stated, terms to be 
defined and consistently used. The definition of precision and accuracy proposed in 
Eberhard et al. (2020) found in Maune and Naygandhi (2018) might help. Related to this 
topic, the authors use within-cell standard deviation of the elevation twice: in equation (1) 
in what seems related to the accuracy of the lidar and L 262 to define “the within-cell 
variability”. It seems like in the first case, the standard deviation results from error in the 
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lidar while in the second case, the standard deviation results from the natural variability 
of the snow pack. As long as this is not clarified, it is hard to understand the point of the 
paragraph starting L260 in which the authors state that “In addition to the lidar point 
cloud density, the ability to precisely capture the snow depth also depends on the within 
cell variability”. 
 
A. Good point and this comment warranted considerable consideration and 
clarification for the reader. The reviewer’s interpretation of our intent regarding 
accuracy is correct. However, our measure of variability is a combination of the 
instrumentation precision and the sample-to-sample variability within the grid cell 
(due to variations in surface elevation). Unlike Eberhard et al. (2020), the lidar 
returns in this study are only a sample of the entire surface. Thus, even if repeated 
lidar measurements agreed perfectly, there would still be variability within the 
pixel. We entirely rewrote section 2.6 Snow Depth Uncertainty Assessment. We have 
revised the definition of “accuracy” and provided a detailed context to the meaning 
of the confidence intervals of the lidar snow depth maps. Regarding the pooled 
standard deviation, this is a measure of the variability of the snow on and snow off 
lidar returns within a grid cell. This variability would depend on both lidar 
instrument and surface elevation variations. We also clarified the paragraph on L 
260 to match the language (now lines 303 to 305). The text has been modified 
throughout to remove the term precision unless it specifically refers to a measure of 
the lidar instrumentation variability and to replace it with the “confidence interval”. 

 
Lines 219 to 237 The snow depth accuracy was assessed by comparing the lidar snow 
depth measurements to the magnaprobe measurements. Here, accuracy is the measure of 
the agreement of the lidar snow depth measurements relative to the in situ measurements 
(Eberhard et al., 2020; Maune and Nayegandhi, 2018). Error statistics were calculated 
and the results were summarized by forest and field locations. At each magnaprobe 
location, the average and standard deviation of the five magnaprobe samples were 
calculated. The average lidar snow depth was determined for a 0.4 x 0.4 m cell centered 
on the center magnaprobe location.  The mean absolute difference (MAD) and root mean 
square difference (RMSD) were used to characterize the differences between the 
magnaprobe snow depths and the lidar snow depths. 
 
The one-sided width of the 95% confidence limits for each cell’s snow depth is a measure 
of the lidar snow depth variability. Confidence intervals are calculated using a cell’s 
pooled standard deviation, the number of lidar returns, and the pooled degrees of freedom 
(Helsel and Hirsh, 1992) to calculate. A cell’s snow depth pooled standard deviation 𝜎! 
of the snow on and snow off elevations was calculated as  

𝜎! = 𝜎!"! + 𝜎!""!             

 (1) 
where 𝜎!" and 𝜎!"" are the standard deviation of the snow-on and snow-off lidar return 
elevations, respectively. This pooled standard deviation is a measure of the variability of 
the snow on and snow off lidar returns within a grid cell. This variability depends on the 
lidar instrument’s relative accuracy (Maune and Nayegandhi, 2018), which includes 
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intra-swatch accuracy (i.e., precision or repeatability of measurements) and inter-swath 
accuracy (i.e., differences in elevations between overlapping swaths), as well as surface 
elevation variations.  The contribution from the individual sources of variability was not 
assessed. 
 
Lines	347	to	348	In addition to the lidar point cloud density, the ability to precisely 
capture the snow depth also depends on the ground surface variability within a cell 
variability as well as the lidar performance. 
 
Minor comments are listed below. L21 : better repeat snow probe instead of “in situ” L21 
: “with” instead of “from” ? 
A. Modified. 
 
L 34 : Make clear that the albedo is “higher” than the ground albedo not than the deeper 
snowpacks albedo. 
A. This line was removed when the introductory paragraph was modified 
significantly to reflect reviewer 2’s comments about shallow snowpack and this 
reviewer’s more general statement about the value of high-resolution snow depth 
measurements beyond shallow snowpacks. 
	
Lines	30	to	48	Snowpacks are highly dynamic, accumulating and ablating throughout 
the winter with associated changes in snowpack density, grain size, and albedo (Adolph 
et al., 2017) as well as ice formation. Wind redistribution, sloughing of snow-off slopes, 
trapping of snow by vegetation, and forest canopy interception result in a range of spatial 
features at varying scales (Clark et al., 2011; Mott et al., 2011; Mott et al., 2018). Modest 
differences in snowpack depth can differentially impact many hydrologic, agricultural, 
and ecosystem processes.  Differences in snowpack meltwaters can alter streamflow 
volumes (Gichamo and Tarboton, 2019), change the likelihood of spring floods (Tuttle et 
al., 2017) and intensify overland nutrient transport and soil erosion (Seyfried et al., 1990; 
Singh et al., 2009).  
 
High-resolution snow depth measurements are also needed to discern processes that 
depend on the snow state. Insulation by seasonal snow in the Arctic and Antarctic slows 
sea ice growth (Sturm et al., 2002). High-resolution Arctic snow depths from ICE-Sat2 
revealed seasonal snow on ice that would be missed when using coarser snow 
information (Kwok et al. 2020).  Thin, ephemeral snowpacks have limited insulation and 
allow the underlying soils to freeze more readily in the winter (Groffman et al., 2001; 
Starkloff et al. 2017; Yi et al. 2019). Soil frost severity impacts soil respiration, carbon 
sequestration, nutrient retention, and microbial communities as well as a plant root health 
and tree growth (Aase and Siddoway, 1979; Isard and Schaetzel, 1998; Monson et al., 
2006; Henry, 2008; Aanderud et al., 2013; Tucker et al., 2016; Sorensen et al., 2018; 
Reinmann and Templer, 2018). Detection and mapping of rapid thinning of snowpacks 
followed by frigid cold during “winter whiplash” events (Casson et al. 2019) is therefore 
important for understanding ecosystem impacts of soil freezing events, which are 
otherwise not well quantified (Kraatz et al. 2018; Prince et al. 2019). High vertical 
resolution snow mapping would greatly improve our understanding of these unique 
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habitats.  
 
 
L 55 : precise “point measurements” 
A. Modified. 
 
L 55-57 : Could you clarify this sentence. Maybe split it in two. Plus, I do not understand 
the opposition you see between increasing spatial variability and small-scale feature. 
Finally, is it so sure that spatial variability “naturally increases with spatial scale”? Fig. 4. 
of Deems et al. (2006) seems to show that spatial variability stops increasing above a 
typical distance of the order of 10 m. 
A. Thank you for the Deems et al. (2006) reference, which points to a short-range 
fractal segment and a long-range with a break between 15 and 40 m. The referenced 
lines were split as recommended to make two separate points as follows: 
	
Lines	54	to	57	Using traditional, precise point measurements with a limited sample size, 
the experimental design requires a balance between the sampling extent and sample 
spacing (Clark et al. 2011).  However, the choice of sampling resolution may yield 
different measures of snow depth spatial variability when the snow exhibits multifractal 
behaviour (Deems et al. 2006). 

 
L 63: If you list the methods using difference of surface elevation, you may want to 
include spaceborne photogrammetry (e.g. Marti et al. 2016, McGrath et al. 2019, Shaw et 
al. 2019). Otherwise, if you prefer focusing on airborne method, you should remove 
references to terrestrial laser scanning. 
A. The list of methods was modified to include spaceborne references provided by 
the reviewer. 
 
Lines	61	to	66	Spaceborne photogrammetry (e.g. Marti et al. 2016, McGrath et al. 2019, 
Shaw et al. 2019), airborne laser scanning (ALS) (Deems et al., 2013; Harpold et al., 
2014; Kirchner et al., 2014), terrestrial laser scanning (TLS) (Grünewald et al. 2010; 
Currier et al. 2019), and structure-from-motion photogrammetry (SfM) (Nolan et al., 
2015; Bühler et al., 2016; Harder et al., 2016) have emerged as viable methods to map 
surface elevations with snow-off and snow-on conditions in order to differentially map 
snow depths.  
 
 
L 76 : what is “micro scale” and “field scale” ?  
A. We clarified the scales and now Clark et al.’s definitions where they define point 
scales as less than 5 m and associated with topographic depressions and trapping or 
interception by individual vegetation features; hillslope or field scales are 1-100 m  
and associated with drifting and forest canopy interception and sublimations.  
 
Lines	76	to	80 For some snowpack features, the typical vertical accuracies from these 
platforms, on the order of 10 cm (Kraus et al., 2011; Deems et al., 2013), as well as 
relatively low return density (~10 returns/m2) (Cook et al., 2013) may not be adequate to 
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observe spatial variations at point scales (0 to 5 m) to hillslope and field scales (1-100 m) 
or to detect snow depth changes over short time scales. 
 
L 96 : Vander Jagt 2015 
A. We removed the Vander Jagt reference in this statement. 
L 135 : How do such angles occur since the channels are between -15/+15◦? Is it because 
of the roll and pitch of the UAS? 
Because of degrading accuracy at distances >100 m with the VLP-16, returns acquired 
outside of +/- 30 degrees of nadir view angles were filtered to limit target distance and 
improve overall accuracy 
A. We clarified in the text that there are two different field of views on this sensor: 
1) the vertical field of view (channels between -15/+15o) and 2) the horizontal field of 
view (rotation angle of channel, 0-360o). While returns from all vertical field of view 
channels were used, returns from wide angle views retrieved by each channel 
(outside of +/- 30o of nadir) were removed. 
 
Lines	131	to	133	The VLP-16 is a 16-channel lidar with a 30-degree vertical field of 
view with rotating lasers that are spaced evenly between -15 to +15 degrees, with each 
channel rotating to provide a horizontal field of view of 360-degrees.  
 
Lines	144	to	146	Because of degrading accuracy at distances >100 m with the VLP-16, 
returns acquired outside of +/- 30 degrees of nadir view angles in the horizontal field of 
view were filtered to limit target distance and improve overall accuracy. 
 
L 151 : Please indicate what kind of “non-ground point” you observe in this area. Trees, 
artifacts.. ? 
A. The progressive morphological filter only identifies ground returns– remaining 
returns are assumed to be primarily from vegetation (trees and understory shrubs). 
We clarified this discussion by rewording the first sentence and specified that 
remaining points are assumed to be from trees and vegetation with minimal 
artifacts. 
	
Lines	159	to	162	The PMF operates iteratively on sets of two parameters, window size 
and elevation thresholds to erode and dilate point cloud data sets to estimate surface 
topography as an approach to filter out non-ground returns (i.e. trees, shrubs, and noise) 
from point cloud data sets (Zhang et al., 2003). 
 
L 153 : Do you further use th and w notations ?  
A. No, these were removed.  
 
L 154 : “mean” without s? 
A. No. “means” was replaced with “approach” 
 
L 159 :What do you mean with “Following processing”? The sentence is not clear. 
A. The text was clarified.  
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Lines	167	to	169	Following ground classification for each tile, returns within the 15 m 
tile buffers were removed, and all resulting 100 m square ground classified tiles were 
merged. The resulting point clouds for each data set included both the classified ground 
returns and the non-ground returns. 
 
L 181 : This paragraph is confusing. It seems that lines 181 and 187 are not consistent. Is 
the “uncertainty” from L181 the same as the one from L187? See main comment about 
precision and accuracy. L 181 : you state “uncertainty of the lidar estimate of the snow 
depth” is the “one-sided 95 % confidence interval” L 185 : you define a “pooled standard 
deviation” not used after. L 187 : you combine “snow depth uncertainty”, “number of 
lidar return” and “pooled degrees of freedom” to calculate “the one-sided width of the 95 
% confidence limits” 
A. This paragraph has been rewritten to address the confusion and word choice 
after a careful review of the Reviewer’s comments and reading Maune and 
Nayegandhi (2018). The within cell variability is not negligible. The confidence 
interval reflects the within cell variability and, when combined with the lidar 
precision Please see the earlier comment for additional information. Please see the 
earlier comment for additional information. 
 
Lines 226 to 237 The one-sided width of the 95% confidence limits for each cell’s snow 
depth is a measure of the lidar snow depth variability. Confidence intervals are calculated 
using a cell’s pooled standard deviation, the number of lidar returns, and the pooled 
degrees of freedom (Helsel and Hirsh, 1992) to calculate. A cell’s snow depth pooled 
standard deviation 𝜎! of the snow on and snow off elevations was calculated as  

𝜎! = 𝜎!"! + 𝜎!""!             

 (1) 
where 𝜎!" and 𝜎!"" are the standard deviation of the snow-on and snow-off lidar return 
elevations, respectively. This pooled standard deviation is a measure of the variability of 
the snow on and snow off lidar returns within a grid cell. This variability depends on the 
lidar instrument’s relative accuracy (Maune and Nayegandhi, 2018), which includes 
intra-swatch accuracy (i.e., precision or repeatability of measurements) and inter-swath 
accuracy (i.e., differences in elevations between overlapping swaths), as well as surface 
elevation variations.  The contribution from the individual sources of variability was not 
assessed. 
 
L 185 : Does this assume that the spatial variability within the cell is negligible? See 
main comment on precision, accuracy. 
A. Please see the response to the previous comment. 
 
L 191 and following : Please make clear for what resolution these percentages hold. 
A. The resolution was clarified. 
	
Lines	241	to	243	The snow-on and snow-off flights lidar ground returns yielded an 
average point cloud density of 90 and 364 points/m2 in the forest and field, respectively, 
with 6.7% of the forest and 0.03% of the 1 m2 field cells having less than 5 point/m2 
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(Figure 2). 
 
L 198 : You state “0.95 %” of the forest cells are empty for the 1 m resolution grid. Does 
that correspond to the white areas in the western forest (Fig. 4)? In case it is, this seems to 
be more than 1 % of the forested area. In case it is not, what are these white areas? 
A. Thank you for catching an issue with the eastern forest boundary. The white 
areas in the eastern forest are empty cells resulting for a river that runs along the 
forest. Infrared energy is absorbed by water; therefore, no lidar data were collected 
over the river. The forest boundaries in Fig 1 and 4 were updated to reflect the 
eastern forest boundary that was used in the analysis, which excludes the river.   
 
L 212 : In “(12.2 cm +-0.56 cm)”, is 0.56 cm the standard deviation of the population of 
mean snow depth ? Or is it related to the standard deviation described in L 185? 
A. The 0.56 cm standard deviation is the standard deviation of the in situ 
Magnaprobe measurements in the field. The mean snow depth was calculated at 
each in situ sampling location. Then the average and standard deviation of the field 
locations (N = 11) was calculated. It is not related to the pooled standard deviation 
described on L 185. The pooled standard deviation described on L185 was used to 
calculate the 95% confidence intervals of the lidar derived snow depth. 
 
L 215 : First time the word “tube” is used. Was it the “federal snow sampling tube” (L 
172) ?. 
A. Yes, it is the federal snow sampling tube.  
 
Lines	263	to	265	The mean snow depth from the Federal snow tube was (12.9 cm 
±0.71 cm) and (13.1 cm ±1.9 cm) in the field and forest, respectively. There is a notable 
low bias in the lidar forest snow depth relative to the magnaprobe and snow tube for west 
forest in particular with exception of one site. 
 
L 232-233 : “precision” is not defined above. This sentence is thus hard to understand. 
A. See previous response and definition in section 2.5. 
 
Lines 233 to 237 This variability depends on the lidar instrument’s relative accuracy 
(Maune and Nayegandhi, 2018), which includes intra-swatch accuracy (i.e., precision or 
repeatability of measurements) and inter-swath accuracy (i.e., differences in elevations 
between overlapping swaths), as well as surface elevation variations.  The contribution 
from the individual sources of variability was not assessed. 
 
L. 260 : " In addition to the lidar point cloud density, the ability to precisely capture the 
snow depth also depends on the within cell variability. " Why? Is it a statement based on 
the way you calculate the lidar precision or an assumption which should be justified? See 
main comment on within-cell variability. 
A. This was clarified in the initial comment on the topic. We modified this sentence 
to clarify that there are two sources of variability in the cell. “ 
 
Line 347 to 348 In addition to the lidar point cloud density, the ability to precisely 
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capture the snow depth also depends on the ground surface variability within a cell as 
well as the lidar precision.  
 
L. 260 : this is not mandatory but since you use standard deviation, did you check 
whether the distribution is normal or not ?  
A. We didn’t check normality on a cell-by-cell basis, but did calculate the moments 
including skew values on a cell-by-cell basis at various scales. At the 10 and 20 cm 
cell size, there was not a notable skew. Larger cell sizes had increasingly negative 
skews with skew values typically less than -1. 
 
L 319 “boresighting” 
L 319. Could you explain what boresighting is ? Not sure The Cryosphere readers know 
what it is. 
A. Considerable additional explanatory text and figures were added to the 
discussion on boresighting in order to provide a specific example to anyone who is 
new to airborne lidar. Our goal is to provide a specific example using a snow depth 
survey that will provide information beyond that available in a standard textbook 
discussion of boresighting. The new text and revised figure were moved to 
supplemental material. This location change was in response to Reviewer 2’s 
comment about Figure 7: “OK...but anyone new to airborne lidar will not 
understand it, and anyone already doing SfM or lidar will not need it. Within the 
supplemental material we define boresighting.  
Lines S8 – S9 Boresighting is the process of calculating the differences between the lidar 
sensor and IMU roll, pitch, and yaw angle measurements to correct those errors in point 
clouds. 
 
L. 368 : Could you provide details about the “simple penetration test” ? If this not it, do 
you think it would be possible to dig a snow pit at the location of the magnaprobe 
measurement to evaluate probe penetration? 
A. Based on Reviewer 2’s comments, this sentence was removed and replaced with 
additional details about the soil frost depth. In the future, it would be possible to dig 
a snow pit at the magnaprobe locations to determine. We did not do this during the 
experiment because we did not observe the bias until the lidar datasets had been 
post-processed.  
 
Line 211 to 217 An independent study collected soil frost depth from three locations at 
the Thompson Farm Research Observatory using Gandahl-Cold Regions Research and 
Engineering Laboratory (CRREL) style frost tubes. The frost tubes have flexible, 
polyethylene inner tubing filled with methylene blue dye whose color change is easy to 
differentiate when extruded from ice (Gandahl 1957). A nylon string housed inside the 
polyethylene tubing affixes ice during periods of thaw. The outer tubing consists of PVC 
pipe installed between 0.4 to 0.5 m below soil surface (Ricard et al., 1976; Sharratt and 
McCool, 2005). Prior to the January 19th and 20th, 2019 snowfall event, soil frost was 
23.5 to 25.5 cm in the field and 5.5 to 8.5 cm in the west forest.  
 
