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Response to Editor  
Many thanks to the two reviewers for their detailed and constructive comments on the 
manuscript. Our revisions include major modifications to the introduction and discussion, new 
analyses to capture the impact of forest canopy on snow depth, and improvements to the clarity, 
importance, and target audience of the paper.  
 
As outlined in more detail in our responses to the review comments, the most major revisions are 
new analyses to test how well the ground results match each other as a function of canopy and 
ground characteristics. The results reveal distinct snow conditions by vegetation cover (field, 
coniferous forest, and deciduous forest) as well as slope. We use methods from forest ecology to 
use our snow-off lidar survey to construct maps of vegetation cover type using a Canopy Height 
Model (CHM) to distinguish the upper level intact coniferous canopy from other forest cover. 
Ground and canopy height profiles derived from the lidar dataset are also used to explain 
differences in lidar derived observations and performance. The use of lidar returns to 
characterize the forest canopy along side estimates of snow depth is an important strategy for the 
snow community seeking insight to snow-vegetation interactions and is now highlighted in the 
revised manuscript.  
 
We also note that Harder et al.’s (2020) UAV lidar manuscript was published on June 15th and 
found by the author team as we were finalizing our comments. The author team has has included 
initial references to this Harder et al. (2020) in our revisions and anticipate that additional 
comparisons will be added to the revised manuscript. 
 
Our response to each comment is outlined below in bold. Revised text is in red. We hope these 
responses are clear, and we look forward to submitting the revised manuscript.  
	
Harder,	P.,	Pomeroy,	J.	W.,	and	Helgason,	W.	D.:	Improving	sub-canopy	snow	depth	mapping	with	unmanned	
aerial	vehicles:	lidar	versus	structure-from-motion	techniques,	The	Cryosphere,	14,	1919-1935,	2020.	
 
 
Anonymous Referee #1 
 
Thank you for the detailed comments and the opportunity to clarify that this article is the first to 
present snow depth maps measured with UAS-based lidar. We have provided detailed responses 
to the reviewer following each of the reviewer’s comments. 
 
Received and published: 4 May 2020 
Jacobs et al. present snow depth maps measured with a lidar onboard an unmanned aerial system 
(UAS). The snow depth are calculated as the difference between a snow- on and a snow-off 
DTM. They study a shallow snowpack with snow depth inferior to 20 cm in a flat open terrain 
and forested terrain. The lidar snow depth are compared to in situ magnaprobe measurements. 
They also provide some insights on what controls the lidar precision. The article is innovative as 
results are obtained with a new combination of sensors and platform which is lidar and UAS. 
This was, to my knowledge, only suggested by Vander Jagt et al. (2015) but not yet tested. 
Although this article focuses on shallow snowpack, it can be inferred that this method is 
promising for deeper snowpacks in open terrain. I see two points which should be addressed 
before I would recommend this article for publication. 
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1. The novelty of this work is not well highlighted. L 95, the authors state: “However, to date 
there are few previous studies that estimate snow depth using UAS-based lidar (Vander jagt et 
al., 2013(5!)).”. In my understanding Vander Jagt et al. did not use UAS-based lidar and no other 
study ever did. The authors should verify the method in Vander Jagt et al. (2015) and cite the 
“few previous studies” that did similar work, if they exist. If this article is the first to present 
snow depth maps measured with UAS-based lidar, this should be clearly stated. 
 
A. We reviewed the earlier manuscript and concur that our manuscript is the first UAS-
based lidar snow depth mapping manuscript when it was reviewed and during our 
revision. Shortly prior to resubmission, on June 15th, Harder et al. 2020 was published. 
There is a notable difference in systems between our study and their study. They also used 
a considerably more expensive system  (~$300K Canadian). We modified the abstract and 
the introduction to clarify.  
 
Lines 15-17 This paper provides some of the earliest snow depth mapping results on the 
landscape scale that were measured using lidar on a UAV. The system, which uses modest cost, 
commercially available components, was assessed in a mixed deciduous and coniferous forest 
and open field for a thin snowpack (< 20 cm). 
 
Lines 106 – 110 However, to date there is only one other published study that estimated snow 
depth using UAS-based lidar (Harder et al., 2020). However, to date there are no published 
studies that estimate snow depth using UAS-based lidar.  The purpose of this paper is to assess 
the ability of a UAS platform to provide snow depth using a modest cost UAS-based lidar. The 
pilot study described here serves as a proof-of-concept for providing a high vertical resolution 
snowpack dataset in open terrain and forests in the northeastern United States. 
 
2. The main drawback which should be resolved is the way the “precision” and “ac- curacy” of 
the lidar snow depth maps are presented through the article. First, these two terms are not clearly 
defined. “Precision of the mean snow depth" is found first at L 232 and compared to “one-sided 
confidence interval”. However, this last term is defined as equivalent to “the uncertainty of the 
lidar estimate of the snow depth” L181 in a confusing paragraph. Following this, it seems like we 
end up comparing “accu- racy” and “precision” of the snow depth (L232) which I do not think 
was the initial goal. I rather understood that the authors intend to compare i) the accuracy 
calculated by comparing lidar and magnaprobe snow depth to ii) the lidar precision defined as 
the one-sided confidence interval. If I understood correctly, this need to be clearly stated, terms 
to be defined and consistently used. The definition of precision and accuracy proposed in 
Eberhard et al. (2020) found in Maune and Naygandhi (2018) might help. Related to this topic, 
the authors use within-cell standard deviation of the elevation twice: in equation (1) in what 
seems related to the accuracy of the lidar and L 262 to define “the within-cell variability”. It 
seems like in the first case, the standard deviation results from error in the lidar while in the 
second case, the standard deviation results from the natural variability of the snow pack. As long 
as this is not clarified, it is hard to understand the point of the paragraph starting L260 in which 
the authors state that “In addition to the lidar point cloud density, the ability to precisely capture 
the snow depth also depends on the within cell variability”. 
 
A. Good point and this comment warranted considerable consideration and clarification 
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for the reader. The reviewer’s interpretation of our intent regarding accuracy is correct. 
However, our measure of variability is a combination of the instrumentation precision and 
the sample-to-sample variability within the grid cell (due to variations in surface elevation). 
Unlike Eberhard et al. (2020), the lidar returns in this study are only a sample of the entire 
surface. Thus, even if repeated lidar measurements agreed perfectly, there would still be 
variability within the pixel. We entirely rewrote section 2.6 Snow Depth Uncertainty 
Assessment. We have revised the definition of “accuracy” and provided a detailed context 
to the meaning of the confidence intervals of the lidar snow depth maps. Regarding the 
pooled standard deviation, this is a measure of the variability of the snow on and snow off 
lidar returns within a grid cell. This variability would depend on both lidar instrument and 
surface elevation variations. We also clarified the paragraph on L 260 to match the 
language (now lines 303 to 305). The text has been modified throughout to remove the term 
precision unless it specifically refers to a measure of the lidar instrumentation variability 
and to replace it with the “confidence interval”. 