L. 389 : “moderately” please give values. 
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A. Values were added to the text. 
 
Line 508 to 510 Mapped at 1 m2 cells, a 0.5 to 1 cm snow depth confidence interval was 
achieved consistently in the field with confidence intervals increasing to within 4 cm in 
the forest and heavily vegetated areas. 
 
L 510. Missing a carriage return before “Starkloff” 
A. Carriage return was added. 
 
Fig. 1: what’s the reason for the buffer around the forest polygon, especially why is the 
forest peninsula out of both zones (east of the field, west of the western forest) ? 
A. Thank you for the keen eye. The buffer around the forest polygon was removed 
and the peninsula is now included in the eastern forest. All plots and figures were 
updated to reflect any changes to the field/forest boundaries. 
 
Fig. 2.a The number of returns per cell seems to follow a relationship of type y=kx2 with 
k the average density of the point cloud and x the cell resolution. Could you comment on 
that? Did you expect that? 
A. Yes, this nonlinear relationship could be expected because the counts are based 
on area of the DTM (length squared) rather than the resolution (length). For 
example, if a 1 m x 1 m areas (1m2) have 100 returns, then a 2 m x 2 m areas (4m2) 
should have 400 returns. 
 
Fig. 2.b It is not so easy to distinguish the two distributions. Maybe remove the vertical 
lines of the bars? 
A. The hatched fill pattern has been removed. Also, the line weight of the field 
distribution has been increased to more easily distinguish between the two 
distributions. 
 

 
Figure 2. (a) Average lidar point cloud density of the ground returns with versus cell size by land cover, and snow-on 
and snow-off state (top). (b) Probability density function for the lidar ground returns point cloud density for 1 m2 cell 
for the forest (gray) and the field (hashed) (bottom). 
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Fig. 5, what are the gray points/area on panel a. It seems absent in panel b. 
A. The points showed the individual outliers of the distributions. They have now 
been removed from figure 5a. 
 

 

Figure 5. One sided confidence intervals of the mean snow depth values in the field and forest at Thompson Farm, 
Durham, NH on January 23, 2019 from the individual cells for 1 m2 cells by land cover and point cloud density (top) 
and for grid resolutions ranging 0.1 to 5 m (bottom). Boxplots show the lower quartile, median, upper quartile, and 
whiskers. 
 
Fig. 6.a. Isn’t that surprising that the STD per cell is the same with snow on and off in the 
forest? Could you comment on that? 
A. Yes, this is somewhat surprising and we had not seen this effect noted in previous 
studies. A comment was added to offer an explanation for the difference.  
 
Line 350 to 353 Snow cover reduces the within cell variability in field by about 1 cm, but 
has a limited effect in the forest. It is possible that the modest snowpack was able to 
flatten the higher grass in the field, while the forest’s vegetation and terrain features that 
dominate the within cell variability are only minimally compacted by the snow. 
 
Fig 7. Label the panels a,b,c,d instead of A/B top/bottom. Zoom in the panel b. Keep a. as 
it is and add a square showing where b. is. It is really not clear what is shown in A,B. Are 
we in 2D view from top in A and from profile in B? 
A. Figure was heavily modified, with many clarifications included in the figure 
caption and the text. All boresighting figures and text are now in supplemental 
materials part 3. 
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Figure S3. Uncalibrated boresight angles between the INS and lidar sensor can result in poorly aligned point clouds (a1 
and b1). Arrows in (a) and (b) show approximate flight direction during data acquisition. The lidar returns within the 
box marked in red in (a) are shown in (a1) and (a2) at an oblique view angle. Figure (a1) shows how boresight errors of 
roll angles present, while (a2) shows proper boresight alignment for roll. Roll alignment errors present well in anti-
parallel flight lines (flight lines flown parallel to each other but in the opposite direction), flown over flat terrain. 
Figure (b) shows the approximate location of returns used for pitch boresight alignment error demonstration (b1) and 
its correction (b2). Pitch misalignment presents well in anti-parallel flight lines in areas with terrain relief while 
viewing across the flight track, as opposed to along the flight track as with roll alignment. For (b, a1, a2, b1, and b2), 
only ground returns are shown for each flight line, while in (a), all returns are shown. 
 
 
The following references were added to the manuscript based on Reviewer 1’s 
input: 
Deems JS, Fassnacht SR and Elder KJ (2006) Fractal Distribution of Snow Depth 
from Lidar Data. J. Hydrometeorol. 7(2), 285–297 (doi:10.1175/JHM487.1) 
Eberhard LA, Sirguey P, Miller A, Marty M, Schindler K, Stoffel A, Bühler Y 
(2020) Inter- comparison of photogrammetric platforms for spatially continuous 
snow depth mapping Cryosphere Discussions (https://doi.org/10.5194/tc-2020-93) 
Marti R, Gascoin S, Berthier E, De Pinel M, Houet T and Laffly D (2016) Mapping 
snow depth in open alpine terrain from stereo satellite imagery. Cryosphere 10(4), 
1361–1380 (doi:10.5194/tc-10-1361-2016) 
Maune DF (Ed.) and Naygandhi A (Ed.) Digital Elevation Model Technologies and 
Applications: The DEM Users Manual, 3rdEdition, 3 ed., 652 pp., 2018. 
McGrath D, Webb R, Shean D, Bonnell R and Marshall HP (2019) Spatially 
Extensive Ground Penetrating Radar Snow Depth Observations During NASA’s 
2017 SnowEx Campaign: Comparison With In Situ, Airborne, and Satellite 
Observations. Water Resour. Res. 10 (doi:10.1029/2019WR024907) 
Shaw TE, Gascoin S, Mendoza PA, Pellicciotti F and McPhee J Snow depth patterns 
in a high mountain Andean catchment from satellite optical tri- stereoscopic remote 
sensing. Water Resour. Res. di (doi:10.1029/2019WR024880) 
Vander Jagt B, Lucieer A, Wallace L, TUrner D and Durand M (2015) Snow Depth 
Retrieval with UAS Using Photogrammetric Techniques. Geosciences, 264–285 
(doi:10.3390/geosciences5030264) 
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Interactive comment on The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-
37, 2020. 
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Anonymous Referee #2 
 
Thank you for the detailed comments and the opportunity refine the original submission 
and to consider variations across land-use and terrain. We have provided detailed 
responses to the reviewer following each of the reviewer’s comments. 
 
Received and published: 5 May 2020 
In this study, the investigators mounted a small airborne lidar on a drone and flew several 
test flights to map snow depths across a small flat farm in New Hampshire that contained 
fields and forest. They then chose one flight to examine in detail. Most of the paper is 
concerned with the accuracy of the resultant snow depth maps, with comparison of those 
derived depths against on-the-ground probing (n=130), and with an extensive analysis of 
accuracy vs. ground point spacing from the lidar. 
 
My overall impression of the paper is that a single acquisition flight in a single land- 
scape, with a quite limited ground collection campaign, is too thin a reed on which to 
base a full journal publication. Such a limited comparison leaves open too many 
questions, like what the results would be if the ground was sloped, how the results would 
vary if the forest canopy was conifer vs. deciduous, what would happen if the snow had 
surface relief or other characteristics not tested in this work. In fact, the authors Figure 1 
indicates a complex forest with openings and variable canopy density (a snow season air 
photo here would have been nice), but no attempt has been made to see if the results from 
one part of the forest look like those from another. No attempt was made to test how well 
the ground and air results match each other as a function of canopy and ground 
characteristics. Lastly, while the lidar and ground measurements matched beautifully in 
the open field, they showed a large discrepancy in the forest, which was then ascribed to 
over-probing through a duff layer. Perhaps that is the case, but this then ought to have 
been the focus of more analysis and scrutiny. The conclusion is certainly possible, but 
Figure 2b suggests there is also lidar sampling bias problem in the forests, and the core 
depths referred to in the text against which the depth probe depth was compared are never 
discussed, even to the extent of how many were made. 
 
A. The reviewer makes a number of reasonable points regarding the long-term 
value of limited flights over limited landscapes. We entirely agree that this 
submission leaves open questions, particularly given the strong contrast in 
performance between the field and the forest. Based on the reviewer’s comments, we 
reconsidered this paper’s contribution in light of the early structure from motion 
(SfM) papers that used a UAS platform to characterize snow depth. A summary of 
those studies in light of the reviewer’s comments appears in Table R1 (below). These 
recent papers share many commonalities with the current study in that they seek to 
understand how a recent technological development might contribute to improved 
understanding of the snow depth. The table shows how the literature and 
experiments evolved over time. These papers also demonstrate that the 
experimental design and results from this study equals or exceeds that of these early 
SfM studies that also sought to demonstrate the value of a new combination of 
sensors and platform.  
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Yr 
Flown 

Location Area # flights Site (# and Description) Validation Error Method 
Detail 

Study 

2013 Tasmania, 
Australia 

0.0069 
km2 

1  1. strong gradient in 
elevation, thick vegetation 
and various soil/rock 

Survey pole 37 measured, N= 20 
due to vegetation, survey at snow 
surface, then ground surface 

0.10 m (acc) 
RMSE = 9.6 cm 

Yes & 
Workflo
w 

(Vander Jagt et 
al. 2015) 

2014 Lombardy 
region, northern 
Italy 

0.3 km2 1  1. sparse grass coverage 
and rocks, with no tree, 
firn, or glacier ice. 

12 probe measurements 
horiz. accuracy 2–3 cm.  

Bias 0.073 m and 
aRMSE = 0.14 m 

Yes (De Michele et 
al. 2016) 

2015 Rosthern, 
Saskatchewan, 
Canada 
 
Canadian Rocky 
Mountains 

0.65km2 
 

0.32 km2 

22, 18 1. Canadian prairie; tall 
stubble (35 cm) and short 
stubble (15 cm) Sparsely 
vegetated 2. Rocky 
Mountain alpine ridgetop 
grasses, shrubs and 
coniferous trees in gullies  

Ruler with 17 snow stakes - 
horiz.accuracy ±2.5 cm. 34 points  
 
Alpine: 3 to 19 pts per flight. 
5 SD measurements in a 0.4 m × 
0.4 m square at that point 

8.8 cm for a short 
stubble, 13.7 cm for 
a tall stubble  
8.5 cm alpine  
mean SD must be > 
30 cm 

Yes (Harder et al. 
2016) 

2015 Davos, 
Switzerland  
 

0.057 – 
0.091 km2  

0.29 km
2 

 
 

3/1 1. Tschuggen: flat alpine 
meadows and hilly alpine 
terrain  
2. Brämabühl: an exposed 
location meadow and 
bushes 
 

60, 95, 95 and 110 (5 pts per site) 
5 SD measurements in a 1 m × 1 
m square - center pt horiz. 
accuracy < 10 cm  
 

Overall RMSE = 
0.25 m bias = 0.2 m 
Short grass RMSE 
0.07 m bias 0.05 m  
Bushes/high grass 
RMSE 0.30 m bias 
0.29 m 
alpine RMSE 0.15 
m bias 0.11 m 
 

Yes (Bühler et al. 
2016) 

2016 Piedmont region, 
Italy 

0.0067 
km2 

1 1. sparse rocks and grass, 
with no trees 

135 pts and TLS 
UAS, a multi station survey, and 
manual probing 

RMSE = 0.31 m 
overall 
RMSE = 0.17 m 
areas of likely water 
accumulation 
removed 

limited (Avanzi et al. 
2017)  

2016 Canada 0.02 km2 13/16 1 and 2. G Gatineau: N. 
Shrubs up to 1m. S. 
Shrubs and sm. forested 
area southwest corner S. 
3 to 5. Acadia A. grass (< 
5 cm) and stumps (< 20 
cm). B stumps (< 20 cm) 
and brush and shrubs (< 1 
m). C 1 – 5 m balsam fir  

Transects of ∼ 50 m in length; 12 
48′′ × 2′′ × 1′′ wooden stakes; no 
horiz. accuracy 

2 to 11 cm RMSD 
for SD change 

Yes (Fernandes et al. 
2018) 

2015 Alps, Western 
Austria 

0.12 km2 12  1. alpine grasslands, with 
small scrubs (~ 1 m). 
Clusters of dwarf pine (ht. 
1–3 m) and singular or 
groups of stone pine 

149 Manual probes  +/- 3 m horiz 
accuracy, 5 pts 2 x 2m, One to two 
TLS scans 

0.25 m (accuracy) Yes (Adams et al. 
2018) 
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Table R1. Review of early structure from motion papers 

References 
Adams, M.S., Bühler, Y., & Fromm, R. (2018). Multitemporal accuracy and precision assessment of unmanned aerial system photogrammetry for slope-scale 
snow depth maps in Alpine terrain. Pure and Applied Geophysics, 175, 3303-3324 
Avanzi, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Pagliari, D., Passoni, D., Pinto, L., Piras, M., & Rossi, L. (2017). Measuring the snowpack depth 
with Unmanned Aerial System photogrammetry: comparison with manual probing and a 3D laser scanning over a sample plot. The Cryosphere Discuss., 
https://doi. org/10.5194/tc-2017-57 
Bühler, Y., Adams, M.S., Bösch, R., & Stoffel, A. (2016). Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations. 
The Cryosphere, 10, 1075-1088 
De Michele, C., Avanzi, F., Passoni, D., Barzaghi, R., Pinto, L., Dosso, P., Ghezzi, A., Gianatti, R., & Della Vedova, G. (2016). Using a fixed-wing UAS to map 
snow depth distribution: an evaluation at peak accumulation. Cryosphere, 10, 511-522 
Fernandes, R., Prevost, C., Canisius, F., Leblanc, S.G., Maloley, M., Oakes, S., Holman, K., & Knudby, A. (2018). Monitoring snow depth change across a range 
of landscapes with ephemeral snowpacks using structure from motion applied to lightweight unmanned aerial vehicle videos. The Cryosphere, 12, 3535-3550 
Harder, P., Schirmer, M., Pomeroy, J., & Helgason, W. (2016). Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial 
vehicle. The Cryosphere, 10, 2559 
Vander Jagt, B., Lucieer, A., Wallace, L., Turner, D., & Durand, M. (2015). Snow depth retrieval with UAS using photogrammetric techniques. Geosciences, 5, 
264-285 
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In brief, Table R1 indicates that the studies that used SfM to map SD were first published 
in 2015 and 2016. In those early studies, the number of flights was extremely limited, the 
surveyed area was typical quite small, there was often only a single site, and the cover 
conditions were typically relatively short grass, stubble, with limited shrubs and no or 
limited trees. Studies that estimate SfM SDs in sites having significant tree canopies were 
published approximately three years after the initial studies.  These SfM papers are an 
example where the early papers use targeted, focused studies to provide the broader 
community with an approach that is now embraced, and which has been subsequently 
refined and used to explore a range of landscapes, terrain, and forest canopy.  
 
The submitted manuscript, as noted by Reviewer 1, “is the first to present snow depth 
maps measured with UAS-based lidar” and the novel contribution is its results that were 
obtained with a new combination of sensors and platform. Our manuscript also sets the 
stage for further research by including results that demonstrate a sharp contrast between 
the field and the forest findings as well as considerable variability of metrics within in the 
forests. We expect the broader community will contribute the additional studies that the 
reviewer desires, with more extensive campaigns over a wide range of landscapes, following 
a similar trajectory of UAV-based SfM in the embracement of new technology. Note that 
Harder et al.’s (2020) UAV lidar manuscript was published on June 15th. The author team 
has included references to this study. 

 
We revised the manuscript to be clearer about the contribution including in the abstract, 
the last paragraph of the introduction, and the conclusion. Specifically, we have added 
context of our work in the Discussion to emphasize the refinement of methodology and new 
questions that emerged from our work. Our work highlights, unknown at the time of study 
implementation, sampling and collection finding that are useful for planning for future 
snow depth studies.   

 
Regarding the lidar sampling bias problem in the forests, the reviewer makes a number of 
reasonable points including that ascribing the errors to over-probing is likely a gross 
simplification of the complexity of measuring forest SD. Based on this comment, the 
discussion section that discusses these issues has been revised, the snow core observation 
information has been expanded in Section 2.4 (renamed “In Situ Observations”) and in 
Section 4 (renamed “Challenges and Recommended Improvements to UAS Lidar Snow 
Depth Mapping”, last paragraph), and a preliminary assessment of variations in forest 
canopy has been added. Even with high ground return lidar that is collected with a UAS, 
forest canopies still generate collection issues that complicate interpretation and 
characterization of snow. When collecting data over a region, forest type and canopy 
characteristics and their impacts on a lidar snow depth survey may not known in advance. 
We have added a section in the Discussion that describes issues found with forests in our 
study, including reduced total and ground return density in forests compared to open 
fields, and we make suggestions on how data collection strategies might be modified for 
forested areas. Additionally, we suggest that further studies may be warranted to 
understand how forest vegetation (e.g. canopy species, understory vegetation density, and 
duff layer quality) contributes to snow depth measurement bias, while pointing to recent 
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evidence in the literature of challenges inherent to sampling mixed land-use landscapes 
with airborne lidar sensors.  

 
Lines 378 to 425 4.1 In Situ and UAS Sampling 
While UAS-based lidar surveys can measure snow depth to within a centimeter at high spatial 
resolutions, validation of those observations is challenging. A time consuming collection of high 
accuracy GNSS survey points was required to co-locate magnaprobe and lidar observations. 
Surveying in sample locations prior to the winter season might reduce this effort. It is also 
challenging to make in situ snow depth measurements that provide centimeter accuracy. In this 
study, the magnaprobe in situ snow depth observations made in the forest were considerably 
higher than the lidar observations as compared to the open field where the magnaprobe and lidar 
measurements were within 1 cm. Previous studies also found that snow depth observations from 
ALS measurements are biased lower than those from snow-probe observations in the forest 
(Hopkinson et al., 2004, Currier et al., 2019; Harder et al., 2020). In past studies, the causes of 
these differences have been partially attributed to the snow probe’s ability to penetrate the soil 
and vegetation, human observers tending to make snow depth measurements in locations with 
relatively high snow (Sturm and Holmgren, 2018) and the reduced accuracy of the GNSS. Our 
study suggests additional issues in forest sampling including enhanced terrain variability in 
forested areas relative to adjacent field areas and reduced lidar returns in forested areas as 
compared to field areas combine with sampling issues to contribute to the higher uncertainty in 
the forest snow depths observed in our study. 
 
In this study, the cold temperatures and snow-free conditions prior to the January 19th and 20th 
snowfall event resulted in deeper frozen soils (23.5 to 25.5 cm) in the field and shallower soil 
frost depth (5.5 to 8.5 cm) in the west forest, which would have limited the probe penetration 
into soils at both sites. However, the forest has a 1-4 cm thick organic leaf litter layer that may 
have been penetrated by the magnaprobe. The average Federal snow sampler tube depths (13.1 
cm) were not as deep as the magna probe (15.2 cm) and thus more closely match the lidar snow 
depth (7.8 cm; see Figure 3), though a considerable low bias (~5.3 cm) similar to that found by 
Harder et al. (2020) persists in the lidar snow depth relative to the federal snow sampler snow 
depths. Additional factors such as downed logs, thick understory, and fine-scale topographic 
features (ie: small boulders and hummocky terrain) as well as reduced ground return density may 
contribute to the lidar snow depth errors in a forest, whereas these factors are absent in the field.  
 
An improved understanding of forest canopies impacts on lidar returns is also warranted. Recent 
work has demonstrated that lidar pulses are “lost” at a much higher rate in forest canopies than 
open ground terrain due to interception, absorption, and scattering through canopy transmission, 
with the loss ratio largely influenced by the range of the target from the sensor (Liu et al., 2020). 
The data that we presented in this paper were acquired using constant flight speed and at 
consistent altitude above target areas. Because of this, it is feasible that forest canopy conditions 
and variable understory vegetation density may have resulted in lost pulses and increased 
uncertainty in our data set. Indeed, we did observe lower return densities for both ground and all 
returns in forested areas in our data set (Figure 4).  
 
One possible outcome of these lidar sampling issues in forests was a significant difference in 
snow depth confidence intervals between field and forest types and among slope groups. 
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Confidence intervals were highest in conifer stands and on steep slopes and lowest in the field. 
While this result is not entirely surprising, it is likely partially the result of lower ground return 
density in forests due to the combined effects of lost pulses and canopy occlusion in forested 
areas. Additionally, this observation may be driven by increased variability in snow depth due to 
pockets of duff and woody debris, and due to higher variability in subnivean terrain in the 
forested areas of the study site. Areas of high terrain relief are expected to have more variability 
in ground return elevations over shorter distances, which would partially drive higher confidence 
intervals of ground surface elevation for pixels located in high relief areas. High relief areas of 
the study site were more common in forested areas of the study site, and the uncertainty resulting 
around high slopes also carries through snow depth estimation. Snow depth was significantly 
different between field and forested areas, as well as between conifer and deciduous forest types, 
despite the relatively high uncertainty. This indicates the possible influence of tree canopies on 
snow accumulation due to enhanced snow interception in forests, and particularly in conifer 
stands, but also could be the result of an under-sampled ground surface in forested areas relative 
to field areas. Snow depth also was significantly different among the three slope groups, possibly 
due to wind-driven snow displacement and sloughing on slopes during accumulation.  
 
A. The core depth procedures originally described briefly in Section 2.4 were expanded. 
The core accuracy values appeared in section 3.2.  

 
Lines 206 to 209 Along the same forest and field transects, a federal snow sampler was used to 
collect a single sample of snow depth and snow water equivalent at each magnaprobe sample 
location for a total of 12 field samples and 16 forest samples. Snow depth was measured by 
inserting the aluminium tube vertically into the snowpack and a core was extracted and weighed 
using a spring scale. 
 
The other problem with the paper is that it is too equipment/system specific. Not everyone 
reading this paper will have the same drone, the same lidar etc., so what does the paper offer 
them? It is perhaps necessary to be equipment-specific in this type of paper to some extent, but to 
maximize its use to the wider community, the authors need to strive to separate what is inherent 
in the methodology used with the specific equipment test to what might be more universal. They 
try this in the discussion section with some lessons-learned statements, but these too general and 
read a bit like “be careful when you drive” rules. I am not sure what would be best in this regard, 
but some improvement is definitely needed. 
 
A. We have embraced the reviewer’s comment “the authors need to strive to separate what 
is inherent in the methodology used with the specific equipment test to what might be more 
universal.” and have rewritten the discussion section to more keenly focus on what we 
believe are the most useful lessons learned, broken them into more manageable units and 
clearly indicated what are generalizable lessons versus those that are instrument specific.  
The first paragraph in the discussion and sections 4.2 and 4.3 respond to the reviewer’s 
comments. 
 
Lines 307 to 487 4. Challenges and Recommended Improvements to UAS Lidar Snow 
Depth Mapping 
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Despite UAS-based lidar’s increasing use in the natural sciences and capacity to make high-
resolution snow maps, there are many operational and technical challenges that require 
consideration prior to successfully conducting UAS-based lidar surveys that produce research 
grade, high-resolution snow depth data. Even though the UAVs are modest in size (i.e., weighing 
less than 25 kg), the hardware and supporting software analysis tools can be expensive and 
require trained pilots and lidar data analysis specialists. In this section, we present some general 
considerations regarding validation of the lidar snow depth maps, selection and deployment of a 
lidar sensor on a UAV for snow depth mapping as well as specific insights that we experienced 
when using our system. 
 
4.1 In Situ and UAS Sampling 
While UAS-based lidar surveys can measure snow depth to within a centimeter at high spatial 
resolutions, validation of those observations is challenging. A time consuming collection of high 
accuracy GNSS survey points was required to co-locate magnaprobe and lidar observations. 
Surveying in sample locations prior to the winter season might reduce this effort. It is also 
challenging to make in situ snow depth measurements that provide centimeter accuracy. In this 
study, the magnaprobe in situ snow depth observations made in the forest were considerably 
higher than the lidar observations as compared to the open field where the magnaprobe and lidar 
measurements were within 1 cm. Previous studies also found that snow depth observations from 
ALS measurements are biased lower than those from snow-probe observations in the forest 
(Hopkinson et al., 2004, Currier et al., 2019; Harder et al., 2020). In past studies, the causes of 
these differences have been partially attributed to the snow probe’s ability to penetrate the soil 
and vegetation, human observers tending to make snow depth measurements in locations with 
relatively high snow (Sturm and Holmgren, 2018) and the reduced accuracy of the GNSS. Our 
study suggests additional issues in forest sampling including enhanced terrain variability in 
forested areas relative to adjacent field areas and reduced lidar returns in forested areas as 
compared to field areas combine with sampling issues to contribute to the higher uncertainty in 
the forest snow depths observed in our study. 
 
In this study, the cold temperatures and snow-free conditions prior to the January 19th and 20th 
snowfall event resulted in deeper frozen soils (23.5 to 25.5 cm) in the field and shallower soil 
frost depth (5.5 to 8.5 cm) in the west forest, which would have limited the probe penetration 
into soils at both sites. However, the forest has a 1-4 cm thick organic leaf litter layer that may 
have been penetrated by the magnaprobe. The average Federal snow sampler tube depths (13.1 
cm) were not as deep as the magna probe (15.2 cm) and thus more closely match the lidar snow 
depth (7.8 cm; see Figure 3), though a considerable low bias (~5.3 cm) similar to that found by 
Harder et al. (2020) persists in the lidar snow depth relative to the federal snow sampler snow 
depths. Additional factors such as downed logs, thick understory, and fine-scale topographic 
features (ie: small boulders and hummocky terrain) as well as reduced ground return density may 
contribute to the lidar snow depth errors in a forest, whereas these factors are absent in the field.  
 
An improved understanding of forest canopies impacts on lidar returns is also warranted. Recent 
work has demonstrated that lidar pulses are “lost” at a much higher rate in forest canopies than 
open ground terrain due to interception, absorption, and scattering through canopy transmission, 
with the loss ratio largely influenced by the range of the target from the sensor (Liu et al., 2020). 
The data that we presented in this paper were acquired using constant flight speed and at 
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consistent altitude above target areas. Because of this, it is feasible that forest canopy conditions 
and variable understory vegetation density may have resulted in lost pulses and increased 
uncertainty in our data set. Indeed, we did observe lower return densities for both ground and all 
returns in forested areas in our data set (Figure 4).  
 
One possible outcome of these lidar sampling issues in forests was a significant difference in 
snow depth confidence intervals between field and forest types and among slope groups. 
Confidence intervals were highest in conifer stands and on steep slopes and lowest in the field. 
While this result is not entirely surprising, it is likely partially the result of lower ground return 
density in forests due to the combined effects of lost pulses and canopy occlusion in forested 
areas. Additionally, this observation may be driven by increased variability in snow depth due to 
pockets of duff and woody debris, and due to higher variability in subnivean terrain in the 
forested areas of the study site. Areas of high terrain relief are expected to have more variability 
in ground return elevations over shorter distances, which would partially drive higher confidence 
intervals of ground surface elevation for pixels located in high relief areas. High relief areas of 
the study site were more common in forested areas of the study site, and the uncertainty resulting 
around high slopes also carries through snow depth estimation. Snow depth was significantly 
different between field and forested areas, as well as between conifer and deciduous forest types, 
despite the relatively high uncertainty. This indicates the possible influence of tree canopies on 
snow accumulation due to enhanced snow interception in forests, and particularly in conifer 
stands, but also could be the result of an under-sampled ground surface in forested areas relative 
to field areas. Snow depth also was significantly different among the three slope groups, possibly 
due to wind-driven snow displacement and sloughing on slopes during accumulation.  
 
4.2 Flight Planning  
Because larger UAVs that can carry heavier payloads have challenges that may differ from small 
UAVs, a well-formulated flight plan that addresses weather conditions, logistics of flying at 
proposed site, flight lines, UAS equipment, and personnel is clearly needed. Weather impacts 
operations. UAS surveys cannot be conducted when there is any type of precipitation or in dense 
fog/clouds because moisture can cause electronic components to malfunction and moisture build-
up on the propellers can also adversely affect lift production. Depending on the UAV, wind 
speeds exceeding 7 to 10 m/s may make flights more difficult. This project’s Eagle XF high lift 
capacity UAS cannot be flown comfortably in winds greater than 8 m/s. At the study site, wind 
speeds often exceeded this threshold in the days immediately following snowfall except early in 
the morning. High wind speeds can also significantly reduce battery life as well as impact the 
accuracy of sensor observations. Low air temperatures can cause batteries to rapidly discharge. 
For winter UAS surveys, all flight and operational batteries were kept warm in a building, 
vehicle, or insulated cooler prior to the UAS survey. This also applies to the computer used to 
upload flight lines and relay telemetry information. A MIL-STD-810 certified Panasonic 
Toughbook was used in this study to handle the anticipated cold temperatures. Additionally, cold 
temperatures can severely limit the dexterity of the person manipulating the flight controls.  
  
High lift UAVs capable of carrying a lidar sensor package have the potential to cause significant 
damage to person and property. The selection of a survey site not only needs to meet the 
scientific objectives of the UAV survey, but also must have the proper attributes for safe and 
legal UAV operation including permission to operate the UAV at the site. Visual line of sight 
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(VLOS) of the UAV needs to be maintained throughout the flight. When it is difficult to 
maintain VLOS (e.g., flying over forested or mountainous sites), spotters can be used if there is 
constant two-way communication between the spotters and the person operating the flight 
controls. For this study, an on-site, walk up tower with a spotter was necessary while the UAV 
was flown over the forest.  
  
The deployment of a UAV lidar system requires additional flight patterns designed for 
boresighting to ensure that point clouds are aligned (Painter et al., 2016). Provided that GNSS 
data are accurate, the most common reason for misalignment of point clouds is boresight angle 
errors (Li et al., 2019). Boresighting is the process of calculating the differences between lidar 
sensor and IMU roll, pitch, and yaw angle measurements to correct those errors in point clouds. 
Due to battery flight time limitations, we were unable to complete the flight pattern that is 
commonly used for boresighting alignment. Because of this, we leveraged our first two 
antiparallel flight lines for boresighting calibration. Additional details on boresighting 
calibration, our technique due to the flight time limitations, and examples of roll and pitch 
alignment errors observed during this field campaign appear in the supplemental materials. 
  
4.3 UAS Sampling Strategies 
While lidar calibration and data post-processing requirements are quite similar for UAS and 
airborne surveys, the UAS lidar surveys presented in this study have key differences from 
previous ALS surveys. As noted above, UAS flight durations are considerably shorter, resulting 
in limited spatial coverage as compared to previous ALS snow depth surveys. An advantage of 
UAS over ALS surveys is that the average point cloud density is much higher and has fewer 
missing pixels in the forest. This study’s sampling densities and the proportion of areas with no 
ground returns are quite different from previous airborne lidar SD studies. This study had ground 
returns of 90 and 364 points/m2 in the forest and field, respectively, and had no ground returns in 
only 0.086% and 0.95% of the 1 m resolution field and forest cells, respectively. In contrast, 
ALS surveys typically report surface model densities between 8 to 16 points/m2 (Broxton et al., 
2015; 2019; Currier et al., 2019; Kirchner et al., 2014) and ground returns between 3 and 6 
points/m2 (Broxton et al., 2019; Kirchner et al., 2014). ALS derived snow depth maps have a 
much greater proportion of areas that are masked due to no ground returns, particularly under 
trees, with masking areas ranging from less to 10% to more than 23% (Harpold et al., 2014; 
Mazzotti et al., 2019). While gap filling is possible, interpolation using measured snow depth 
values to fill under tree can overestimate snow depth (Zheng et al., 2016). Based on our work 
comparing field and forest lidar collections from a UAS, we suggest testing alternative flight 
plans, including reduced flight speed over forest canopies to account for lost pulses and canopy 
returns to produce ground return density that is comparable to field ground return density and to 
further reduce the number of missing pixels in an acquisition area.  
 
A well understood challenge exists when developing a spatial sampling strategy in which, for 
given resources, there is a trade-off between spatial extent and sampling density (Clark et al. 
2011). Increasing flight altitude can expand the spatial extent of an aerial survey. However, 
flying at higher altitudes results in a decreased point density. In theory, a higher point density 
could be achieved by slower speeds and increased swath overlap. The targeted spatial extent of 
an aerial survey dictates whether a manned aircraft or a UAV platform should be used. If the 
targeted area has a limited domain then using a manned airborne platform is probably overkill 
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and inefficient for many studies and the use of a UAV would be more cost effective. However, 
as the domain increases in size, additional batteries would be required, much of the battery 
power would be used to reach the outer limits of the domain, and the ability to maintain the 
required line of sight could be difficult. Thus, there are end-members for survey site or regions 
where it is self-evident as to whether a UAV or an airborne platform should be used, but that 
leaves considerable gray areas where an appropriate choice of UAV platform with a well 
designed mission could stretch the domain.  Future research and technological advances are 
needed to offer insights for snow science observation platforms and trade-offs.  
 
If the comment that the paper is “too equipment/system specific” is intended to mean that 
we should reduce the description of the equipment, we would push back because the 
authors strongly believe that the audience who is interested in replicating the experiment 
should be provided with adequate details to be able to do so. Authors who are interested in 
conducting similar studies with different instrumentation should be able to understand 
difference due to instrumentation versus those due to snow differences. Similarly, every 
experiment is equipment specific and most experiments across research groups do not use 
identical equipment. This author team has found papers very informative when methods 
and equipment are described in detail and not just overall results. When new methods and 
equipment are deployed in studies, the ability to recreate a study or examine the methods is 
important. This knowledge allows for repeatability, criticism of the experiment, and also 
can save a research team many hours when learning a new method or developing an 
experimental plan with technological equipment.  Early SfM, airborne lidar, and UAS 
optical work included specific equipment details and methodologies.  
 
We have slightly reduced our equipment description in the body of the text and reference 
supplemental material with a new table of technical specifications. We hope that this will 
balance out the reviewer’s concern. 
 
 Table S1. Technical specifications of the project UAS 
UAS  
UAS type quadcopter 
Manufacturer/Model UAV-America / Eagle X8 
Diameter  130 cm 
Height 70 cm 
Number of rotors 4 
Rotor diameter 27.5 in (~70cm) 
Motor Manufacturer/Model KDE Direct / 7208 
RPM/Volt (KV rating) 110 KV 
Aircraft empty weight 8 kg 
Aircraft weight at take-off (with payload) 16 kg 
Flight time at take-off weight ~7 minutes 
Tolerable wind speed (with payload) 5 m/s 
Flight controller Pixhawk PX4 
Flight Batteries 22,000 mAh 6 Cell Lipo (2X) 
  
Sensor Payload	 	
Gimble Gremsy H7 
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IMU/GPS   Applanix APX-15 
Lidar Velodyne VLP-16 
Payload weight 3 kg 

 
Lastly, considerable space in the text is given to thin, shallow snow covers, and other lidar and 
airborne methods of mapping snow. While clearly when there is a fixed error in snow depth 
mapping (e.g., ±3 cm), it is a more serious problem in thin snow. Ultimately this is a methods 
paper, and nothing described in the accuracy and operation of the lidar is limited or specific to 
thin snow. 
A. The reviewer makes a reasonable point that this work is more about pushing the 
envelope by reducing SD errors as opposed to thin snow per se and is relevant to any 
research that needs snow depth with a high vertical resolution. Based on the reviewer’s 
comment, we have broadened the motivation to include a range of scenarios where an 
improved vertical resolution of SD beyond the existing 10+ cm resolution would be 
welcome. We have also discussed where the lidar observations are likely specific to thin 
snow.  

 
Lines 30 to 57 Snowpacks are highly dynamic, accumulating and ablating throughout the winter 
with associated changes in snowpack density, grain size, and albedo (Adolph et al., 2017) as well 
as ice formation. Wind redistribution, sloughing of snow-off slopes, trapping of snow by 
vegetation, and forest canopy interception result in a range of spatial features at varying scales 
(Clark et al., 2011; Mott et al., 2011; Mott et al., 2018). Modest differences in snowpack depth 
can differentially impact many hydrologic, agricultural, and ecosystem processes.  Differences in 
snowpack meltwaters can alter streamflow volumes (Gichamo and Tarboton, 2019), change the 
likelihood of spring floods (Tuttle et al., 2017) and intensify overland nutrient transport and soil 
erosion (Seyfried et al., 1990; Singh et al., 2009).  
 
High-resolution snow depth measurements are also needed to discern processes that depend on 
the snow state. Insulation by seasonal snow in the Arctic and Antarctic slows sea ice growth 
(Sturm et al., 2002). High-resolution Arctic snow depths from ICE-Sat2 revealed seasonal snow 
on ice that would be missed when using coarser snow information (Kwok et al. 2020).  Thin, 
ephemeral snowpacks have limited insulation and allow the underlying soils to freeze more 
readily in the winter (Groffman et al., 2001; Starkloff et al. 2017; Yi et al. 2019). Soil frost 
severity impacts soil respiration, carbon sequestration, nutrient retention, and microbial 
communities as well as a plant root health and tree growth (Aase and Siddoway, 1979; Isard and 
Schaetzel, 1998; Monson et al., 2006; Henry, 2008; Aanderud et al., 2013; Tucker et al., 2016; 
Sorensen et al., 2018; Reinmann and Templer, 2018). Detection and mapping of rapid thinning 
of snowpacks followed by frigid cold during “winter whiplash” events (Casson et al. 2019) is 
therefore important for understanding ecosystem impacts of soil freezing events, which are 
otherwise not well quantified (Kraatz et al. 2018; Prince et al. 2019). High vertical resolution 
snow mapping would greatly improve our understanding of these unique habitats.  
 