 
Lines 227- 245 The snow depth accuracy was assessed by comparing the lidar snow depth 
measurements to the magnaprobe measurements. Here, accuracy is the measure of the agreement 
of the lidar snow depth measurements relative to the in situ measurements (Eberhard et al., 2020; 
Maune and Nayegandhi, 2018). Error statistics were calculated and the results were summarized 
by forest and field locations. At each magnaprobe location, the average and standard deviation of 
the five magnaprobe samples were calculated. The average lidar snow depth was determined for 
a 0.4 x 0.4 m cell centered on the center magnaprobe location.  The mean absolute difference 
(MAD) and root mean square difference (RMSD) were used to characterize the differences 
between the magnaprobe snow depths and the lidar snow depths. 
 
The one-sided width of the 95% confidence limits for each cell’s snow depth is a measure of the 
lidar snow depth variability. Confidence intervals are calculated using a cell’s pooled standard 
deviation, the number of lidar returns, and the pooled degrees of freedom (Helsel and Hirsh, 
1992) to calculate. A cell’s snow depth pooled standard deviation 𝜎! of the snow on and snow 
off elevations was calculated as  

𝜎! = 𝜎!"! + 𝜎!""!             

 (1) 
where 𝜎!"  and 𝜎!""  are the standard deviation of the snow-on and snow-off lidar return 
elevations, respectively. This pooled standard deviation is a measure of the variability of the 
snow on and snow off lidar returns within a grid cell. This variability depends on the lidar 
instrument’s relative accuracy (Maune and Nayegandhi, 2018), which includes intra-swatch 
accuracy (i.e., precision or repeatability of measurements) and inter-swath accuracy (i.e., 
differences in elevations between overlapping swaths), as well as surface elevation variations.  
The contribution from the individual sources of variability was not assessed. 
 
Lines	303	to	305	In addition to the lidar point cloud density, the ability to precisely capture the 
snow depth also depends on the ground surface variability within a cell variability as well as the 
lidar performance. 
 
Minor comments are listed below. L21 : better repeat snow probe instead of “in situ” L21 : 
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“with” instead of “from” ? 
A. Modified. 
 
L 34 : Make clear that the albedo is “higher” than the ground albedo not than the deeper 
snowpacks albedo. 
A. This line was removed when the introductory paragraph was modified significantly to 
reflect reviewer 2’s comments about shallow snowpack and this reviewer’s more general 
statement about the value of high-resolution snow depth measurements beyond shallow 
snowpacks. 
	
Lines	26	to	45	Snowpacks are highly dynamic, accumulating and ablating throughout the 
winter with associated changes in snowpack density, grain size, and albedo (Adolph et al., 2017) 
as well as ice formation. Wind redistribution, sloughing of snow off slopes, trapping of snow by 
vegetation, and forest canopy interception also result in a range of spatial features at varying 
scales (Clark et al., 2011; Mott et al., 2011; Mott et al., 2018). The resulting snow depth 
variations may cause differences in snowpack metamorphosis and processes such as ripening 
during winter rain events and warmer air temperature than deeper snowpacks (Wever et al., 
2014) and the transport and refreeze of meltwaters (Watanabe and Osada, 2016).  Distributed 
modeling and mapping of snowpacks can increasingly provide output at fine spatiotemporal 
scales but snow state change validation typically relies on in situ observations (Hall et al., 2010; 
Gichamo and Tarboton 2019; Starkloff et al., 2017). Despite importance, few spatially 
continuous high-resolution snowpacks datasets are available to support modelling, and mapping 
efforts.   
 
Modest differences in snowpack depth can differentially impact many hydrologic, agricultural, 
and ecosystem processes.  Moderate differences in the magnitude of snowpack meltwaters can 
improve streamflow and volume forecasts (Gichamo and Tarboton, 2019), change the likelihood 
of spring floods (Tuttle et al., 2017) and intensify overland nutrient transport and soil erosion 
(Seyfried et al., 1990; Singh et al., 2009). In regions where snowpacks are typically shallow and 
ephemeral, high-resolution snow depth measurements are desirable for all of the winter. Even in 
mountainous regions with deep seasonal snowpacks, variations and patterns in snow depth are 
observed at multiple scales when measured at a high vertical resolution (see reviews in Clark et 
al., 2011). Early findings using ICE-Sat2 to provide routine, high-resolution Arctic snow depths 
reveal processes that are missed when using snow climatologies (Kwok et al. 2020).  
 
L 55 : precise “point measurements” 
A. Modified. 
 
L 55-57 : Could you clarify this sentence. Maybe split it in two. Plus, I do not understand the 
opposition you see between increasing spatial variability and small-scale feature. Finally, is it so 
sure that spatial variability “naturally increases with spatial scale”? Fig. 4. of Deems et al. (2006) 
seems to show that spatial variability stops increasing above a typical distance of the order of 10 
m. 
A. Thank you for the Deems et al. (2006) reference, which points to a short-range fractal 
segment and a long-range with a break between 15 and 40 m. The referenced lines were 
split as recommended to make two separate points as follows: 
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Lines	64	to	67	Using traditional, precise point measurements with a limited sample size, the 
experimental design requires a balance between the sampling extent and sample spacing (Clark 
et al. 2011).  However, the choice of sampling resolution may yield different measures of snow 
depth spatial variability when the snow exhibits multifractal behaviour (Deems et al. 2006). 

 
L 63: If you list the methods using difference of surface elevation, you may want to include 
spaceborne photogrammetry (e.g. Marti et al. 2016, McGrath et al. 2019, Shaw et al. 2019). 
Otherwise, if you prefer focusing on airborne method, you should remove references to 
terrestrial laser scanning. 
A. The list of methods was modified to include spaceborne references provided by the 
reviewer. 
 
Lines	70	to	74	Spaceborne photogrammetry (e.g. Marti et al. 2016, McGrath et al. 2019, Shaw 
et al. 2019), airborne laser scanning (ALS) (Deems et al., 2013; Harpold et al., 2014; Kirchner et 
al., 2014), terrestrial laser scanning (TLS) (Grünewald et al. 2010; Currier et al. 2019), and 
structure-from-motion photogrammetry (SfM) (Nolan et al., 2015; Bühler et al., 2016; Harder et 
al., 2016) have emerged as viable methods to map surface elevations with snow-off and snow-on 
conditions in order to differentially map snow depths.  
 
 
L 76 : what is “micro scale” and “field scale” ?  
A. We clarified the scales and now Clark et al.’s definitions where they define point scales 
as less than 5 m and associated with topographic depressions and trapping or interception 
by individual vegetation features; hillslope or field scales are 1-100 m  and associated with 
drifting and forest canopy interception and sublimations.  
 
Lines	85	to	89	For snowpack features, the typical vertical accuracies from these platforms, on 
the order of 10 cm (Kraus et al., 2011; Deems et al., 2013), as well as relatively low return 
density (~10 returns/m2) (Cook et al., 2013) may not be adequate to observe spatial variations at 
point scales (0 to 5 m) or hillslope or field scales (1-100 m) resulting from topographic 
depressions, drifting, and trapping or interception by vegetation features (Clark et al. 2011) or to 
detect snow depth changes over short time scales. 
 
L 96 : Vander Jagt 2015 
A. We removed the Vander Jagt reference in this statement. 
L 135 : How do such angles occur since the channels are between -15/+15◦? Is it because of the 
roll and pitch of the UAS? 
Because of degrading accuracy at distances >100 m with the VLP-16, returns acquired outside of 
+/- 30 degrees of nadir view angles were filtered to limit target distance and improve overall 
accuracy 
A. We clarified in the text that there are two different field of views on this sensor: 1) the 
vertical field of view (channels between -15/+15o) and 2) the horizontal field of view 
(rotation angle of channel, 0-360o). While returns from all vertical field of view channels 
were used, returns from wide angle views retrieved by each channel (outside of +/- 30o of 
nadir) were removed. 
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Lines	138	to	140	The VLP-16 is a 16-channel lidar with a 30-degree vertical field of view with 
rotating lasers that are spaced evenly between -15 to +15 degrees, with each channel rotating to 
provide a horizontal field of view of 360-degrees.  
 
Lines	146	to	148	Because of degrading accuracy at distances >100 m with the VLP-16, returns 
acquired outside of +/- 30 degrees of nadir view angles in the horizontal field of view were 
filtered to limit target distance and improve overall accuracy. 
 
L 151 : Please indicate what kind of “non-ground point” you observe in this area. Trees, 
artifacts.. ? 
A. The progressive morphological filter only identifies ground returns– remaining returns 
are assumed to be primarily from vegetation (trees and understory shrubs). We clarified 
this discussion by rewording the first sentence and specified that remaining points are 
assumed to be from trees and vegetation with minimal artifacts. 
	
Lines	165	to	167	The PMF operates iteratively on sets of two parameters, window size and 
elevation thresholds to erode and dilate point cloud data sets to estimate surface topography as an 
approach to filter out non-ground returns (i.e. trees, shrubs, and noise) from point cloud data sets 
(Zhang et al., 2003). 
 
L 153 : Do you further use th and w notations ?  
A. No, these were removed.  
 
L 154 : “mean” without s? 
A. No. “means” was replaced with “approach” 
 
L 159 :What do you mean with “Following processing”? The sentence is not clear. 
A. The text was clarified.  
	
Lines	173	to	175	Following ground classification for each tile, returns within the 15 m tile 
buffers were removed, and all resulting 100 m square ground classified tiles were merged. The 
resulting point clouds for each data set included both the classified ground returns and the non-
ground returns. 
 
L 181 : This paragraph is confusing. It seems that lines 181 and 187 are not consistent. Is the 
“uncertainty” from L181 the same as the one from L187? See main comment about precision and 
accuracy. L 181 : you state “uncertainty of the lidar estimate of the snow depth” is the “one-sided 
95 % confidence interval” L 185 : you define a “pooled standard deviation” not used after. L 187 
: you combine “snow depth uncertainty”, “number of lidar return” and “pooled degrees of 
freedom” to calculate “the one-sided width of the 95 % confidence limits” 
A. This paragraph has been rewritten to address the confusion and word choice after a 
careful review of the Reviewer’s comments and reading Maune and Nayegandhi (2018). 
The within cell variability is not negligible. The confidence interval reflects the within cell 
variability and, when combined with the lidar precision Please see the earlier comment for 
additional information. Please see the earlier comment for additional information. 
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Lines 211 - 229 The one-sided width of the 95% confidence limits for each cell’s snow depth is 
a measure of the lidar snow depth variability. Confidence intervals are calculated using a cell’s 
pooled standard deviation, the number of lidar returns, and the pooled degrees of freedom 
(Helsel and Hirsh, 1992) to calculate. A cell’s snow depth pooled standard deviation 𝜎! of the 
snow on and snow off elevations was calculated as  

𝜎! = 𝜎!"! + 𝜎!""!             

 (1) 
where 𝜎!"  and 𝜎!""  are the standard deviation of the snow-on and snow-off lidar return 
elevations, respectively. This pooled standard deviation is a measure of the variability of the 
snow on and snow off lidar returns within a grid cell. This variability depends on the lidar 
instrument’s relative accuracy (Maune and Nayegandhi, 2018), which includes intra-swatch 
accuracy (i.e., precision or repeatability of measurements) and inter-swath accuracy (i.e., 
differences in elevations between overlapping swaths), as well as surface elevation variations.  
The contribution from the individual sources of variability was not assessed. 
 
L 185 : Does this assume that the spatial variability within the cell is negligible? See main 
comment on precision, accuracy. 
A. Please see the response to the previous comment. 
 
L 191 and following : Please make clear for what resolution these percentages hold. 
A. The resolution was clarified. 
	
Lines	224	to	225	The snow-on and snow-off flights lidar ground returns yielded an average 
point cloud density of 90 and 364 points/m2 in the forest and field, respectively, with 6.7% of the 
forest and 0.03% of the 1 m2 field cells having less than 5 point/m2 (Figure 2). 
 
L 198 : You state “0.95 %” of the forest cells are empty for the 1 m resolution grid. Does that 
correspond to the white areas in the western forest (Fig. 4)? In case it is, this seems to be more 
than 1 % of the forested area. In case it is not, what are these white areas? 
A. Thank you for catching an issue with the eastern forest boundary. The white areas in 
the eastern forest are empty cells resulting for a river that runs along the forest. Infrared 
energy is absorbed by water; therefore, no lidar data were collected over the river. The 
forest boundaries in Fig 1 and 4 were updated to reflect the eastern forest boundary that 
was used in the analysis, which excludes the river.   
 
L 212 : In “(12.2 cm +-0.56 cm)”, is 0.56 cm the standard deviation of the population of mean 
snow depth ? Or is it related to the standard deviation described in L 185? 
A. The 0.56 cm standard deviation is the standard deviation of the in situ Magnaprobe 
measurements in the field. The mean snow depth was calculated at each in situ sampling 
location. Then the average and standard deviation of the field locations (N = 11) was 
calculated. It is not related to the pooled standard deviation described on L 185. The pooled 
standard deviation described on L185 was used to calculate the 95% confidence intervals of 
the lidar derived snow depth. 
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L 215 : First time the word “tube” is used. Was it the “federal snow sampling tube” (L 172) ?. 
A. Yes, it is the federal snow sampling tube.  
 
Lines	247	to	249	The mean snow depth from the Federal snow tube was (12.9 cm ±0.71 cm) 
and (13.1 cm ±1.9 cm) in the field and forest, respectively. There is a notable low bias in the 
lidar forest snow depth relative to the magnaprobe and snow tube for west forest in particular 
with exception of one site. 
 
L 232-233 : “precision” is not defined above. This sentence is thus hard to understand. 
A. See previous response and definition in section 2.5. 
 
Lines 217 to 220 This variability depends on the lidar instrument’s relative accuracy (Maune and 
Nayegandhi, 2018), which includes intra-swatch accuracy (i.e., precision or repeatability of 
measurements) and inter-swath accuracy (i.e., differences in elevations between overlapping 
swaths), as well as surface elevation variations.  The contribution from the individual sources of 
variability was not assessed. 
 
L. 260 : " In addition to the lidar point cloud density, the ability to precisely capture the snow 
depth also depends on the within cell variability. " Why? Is it a statement based on the way you 
calculate the lidar precision or an assumption which should be justified? See main comment on 
within-cell variability. 
A. This was clarified in the initial comment on the topic. We modified this sentence to 
clarify that there are two sources of variability in the cell. “ 
 
Line 295 to 296 In addition to the lidar point cloud density, the ability to precisely capture the 
snow depth also depends on the ground surface variability within a cell as well as the lidar 
precision.  
 