Distributed modeling and mapping of snowpacks can increasingly provide output at fine 
spatiotemporal scales but snow state change validation typically relies on in situ observations 
(Gichamo and Tarboton 2019; Starkloff et al., 2017). Despite importance, few spatially 
continuous high-resolution snowpacks datasets are available to support modelling, and mapping 
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efforts.  Because snowpacks have considerable spatiotemporal variability, a large number of 
snow depth measurements are often needed to characterize the snowpack (Dickinson and 
Whiteley, 1972). Using traditional, precise point measurements with a limited sample size, the 
experimental design requires a balance between the sampling extent and sample spacing (Clark 
et al. 2011).  However, the choice of sampling resolution may yield different measures of snow 
depth spatial variability when the snow exhibits multifractal behaviour (Deems et al. 2006).  
 
 
I am going to recommend that this paper be returned for major revisions and specifically the 
inclusion of more extensive testing across a wider set of snow and terrain conditions. In revision, 
I would suggest that the focus of the paper be honed to be squarely focused on the methodology 
and not waste journal space on issues related to thin snow covers, for which no real new 
information was presented. 
Recommendation: Return for major revisions and strengthen with more flights over a wider 
range of terrain and vegetation. 
 
Thank you for the recommendations here and in the following sections.  We have refined 
the focus and the thin snow covers discussion is now only one aspect of the broader 
motivation for a new combination of sensors and platform to provide higher vertical 
resolution SD measurements.  Please see the previous comment and response. 
 
The reviewer requested consideration of canopy and terrain variations. At this site, there 
are notable variations in slope as well as forest type. We conducted a new analysis to better 
quantify the canopy variations and to determine if the mean snow depth and the confidence 
intervals differ by slope or land-use. We found statistically significant differences for all 
combinations. Land-use differences include a new delineation of the forest by coniferous or 
deciduous trees. A new methods section 2.4 Slope and Vegetation Cover Classification and 
Analysis was added. The findings are reported in results section 3.3 Snow Depth Maps 
from UAS Lidar with an additional figure showing boxplots.  
 
Lines 172 to 194 2.4 Slope and Vegetation Cover Classification and Analysis 
The snow-off DTM was used to develop a 1 m resolution map of slope (Horn, 1981). Vegetation 
cover type (field/forest) was determined from the known boundaries of field and forest.  The 
forested area was further classified as coniferous or deciduous for the study region using the 
following methodology (Figure 1). Within the forested area (Figure 1), a Canopy Height Model 
(CHM) was used to distinguish the intact upper canopy from other forest cover using our snow-
off survey, collected with leaf off in the spring (Sullivan et al., 2017). The CHM was generated 
by subtracting the DTM produced using ground-classified points from the DSM produced using 
all lidar points. This results in a digital model consisting solely of canopy heights with no terrain 
or topography.  The CHM generation used raster images with a 1 m resolution.  A 3 by 3 
maximum convolve filter was used to enhance the edges of canopy crowns and expand smaller 
regions that might have just one pixel of an intact canopy or a whole in a larger canopy (Palace 
et al., 2008).  A 15 m threshold was used to differentiate between the upper level intact 
coniferous canopy. CHM pixels that were below this threshold were deemed deciduous canopies 
(see supporting information for intermediate figures). The 5.6 ha forested area has a forest type 
that is 65% deciduous and 35% coniferous.   
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Once the vegetation forest type was classified, the raster binary image was vectorized.  Within 
the forest and field regions of our study, a subsample was created from the entire image of 5000 
random points in the field and 5000 random points each of the eastern and western forested areas 
(Palace et al., 2017).  At each of these random points, slope, vegetation type (field, deciduous, 
coniferous), and snow depth and snow depth confidence interval values were extracted.  Because 
of missing values in the raster images, not all random points extracted values and resulted in 
different numbers of samples points for the forest and forest types. Slope was assigned to one of 
three categories: 0-10 degrees, 10-20 degrees, and greater than 20 degrees. Because the extracted 
datasets (i.e., snow depth, confidence interval, and slope) were not normally distributed, the non-
parametric Steel-Dwass Method test was used to test for differences. This non-parametric 
method is useful when sample numbers are large and groups are small, because it allows type I 
errors to be controlled (Dolgun and Demirhan, 2017).  
 
Lines 290 to 317 3.3 Snow Depth Maps from UAS Lidar 
The UAS-mapped snow depth, mapped by subtracting snow-off DTMs from snow-on DTMs, 
reveals a shallow snowpack whose depth ranges from less than 2 cm to over 18 cm (Figure 5). 
The mean lidar snow depth was 10.3 cm in the field and 6.0 cm in the forest. Despite the shallow 
conditions, spatially coherent patterns are readily discernible. The field snowpack depth has 
higher spatial variability than the west forest snowpack and more spatial organization. In the 
field, the deepest snow is in the low-lying northeast areas that are sheltered from westerly winds. 
A relatively moderate and consistent snowpack occurs in southern part of the east field and west 
of the small pond. The shallowest snowpack is found in the center portion of the field, which is 
slightly elevated and, unlike most of the field, was not mowed. Lower snow depth at the forest 
edge distinguishes the field to forest transition. A non-parametric Steel-Dwass test found 
significant variation for the mean snow depth among the two forest types and field (p < 0.0001) 
(Figure 6a). A pairwise Steel-Dwass test showed that snow depths were significantly different 
between the three pairs of field and forest types (p < 0.0001).  When comparing just field and 
forest as categories, the test also found significant differences for snow depth (p < 0.0001). Snow 
depth was also determined to be significantly different among the three slope group categories 
using the Steel-Dwass test where regions with a limited slope (Group 1) had more decidedly 
different snow than steeper regions (p < 0.0001) (Figure 6b).   
 
The one-sided confidence interval values of the mean snow depth estimate are remarkably 
consistent in the field and typically are between 0.5 to 1 cm regardless of snow depth (Figure 
5b). Modestly larger confidence intervals occur adjacent to the north-south road where the fields 
were not mowed prior to winter as well as the northern and southern extents of the flight lines 
likely due to the reduced sampling density. The forest had an average one-sided confidence 
interval of 3.5 cm, which is considerably higher than the field. Where the forest is predominantly 
comprised of deciduous trees, the typical one-sided confidence intervals of the mean snow depth 
were as low as 1 to 2 cm. The largest one-sided confidence interval values occur in the middle of 
the field where there is dense shrubbery, at the edge of the fields, and in clusters within the forest 
where the forest sections are dominated by coniferous trees. The nexus of flight lines in the take-
off and landing area resulted in a local area with very high confidence. A non-parametric Steel-
Dwass test found significant variation for confidence intervals of the mean snow depth among 
the two forest types and field (p < 0.0001) (Figure 6c). A pairwise Steel-Dwass test showed that 
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confidence intervals were significantly different between the three pairs of field and forest types 
and (p < 0.0001). Confidence intervals were also significantly different among the three slope 
categories as determined using a Steel-Dwass test  (p < 0.0001) (Figure 6d).  

 

Figure 6. Snow depths (a,b) and their one sided confidence intervals (c,d) from the random sample points of the field and forest 
at Thompson Farm, Durham, NH on January 23, 2019 from the individual cells for 1 m2 cells by vegetation cover (a,c) and slope 
group (b,d). Boxplots show the lower quartile, median, upper quartile, and whiskers with the median value noted. Because of 
missing values in the raster images, not all random points extracted values and resulted in different numbers of samples points for 
vegetation cover classes.  
 
 
 
While more extensive testing across a wider set of snow and terrain conditions would 
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certainly be welcome, the previous literature with SfM SD shows that there is a place in the 
literature for limited, targeted, early studies and that these papers provide tremendous 
value as evidenced by their heavy citation rate and how they have informed subsequent 
research. Also, most of the early SfM SD papers were published in The Cryosphere.  The 
additional analysis on snow depth variations by land cover and slope add novel results for 
this region. There are very few snow depth studies in the northeast region that attempt to 
quantify the contribution of land cover and slope in the thin and ephemeral snowpacks that 
are increasingly characteristic of this region. 
 
Our manuscript closely follows the model used by the early SfM studies and provides early 
guidance on methods for surveying and ground-based sampling as well as early results that 
provide insights to potential outcomes, performance and challenges. The requested 
additional datasets would very much change this submission and, as the request would 
require an additional winter field season, delay the communication of these early findings 
by over a year.  
 
We hope our responses and explanations on why this paper is novel and a contribution to 
the field of shallow snowpack estimation using remotely sensed data warrants 
consideration of publication. We believe that our work presented in this manuscript is 
valuable for the community of researcher who are increasingly likely to consider including 
lidar UAS systems in experiments, with timely information to support decisions regarding 
whether to proceed with UAS lidar observations, to inform equipment purchases, and to 
plan field campaigns. 

 
Detailed Comments 
Abstract: First three sentences could be deleted. 
Lines 1 to 98 could readily be deleted with no loss to the topic of the paper (thin snow 
discussion). 
 
A. Based on the reviewer’s comment, we have revised the motivation to include a range of 
scenarios where an improved vertical resolution of SD beyond the 10+ cm resolution would 
be welcome. Beyond shallow snowpacks, lines 54 forward provide a review of the methods 
used to measure SD and their limitations. A review of this literature is important to put this 
current new technology and methods in context. Based on the reviewer’s comments the 
introduction section was entirely rewritten.  
 
Lines 30 to 66 Snowpacks are highly dynamic, accumulating and ablating throughout the winter 
with associated changes in snowpack density, grain size, and albedo (Adolph et al., 2017) as well 
as ice formation. Wind redistribution, sloughing of snow-off slopes, trapping of snow by 
vegetation, and forest canopy interception result in a range of spatial features at varying scales 
(Clark et al., 2011; Mott et al., 2011; Mott et al., 2018). Modest differences in snowpack depth 
can differentially impact many hydrologic, agricultural, and ecosystem processes.  Differences in 
snowpack meltwaters can alter streamflow volumes (Gichamo and Tarboton, 2019), change the 
likelihood of spring floods (Tuttle et al., 2017) and intensify overland nutrient transport and soil 
erosion (Seyfried et al., 1990; Singh et al., 2009).  
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High-resolution snow depth measurements are also needed to discern processes that depend on 
the snow state. Insulation by seasonal snow in the Arctic and Antarctic slows sea ice growth 
(Sturm et al., 2002). High-resolution Arctic snow depths from ICE-Sat2 revealed seasonal snow 
on ice that would be missed when using coarser snow information (Kwok et al. 2020).  Thin, 
ephemeral snowpacks have limited insulation and allow the underlying soils to freeze more 
readily in the winter (Groffman et al., 2001; Starkloff et al. 2017; Yi et al. 2019). Soil frost 
severity impacts soil respiration, carbon sequestration, nutrient retention, and microbial 
communities as well as a plant root health and tree growth (Aase and Siddoway, 1979; Isard and 
Schaetzel, 1998; Monson et al., 2006; Henry, 2008; Aanderud et al., 2013; Tucker et al., 2016; 
Sorensen et al., 2018; Reinmann and Templer, 2018). Detection and mapping of rapid thinning 
of snowpacks followed by frigid cold during “winter whiplash” events (Casson et al. 2019) is 
therefore important for understanding ecosystem impacts of soil freezing events, which are 
otherwise not well quantified (Kraatz et al. 2018; Prince et al. 2019). High vertical resolution 
snow mapping would greatly improve our understanding of these unique habitats.  
 
Distributed modeling and mapping of snowpacks can increasingly provide output at fine 
spatiotemporal scales but snow state change validation typically relies on in situ observations 
(Gichamo and Tarboton 2019; Starkloff et al., 2017). Despite importance, few spatially 
continuous high-resolution snowpacks datasets are available to support modelling, and mapping 
efforts.  Because snowpacks have considerable spatiotemporal variability, a large number of 
snow depth measurements are often needed to characterize the snowpack (Dickinson and 
Whiteley, 1972). Using traditional, precise point measurements with a limited sample size, the 
experimental design requires a balance between the sampling extent and sample spacing (Clark 
et al. 2011).  However, the choice of sampling resolution may yield different measures of snow 
depth spatial variability when the snow exhibits multifractal behaviour (Deems et al. 2006).  
 
Over the past two decades, remote sensing methods, providing spatially continuous, high-
resolution snow depth maps at local and regional scales, have greatly advanced the ability to 
characterize the spatiotemporal variability of snow depth over earlier work using snow probes 
(see reviews in Deems et al., 2013; López-Moreno et al., 2017). Spaceborne photogrammetry 
(e.g. Marti et al. 2016, McGrath et al. 2019, Shaw et al. 2020), airborne laser scanning (ALS) 
(Deems et al., 2013; Harpold et al., 2014; Kirchner et al., 2014), terrestrial laser scanning (TLS) 
(Grünewald et al. 2010; Currier et al. 2019), and structure-from-motion photogrammetry (SfM) 
(Nolan et al., 2015; Bühler et al., 2016; Harder et al., 2016) have emerged as viable methods to 
map surface elevations with snow-off and snow-on conditions in order to differentially map 
snow depths.  
 
 
Figure 1: Nice graphic. . .very clear. 
A. Thank you. 
 
Line 84: Ground control points are mentioned, but I don’t see any indication that they used 
control points for the SfM maps beyond the 200hz measurement rate, and I don’t understand how 
that works. 
A. We are not sure what the reviewer means. We did not create any SfM maps for this 
paper. Line 84 is the literature review not methods. The 200hz referred to in the methods 
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and conclusion is the sampling rate of the inertial navigation system (INS), which measures 
the position of the UAS during acquisition flights. Those data are then used to calculate the 
location of lidar returns. We do use GCPs in the same sentence as 200hz once, and it is to 
point out that one of the benefits of our lidar payload over SfM approaches is that a 
payload that relies on an INS does not require GCPs, while SfM does.  
 
Line 158: DTM not defined, which reflects a certain unevenness in the technical level of the 
paper. Who is this paper for? The new practitioner or the veteran GIS and UAV group? There are 
many acronyms in the paper all of which should when first presented be defined. 
A. The acronyms were reviewed and defined. We apologize for the original omission of the 
definition of digital terrain model (DTM) and now include it. 
 
Lines 164 to 167 PMF was parameterized using a set of window sizes of 1, 3, 5, and 9 m, and 
elevation thresholds of 0.2, 1.5, 3, and 7 m, which were determined by varying value sets and 
assessing digital terrain models (DTMs) to determine the parameter sets that produced a visually 
smooth surface over a dense grid (sensu Muir et al., 2017). 
 
Line 166: Ground probe sampling method was a 5-sample cross pattern, with a GNSS GPS point 
in the center of the cross, but the authors wait until line 175 to tells us they averaged these 5 
samples. What was the logic behind the sampling protocol and why only 5 points per 0.4 m 
sampling pixel, when the lidar was producing between 25 and 90? Surely more could have been 
measured? Also, later in the paper a core tube (Federal s ampler?) is mentioned but no other 
details about it. About here in the paper it would also be good to mention the nature of the 
ground surface and depth of freeze, instead of later when trying to explain the discrepancy 
between the forest and field measurements errors. 
A. Because the lidar observations were anticipated to give very high-resolution 
observations, we used an approach that would provide very high spatial precision for the in 
situ observation coordinates. The ground sampling protocol was informed by the methods 
used to validate SfM SDs. Harder (2016), Bühler et al. (2016), and Adams et al. (2018) used 
the same 5-sample cross pattern with a GNSS GPS point in the center of the cross. Our in 
situ SD observations were measured using the magna probe and then the center point was 
surveyed to a horizontal uncertainty of 2.51cm and 4.17cm for the field and forest, 
respectively, that meets or exceeds previous studies. The downside is that this procedure 
limits the number of in situ validation points.  
 
The federal snow sampling tube was originally described on lines 172 and 173 (2.4 Snow 
Depth Ground Truth) and the later reference to the “tube” has been clarified. The section 
2.4 Snow Depth Ground Truth section has been modified to 2.4 In Situ Observations. This 
section now includes requested a discussion of the ground surface and depth of freeze as 
well as additional details on the sampling methods.  
 
Lines 195 to 217 2.5 In Situ Observations 
A 1.2-m Global Positioning System (GPS)-equipped magnaprobe (Sturm and Holmgren, 2018) 
was used to compare to the unmanned aerial system (UAV) lidar surveys (hereafter noted as 
ALS measurements) over two transects. The first transect consisted of 12 sample locations in the 
field and 5 locations in the eastern forest of our study site. The second transect consisted of 11 
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sample locations in the western forest. Sample locations were separated by approximately 10 m. 
The field transect follows the prevailing westerly wind direction with its west side at the foot of a 
modest depression (approximately 2 m below the land further to the west) and the east side 
transitioning into a wooded area. Following (Harder et al. 2016) and (Bühler et al. 2016), each 
sample location includes 5 samples in a cross pattern with the four ordinal directions sampled 
approximately 20 cm from the center sampling location in the cross. The five samples are used to 
provide a measure of SD central tendency and variation over a 0.4 x 0.4 m pixel. Because the 
magnaprobe GPS has an absolute accuracy of 8 m, a Trimble© Geo7X GNSS Positioning Unit 
with Zephr™ antenna was used to collect each sampling location’s center point with an estimated 
horizontal uncertainty of 2.51cm (standard deviation 𝜎 0.95 cm) and 4.17cm (σ 4.60 cm) for the 
field and forest, respectively after differential correction. Along the same forest and field 
transects, a federal snow tube sampler was used to collect a single sample of snow depth and 
snow water equivalent at each magnaprobe sample location for a total of 12 field samples and 16 
forest samples. Snow depth was measured by inserting the aluminium tube vertically into the 
snowpack and a core was extracted and weighed using a spring scale.  
 
An independent study collected soil frost depth from three locations at the Thompson Farm 
Research Observatory using Gandahl-Cold Regions Research and Engineering Laboratory 
(CRREL) style frost tubes. The frost tubes have flexible, polyethylene inner tubing filled with 
methylene blue dye whose color change is easy to differentiate when extruded from ice (Gandahl 
1957). A nylon string housed inside the polyethylene tubing affixes ice during periods of thaw. 
The outer tubing consists of PVC pipe installed between 0.4 to 0.5 m below soil surface (Ricard 
et al., 1976; Sharratt and McCool, 2005). Prior to the January 19th and 20th, 2019 snowfall event, 
soil frost was 23.5 to 25.5 cm in the field and 5.5 to 8.5 cm in the west forest.  
 
Line 240-Figure 4: The maps look quite good, and the inclusion of the confidence map is to be 
commended. But several aspects shown on this figure go unremarked. Specifically, how was the 
location of the ground validation determined, and why so few ground data? It is unfortunate that 
for the field ground data, other data from the shallower area bracketing the road wasn’t obtained 
so that a second thinner field comparison could be made. As for the confidence map, the very 
high confidence area in the center of western forest is at the nexus of all the flight lines. . ..is that 
why the confidence is high there? Conversely, comparing Fig. 1 to 4a and 4b, there are gaps and 
openings in the trees in both east and west forest where the confidence drops considerably, yet 
one might have expected these to function like the open filed. Why does it drop? 
 