L. 260 : this is not mandatory but since you use standard deviation, did you check whether the 
distribution is normal or not ?  
A. We didn’t check normality on a cell-by-cell basis, but did calculate the moments 
including skew values on a cell-by-cell basis at various scales. At the 10 and 20 cm cell size, 
there was not a notable skew. Larger cell sizes had increasingly negative skews with skew 
values typically less than -1. 
 
L 319 “boresighting” 
L 319. Could you explain what boresighting is ? Not sure The Cryosphere readers know what it 
is. 
A. Considerable additional explanatory text and figures were added to the discussion on 
boresighting in order to provide a specific example to anyone who is new to airborne lidar. 
Our goal is to provide a specific example using a snow depth survey that will provide 
information beyond that available in a standard textbook discussion of boresighting. The 
new text and revised figure were moved to supplemental material. This location change was 
in response to Reviewer 2’s comment about Figure 7: “OK...but anyone new to airborne 
lidar will not understand it, and anyone already doing SfM or lidar will not need it. Within 
the supplemental material we define boresighting.  
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Lines S8 – S9 Boresighting is the process of calculating the differences between the lidar sensor 
and IMU roll, pitch, and yaw angle measurements to correct those errors in point clouds. 
 
L. 368 : Could you provide details about the “simple penetration test” ? If this not it, do you 
think it would be possible to dig a snow pit at the location of the magnaprobe measurement to 
evaluate probe penetration? 
A. Based on Reviewer 2’s comments, this sentence was removed and replaced with 
additional details about the soil frost depth. In the future, it would be possible to dig a snow 
pit at the magnaprobe locations to determine. We did not do this during the experiment 
because we did not observe the bias until the lidar datasets had been post-processed.  
 
Line 195 to 201 An independent study collected soil frost depth from three locations at the 
Thompson Farm Research Observatory using Gandahl-Cold Regions Research and Engineering 
Laboratory (CRREL) style frost tubes. The frost tubes have flexible, polyethylene inner tubing 
filled with methylene blue dye whose color change is easy to differentiate when extruded from 
ice (Gandahl 1957). A nylon string housed inside the polyethylene tubing affixes ice during 
periods of thaw. The outer tubing consists of PVC pipe installed between 0.4 to 0.5 m below soil 
surface (Ricard et al., 1976; Sharratt and McCool, 2005). Prior to the January 19th and 20th, 2019 
snowfall event, soil frost was 23.5 to 25.5 cm in the field and 5.5 to 8.5 cm in the west forest.  
 
L. 389 : “moderately” please give values. 
A. Values were added to the text. 
 
Line 470 to 472 Mapped at 1 m2 cells, a 0.5 to 1 cm snow depth confidence interval was 
achieved consistently in the field with confidence intervals increasing to within 4 cm in the forest 
and heavily vegetated areas. 
 
L 510. Missing a carriage return before “Starkloff” 
A. Carriage return was added. 
 
Fig. 1: what’s the reason for the buffer around the forest polygon, especially why is the forest 
peninsula out of both zones (east of the field, west of the western forest) ? 
A. Thank you for the keen eye. The buffer around the forest polygon was removed and the 
peninsula is now included in the eastern forest. All plots and figures were updated to reflect 
any changes to the field/forest boundaries. 
 
Fig. 2.a The number of returns per cell seems to follow a relationship of type y=kx2 with k the 
average density of the point cloud and x the cell resolution. Could you comment on that? Did 
you expect that? 
A. Yes, this nonlinear relationship could be expected because the counts are based on area 
of the DTM (length squared) rather than the resolution (length). For example, if a 1 m x 1 
m areas (1m2) have 100 returns, then a 2 m x 2 m areas (4m2) should have 400 returns. 
 
Fig. 2.b It is not so easy to distinguish the two distributions. Maybe remove the vertical lines of 
the bars? 
A. The hatched fill pattern has been removed. Also, the line weight of the field distribution 



	 10	

has been increased to more easily distinguish between the two distributions. 
 

 
Figure 2. (a) Average lidar point cloud density of the ground returns with versus cell size by land cover, and snow-on and snow-
off state (top). (b) Probability density function for the lidar ground returns point cloud density for 1 m2 cell for the forest (gray) 
and the field (hashed) (bottom). 

 
Fig. 5, what are the gray points/area on panel a. It seems absent in panel b. 
A. The points showed the individual outliers of the distributions. They have now been 
removed from figure 5a. 
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Figure 5. One sided confidence intervals of the mean snow depth values in the field and forest at Thompson Farm, Durham, NH 
on January 23, 2019 from the individual cells for 1 m2 cells by land cover and point cloud density (top) and for grid resolutions 
ranging 0.1 to 5 m (bottom). Boxplots show the lower quartile, median, upper quartile, and whiskers. 
 
Fig. 6.a. Isn’t that surprising that the STD per cell is the same with snow on and off in the forest? 
Could you comment on that? 
A. Yes, this is somewhat surprising and we had not seen this effect noted in previous 
studies. A comment was added to offer an explanation for the difference.  
 
Line 298 to 301 Snow cover reduces the within cell variability in field by about 1 cm, but has a 
limited effect in the forest. It is possible that the modest snowpack was able to flatten the higher 
grass in the field, while the forest’s vegetation and terrain features that dominate the within cell 
variability are only minimally compacted by the snow. 
 
Fig 7. Label the panels a,b,c,d instead of A/B top/bottom. Zoom in the panel b. Keep a. as it is 
and add a square showing where b. is. It is really not clear what is shown in A,B. Are we in 2D 
view from top in A and from profile in B? 
A. Figure was heavily modified, with many clarifications included in the figure caption and 
the text. All boresighting figures and text are now in supplemental materials part 3. 
 

 
Figure S3. Uncalibrated boresight angles between the INS and lidar sensor can result in poorly aligned point clouds (a1 and b1). 
Arrows in (a) and (b) show approximate flight direction during data acquisition. The lidar returns within the box marked in red in 
(a) are shown in (a1) and (a2) at an oblique view angle. Figure (a1) shows how boresight errors of roll angles present, while (a2) 
shows proper boresight alignment for roll. Roll alignment errors present well in anti-parallel flight lines (flight lines flown 
parallel to each other but in the opposite direction), flown over flat terrain. Figure (b) shows the approximate location of returns 
used for pitch boresight alignment error demonstration (b1) and its correction (b2). Pitch misalignment presents well in anti-
parallel flight lines in areas with terrain relief while viewing across the flight track, as opposed to along the flight track as with 
roll alignment. For (b, a1, a2, b1, and b2), only ground returns are shown for each flight line, while in (a), all returns are shown. 
 
 
The following references were added to the manuscript based on Reviewer 1’s input: 
Deems JS, Fassnacht SR and Elder KJ (2006) Fractal Distribution of Snow Depth from 
Lidar Data. J. Hydrometeorol. 7(2), 285–297 (doi:10.1175/JHM487.1) 
Eberhard LA, Sirguey P, Miller A, Marty M, Schindler K, Stoffel A, Bühler Y (2020) Inter- 
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comparison of photogrammetric platforms for spatially continuous snow depth mapping 
Cryosphere Discussions (https://doi.org/10.5194/tc-2020-93) 
Marti R, Gascoin S, Berthier E, De Pinel M, Houet T and Laffly D (2016) Mapping snow 
depth in open alpine terrain from stereo satellite imagery. Cryosphere 10(4), 1361–1380 
(doi:10.5194/tc-10-1361-2016) 
Maune DF (Ed.) and Naygandhi A (Ed.) Digital Elevation Model Technologies and 
Applications: The DEM Users Manual, 3rdEdition, 3 ed., 652 pp., 2018. 
McGrath D, Webb R, Shean D, Bonnell R and Marshall HP (2019) Spatially Extensive 
Ground Penetrating Radar Snow Depth Observations During NASA’s 2017 SnowEx 
Campaign: Comparison With In Situ, Airborne, and Satellite Observations. Water Resour. 
Res. 10 (doi:10.1029/2019WR024907) 
Shaw TE, Gascoin S, Mendoza PA, Pellicciotti F and McPhee J Snow depth patterns in a 
high mountain Andean catchment from satellite optical tri- stereoscopic remote sensing. 
Water Resour. Res. di (doi:10.1029/2019WR024880) 
Vander Jagt B, Lucieer A, Wallace L, TUrner D and Durand M (2015) Snow Depth 
Retrieval with UAS Using Photogrammetric Techniques. Geosciences, 264–285 
(doi:10.3390/geosciences5030264) 
Interactive comment on The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-37, 2020. 
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Anonymous Referee #2 
 
Thank you for the detailed comments and the opportunity refine the original submission and to 
consider variations across land-use and terrain. We have provided detailed responses to the 
reviewer following each of the reviewer’s comments. 
 
Received and published: 5 May 2020 
In this study, the investigators mounted a small airborne lidar on a drone and flew several test 
flights to map snow depths across a small flat farm in New Hampshire that contained fields and 
forest. They then chose one flight to examine in detail. Most of the paper is concerned with the 
accuracy of the resultant snow depth maps, with comparison of those derived depths against on-
the-ground probing (n=130), and with an extensive analysis of accuracy vs. ground point spacing 
from the lidar. 
 
My overall impression of the paper is that a single acquisition flight in a single land- scape, with 
a quite limited ground collection campaign, is too thin a reed on which to base a full journal 
publication. Such a limited comparison leaves open too many questions, like what the results 
would be if the ground was sloped, how the results would vary if the forest canopy was conifer 
vs. deciduous, what would happen if the snow had surface relief or other characteristics not 
tested in this work. In fact, the authors Figure 1 indicates a complex forest with openings and 
variable canopy density (a snow season air photo here would have been nice), but no attempt has 
been made to see if the results from one part of the forest look like those from another. No 
attempt was made to test how well the ground and air results match each other as a function of 
canopy and ground characteristics. Lastly, while the lidar and ground measurements matched 
beautifully in the open field, they showed a large discrepancy in the forest, which was then 
ascribed to over-probing through a duff layer. Perhaps that is the case, but this then ought to have 
been the focus of more analysis and scrutiny. The conclusion is certainly possible, but Figure 2b 
suggests there is also lidar sampling bias problem in the forests, and the core depths referred to in 
the text against which the depth probe depth was compared are never discussed, even to the 
extent of how many were made. 
 
A. The reviewer makes a number of reasonable points regarding the long-term value of 
limited flights over limited landscapes. We entirely agree that this submission leaves open 
questions, particularly given the strong contrast in performance between the field and the 
forest. Based on the reviewer’s comments, we reconsidered this paper’s contribution in 
light of the early structure from motion (SfM) papers that used a UAS platform to 
characterize snow depth. A summary of those studies in light of the reviewer’s comments 
appears in Table R1 (below). These recent papers share many commonalities with the 
current study in that they seek to understand how a recent technological development 
might contribute to improved understanding of the snow depth. The table shows how the 
literature and experiments evolved over time. These papers also demonstrate that the 
experimental design and results from this study equals or exceeds that of these early SfM 
studies that also sought to demonstrate the value of a new combination of sensors and 
platform.  
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Yr 
Flown 

Location Area # flights Site (# and Description) Validation Error Method 
Detail 

Study 

2013 Tasmania, 
Australia 

0.0069 
km2 

1  1. strong gradient in 
elevation, thick vegetation 
and various soil/rock 

Survey pole 37 measured, N= 20 
due to vegetation, survey at snow 
surface, then ground surface 

0.10 m (acc) 
RMSE = 9.6 cm 

Yes & 
Workflo
w 

(Vander Jagt et 
al. 2015) 

2014 Lombardy 
region, northern 
Italy 

0.3 km2 1  1. sparse grass coverage 
and rocks, with no tree, 
firn, or glacier ice. 

12 probe measurements 
horiz. accuracy 2–3 cm.  

Bias 0.073 m and 
aRMSE = 0.14 m 

Yes (De Michele et 
al. 2016) 

2015 Rosthern, 
Saskatchewan, 
Canada 
 
Canadian Rocky 
Mountains 

0.65km2 
 

0.32 km2 

22, 18 1. Canadian prairie; tall 
stubble (35 cm) and short 
stubble (15 cm) Sparsely 
vegetated 2. Rocky 
Mountain alpine ridgetop 
grasses, shrubs and 
coniferous trees in gullies  

Ruler with 17 snow stakes - 
horiz.accuracy ±2.5 cm. 34 points  
 
Alpine: 3 to 19 pts per flight. 
5 SD measurements in a 0.4 m × 
0.4 m square at that point 

8.8 cm for a short 
stubble, 13.7 cm for 
a tall stubble  
8.5 cm alpine  
mean SD must be > 
30 cm 

Yes (Harder et al. 
2016) 

2015 Davos, 
Switzerland  
 

0.057 – 
0.091 km2  

0.29 km
2 

 
 

3/1 1. Tschuggen: flat alpine 
meadows and hilly alpine 
terrain  
2. Brämabühl: an exposed 
location meadow and 
bushes 
 

60, 95, 95 and 110 (5 pts per site) 
5 SD measurements in a 1 m × 1 
m square - center pt horiz. 
accuracy < 10 cm  
 

Overall RMSE = 
0.25 m bias = 0.2 m 
Short grass RMSE 
0.07 m bias 0.05 m  
Bushes/high grass 
RMSE 0.30 m bias 
0.29 m 
alpine RMSE 0.15 
m bias 0.11 m 
 

Yes (Bühler et al. 
2016) 

2016 Piedmont region, 
Italy 

0.0067 
km2 

1 1. sparse rocks and grass, 
with no trees 

135 pts and TLS 
UAS, a multi station survey, and 
manual probing 

RMSE = 0.31 m 
overall 
RMSE = 0.17 m 
areas of likely water 
accumulation 
removed 

limited (Avanzi et al. 
2017)  

2016 Canada 0.02 km2 13/16 1 and 2. G Gatineau: N. 
Shrubs up to 1m. S. 
Shrubs and sm. forested 
area southwest corner S. 
3 to 5. Acadia A. grass (< 
5 cm) and stumps (< 20 
cm). B stumps (< 20 cm) 
and brush and shrubs (< 1 
m). C 1 – 5 m balsam fir  