A. Thank you. Additional remarks about this figure were added based on the reviewer’s 
comments including the point about the nexus of flight lines resulting in high confidence. 
The forest locations having a marked decreased confidence are locations where there is a 
dense canopy and limited lidar penetration combined with increased pulse loss. The higher 
variability in confidence in the forest is likely due to the heterogeneity of the forest 
structure, not canopy gaps as this is a continuous forest canopy. Instead, what the reviewer 
perceives to be gaps are more likely areas with more deciduous trees and variable terrain. 
A new analysis was conducted and added to the paper to examine the variability within the 
forest. The areas with marked decreased confidence are locations where there is a dense 
canopy and limited lidar penetration.  
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We were intrigued by the reviewer’s comments about the confidence in the forests and 
revisited the forest locations. A new analysis of the forest canopy profiles and the ground 
versus nonground returns in the forest and field for both snow on and snow-off conditions 
was added. 
 
Lines 312 to 314 The nexus of flight lines in the take-off and landing area resulted in a local area 
with very high confidence.  
 
Lines 266 to 278 To provide insight to differences between the forest and field observations, 
mean height profiles were calculated for a 25 m2 square region centered on forest and field study 
plots from lidar data (Figure 4). To do this, all lidar returns were extracted from the bounding 
box of each plot, then the mean elevation of ground returns was calculated within each plot. 
Return heights for each plot were determined by subtracting the mean ground elevation of the 
plot, then the normalized return elevations were binned in 0.1 m height increments. Within 
forests, an average of 2142 and 2889 returns were classified as ground and non-ground in snow-
free conditions per 25 m2 plot, respectively with 2218 ground returns and 1721 non-ground 
returns in snow-on conditions. In field plots, an average of 5666 ground returns and 154 non-
ground returns in snow-free conditions were obtained per 25 m2 plot, with 7567 ground returns 
and 25 non-ground returns in snow-on conditions. Figure 4 also shows that there is a greater 
range of ground return elevations in the forest as compared to the field. In forest plots, ground 
return elevations had an average standard deviation of 0.157 m and 0.154 m in snow-free and 
snow-on conditions, respectively, while in field plots, ground return elevations had standard 
deviations of 0.058 m and 0.050 m in snow-free and snow-on conditions, respectively.  
 
The limited number of ground sampling points is discussed in the response to the previous 
section. We agree it is unfortunate that our field data didn’t capture more of the 
variability. Unfortunately, because lidar post-processing takes some time, it is not possible 
to develop a sampling plan based on the lidar observations because the field data needs to 
be collected at nearly the same time as the lidar data. Similarly, field data collection occurs 
after the lidar acquisition because snow sampling and movement of people across the 
landscape alters the snow field.  
 
Regarding how was the location of the ground validation determined: Our working 
hypothesis that informed the ground sampling design was that there would be limited local 
variations in precipitation in the field and that wind redistribution would drive variations 
in snow depth across the field. The field transect was set up along the prevailing wind 
direction with the west side at the foot of a modest depression (approximately 3-4 m below 
the land further to the west) and the east side transitioning into a wooded area in an effort 
to capture wind driven variations. The results instead showed limited SD variations along 
the transect as compared to notable SD variations and patterns that were readily evident 
from the lidar SD maps. This suggests opportunities for further research and will inform 
future in situ sampling strategies. We updated the methods to describe how the field 
transect was located. 
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Lines 199 to 201 The field transect follows the prevailing westerly wind direction with its west 
side at the foot of a modest depression (approximately 3-4 m below the land further to the west) 
and the east side transitioning into a wooded area.  
 
 
Figure 7: OK...but anyone new to airborne lidar will not understand it, and anyone already doing 
SfM or lidar will not need it. Think of who you are writing for. 
A. This is a reasonable point and was also noted by Reviewer #1. We moved this to 
supplemental materials and modified the text. Because our target audience will likely 
include readers who are new to airborne lidar, this figure has been revised and the 
supporting text have been rewritten to make this important information for accessible to 
that audience. Additional explanatory text and figures were added to the discussion on 
boresighting in order to provide a specific example to anyone who is new to airborne lidar. 
Our goal is to provide a specific example using a snow depth survey that will provide 
information beyond that available in a standard textbook discussion of boresighting. We 
hope that the placement in supplementary material will allow readers who are new to lidar 
to have a specific example that is linked to this analysis, but will remove the material from 
the main body of the paper for those who do not need it.  
  
S2 Boresight Calibration 
The deployment of a lidar system mounted on a UAV platform for snow depth monitoring 
requires flight patterns designed for calculating boresight alignment and post-processing to 
ensure that point clouds are properly aligned (Painter et al., 2016). Provided that GNSS data are 
accurate, the most common reason for misalignment of point clouds is boresight angle errors (Li 
et al., 2019). Boresighting is the process of calculating the differences between lidar sensor and 
IMU roll, pitch, and yaw angle measurements to correct those errors in point clouds. 
Traditionally, boresighting calibration is performed using antiparallel flight lines in addition to a 
perpendicular flight line (Keyetieu and Seube, 2019). Due to battery flight time limitations, it 
was not possible to complete the flight pattern that is commonly used for boresighting alignment. 
Because of this, the first two antiparallel flight lines were leveraged for boresighting calibration. 
Offsets between sensor and IMU are calculated by observing misalignments between lidar data 
collected from different flight lines, and iteratively adjusting roll, pitch, and yaw angles of the 
IMU data to produce sub-datasets into the same planes. To determine roll offset, broad (10 m) 
along-path cross-sections over flat terrain were assessed, and to determine pitch offset narrow (1 
m) across-path cross-sections in sloped terrain where the point clouds overlapped were used 
(Figure S3). Though not shown here, unique features were leveraged within the data acquisition 
region, including barn roofs and deciduous tree branches, to assess the resulting boresight angles 
(Kumari et al., 2011; Li et al., 2005). For this particular study, boresight calibration was 
performed manually and iteratively. Methods often require extensive user input (Li et al., 2005), 
however boresight calibration is an increasingly automated process with wide variation in 
algorithms and approaches (e.g. Maas, 2000; Kumari et al., 2011; Zhang et al., 2019). In future 
work, automated boresight calibration methods to improve the accuracy of point cloud data sets 
will be explored. 
 
Figure S2 shows two examples of ground return point clouds before and after calibration in this 
study’s field region. Uncalibrated boresight angles between the INS and lidar sensor can result in 
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poorly aligned point clouds (i and iii). Red and blue arrows in (A) and (B) show approximate 
flight direction during data acquisition superimposed on the LAS point cloud. Roll alignment 
errors present well in anti-parallel flight lines (flight lines flown parallel to each other but in the 
opposite direction) over flat terrain. The top panel in Figure S3 addresses roll misalignment with 
(a) showing the LAS point cloud and the two flight lines flown in opposite directions. The lidar 
returns within the box marked in red in (a) are shown in (a1) and (a2) at an oblique view angle. 
Figure (a1) shows how boresight errors of roll angles present, while (a2) shows proper boresight 
alignment for roll. Figure (b) shows the approximate location of returns and flight lines used for 
pitch boresight alignment error demonstration (b1) and its correction (b2). Pitch misalignment 
presents well in anti-parallel flight lines in areas with terrain relief while viewing across the 
flight track, as opposed to along the flight track as with roll alignment.  
 
 
 
 
 

 
Figure S2. Boresight examples that show how uncalibrated boresight angles between the INS and lidar sensor can 
result in poorly aligned point clouds (a1 and b1). Arrows in (a) and (b) show approximate flight direction during 
data acquisition. The lidar returns within the box marked in red in (a) are shown in (a1) and (a2) at an oblique view 
angle. Figure (a1) shows how boresight errors of roll angles present, while (a2) shows proper boresight alignment 
for roll. Figure (b) shows the approximate location of returns used for pitch boresight alignment error demonstration 
(b1) and its correction (b2). Pitch misalignment presents well in anti-parallel flight lines in areas with terrain relief 
while viewing across the flight track, as opposed to along the flight track as with roll alignment. For (b, a1, a2, b1, 
and b2), only ground returns are shown for each flight line, while in (a), all returns are shown.  
 
 
Line 286 to 316: This is the first time that large vs. small UAVs are differentiated, though the 
weight of the lidar package would suggest a larger UAV was in use. But a quick scan of the web 
suggest that the drone used can handle about 14 kg. . .and recent some heavy lift drones are 
getting near 100 kg. Much of the discussion here seems like lessons learned that anyone trying to 
fly these larger drones probably already knows. It could be helpful, but they aren’t detailed 
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enough to really guide a newcomer to a successful mission. See the general point of trying to 
write a paper that is generic rather than specific. . .. which for rapidly changing tech can be 
challenging. 
A. Agreed that additional details are needed to support the target audience. We envision an 
important audience of this research to be researchers who have used off the shelf systems 
such as the DJI Phantom IV and are considering instrumentation that would increase the 
UAV payload beyond that carrying light weight sensors such as optical sensors. We added 
a table of specifications to the supplemental materials and clearly differentiated this UAV 
from those used previously in SfM SD studies.  
 
 Table S1. Technical specifications of the project UAS 
UAS  
UAS type quadcopter 
Manufacturer/Model UAV-America / Eagle X8 
Diameter  130 cm 
Height 70 cm 
Number of rotors 4 
Rotor diameter 27.5 in (~70cm) 
Motor Manufacturer/Model KDE Direct / 7208 
RPM/Volt (KV rating) 110 KV 
Aircraft empty weight 8 kg 
Aircraft weight at take-off (with payload) 16 kg 
Flight time at take-off weight ~7 minutes 
Tolerable wind speed (with payload) 5 m/s 
Flight controller Pixhawk PX4 
Flight Batteries 22,000 mAh 6 Cell Lipo (2X) 
  
Sensor Payload	 	
Gimble Gremsy H7 
IMU/GPS   Applanix APX-15 
Lidar Velodyne VLP-16 
Payload weight 3 kg 
 
There is a total 55lb (~25 kg) limit on UAVs with our specific license. Heavier than that 
requires additional licensing. Our effort is to provide information on UAVs that can carry 
a lidar, GPS, and IMU appropriate for shallow snow depth retrieval. Because our work is 
intended to be helpful to new researchers and even seasoned UAV groups, we have tended 
on the side of presenting additional equipment attributes and settings. 
 
We entirely rewrote the discussion section and separated it into three distinct sections (4.1 
In Situ and UAS Sampling, 4.2 Flight Planning, and 4.3 UAS Sampling Strategies. 
Regarding the material on flight planning, this section is now much tighter. 
 
Lines 425 to 455 4.2 Flight Planning  
Because larger UAVs that can carry heavier payloads have challenges that may differ from small 
UAVs, a well-formulated flight plan that addresses weather conditions, logistics of flying at 
proposed site, flight lines, UAS equipment, and personnel is clearly needed. Weather impacts 
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operations. UAS surveys cannot be conducted when there is any type of precipitation or in dense 
fog/clouds because moisture can cause electronic components to malfunction and moisture build-
up on the propellers can also adversely affect lift production. Depending on the UAV, wind 
speeds exceeding 7 to 10 m/s may make flights more difficult. This project’s Eagle XF high lift 
capacity UAS cannot be flown comfortably in winds greater than 8 m/s. At the study site, wind 
speeds often exceeded this threshold in the days immediately following snowfall except early in 
the morning. High wind speeds can also significantly reduce battery life as well as impact the 
accuracy of sensor observations. Low air temperatures can cause batteries to rapidly discharge. 
For winter UAS surveys, all flight and operational batteries were kept warm in a building, 
vehicle, or insulated cooler prior to the UAS survey. This also applies to the computer used to 
upload flight lines and relay telemetry information. A MIL-STD-810 certified Panasonic 
Toughbook was used in this study to handle the anticipated cold temperatures. Additionally, cold 
temperatures can severely limit the dexterity of the person manipulating the flight controls.  
  
High lift UAVs capable of carrying a lidar sensor package have the potential to cause significant 
damage to person and property. The selection of a survey site not only needs to meet the 
scientific objectives of the UAV survey, but also must have the proper attributes for safe and 
legal UAV operation including permission to operate the UAV at the site. Visual line of sight 
(VLOS) of the UAV needs to be maintained throughout the flight. When it is difficult to 
maintain VLOS (e.g., flying over forested or mountainous sites), spotters can be used if there is 
constant two-way communication between the spotters and the person operating the flight 
controls. For this study, an on-site, walk up tower with a spotter was necessary while the UAV 
was flown over the forest.  
  
The deployment of a UAV lidar system requires additional flight patterns designed for 
boresighting to ensure that point clouds are aligned (Painter et al., 2016). Provided that GNSS 
data are accurate, the most common reason for misalignment of point clouds is boresight angle 
errors (Li et al., 2019). Boresighting is the process of calculating the differences between lidar 
sensor and IMU roll, pitch, and yaw angle measurements to correct those errors in point clouds. 
Due to battery flight time limitations, we were unable to complete the flight pattern that is 
commonly used for boresighting alignment. Because of this, we leveraged our first two 
antiparallel flight lines for boresighting calibration. Additional details on boresighting 
calibration, our technique due to the flight time limitations, and examples of roll and pitch 
alignment errors observed during this field campaign appear in the supplemental materials. 
 
Lines 333 to 334: Heavy payload=short flight duration=small area mapped, hence better ground 
point density. While that makes sense, can’t that be achieved by slower speed, closer passes etc.? 
And mapping extent, of course can be larger if more missions are used. So, I was puzzled what 
this paragraph was really trying to say.  
A. This is a reasonable comment led to a modification of section 4.3 UAS Sampling 
Strategies to include a brief paragraph which appears at the end of the response. 
 
This comment reflects a general challenge that occurs when developing a spatial sampling 
strategy in which, for given resources, there is a trade-off between spatial extent and 
sampling density. An additional point is that the survey height can also be varied with 
higher altitudes increasing the spatial extent with trade-offs between the point density and 
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number of missions. The main point was intended to provide the reader with the means to 
contrast this study’s sampling densities and the proportion of areas that are masked due to 
no ground returns with those from previous airborne lidar SD studies.  
 
A second point was added to a separate section to respond to the reviewer’s insights that 
regarding the trade-offs between using a UAV versus an airborne platform. While we agree 
in theory that “Heavy payload=short flight duration=small area mapped, hence better 
ground point density.” could be achieved by “slower speed, closer passes etc.” by an 
airborne platform, if the mapped area has a limited domain then using an airborne 
platform is probably overkill and inefficient for many studies. Similarly, the “mapping 
extent, of course can be larger if more missions are used”, but as the domain increases in 
size, much of the battery power would be used to reach the outer limits of the domain and 
the ability to maintain the required line of sight could also limit the domain. Thus, there 
are end-members for survey site or regions where it is self-evident as to whether a UAV or 
an airborne platform should be used, but that leaves considerable gray areas where an 
appropriate choice of UAV platform and a well designed mission could stretch the domain.  
Future research and technological advances is needed to offer insights for snow science 
observation platforms and trade-offs. 
 
Finally, slower flights and lower altitude do increase the point density, but further limit the 
area covered.  We used three sets of batteries and flew over 2 hr period to collect our 
images.  Limitations on battery cost and time to fly restrict data collection. Flights over 
multiple days are not appropriate because snowpacks can change within 24 hours. 
 
Lines 475 to 486 A well understood challenge exists when developing a spatial sampling 
strategy in which, for given resources, there is a trade-off between spatial extent and sampling 
density (Clark et al. 2011). Increasing flight altitude can expand the spatial extent of an aerial 
survey. However, flying at higher altitudes results in a decreased point density. In theory, a 
higher point density could be achieved by slower speeds and increased swath overlap. The 
targeted spatial extent of an aerial survey dictates whether a manned aircraft or a UAV platform 
should be used. If the targeted area has a limited domain then using a manned airborne platform 
is probably overkill and inefficient for many studies and the use of a UAV would be more cost 
effective. However, as the domain increases in size, additional batteries would be required, much 
of the battery power would be used to reach the outer limits of the domain, and the ability to 
maintain the required line of sight could be difficult. Thus, there are end-members for survey site 
or regions where it is self-evident as to whether a UAV or an airborne platform should be used, 
but that leaves considerable gray areas where an appropriate choice of UAV platform with a well 
designed mission could stretch the domain.  Future research and technological advances are 
needed to offer insights for snow science observation platforms and trade-offs.  
 
The following references were added to the manuscript based on Reviewer 2’s input: 

 
Adams, M.S., Bühler, Y., & Fromm, R. (2018). Multitemporal accuracy and precision 
assessment of unmanned aerial system photogrammetry for slope-scale snow depth maps in 
Alpine terrain. Pure and Applied Geophysics, 175, 3303-3324 
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Bühler, Y., Adams, M.S., Bösch, R., & Stoffel, A. (2016). Mapping snow depth in alpine terrain 
with unmanned aerial systems (UASs): potential and limitations. The Cryosphere, 10, 1075-1088 
Harder, P., Schirmer, M., Pomeroy, J., & Helgason, W. (2016). Accuracy of snow depth 
estimation in mountain and prairie environments by an unmanned aerial vehicle. The 
Cryosphere, 10, 2559 
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Abstract. Terrestrial and airborne laser scanning and structure from motion techniques have emerged as viable methods to 

map snow depths. While these systems have advanced snow hydrology, these techniques have noted limitations in either 

horizontal or vertical resolution.  Lidar on an unpiloted aerial vehicle (UAV) is also a potential method to observe field and 15 

slope scale variations at the vertical resolutions needed to resolve local variations in snowpack depth and to quantify snow 

depth when snowpacks are shallow. This paper provides some of the earliest snow depth mapping results on the landscape 

scale that were measured using lidar on a UAV. The system, which uses modest cost, commercially available components, 

was assessed in a mixed deciduous and coniferous forest and open field for a thin snowpack (< 20 cm). The lidar classified 

point clouds had an average of 90 and 364 points/m2 ground returns in the forest and field, respectively. In the field, in-situ 20 

and lidar mean snow depths, at 0.4 m resolution, had a mean absolute difference of 0.96 cm and a root mean squared error of 

1.22 cm. At 1 m resolution, the field snow depth confidence intervals were consistently less than 1 cm. The forest and 

heavily vegetated areas had modestly reduced performance with typical confidence intervals within 4 cm. Although the 

mean snow depth was only 10.3 cm in the field and 6.0 cm in the forest, a pairwise Steel-Dwass test showed that snow 

depths were significantly different between the coniferous forest, the deciduous forest, and the field land covers (p < 25 

0.0001). Snow depths were shallower and snow depth confidence intervals were higher in areas with steep slopes. Results of 

this study suggest that performance depends on both the point cloud density, which can be increased or decreased by 

modifying the flight plan over different vegetation types, and the within cell variability that depends on site surface 

conditions. 