Transects of ∼ 50 m in length; 12 
48′′ × 2′′ × 1′′ wooden stakes; no 
horiz. accuracy 

2 to 11 cm RMSD 
for SD change 

Yes (Fernandes et al. 
2018) 

2015 Alps, Western 
Austria 

0.12 km2 12  1. alpine grasslands, with 
small scrubs (~ 1 m). 
Clusters of dwarf pine (ht. 
1–3 m) and singular or 
groups of stone pine 

149 Manual probes  +/- 3 m horiz 
accuracy, 5 pts 2 x 2m, One to two 
TLS scans 

0.25 m (accuracy) Yes (Adams et al. 
2018) 
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Table R1. Review of early structure from motion papers 

References 
Adams, M.S., Bühler, Y., & Fromm, R. (2018). Multitemporal accuracy and precision assessment of unmanned aerial system photogrammetry for slope-scale 
snow depth maps in Alpine terrain. Pure and Applied Geophysics, 175, 3303-3324 
Avanzi, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Pagliari, D., Passoni, D., Pinto, L., Piras, M., & Rossi, L. (2017). Measuring the snowpack depth 
with Unmanned Aerial System photogrammetry: comparison with manual probing and a 3D laser scanning over a sample plot. The Cryosphere Discuss., 
https://doi. org/10.5194/tc-2017-57 
Bühler, Y., Adams, M.S., Bösch, R., & Stoffel, A. (2016). Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations. 
The Cryosphere, 10, 1075-1088 
De Michele, C., Avanzi, F., Passoni, D., Barzaghi, R., Pinto, L., Dosso, P., Ghezzi, A., Gianatti, R., & Della Vedova, G. (2016). Using a fixed-wing UAS to map 
snow depth distribution: an evaluation at peak accumulation. Cryosphere, 10, 511-522 
Fernandes, R., Prevost, C., Canisius, F., Leblanc, S.G., Maloley, M., Oakes, S., Holman, K., & Knudby, A. (2018). Monitoring snow depth change across a range 
of landscapes with ephemeral snowpacks using structure from motion applied to lightweight unmanned aerial vehicle videos. The Cryosphere, 12, 3535-3550 
Harder, P., Schirmer, M., Pomeroy, J., & Helgason, W. (2016). Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial 
vehicle. The Cryosphere, 10, 2559 
Vander Jagt, B., Lucieer, A., Wallace, L., Turner, D., & Durand, M. (2015). Snow depth retrieval with UAS using photogrammetric techniques. Geosciences, 5, 
264-285 
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In brief, Table R1 indicates that the studies that used SfM to map SD were first published 
in 2015 and 2016. In those early studies, the number of flights was extremely limited, the 
surveyed area was typical quite small, there was often only a single site, and the cover 
conditions were typically relatively short grass, stubble, with limited shrubs and no or 
limited trees. Studies that estimate SfM SDs in sites having significant tree canopies were 
published approximately three years after the initial studies.  These SfM papers are an 
example where the early papers use targeted, focused studies to provide the broader 
community with an approach that is now embraced, and which has been subsequently 
refined and used to explore a range of landscapes, terrain, and forest canopy.  
 
The submitted manuscript, as noted by Reviewer 1, “is the first to present snow depth 
maps measured with UAS-based lidar” and the novel contribution is its results that were 
obtained with a new combination of sensors and platform. Our manuscript also sets the 
stage for further research by including results that demonstrate a sharp contrast between 
the field and the forest findings as well as considerable variability of metrics within in the 
forests. We expect the broader community will contribute the additional studies that the 
reviewer desires, with more extensive campaigns over a wide range of landscapes, following 
a similar trajectory of UAV-based SfM in the embracement of new technology. Note that 
Harder et al.’s (2020) UAV lidar manuscript was published on June 15th. The author team 
has included references to this study. 

 
We revised the manuscript to be clearer about the contribution including in the abstract, 
the last paragraph of the introduction, and the conclusion. Specifically, we have added 
context of our work in the Discussion to emphasize the refinement of methodology and new 
questions that emerged from our work. Our work highlights, unknown at the time of study 
implementation, sampling and collection finding that are useful for planning for future 
snow depth studies.   

 
Regarding the lidar sampling bias problem in the forests, the reviewer makes a number of 
reasonable points including that ascribing the errors to over-probing is likely a gross 
simplification of the complexity of measuring forest SD. Based on this comment, the 
discussion section that discusses these issues has been revised, the snow core observation 
information has been expanded in Section 2.4 (renamed “In Situ Observations”) and in 
Section 4 (renamed “Challenges and Recommended Improvements to UAS Lidar Snow 
Depth Mapping”, last paragraph), and a preliminary assessment of variations in forest 
canopy has been added. Even with high ground return lidar that is collected with a UAS, 
forest canopies still generate collection issues that complicate interpretation and 
characterization of snow. When collecting data over a region, forest type and canopy 
characteristics and their impacts on a lidar snow depth survey may not known in advance. 
We have added a section in the Discussion that describes issues found with forests in our 
study, including reduced total and ground return density in forests compared to open 
fields, and we make suggestions on how data collection strategies might be modified for 
forested areas. Additionally, we suggest that further studies may be warranted to 
understand how forest vegetation (e.g. canopy species, understory vegetation density, and 
duff layer quality) contributes to snow depth measurement bias, while pointing to recent 
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evidence in the literature of challenges inherent to sampling mixed land-use landscapes 
with airborne lidar sensors.  

 
Lines 392 to 439 4.1 In Situ and UAS Sampling 
While UAS-based lidar surveys can measure snow depth to within a centimeter at high spatial 
resolutions, validation of those observations is challenging. A time consuming collection of high 
accuracy GNSS survey points was required to co-locate magnaprobe and lidar observations. 
Surveying in sample locations prior to the winter season might reduce this effort. It is also 
challenging to make in situ snow depth measurements that provide centimeter accuracy. In this 
study, the magnaprobe in situ snow depth observations made in the forest were considerably 
higher than the lidar observations as compared to the open field where the magnaprobe and lidar 
measurements were within 1 cm. Previous studies also found that snow depth observations from 
ALS measurements are biased lower than those from snow-probe observations in the forest 
(Hopkinson et al., 2004, Currier et al., 2019; Harder et al., 2020). In past studies, the causes of 
these differences have been partially attributed to the snow probe’s ability to penetrate the soil 
and vegetation, human observers tending to make snow depth measurements in locations with 
relatively high snow (Sturm and Holmgren, 2018) and the reduced accuracy of the GNSS. Our 
study suggests additional issues in forest sampling including enhanced terrain variability in 
forested areas relative to adjacent field areas and reduced lidar returns in forested areas as 
compared to field areas combine with sampling issues to contribute to the higher uncertainty in 
the forest snow depths observed in our study. 
 