1 Introduction 30 

Snowpacks are highly dynamic, accumulating and ablating throughout the winter with associated changes in snowpack 

density, grain size, and albedo (Adolph et al., 2017) as well as ice formation. Wind redistribution, sloughing of snow-off 

slopes, trapping of snow by vegetation, and forest canopy interception result in a range of spatial features at varying scales 

(Clark et al., 2011; Mott et al., 2011; Mott et al., 2018). Modest differences in snowpack depth can differentially impact 

many hydrologic, agricultural, and ecosystem processes.  Differences in snowpack meltwaters can alter streamflow volumes 35 

(Gichamo and Tarboton, 2019), change the likelihood of spring floods (Tuttle et al., 2017) and intensify overland nutrient 

transport and soil erosion (Seyfried et al., 1990; Singh et al., 2009).  

 

High-resolution snow depth measurements are also needed to discern processes that depend on the snow state. Insulation by 

seasonal snow in the Arctic and Antarctic slows sea ice growth (Sturm et al., 2002). High-resolution Arctic snow depths 40 
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from ICE-Sat2 revealed seasonal snow on ice that would be missed when using coarser snow information (Kwok et al. 

2020).  Thin, ephemeral snowpacks have limited insulation and allow the underlying soils to freeze more readily in the 

winter (Groffman et al., 2001; Starkloff et al. 2017; Yi et al. 2019). Soil frost severity impacts soil respiration, carbon 

sequestration, nutrient retention, and microbial communities as well as a plant root health and tree growth (Aase and 80 

Siddoway, 1979; Isard and Schaetzel, 1998; Monson et al., 2006; Henry, 2008; Aanderud et al., 2013; Tucker et al., 2016; 

Sorensen et al., 2018; Reinmann and Templer, 2018). Detection and mapping of rapid thinning of snowpacks followed by 

frigid cold during “winter whiplash” events (Casson et al. 2019) is therefore important for understanding ecosystem impacts 

of soil freezing events, which are otherwise not well quantified (Kraatz et al. 2018; Prince et al. 2019). High vertical 

resolution snow mapping would greatly improve our understanding of these unique habitats.  85 

 

Distributed modeling and mapping of snowpacks can increasingly provide output at fine spatiotemporal scales but snow 

state change validation typically relies on in situ observations (Gichamo and Tarboton 2019; Starkloff et al., 2017). Despite 

importance, few spatially continuous high-resolution snowpacks datasets are available to support modelling, and mapping 

efforts.  Because snowpacks have considerable spatiotemporal variability, a large number of snow depth measurements are 90 

often needed to characterize the snowpack (Dickinson and Whiteley, 1972). Using traditional, precise point measurements 

with a limited sample size, the experimental design requires a balance between the sampling extent and sample spacing 

(Clark et al. 2011).  However, the choice of sampling resolution may yield different measures of snow depth spatial 

variability when the snow exhibits multifractal behaviour (Deems et al. 2006).  

 95 

Over the past two decades, remote sensing methods, providing spatially continuous, high-resolution snow depth maps at 

local and regional scales, have greatly advanced the ability to characterize the spatiotemporal variability of snow depth over 

earlier work using snow probes (see reviews in Deems et al., 2013; López-Moreno et al., 2017). Spaceborne 

photogrammetry (e.g. Marti et al. 2016, McGrath et al. 2019, Shaw et al. 2020), airborne laser scanning (ALS) (Deems et al., 

2013; Harpold et al., 2014; Kirchner et al., 2014), terrestrial laser scanning (TLS) (Grünewald et al. 2010; Currier et al. 100 

2019), and structure-from-motion photogrammetry (SfM) (Nolan et al., 2015; Bühler et al., 2016; Harder et al., 2016) have 

emerged as viable methods to map surface elevations with snow-off and snow-on conditions in order to differentially map 

snow depths.  

 

Over the past two decades, remote sensing methods, providing spatially continuous, high-resolution snow depth maps at 105 

local and regional scales, have greatly advanced the ability to characterize the spatiotemporal variability of snow depth over 

earlier work using snow probes (see reviews in Deems et al., 2013; López-Moreno et al., 2017). Spaceborne 

photogrammetry (e.g. Marti et al. 2016, McGrath et al. 2019, Shaw et al. 2020), airborne laser scanning (ALS) (Deems et al., 

2013; Harpold et al., 2014; Kirchner et al., 2014), terrestrial laser scanning (TLS) (Grünewald et al. 2010; Currier et al. 

2019), and structure-from-motion photogrammetry (SfM) (Nolan et al., 2015; Bühler et al., 2016; Harder et al., 2016) have 110 

emerged as viable methods to map surface elevations with snow-off and snow-on conditions in order to differentially map 

snow depths.  

 

ALS and TLS both rely on well-established lidar (light detection and ranging) technology. TLS, applied from a fixed ground 

position, is able to measure snow depth with high vertical accuracy (Fey et al., 2019), and has the advantage of being 115 

relatively low-cost and portable, making repeat observations possible. However, TLS uncertainties are caused by large 

incident angles, occlusion from hills and trees that can cause data gaps in forested domains (Currier et al., 2019; Palace et al., 

2016), and challenges providing a stable scanner position for the tripod in snow-on conditions (Schweizer et al., 2003). ALS 

technology such as that deployed on the Airborne Snow Observatory (ASO) (Painter et al., 2016) has the advantage of being 
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able to cover large areas, but it is extremely expensive and has limited availability and flexibility of deployment, which 

impacts its use for most studies. ALS also has issues with observation gaps in forested regions (Broxton et al., 2015; Currier 160 

and Lundquist, 2018; Mazzotti et al., 2019) but possibly to a lesser extent than TLS (Currier et al., 2019). For some 

snowpack features, the typical vertical accuracies from these platforms, on the order of 10 cm (Kraus et al., 2011; Deems et 

al., 2013), as well as relatively low return density (~10 returns/m2) (Cook et al., 2013) are not adequate to observe spatial 

variations at point scales (0 to 5 m) to hillslope and field scales (1-100 m) and to detect snow depth changes over short time 

scales. 165 

 

SfM can create a digital surface model (DSM) from photographs taken using a standard consumer-grade digital camera.  

When deployed on an unmanned aerial system (UAS) platform, SfM is a low-cost method that has the capacity for routine 

snow depth monitoring (Adams et al., 2018; Bühler et al., 2016; De Michele et al., 2016; Harder et al., 2016; Vander Jagt et 

al., 2015). Reported accuracies range from 8 to 30 cm using UAS SfM (Adams et al., 2018; Bühler et al., 2016; Goetz and 170 

Brenning, 2019; Harder et al., 2016; Meyer and Skiles, 2019; Harder et al., 2020). The primary drawbacks of UAS SfM as 

compared to lidar for mapping snow depth are that the DSM needs to be georeferenced using ground control points (GCPs) 

with known coordinates and may require significant manual steps (Tonkin et al., 2016; Meyer and Skiles, 2019), although 

new techniques are emerging that may reduce field data collection time (Gabrlik et al., 2019; Meyer and Skiles, 2019). 

Dense canopy or vegetation can reduce performance when snow compresses the vegetation relative to the snow-off imagery 175 

or when above-canopy vegetation is falsely interpreted to be the snow surface (Bühler et al., 2017; Cimoli et al., 2017; De 

Michele et al., 2016; Fernandes et al., 2018; Harder et al., 2016; Nolan et al., 2015). Canopy effects impact SfM snow 

mapping capability in regions where snowpacks are masked by dense forest canopies. The inability to sense portions of the 

ground/snow surface beneath dense canopies results in fine scale variations in snow depth, such as tree wells, not being 

accurately represented in UAS SfM snow depth products (Harder et al., 2020).    180 

 

UAS-based lidar has been widely used in forest-related research (e.g. canopy height and forest change detection) (Wallace et 

al., 2012; 2014) and appears to offer the advantages of both the UAS SfM and lidar for snow depth mapping. A UAS 

platform also eliminates many of the drawbacks that arise from ALS and TLS systems discussed earlier. However, to date 

there is only one previous study that estimates snow depth using UAS-based lidar (Harder et al., 2020).  The purpose of this 185 

paper is to assess the ability of a UAS platform to provide snow depth using a modest cost UAS-based lidar. The pilot study 

described here serves as a proof-of-concept for a high vertical resolution snowpack dataset production in open terrain and 

forests in the north-eastern United States. Snow depth magnitude and variability are mapped and analyzed for differences by 

land use and terrain.  The study highlights results from the 2019 winter season that provide insights as to the potential for 

UAS lidar mapping of snow depth as well as details about the system, its deployment and operational and validation 190 

challenges. We explore the capability of UAS through the comparison of contemporary field-based snow depth 

measurements collected in a landscape containing fields and forests. 
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Figure 1. 2015 imagery of Thompson Farm, Durham NH showing both forest and field region with lidar flight lines (top). Ground 210 
imagery (a to f), collected in December 2019, locations are noted on the top map and show the surface and leaf off forest conditions 
(bottom panels).  

2 Site, Data, and Methods 

2.1 Site 

The test flights were conducted at the University of New Hampshire Thompson Farm Research Station in southeast New 215 

Hampshire, United States (N 43.10892°, W 70.94853°, 35 m above sea level, ASL), which was chosen for its mixed 

hardwood forest and open field land covers (Burakowski et al., 2015; Burakowski et al., 2018) that are characteristic of the 

region (Figure 1). Thompson Farm has an area of 0.83 km2 and little topographic relief (Perron et al., 2004). The agricultural 

fields are actively managed for pasture grass. The mixed deciduous and coniferous forest is composed primarily of white 

pine (Pinus strobus), northern red oak (Quercus rubra), red maple (Acer rubrum), shagbark hickory (Carya ovata), and 220 

white oak (Quercus alba) (Perron et al., 2004). There are two “wood roads” that run north-south through the pasture and into 

the western forest section. 
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2.2 UAS Laser Scanning 225 

A series of UAS lidar surveys were conducted over approximately a 0.1 km2 (9.8 hectares) area (430 by 225 m) within the 

farm during the winter of 2018/2019 (Figure 1). Here, we focus on the snow-on flight conducted on January 23, 2019 and 

the snow-off flight conducted on April 11, 2019. We selected the January 23 flight because it had snowed approximately 

11.5 cm with 1.8 cm of snow water equivalent from January 19th to January 20th and the air temperature was persistently 

below freezing prior to the flight. For the April 11, 2019 snow-off flight, the deciduous component of the canopy and 230 

understory were both dormant.   

 

We used an Eagle X8 UAS manufactured by UAV America, which carried a small, light-weight lidar sensor (Velodyne 

VLP-16) suitable for UAS deployment (see Table S1 in supporting information).. The VLP-16 is a 16-channel lidar sensor 

with a 30-degree vertical field of view with rotating lasers that are spaced evenly between -15 to +15 degrees. Each channel 235 

rotates to provide a horizontal field of view of 360-degrees. The VLP-16 collects up to 300,000 points per second with an 

accuracy of +/- 3 cm at a range of 100 m. The sensor was mounted with the vertical field of view parallel with the ground. 

The payload is equipped with an Applanix APX-15 UAV inertial navigation system (INS), which has 2-5 cm positional, 

0.025-degree roll and pitch, and 0.08-degree true heading uncertainties following post-processing. The INS has a 

measurement rate of 200 Hz, allowing for a timestamp to associate each lidar pulse with the closest data for latitude, 240 

longitude, altitude, and perspective information (roll/pitch/yaw), which is required for georeferencing returns.  

 

Flights were conducted to maximize spatial coverage while conserving batteries due to the limited flight time of the Eagle 

X8 (approx. 9 minutes flight time to discharge to 3.6 V per cell).  Because of the limited flight time, flights were conducted 

at an altitude of 81 m for greater spatial coverage and multiple return flight lines were necessary for battery exchanges 245 

(Figure 1). Automated flights were conducted using UgCS flight planning software. Flight speed was 7 m/s, with a total of 

12 parallel flight lines with targeted overlap of 40 percent. Because of degrading accuracy at distances >100 m with the 

VLP-16, returns acquired outside of +/- 30 degrees of nadir view angles in the horizontal field of view were filtered to limit 

target distance and improve overall accuracy. 

 250 

Applanix APX-15 INS data were post-processed to a Smoothed Best-Estimate Trajectory (SBET) file using POSPac MMS 

UAV (v. 8.2.1), resulting in approximately 3 cm positional accuracy for both the snow-on and snow-off flights. Lidar returns 

were matched to post-processed INS data and georeferenced using Headwall Photonics, Inc.’s Lidar Tools software. 

Boresighting calibration was performed using returns from the first two flight lines that were collected in antiparallel 

directions. A roll offset was determined using 10 m cross sections along the flight lines over flat terrain, and a pitch offset 255 

was determined using 1 m cross sections across the flight lines over terrain with moderate relief (see Figure S2 in supporting 

information). Resulting LAS (LASer) point clouds were generated for the entire study area and projected in WGS84 UTM 

Zone 19N (EPSG 32619). Flight and filtering parameters of the raw point cloud resulted in return densities of approximately 

150 returns/m2 for each of the two flights.  

2.3 Lidar Classification and Gridding 260 

Three-dimensional point clouds were processed using the progressive morphological filter algorithm (PMF), in the lidR 

package (https://github.com/Jean-Romain/lidR) of R (v. 3.4, Team, 2018) to identify ground returns. The PMF operates 

iteratively on sets of two parameters, window size and elevation thresholds to erode and dilate point cloud data sets to 

estimate surface topography as an approach to filter out non-ground returns (i.e. trees, shrubs, and noise) from point cloud 

data sets (Zhang et al., 2003). For ground classification, point clouds were chunked into 100 m square tiles with a 15 m 265 

buffer on all sides using catalog options in lidR to ensure returns near tile edges were classified. Processing was distributed 
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across 8 computing cores to improve efficiency. PMF was parameterized using a set of window sizes of 1, 3, 5, and 9 m, and 

elevation thresholds of 0.2, 1.5, 3, and 7 m, which were determined by varying value sets and assessing digital terrain 

models (DTMs) to determine the parameter sets that produced a visually smooth surface over a dense grid (in sensu Muir et 

al., 2017). Following ground classification for each tile, returns within the 15 m tile buffers were removed, and all resulting 300 

100 m square ground classified tiles were merged. The resulting point clouds for each data set included both the classified 

ground returns and the non-ground returns. Snow-on and snow-off ground point clouds were gridded at 0.1, 0.2, 0.4, 0.5, and 

1.0 m spatial resolutions using the average of all grid points within each grid cell (Currier et al., 2019). Gridded products for 

each data set were forced to the same coordinate grid to generate DTMs as raster files. 

2.4 Slope and Vegetation Cover Classification and Analysis 305 

The snow-off DTM was used to develop a 1 m resolution map of slope (Horn, 1981). Vegetation cover type (field/forest) 

was determined from the known boundaries of field and forest.  The forested area was further classified as coniferous or 

deciduous for the study region using the following methodology (Figure 1). Within the forested area (Figure 1), a Canopy 

Height Model (CHM) was used to distinguish the intact upper canopy from other forest cover using our snow-off survey, 

collected with leaf off in the spring (Sullivan et al., 2017). The CHM was generated by subtracting the DTM produced using 310 

ground-classified points from the DSM produced using all lidar points. This results in a digital model consisting solely of 

canopy heights with no terrain or topography.  The CHM generation used raster images with a 1 m resolution.  A 3 by 3 

maximum convolve filter was used to enhance the edges of canopy crowns and expand smaller regions that might have just 

one pixel of an intact canopy or a hole in a larger canopy (Palace et al., 2008).  A 15 m threshold was used to differentiate 

between the upper level intact coniferous canopy. CHM pixels that were below this threshold were deemed deciduous 315 

canopies (see Figure S3 in supporting information for intermediate figure). The 5.6 ha forested area has a forest type that 

is 65% deciduous and 35% coniferous.   

 

Once the vegetation forest type was classified, the raster binary image was vectorized.  Within the forest and field regions of 

our study, a subsample was created from the entire image of 5000 random points in the field and 5000 random points in each 320 

of the eastern and western forested areas (Palace et al., 2017).  At each of these random points, slope, vegetation type (field, 

deciduous, coniferous), snow depth, and snow depth confidence interval values were extracted.  Because of missing values 

in the raster images, not all random points extracted values. Slope was assigned to one of three categories: 0-10 degrees, 10-

20 degrees, and greater than 20 degrees. Because the extracted datasets (i.e., snow depth, confidence interval, and slope) 

were not normally distributed, the non-parametric Steel-Dwass Method test was used to test for differences. This non-325 

parametric method is useful when sample numbers are large and groups are small, because it allows type I errors to be 

controlled (Dolgun and Demirhan, 2017).  

2.5 In Situ Observations 

A magnaprobe (Sturm and Holmgren, 2018) was used to compare to the UAS lidar surveys (hereafter noted as ALS 

measurements) over two transects. The first transect consisted of 12 sample locations in the field and 5 locations in the 330 

eastern forest of our study site. The second transect consisted of 11 sample locations in the western forest.  Sample locations 

were separated by approximately 10 m. The field transect follows the prevailing westerly wind direction with its west side at 

the foot of a modest depression (approximately 3-4 m below the land further to the west) and the east side transitioning into 

a wooded area. Following (Harder et al. 2016) and (Bühler et al. 2016), each sample location includes 5 samples in a cross 

pattern with the four ordinal directions sampled approximately 20 cm from the center sampling location in the cross. The 335 

five samples are used to provide a measure of snow depth central tendency and variation over a 0.4 x 0.4 m pixel. Because 

the magnaprobe GPS has an absolute accuracy of 8 m, a Trimble© Geo7X GNSS Positioning Unit with Zephr™ antenna was 
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used to collect each sampling location’s center point with an estimated horizontal uncertainty of 2.51cm (standard deviation 355 

! 0.95 cm) and 4.17cm (σ 4.60 cm) for the field and forest, respectively after differential correction. Along the same forest 

and field transects, a federal snow tube sampler was used to collect a single sample of snow depth and snow water equivalent  

(SWE) at each magnaprobe sample location for a total of 12 field samples and 16 forest samples. SWE was measured by 

inserting the aluminium tube vertically into the snowpack and a core was extracted and weighed using a spring scale. 

 360 

An independent study collected soil frost depth from three locations at the Thompson Farm Research Observatory using 

Gandahl-Cold Regions Research and Engineering Laboratory (CRREL) style frost tubes. The frost tubes have flexible, 

polyethylene inner tubing filled with methylene blue dye whose color change is easy to differentiate when extruded from ice 

(Gandahl 1957). A nylon string housed inside the polyethylene tubing affixes ice during periods of thaw. The outer tubing 

consists of PVC pipe installed between 0.4 to 0.5 m below soil surface (Ricard et al., 1976; Sharratt and McCool, 2005). 365 

Prior to the January 19th and 20th, 2019 snowfall event, soil frost was 23.5 to 25.5 cm in the field and 5.5 to 8.5 cm in the 

west forest.  