In this study, the cold temperatures and snow-free conditions prior to the January 19th and 20th 
snowfall event resulted in deeper frozen soils (23.5 to 25.5 cm) in the field and shallower soil 
frost depth (5.5 to 8.5 cm) in the west forest, which would have limited the probe penetration 
into soils at both sites. However, the forest has a 1-4 cm thick organic leaf litter layer that may 
have been penetrated by the magnaprobe. The average Federal snow sampler tube depths (13.1 
cm) were not as deep as the magna probe (15.2 cm) and thus more closely match the lidar snow 
depth (7.8 cm; see Figure 3), though a considerable low bias (~5.3 cm) similar to that found by 
Harder et al. (2020) persists in the lidar snow depth relative to the federal snow sampler snow 
depths. Additional factors such as downed logs, thick understory, and fine-scale topographic 
features (ie: small boulders and hummocky terrain) as well as reduced ground return density may 
contribute to the lidar snow depth errors in a forest, whereas these factors are absent in the field.  
 
An improved understanding of forest canopies impacts on lidar returns is also warranted. Recent 
work has demonstrated that lidar pulses are “lost” at a much higher rate in forest canopies than 
open ground terrain due to interception, absorption, and scattering through canopy transmission, 
with the loss ratio largely influenced by the range of the target from the sensor (Liu et al., 2020). 
The data that we presented in this paper were acquired using constant flight speed and at 
consistent altitude above target areas. Because of this, it is feasible that forest canopy conditions 
and variable understory vegetation density may have resulted in lost pulses and increased 
uncertainty in our data set. Indeed, we did observe lower return densities for both ground and all 
returns in forested areas in our data set (Figure 4).  
 
One possible outcome of these lidar sampling issues in forests was a significant difference in 
snow depth confidence intervals between field and forest types and among slope groups. 



	 18	

Confidence intervals were highest in conifer stands and on steep slopes and lowest in the field. 
While this result is not entirely surprising, it is likely partially the result of lower ground return 
density in forests due to the combined effects of lost pulses and canopy occlusion in forested 
areas. Additionally, this observation may be driven by increased variability in snow depth due to 
pockets of duff and woody debris, and due to higher variability in subnivean terrain in the 
forested areas of the study site. Areas of high terrain relief are expected to have more variability 
in ground return elevations over shorter distances, which would partially drive higher confidence 
intervals of ground surface elevation for pixels located in high relief areas. High relief areas of 
the study site were more common in forested areas of the study site, and the uncertainty resulting 
around high slopes also carries through snow depth estimation. Snow depth was significantly 
different between field and forested areas, as well as between conifer and deciduous forest types, 
despite the relatively high uncertainty. This indicates the possible influence of tree canopies on 
snow accumulation due to enhanced snow interception in forests, and particularly in conifer 
stands, but also could be the result of an under-sampled ground surface in forested areas relative 
to field areas. Snow depth also was significantly different among the three slope groups, possibly 
due to wind-driven snow displacement and sloughing on slopes during accumulation.  
 
A. The core depth procedures originally described briefly in Section 2.4 were expanded. 
The core accuracy values appeared in section 3.2.  

 
Lines 192 to 195 Along the same forest and field transects, a federal snow sampler was used to 
collect a single sample of snow depth and snow water equivalent at each magnaprobe sample 
location for a total of 12 field samples and 16 forest samples. Snow depth was measured by 
inserting the aluminium tube vertically into the snowpack and a core was extracted and weighed 
using a spring scale. 
 
The other problem with the paper is that it is too equipment/system specific. Not everyone 
reading this paper will have the same drone, the same lidar etc., so what does the paper offer 
them? It is perhaps necessary to be equipment-specific in this type of paper to some extent, but to 
maximize its use to the wider community, the authors need to strive to separate what is inherent 
in the methodology used with the specific equipment test to what might be more universal. They 
try this in the discussion section with some lessons-learned statements, but these too general and 
read a bit like “be careful when you drive” rules. I am not sure what would be best in this regard, 
but some improvement is definitely needed. 
 
A. We have embraced the reviewer’s comment “the authors need to strive to separate what 
is inherent in the methodology used with the specific equipment test to what might be more 
universal.” and have rewritten the discussion section to more keenly focus on what we 
believe are the most useful lessons learned, broken them into more manageable units and 
clearly indicated what are generalizable lessons versus those that are instrument specific.  
The first paragraph in the discussion and sections 4.2 and 4.3 respond to the reviewer’s 
comments. 
 
Lines 383 to 501 4. Challenges and Recommended Improvements to UAS Lidar Snow 
Depth Mapping 
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Despite UAS-based lidar’s increasing use in the natural sciences and capacity to make high-
resolution snow maps, there are many operational and technical challenges that require 
consideration prior to successfully conducting UAS-based lidar surveys that produce research 
grade, high-resolution snow depth data. Even though the UAVs are modest in size (i.e., weighing 
less than 25 kg), the hardware and supporting software analysis tools can be expensive and 
require trained pilots and lidar data analysis specialists. In this section, we present some general 
considerations regarding validation of the lidar snow depth maps, selection and deployment of a 
lidar sensor on a UAV for snow depth mapping as well as specific insights that we experienced 
when using our system. 
 
4.1 In Situ and UAS Sampling 
While UAS-based lidar surveys can measure snow depth to within a centimeter at high spatial 
resolutions, validation of those observations is challenging. A time consuming collection of high 
accuracy GNSS survey points was required to co-locate magnaprobe and lidar observations. 
Surveying in sample locations prior to the winter season might reduce this effort. It is also 
challenging to make in situ snow depth measurements that provide centimeter accuracy. In this 
study, the magnaprobe in situ snow depth observations made in the forest were considerably 
higher than the lidar observations as compared to the open field where the magnaprobe and lidar 
measurements were within 1 cm. Previous studies also found that snow depth observations from 
ALS measurements are biased lower than those from snow-probe observations in the forest 
(Hopkinson et al., 2004, Currier et al., 2019; Harder et al., 2020). In past studies, the causes of 
these differences have been partially attributed to the snow probe’s ability to penetrate the soil 
and vegetation, human observers tending to make snow depth measurements in locations with 
relatively high snow (Sturm and Holmgren, 2018) and the reduced accuracy of the GNSS. Our 
study suggests additional issues in forest sampling including enhanced terrain variability in 
forested areas relative to adjacent field areas and reduced lidar returns in forested areas as 
compared to field areas combine with sampling issues to contribute to the higher uncertainty in 
the forest snow depths observed in our study. 
 
In this study, the cold temperatures and snow-free conditions prior to the January 19th and 20th 
snowfall event resulted in deeper frozen soils (23.5 to 25.5 cm) in the field and shallower soil 
frost depth (5.5 to 8.5 cm) in the west forest, which would have limited the probe penetration 
into soils at both sites. However, the forest has a 1-4 cm thick organic leaf litter layer that may 
have been penetrated by the magnaprobe. The average Federal snow sampler tube depths (13.1 
cm) were not as deep as the magna probe (15.2 cm) and thus more closely match the lidar snow 
depth (7.8 cm; see Figure 3), though a considerable low bias (~5.3 cm) similar to that found by 
Harder et al. (2020) persists in the lidar snow depth relative to the federal snow sampler snow 
depths. Additional factors such as downed logs, thick understory, and fine-scale topographic 
features (ie: small boulders and hummocky terrain) as well as reduced ground return density may 
contribute to the lidar snow depth errors in a forest, whereas these factors are absent in the field.  
 