2.6 Snow Depth Uncertainty Assessment 

The snow depth accuracy was assessed by comparing the lidar snow depth measurements to the magnaprobe measurements. 

Here, accuracy is the measure of the agreement of the lidar snow depth measurements relative to the in-situ measurements 370 

(Eberhard et al., 2020; Maune and Nayegandhi, 2018). Error statistics were calculated and the results were summarized by 

forest and field locations. At each magnaprobe location, the average and standard deviation of the five magnaprobe samples 

were calculated. The average lidar snow depth was determined for a 0.4 x 0.4 m cell centered on the center magnaprobe 

location.  The mean absolute difference (MAD) and root mean square deviation (RMSD) were used to characterize the 

differences between the magnaprobe snow depths and the lidar snow depths. 375 

 

The one-sided width of the 95% confidence limits for each cell’s snow depth is a measure of the lidar snow depth variability. 

Confidence intervals were calculated using a cell’s pooled standard deviation, the number of lidar returns, and the pooled 

degrees of freedom (Helsel and Hirsh, 1992) to calculate. A cell’s snow depth pooled standard deviation !! of the snow-on 

and snow-off elevations was calculated as  380 

!! = !!"! + !!""!              (1) 

where !!" and !!"" are the standard deviation of the snow-on and snow-off lidar return elevations, respectively. This pooled 

standard deviation is a measure of the variability of the snow-on and snow-off lidar returns within a grid cell. This variability 

depends on the lidar instrument’s relative accuracy (Maune and Nayegandhi, 2018), which includes intra-swatch accuracy 

(i.e., precision or repeatability of measurements) and inter-swath accuracy (i.e., differences in elevations between 385 

overlapping swaths), as well as surface elevation variations.  The contribution from the individual sources of variability was 

not assessed. 

3 Results and discussion 

3.1 Snow Depth Survey 

The snow-on and snow-off lidar ground returns yielded an average point cloud density of 90 and 364 points/m2 in the forest 390 

and field, respectively, with 6.7% of the 1 m2 forest cells and 0.03% of the 1 m2 field cells having less than 5 point/m2 

(Figure 2). There is a wide range of the point cloud densities (Figure 2b). The highest point cloud density occurred for those 

cells sampled by both the regular flight lines and the multiple return flight lines conducted for the three battery exchanges. 
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The vast majority of field cells (82%) have more than 100 points/m2. Only 1% of the field cells had less than 25 points/m2 

and most of those cells were in shrubbery or dense vegetation surrounding the small pond in the center of the study site 430 

(Figure 1). In contrast, 41% of the forest cells had more than 100 points/m2 and nearly 20% of the forest cells had less than 

25 points/m2 with 8% having fewer than 10 points/m2 (Figure 2b). Only 0.086% and 0.95% of the 1 m resolution field and 

forest cells, respectively, had no ground returns. The number of points per cell decreases with decreasing cell size (Figure 

2a). In the field, reducing the gridded resolution from 1 m to 0.5 m lowers the mean cell return count to 91 points per cell on 

average. Thus a 0.5 m field cell has approximately the same number of returns as a 1 m forest cell. At a 0.2 m spatial 435 

resolution, the mean number of ground returns is 14.6 and 3.6 in the field and forest, respectively.  

 

 

Figure 2. (a) Average lidar point cloud density of the ground returns versus cell size by land cover, and snow-on and snow-off state (top). 
(b) Probability density function for the number of lidar ground returns by square meter for the forest (gray) and the field (white) (bottom). 440 

 

3.2 Lidar and In Situ Snow Depth Comparison 

Based on the magnaprobe snow depth and UAS-mapped snow depth measurements, the accuracy of lidar snow depth 

measurements differed between field and forest cells (Figure 3). In the field, the mean snow depth from the magnaprobe 

(12.2 cm ± 0.56 cm) was only slightly greater than that from the lidar (11.2 cm ± 0.72 cm) and the MAD and RMSD values 445 

were 0.96 cm and 1.22 cm, respectively. In the forest, the mean snow depth from the magnaprobe (15.2 cm ± 2.3 cm) was 

twice as large as the lidar snow depths (7.8 cm ± 6.3 cm) and the MAD and RMSD were 9.6 cm and 10.5 cm, respectively. 

The mean snow depth from the snow tube was (12.9 cm ± 0.71 cm) and (13.1 cm ± 1.9 cm) in the field and forest, 

respectively. There is a notable low bias in the lidar forest snow depth relative to the magnaprobe and snow tube for west 

forest in particular with exception of one site.  450 

 

To provide insight to differences between the forest and field observations, mean height profiles were calculated for a 25 m2 

square region centered on forest and field study plots from lidar data (Figure 4). To do this, all lidar returns were extracted 

from the bounding box of each plot, then the mean elevation of ground returns was calculated within each plot. Return 

height profiles for each plot were determined by subtracting the mean ground elevation of the plot from each return, then the 455 

normalized return elevations were binned in 0.1 m height increments. Within the forests, an average of 2142 and 2889 

returns were classified as ground and non-ground in snow-free conditions for each 25 m2 plot, respectively. Snow-on 

conditions had a comparable number of ground returns (2218), but fewer non-ground returns (1721) In field plots, an 

average of 5666 ground returns and 154 non-ground returns in snow-free conditions were obtained per 25 m2 plot, with 7567 
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ground returns and 25 non-ground returns in snow-on conditions. Figure 4 also shows that there is a greater range of ground 

return elevations in the forest as compared to the field. In forest plots, ground return elevations had an average standard 475 

deviation of 0.157 m and 0.154 m in snow-free and snow-on conditions, respectively, while in field plots, ground return 

elevations had standard deviations of 0.058 m and 0.050 m in snow-free and snow-on conditions, respectively.  

 

 

Figure 3. Comparison between the magnaprobe (gray fill) and snow tube (black fill) versus the lidar snow depth measurements by 480 
location. The mean and 95% confidence intervals were calculated using the five magnaprobe snow depths and the lidar snow depths 
averaged over a 0.4 x 0.4 m grid cell. Single snow tube snow depth measurements are shown without confidence intervals. 

 

 

Figure 4. Mean height profiles for all ground (green) and non-ground (blue) returns within a 5 m x 5 m region centered on each transect 485 
plot in snow-free conditions (a, b) and snow-on conditions (c, d) in forest (a, c) and field (b, d) study plots. 
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3.3 Snow Depth Maps from UAS Lidar 

The UAS-mapped snow depth, mapped by subtracting snow-off DTMs from snow-on DTMs, reveals a shallow snowpack 

whose depth ranges from less than 2 cm to over 18 cm (Figure 5). The mean lidar snow depth was 10.3 cm in the field and 

6.0 cm in the forest. Despite the shallow conditions, spatially coherent patterns are readily discernible. The field snowpack 500 

depth has higher spatial variability than the west forest snowpack and more spatial organization. In the field, the deepest 

snow is in the low-lying northeast areas that are sheltered from westerly winds. A relatively moderate and consistent 

snowpack occurs in southern part of the east field and west of the small pond. The shallowest snowpack is found in the 

center portion of the field, which is slightly elevated and, unlike most of the field, was not mowed. Lower snow depth at the 

forest edge distinguishes the field to forest transition. A non-parametric Steel-Dwass test found significant variation for the 505 

mean snow depth among the two forest types and field (p < 0.0001) (Figure 6a). A pairwise Steel-Dwass test showed that 

snow depths were significantly different between the three pairs of field and forest types (p < 0.0001).  When comparing just 

field and forest as categories, the test also found significant differences for snow depth (p < 0.0001). Snow depth was also 

determined to be significantly different among the three slope group categories using the Steel-Dwass test where regions 

with a limited slope (Group 1) had more decidedly different snow than steeper regions (p < 0.0001) (Figure 6b).   510 

 

The one-sided confidence interval values of the mean snow depth estimate are remarkably consistent in the field and 

typically are between 0.5 to 1 cm regardless of snow depth (Figure 5b). Modestly larger confidence intervals occur adjacent 

to the north-south road where the fields were not mowed prior to winter as well as the northern and southern extents of the 

flight lines likely due to the reduced sampling density. The forest had an average one-sided confidence interval of 3.5 cm, 515 

which is considerably higher than the field. Where the forest is predominantly comprised of deciduous trees, the typical one-

sided confidence intervals of the mean snow depth were as low as 1 to 2 cm. The largest one-sided confidence interval 

values occur in the middle of the field where there is dense shrubbery, at the edge of the fields, and in clusters within the 

forest where the forest sections are dominated by coniferous trees. The nexus of flight lines in the take-off and landing area 

resulted in a local area with very high confidence. A non-parametric Steel-Dwass test found significant variation for 520 

confidence intervals of the mean snow depth among the two forest types and field (p < 0.0001) (Figure 6c). A pairwise Steel-

Dwass test showed that confidence intervals were significantly different between the three pairs of field and forest types and 

(p < 0.0001). Confidence intervals were also significantly different among the three slope categories as determined using a 

Steel-Dwass test  (p < 0.0001) (Figure 6d).  

 525 

3.4 Point Cloud Density and Spatial Resolution  

Confidence intervals for the mean snow depths by grid cell were examined in light of the point cloud density and the spatial 

resolution at which lidar returns were aggregated. The confidence interval width for a mean snow depth of a 1 m2 area 

increases dramatically as the lidar point cloud density increases (Figure 7a). Except for the cells with fewer than 10 point/m2, 

forest cells have larger confidence intervals for the mean depths than field cells for a given sample size. When the density 530 

exceeds 25 point/m2 in the field and 50 point/m2 in the forest, confidence intervals are typically 2 cm. The cells with the 

highest point cloud densities have one-sided confidence intervals of about 1 and 1.5 cm for the field and forest cells, 

respectively. The field cells with more than 50 point/m2 did not have noticeably smaller confidence intervals, but the 

increased density did reduce the number of cells with anomalously small confidence intervals. Given the high lidar point 

cloud density for the field cells, it is possible that reasonable estimates of snow depth can be made at scales finer than 1 m 535 

(Figure 5b). 
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Figure 5. Average (top) snow depth values, (middle) one sided confidence intervals, and (bottom) topography and forest cover type. Snow 
depth and confidence intervals calculated from the snow-on and snow-off lidar point clouds for 1 m2 cells at Thompson Farm, Durham, 
NH. Topography and forest cover type determined from snow-off lidar point clouds on snow-off flight for 1 m2 cells conducted on April 
11, 2019. 570 
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Figure 6. Snow depths (a,b) and their one sided confidence intervals (c,d) from the random sample points of the field and forest at 
Thompson Farm, Durham, NH on January 23, 2019 from the individual cells for 1 m2 cells by vegetation cover (a,c) and slope group (b,d). 
Boxplots show the lower quartile, median, upper quartile, and whiskers with the median value noted. Because of missing values in the 
raster images, not all random points extracted values and resulted in different numbers of samples points for vegetation cover classes.  575 
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Figure 5. One sided confidence intervals of the mean snow depth values in the field and forest at Thompson Farm, Durham, NH on 625 
January 23, 2019 from the individual cells for 1 m2 cells by land cover and point cloud density (a) and for grid resolutions ranging 0.1 to 5 
m (b). Boxplots show the lower quartile, median, upper quartile, and whiskers. 
 

In addition to the lidar point cloud density, the ability to capture the snow depth also depends on the ground surface 

variability within a cell as well as the lidar performance.  For this site and its shallow snowpack, the local scale variability of 630 

the ground surface elevation was estimated by calculating the standard deviation of the lidar elevation values and found to 

depend primarily on the cell size and, to a more limited extent, on land cover and snow cover (Figure 8a). Snow cover 

reduces the within cell variability in field by about 1 cm, but has a limited effect in the forest. It is possible that the modest 

snowpack was able to flatten the higher grass in the field, while the forest’s vegetation and terrain features that dominate the 

within cell variability are only minimally compacted by the snow. Within the 1 m grid cells, snow depth variability was 635 

much lower in the field than the forest (Figure 6b). Both distributions had a positive skew. Typical standard deviations of the 

lidar surface elevation values within a 10 cm cell are on the order of 1.5 and 2 cm for the field and forest, respectively. That 

variability doubles for a 20 cm cell. The within cell variability increases gradually to about 3 to 4 cm in the field, and to 

about 6 cm in the forest.  

 640 

Thus, confidence intervals largely depend on the point per cell in the lidar cloud because the standard deviation of a cell’s 

surface elevation is relatively constant for spatial scales from 0.5 to 1 m (Figure 8a).  In the field, reducing the cell size from 

1 m to 0.5 m still yields about 100 points/m2 and provides snow depth estimates within  +/- 1.5 cm.  Because the forest cells 

require a higher ground return density to capture these snow depths within a 1 cm precision, any reduction in cell size below 

1 m greatly increase the cell mean snow depth’s confidence intervals.  645 
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Figure 8. Lidar surface elevation standard deviations by (a) cell size and land cover (top). (b) Probability density function of the pooled 660 
snow depth standard deviation for each 1 m2 cell in the forest (gray) and field (hashed) (bottom).. 

4. Challenges and Recommended Improvements to UAS Lidar Snow Depth Mapping 

Despite UAS-based lidar’s increasing use in the natural sciences and capacity to make high resolution snow maps, there are 

many operational and technical challenges that require consideration prior to successfully conducting UAS-based lidar 

surveys that produce research grade, high-resolution snow depth data. Even though the UAVs are modest in size (i.e., 665 

weighing less than 25 kg), the hardware and supporting software analysis tools can be expensive and require trained pilots 

and lidar data analysis specialists. In this section, we present some general considerations regarding validation of the lidar 

snow depth maps, selection and deployment of a lidar sensor on a UAV for snow depth mapping as well as specific insights 

that we experienced when using our system. 

 670 

4.1 In Situ and UAS Sampling 

While UAS-based lidar surveys can measure snow depth to within a centimeter at high spatial resolutions, validation of 

those observations is challenging. A time consuming collection of high accuracy GNSS survey points was required to co-

locate magnaprobe and lidar observations. Surveying in sample locations prior to the winter season might reduce this effort. 

It is also challenging to make in situ snow depth measurements that provide centimeter accuracy. In this study, the 675 

magnaprobe in situ snow depth observations made in the forest were considerably higher than the lidar observations as 

compared to the open field where the magnaprobe and lidar measurements were within 1 cm. Previous studies also found 

that snow depth observations from ALS measurements are biased lower than those from snow-probe observations in the 

forest (Hopkinson et al., 2004, Currier et al., 2019; Harder et al., 2020). In past studies, the causes of these differences have 

been partially attributed to the snow probe’s ability to penetrate the soil and vegetation, human observers tending to make 680 

snow depth measurements in locations with relatively high snow (Sturm and Holmgren, 2018) and the reduced accuracy of 

the GNSS. Our study suggests additional issues in forest sampling including enhanced terrain variability in forested areas 

relative to adjacent field areas and reduced lidar returns in forested areas as compared to field areas combine with sampling 

issues to contribute to the higher uncertainty in the forest snow depths observed in our study. 

 685 

In this study, the cold temperatures and snow-free conditions prior to the January 19th and 20th snowfall event resulted in 

deeper frozen soils (23.5 to 25.5 cm) in the field and shallower soil frost depth (5.5 to 8.5 cm) in the west forest, which 

would have limited the probe penetration into soils at both sites. However, the forest has a 1-4 cm thick organic leaf litter 
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layer that may have been penetrated by the magnaprobe. The average Federal snow sampler tube depths (13.1 cm) were not 700 

as deep as the magna probe (15.2 cm) and thus more closely match the lidar snow depth (7.8 cm; see Figure 3), though a 

considerable low bias (~5.3 cm) similar to that found by Harder et al. (2020) persists in the lidar snow depth relative to the 

federal snow sampler snow depths. Additional factors such as downed logs, thick understory, and fine-scale topographic 

features (ie: small boulders and hummocky terrain) as well as reduced ground return density may contribute to the lidar snow 

depth errors in a forest, whereas these factors are absent in the field.  705 

 

An improved understanding of forest canopies impacts on lidar returns is also warranted. Recent work has demonstrated that 

lidar pulses are “lost” at a much higher rate in forest canopies than open ground terrain due to interception, absorption, and 

scattering through canopy transmission, with the loss ratio largely influenced by the range of the target from the sensor (Liu 

et al., 2020). The data that we presented in this paper were acquired using constant flight speed and at consistent altitude 710 

above target areas. Because of this, it is feasible that forest canopy conditions and variable understory vegetation density 

may have resulted in lost pulses and increased uncertainty in our data set. Indeed, we did observe lower return densities for 

both ground and all returns in forested areas in our data set (Figure 4).  

 

One possible outcome of these lidar sampling issues in forests was a significant difference in snow depth confidence 715 

intervals between field and forest types and among slope groups. Confidence intervals were highest in conifer stands and on 

steep slopes and lowest in the field. While this result is not entirely surprising, it is likely partially the result of lower ground 

return density in forests due to the combined effects of lost pulses and canopy occlusion in forested areas. Additionally, this 

observation may be driven by increased variability in snow depth due to pockets of duff and woody debris, and due to higher 

variability in subnivean terrain in the forested areas of the study site. Areas of high terrain relief are expected to have more 720 

variability in ground return elevations over shorter distances, which would partially drive higher confidence intervals of 

ground surface elevation for pixels located in high relief areas. High relief areas of the study site were more common in 

forested areas of the study site, and the uncertainty resulting around high slopes also carries through snow depth estimation. 

Snow depth was significantly different between field and forested areas, as well as between conifer and deciduous forest 

types, despite the relatively high uncertainty. This indicates the possible influence of tree canopies on snow accumulation 725 

due to enhanced snow interception in forests, and particularly in conifer stands, but also could be the result of an under-

sampled ground surface in forested areas relative to field areas. Snow depth also was significantly different among the three 

slope groups, possibly due to wind-driven snow displacement and sloughing on slopes during accumulation.  

 

4.2 Flight Planning  730 

Because larger UAVs that can carry heavier payloads have challenges that may differ from small UAVs, a well-formulated 

flight plan that addresses weather conditions, logistics of flying at proposed site, flight lines, UAS equipment, and personnel 

is clearly needed. Weather impacts operations. UAS surveys cannot be conducted when there is any type of precipitation or 

in dense fog/clouds because moisture can cause electronic components to malfunction and moisture build-up on the 

propellers can also adversely affect lift production. Depending on the UAV, wind speeds exceeding 7 to 10 m/s may make 735 

flights more difficult. This project’s Eagle XF high lift capacity UAS cannot be flown comfortably in winds greater than 8 

m/s. At the study site, wind speeds often exceeded this threshold in the days immediately following snowfall except early in 

the morning. High wind speeds can also significantly reduce battery life as well as impact the accuracy of sensor 

observations. Low air temperatures can cause batteries to rapidly discharge. For winter UAS surveys, all flight and 

operational batteries were kept warm in a building, vehicle, or insulated cooler prior to the UAS survey. This also applies to 740 

the computer used to upload flight lines and relay telemetry information. A MIL-STD-810 certified Panasonic Toughbook 
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was used in this study to handle the anticipated cold temperatures. Additionally, cold temperatures can severely limit the 

dexterity of the person manipulating the flight controls.  

  

High lift UAVs capable of carrying a lidar sensor package have the potential to cause significant damage to person and 745 

property. The selection of a survey site not only needs to meet the scientific objectives of the UAV survey, but also must 

have the proper attributes for safe and legal UAV operation including permission to operate the UAV at the site. Visual line 

of sight (VLOS) of the UAV needs to be maintained throughout the flight. When it is difficult to maintain VLOS (e.g., flying 

over forested or mountainous sites), spotters can be used if there is constant two-way communication between the spotters 

and the person operating the flight controls. For this study, an on-site, walk up tower with a spotter was necessary while the 750 

UAV was flown over the forest.  

  

The deployment of a UAV lidar system requires additional flight patterns designed for boresighting to ensure that point 

clouds are aligned (Painter et al., 2016). Provided that GNSS data are accurate, the most common reason for misalignment of 

point clouds is boresight angle errors (Li et al., 2019). Boresighting is the process of calculating the differences between 755 

lidar sensor and IMU roll, pitch, and yaw angle measurements to correct those errors in point clouds. Due to battery flight 

time limitations, we were unable to complete the flight pattern that is commonly used for boresighting alignment. Because of 

this, we leveraged our first two antiparallel flight lines for boresighting calibration. Additional details on boresighting 

calibration, our technique due to the flight time limitations, and examples of roll and pitch alignment errors observed during 

this field campaign appear in the supplemental materials. 760 

  

4.3 UAS Sampling Strategies 

While lidar calibration and data post-processing requirements are quite similar for UAS and airborne surveys, the UAS lidar 

surveys presented in this study have key differences from previous ALS surveys. As noted above, UAS flight durations are 

considerably shorter, resulting in limited spatial coverage as compared to previous ALS snow depth surveys. An advantage 765 

of UAS over ALS surveys is that the average point cloud density is much higher and has fewer missing pixels in the forest. 

This study’s sampling densities and the proportion of areas with no ground returns are quite different from previous airborne 

lidar SD studies. This study had ground returns of 90 and 364 points/m2 in the forest and field, respectively, and had no 

ground returns in only 0.086% and 0.95% of the 1 m resolution field and forest cells, respectively. In contrast, ALS surveys 

typically report surface model densities between 8 to 16 points/m2 (Broxton et al., 2015; 2019; Currier et al., 2019; Kirchner 770 

et al., 2014) and ground returns between 3 and 6 points/m2 (Broxton et al., 2019; Kirchner et al., 2014). ALS derived snow 

depth maps have a much greater proportion of areas that are masked due to no ground returns, particularly under trees, with 

masking areas ranging from less to 10% to more than 23% (Harpold et al., 2014; Mazzotti et al., 2019). While gap filling is 

possible, interpolation using measured snow depth values to fill under tree can overestimate snow depth (Zheng et al., 2016). 

Based on our work comparing field and forest lidar collections from a UAS, we suggest testing alternative flight plans, 775 

including reduced flight speed over forest canopies to account for lost pulses and canopy returns to produce ground return 

density that is comparable to field ground return density and to further reduce the number of missing pixels in an acquisition 

area.  

 

A well understood challenge exists when developing a spatial sampling strategy in which, for given resources, there is a 780 

trade-off between spatial extent and sampling density (Clark et al. 2011). Increasing flight altitude can expand the spatial 

extent of an aerial survey. However, flying at higher altitudes results in a decreased point density. In theory, a higher point 

density could be achieved by slower speeds and increased swath overlap. The targeted spatial extent of an aerial survey 

dictates whether a manned aircraft or a UAV platform should be used. If the targeted area has a limited domain then using a 
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manned airborne platform is probably overkill and inefficient for many studies and the use of a UAV would be more cost 785 

effective. However, as the domain increases in size, additional batteries would be required, much of the battery power would 

be used to reach the outer limits of the domain, and the ability to maintain the required line of sight could be difficult. Thus, 

there are end-members for survey site or regions where it is self-evident as to whether a UAV or an airborne platform should 

be used, but that leaves considerable gray areas where an appropriate choice of UAV platform with a well designed mission 

could stretch the domain.  Future research and technological advances are needed to offer insights for snow science 790 

observation platforms and trade-offs.  

5. Conclusions 

This paper describes and demonstrates a UAV lidar system for snow depth mapping using commercially available 

components. The UAS was assessed in a mixed deciduous and coniferous forest and open field with little relief over a thin 

snowpack. The UAS includes an Eagle X8 UAV manufactured by UAV America, a small, light-weight VLP-16 lidar 795 

(Velodyne, Inc.), and an Applanix APX-15 UAV INS. The INS has a measurement rate of 200 Hz, allowing returns to be 

georeferenced without ground control points. Data, post-processed to a SBET file, resulted in approximately 3 cm positional 

accuracy. Flights were conducted at an altitude of 81 m and flight speed of 7 m/s, with a total of 12 parallel flight lines with 

targeted overlap of 40 percent. Once the point clouds were classified as ground and non-ground points, the flights yielded an 

average of 90 and 364 ground points/m2 in a forest canopy and field, respectively, with 6.7% of the forest and 0.03% of the 800 

field cells having less than 5 point/m2.   

 

The snow depth map, generated by subtracting snow-off from snow-on DTMs derived from the resultant point clouds, 

reveals a snowpack whose depth ranges from less than 2 cm to over 18 cm. For both snow depth and confidence intervals, 

differences were found between vegetation cover types and slope, indicating complex snow-vegetation interaction that can 805 

be observed by UAV lidar return numbers. For 0.4 x 0.4 m cells, the in situ and lidar mean snow depths in the field were 

nearly identical with the MAD and RMSD values of approximately 1 cm. In the forest, the in situ mean snow depths from a 

magnaprobe were twice as large as the lidar snow depths with a correspondingly high RMSD. These forest differences have 

numerous possible explanations; 1) the snow probe’s ability to penetrate the soil and vegetation resulting in random errors, 

2) higher uncertainty in areas with canopy cover and areas of high terrain relief that occur more commonly in forested areas, 810 

3) reduced total and ground return density in forests due to occlusion and lost pulses. Nevertheless, the results support 

previous findings indicating that there are limits to lidar snow depth validation at high horizontal and vertical spatial 

resolutions in some land covers and conditions.  Mapped at 1 m2 cells, a 0.5 to 1 cm snow depth confidence interval was 

achieved consistently in the field with confidence intervals increasing to median values of 4.0 cm in the deciduous forest and 

5.9 cm in the coniferous forest.  In the field, snow depth can be mapped at finer spatial resolutions with limited reduction in 815 

performance when reducing the cell size to 0.5 x 0.5 m and still achieving snow depth precision of less than 5 cm for a 0.2 x 

0.2 m. Performance depends on both the point cloud density, which can be increased or decreased by changing the flight 

plan, and the within cell variability that depends on site surface conditions. 
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-In many regions, shallow snowpacks, i.e., snow depth less than 20 cm, are typical throughout the winter. 

Even in mountainous regions with deep seasonal snowpacks, snowpacks can be shallow and nonuniform 

during the accumulation and melt periods as well as in areas with high winds. Shallow snowpacks impact 

many hydrologic, agricultural, and ecosystem processes.  Shallow snowpack characteristics effect the 

location and condition of suitable habitats in animal populations (Friggens et al., 2018). Meltwaters from 

shallow snowpacks can be a major contributor to streamflow and spring floods in many regions (Tuttle et 

al., 2017) and intensify overland nutrient transport and soil erosion (Seyfried et al.,  1990; Singh et al., 

2009). Thin, ephemeral snowpacks allow the underlying soils to freeze more readily in the winter because 

they lack the insulating properties of deeper packs and the shallower snow’s higher albedo may increase 

deep-freezing (Starkloff et al. 2017). Soil frost severity impacts soil respiration, carbon sequestration, 

nutrient retention, and microbial communities as well as a plant root health and tree growth (Aase and 

Siddoway, 1979; Isard and Schaetzel, 1998; Monson et al., 2006; Henry, 2008; Aanderud et al., 2013; 

Tucker et al., 2016; Sorensen et al., 2018; Reinmann and Templer, 2018). When the frozen soils impede 

meltwater infiltration, flooding and erosion may increase (Watanabe and Osada, 2016). Winter recreation is 

also affected by shallow snowpacks. In some regions, minimum snow depth restrictions for recreational 

activities are required (e.g., 30.5 cm for snowmobiling on US Forest Service lands) or being considered to 

reduce impacts to sensitive ecosystems (Hatchett and Eisen, 2019).  

 

Shallow snowpacks are highly dynamic, accumulating and ablating throughout the winter with associated 

changes in snowpack density, grain size, and albedo (Adolph et al., 2017) as well as ice formation. Wind 

redistribution, sloughing of snow off slopes, trapping of snow by vegetation, and forest canopy interception 

also result in a range of spatial features at varying scales (Clark et al., 2011; Mott et al., 2011; Mott et al., 

2018). These variations cause shallow snowpacks to more readily ripen during winter rain events and 

warmer air temperature than deeper snowpacks (Wever et al., 2014) and, in combination with the transport 

and refreeze of meltwaters (Watanabe and Osada, 2016) make modeling and mapping of shallow 

snowpacks extremely challenging (Hall et al., 2010; Gichamo and Tarboton 2019; Starkloff et al., 2017). 

Despite their prevalence, complexity, and importance, shallow snowpacks have received relatively little 

attention for measurement, modelling, and mapping efforts. 

 

Because shallow snowpacks have considerable spatiotemporal variability, a large number of snow depth 

measurements are often needed to characterize the snowpack (Dickinson and Whiteley, 1972). Using 

traditional point measurements with its limited sample size requires a balance between the sampling extent 

and sample spacing; this impacts the ability to capture spatial variability that naturally increases with 

spatial scale as compared to capturing small-scale spatial structures (Clark et al. 2011).  
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The payload is equipped with an Applanix APX-15 UAV inertial navigation system (INS), which has 2-5 

cm positional, 0.025-degree roll and pitch, and 0.08-degree true heading uncertainties following post-

processing. The INS has a measurement rate of 200 Hz, allowing for a timestamp to associate each lidar 

pulse with the closest data for latitude, longitude, altitude, and perspective information (roll/pitch/yaw), 

which is required for georeferencing returns.  
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Error statistics were calculated and the results were summarized by forest and field locations. At each 

magnaprobe location, the average and standard deviation of the five magnaprobe samples were calculated. 

The average lidar snow depth was determined for a 0.4 x 0.4 m cell centered on the center magnaprobe 

location.  The mean absolute difference (MAD) and root mean square difference (RMSD) were used to 

characterize the differences between the magnaprobe snow depths and the lidar snow depths. 

 

The uncertainty of the lidar estimate of the snow depth mean value was calculated for each cell as the one-

sided 95% confidence interval of the snow depth.  
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In the field, the precision of the mean snow depth estimate is 
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Because larger UAVs that can carry heavier payloads have challenges that may differ from small UAVs, a 

well-formulated flight plan is critical. Flight planning should address weather conditions, logistics of flying 

at proposed site, flight lines, UAS equipment, and personnel. Protocols should be developed and used 

consistently for each step of flight planning. Weather conditions influence the safety and success of a UAS 

survey. UAS should not be operated when there is any type of precipitation or in dense fog/clouds. 

Moisture can cause electronic components to malfunction. Moisture build-up on the propellers can also 

adversely affect lift production. This project’s Eagle X8 high lift capacity UAS cannot be flown 

comfortably in winds greater than 7.8 m/s. High wind speeds can also significantly reduce battery life as 

well as impact the accuracy of sensor observations. Cold air temperatures can cause batteries to rapidly 

discharge. For winter UAS surveys, all flight and operational batteries should be kept warm prior to the 

UAS survey. This also applies to the computer used to upload flight lines and relay telemetry information. 

A MIL-STD-810 certified Panasonic Toughbook was used in this study to handle the anticipated cold 

temperatures. Additionally, cold temperatures can severely limit the dexterity of the person manipulating 

the flight controls. Proper gloves/clothing are required to effectively operate the flight controls in cold 

weather. 

  

High lift UAVs capable of carrying a lidar sensor package have the potential to cause significant damage to 

person and property. The selection of a survey site not only needs to meet the objectives of the UAV 

survey, but also must have the proper attributes for safe and legal UAV operation. It is important that 

permission to operate the UAV at the site has been granted and that the land owner/public is aware of the 

UAV survey operations. Visual line of sight (VLOS) of the UAV needs to be maintained throughout the 

flight. It can be difficult to maintain VLOS while flying over forested or mountainous sites. Spotters can be 

used if there is constant two-way communication between the spotters and the person operating the flight 

controls. For this study, an on-site, walk up tower allowed a spotter to maintain VLOS while the UAV was 

flown over the forest. Two-way communication was maintained throughout the flight. 

  

In the first season, the project team experienced more than one situation that required the pilot to manually 

land the UAV. Flying using first person view (FPV) by an experienced pilot is highly recommended for a 

UAS platform that is capable of handling large payloads such as this study’s VLP-16 lidar. If an emergency 

occurs and the UAS needs to land as quickly as possible, FPV will help the pilot to orientate the UAV, 

safely land, and limit damage to the payload. For this study, the UAV was equipped with low quality 

linearly polarized FPV antennas. The FPV signal was easily lost as the orientation of the drone relative to 

the base station changed. The FPV signal was also not able to penetrate the forest. Circular polarized FPV 

antennas are generally recommended for drones because they are not affected by transmitter/receiver 

orientation changes and are better at avoiding obstacle interference. 

 



The deployment of a lidar system mounted on a UAV platform for snow depth monitoring requires flight 

patterns designed for bore sighting alignment and post-processing to ensure that point clouds are aligned 

(Painter et al., 2016). Provided that GNSS data are accurate, the most common reason for misalignment of 

point clouds is boresight angle errors (Li et al., 2019). Traditionally, boresighting calibration is performed 

using antiparallel flight lines and a perpendicular flight line to calculate IMU offsets (Keyetieu and Seube, 

2019). Due to battery flight time limitations, we were unable to complete the flight pattern that is 

commonly used for boresighting alignment. Because of this, we leveraged our first two antiparallel flight 

lines for boresighting calibration. To determine roll offset, we used broad (10 m) along-path cross-sections 

over flat terrain, and to determine pitch offset we used narrow (1 m) across-path cross-sections in sloped 

terrain where the point clouds overlapped (Figure 7). Though not shown here, we additionally leveraged 

unique features within our data acquisition region, including barn roofs and deciduous tree branches to 

assess the resulting boresight angles (Kumari et al., 2011; Li et al., 2005). For this particular study, we 

performed boresight calibration manually. Methods often require extensive user input (Li et al., 2005), 

however boresight calibration is an increasingly automated process with wide variation in algorithms and 

approaches (e.g. Maas, 2000; Kumari et al., 2011; Zhang et al., 2019). In future work, we plan to explore 

automated boresight calibration methods to improve the accuracy of point cloud data sets. 

 

While lidar calibration and data post-processing requirements are quite similar for UAS and airborne 

surveys, lidar surveys by the UAS platform deployed in this study have key differences from previous ALS 

surveys. A limitation noted above is that the UAS flight duration is considerably shorter causing the spatial 

extent to be much more limited than previous ALS snow depth surveys.  An advantage is that the UAS’s 

average point cloud density is much higher and has fewer missing pixels in the forest than previous ALS 

surveys. This study had ground returns of 90 and 364 points/m2 in the forest and field, respectively, and had 

no ground returns in only 0.086% and 0.95% of the 1 m resolution field and forest cells, respectively. In 

contrast, ALS surveys typically report surface model densities between 8 to 16 points/m2 (Broxton et al., 

2015; 2019; Currier et al., 2019; Kirchner et al., 2014) and ground returns between 3 and 6 points/m2 

(Broxton et al., 2019; Kirchner et al., 2014). ALS derived snow depth maps have a much greater proportion 

of areas that are masked due to no ground returns, particularly under trees, with masking areas ranging 

from less to 10% to more than 23% (Harpold et al., 2014; Mazzotti et al., 2019). While gap filling is 

possible, interpolation using measured snow depth values to fill under tree can overestimate snow depth 

(Zheng et al., 2016). 



 
Figure 7. Uncalibrated boresight angles between the INS and lidar sensor can result in poorly aligned point clouds (A 
top and B top). Roll offsets present as crossed planes of data acquired from anti-parallel flight lines and are most 
clearly observed over flat terrain (A), while pitch offsets typically present as crossed planes of data acquired from 
perpendicular flight lines. Following boresight calibration, point clouds aligned well in both directions (A bottom and B 
bottom). 
 

While UAS-based lidar surveys can measure snow depth to within a centimeter at high spatial resolutions, 

validation of those observations is challenging. A time consuming collection of high accuracy GNSS 

survey points was required to co-locate magnaprobe and lidar observations. Surveying in sample locations 

prior to the winter season might reduce this effort. It is also challenging to make in situ snow depth 

measurements that provide centimeter accuracy. In this study, the magnaprobe in situ snow depth 

observations made in the forest were considerably higher than the lidar observations as compared to the 

open field where the magnaprobe and lidar measurements were within 1 cm. Previous studies also found 

that snow depth observations from ALS measurements are biased lower than those from snow-probe 

observations in the forest (Currier et al., 2019; Hopkinson et al., 2004). The cause of these differences is 

attributed to the snow probe’s ability to penetrate the soil and vegetation, human observers tending to make 

snow depth measurements in locations with relatively high snow (Sturm and Holmgren, 2018) and the 

reduced accuracy of the GNSS. Sturm and Holmgren (2018) indicate "The degree of penetration below the 

snow base is highly dependent on the nature of ground. For snow over sea, lake, or river ice, penetration is 

virtually zero and recorded depths are accurate to better than +0.1 cm. Over hard soils, rocks, and 

vegetation wetted in the fall and then frozen, the depth accuracy is nearly as high."  In this study, the cold 

temperatures and no snow conditions prior to the January 19th and 20th snowfall event resulted in deeper 



frozen soils (23.5 to 25.5 cm) in the field and thinner soil frost layers (5.5 to 8.5 cm) in the west forest, 

which would have limited the probe penetration into soils at both sites. However, the forest has a 1-4 cm 

thick loose leaf litter layer that may have been penetrated by the magnaprobe. The snow tube depths were 

not as deep as the magna probe and more closely match the lidar snow depth, further supporting that “over-

probe” by the magnaprobe is responsible for the forest snow depth differences. A simple penetration test 

under similar snow depth and soil frost conditions revealed that the probe penetration into soil and leaf 

litter ranged from 0 to 10 cm, averaging 5 cm over-probe bias over ten sample locations in the forest.   
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