An improved understanding of forest canopies impacts on lidar returns is also warranted. Recent 
work has demonstrated that lidar pulses are “lost” at a much higher rate in forest canopies than 
open ground terrain due to interception, absorption, and scattering through canopy transmission, 
with the loss ratio largely influenced by the range of the target from the sensor (Liu et al., 2020). 
The data that we presented in this paper were acquired using constant flight speed and at 
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consistent altitude above target areas. Because of this, it is feasible that forest canopy conditions 
and variable understory vegetation density may have resulted in lost pulses and increased 
uncertainty in our data set. Indeed, we did observe lower return densities for both ground and all 
returns in forested areas in our data set (Figure 4).  
 
One possible outcome of these lidar sampling issues in forests was a significant difference in 
snow depth confidence intervals between field and forest types and among slope groups. 
Confidence intervals were highest in conifer stands and on steep slopes and lowest in the field. 
While this result is not entirely surprising, it is likely partially the result of lower ground return 
density in forests due to the combined effects of lost pulses and canopy occlusion in forested 
areas. Additionally, this observation may be driven by increased variability in snow depth due to 
pockets of duff and woody debris, and due to higher variability in subnivean terrain in the 
forested areas of the study site. Areas of high terrain relief are expected to have more variability 
in ground return elevations over shorter distances, which would partially drive higher confidence 
intervals of ground surface elevation for pixels located in high relief areas. High relief areas of 
the study site were more common in forested areas of the study site, and the uncertainty resulting 
around high slopes also carries through snow depth estimation. Snow depth was significantly 
different between field and forested areas, as well as between conifer and deciduous forest types, 
despite the relatively high uncertainty. This indicates the possible influence of tree canopies on 
snow accumulation due to enhanced snow interception in forests, and particularly in conifer 
stands, but also could be the result of an under-sampled ground surface in forested areas relative 
to field areas. Snow depth also was significantly different among the three slope groups, possibly 
due to wind-driven snow displacement and sloughing on slopes during accumulation.  
 
4.2 Flight Planning  
Because larger UAVs that can carry heavier payloads have challenges that may differ from small 
UAVs, a well-formulated flight plan that addresses weather conditions, logistics of flying at 
proposed site, flight lines, UAS equipment, and personnel is clearly needed. Weather impacts 
operations. UAS surveys cannot be conducted when there is any type of precipitation or in dense 
fog/clouds because moisture can cause electronic components to malfunction and moisture build-
up on the propellers can also adversely affect lift production. Depending on the UAV, wind 
speeds exceeding 7 to 10 m/s may make flights more difficult. This project’s Eagle XF high lift 
capacity UAS cannot be flown comfortably in winds greater than 8 m/s. At the study site, wind 
speeds often exceeded this threshold in the days immediately following snowfall except early in 
the morning. High wind speeds can also significantly reduce battery life as well as impact the 
accuracy of sensor observations. Low air temperatures can cause batteries to rapidly discharge. 
For winter UAS surveys, all flight and operational batteries were kept warm in a building, 
vehicle, or insulated cooler prior to the UAS survey. This also applies to the computer used to 
upload flight lines and relay telemetry information. A MIL-STD-810 certified Panasonic 
Toughbook was used in this study to handle the anticipated cold temperatures. Additionally, cold 
temperatures can severely limit the dexterity of the person manipulating the flight controls.  
  
High lift UAVs capable of carrying a lidar sensor package have the potential to cause significant 
damage to person and property. The selection of a survey site not only needs to meet the 
scientific objectives of the UAV survey, but also must have the proper attributes for safe and 
legal UAV operation including permission to operate the UAV at the site. Visual line of sight 
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(VLOS) of the UAV needs to be maintained throughout the flight. When it is difficult to 
maintain VLOS (e.g., flying over forested or mountainous sites), spotters can be used if there is 
constant two-way communication between the spotters and the person operating the flight 
controls. For this study, an on-site, walk up tower with a spotter was necessary while the UAV 
was flown over the forest.  
  
The deployment of a UAV lidar system requires additional flight patterns designed for 
boresighting to ensure that point clouds are aligned (Painter et al., 2016). Provided that GNSS 
data are accurate, the most common reason for misalignment of point clouds is boresight angle 
errors (Li et al., 2019). Boresighting is the process of calculating the differences between lidar 
sensor and IMU roll, pitch, and yaw angle measurements to correct those errors in point clouds. 
Due to battery flight time limitations, we were unable to complete the flight pattern that is 
commonly used for boresighting alignment. Because of this, we leveraged our first two 
antiparallel flight lines for boresighting calibration. Additional details on boresighting 
calibration, our technique due to the flight time limitations, and examples of roll and pitch 
alignment errors observed during this field campaign appear in the supplemental materials. 
  
4.3 UAS Sampling Strategies 
While lidar calibration and data post-processing requirements are quite similar for UAS and 
airborne surveys, the UAS lidar surveys presented in this study have key differences from 
previous ALS surveys. As noted above, UAS flight durations are considerably shorter, resulting 
in limited spatial coverage as compared to previous ALS snow depth surveys. An advantage of 
UAS over ALS surveys is that the average point cloud density is much higher and has fewer 
missing pixels in the forest. This study’s sampling densities and the proportion of areas with no 
ground returns are quite different from previous airborne lidar SD studies. This study had ground 
returns of 90 and 364 points/m2 in the forest and field, respectively, and had no ground returns in 
only 0.086% and 0.95% of the 1 m resolution field and forest cells, respectively. In contrast, 
ALS surveys typically report surface model densities between 8 to 16 points/m2 (Broxton et al., 
2015; 2019; Currier et al., 2019; Kirchner et al., 2014) and ground returns between 3 and 6 
points/m2 (Broxton et al., 2019; Kirchner et al., 2014). ALS derived snow depth maps have a 
much greater proportion of areas that are masked due to no ground returns, particularly under 
trees, with masking areas ranging from less to 10% to more than 23% (Harpold et al., 2014; 
Mazzotti et al., 2019). While gap filling is possible, interpolation using measured snow depth 
values to fill under tree can overestimate snow depth (Zheng et al., 2016). Based on our work 
comparing field and forest lidar collections from a UAS, we suggest testing alternative flight 
plans, including reduced flight speed over forest canopies to account for lost pulses and canopy 
returns to produce ground return density that is comparable to field ground return density and to 
further reduce the number of missing pixels in an acquisition area.  
 
A well understood challenge exists when developing a spatial sampling strategy in which, for 
given resources, there is a trade-off between spatial extent and sampling density (Clark et al. 
2011). Increasing flight altitude can expand the spatial extent of an aerial survey. However, 
flying at higher altitudes results in a decreased point density. In theory, a higher point density 
could be achieved by slower speeds and increased swath overlap. The targeted spatial extent of 
an aerial survey dictates whether a manned aircraft or a UAV platform should be used. If the 
targeted area has a limited domain then using a manned airborne platform is probably overkill 



	 22	

and inefficient for many studies and the use of a UAV would be more cost effective. However, 
as the domain increases in size, additional batteries would be required, much of the battery 
power would be used to reach the outer limits of the domain, and the ability to maintain the 
required line of sight could be difficult. Thus, there are end-members for survey site or regions 
where it is self-evident as to whether a UAV or an airborne platform should be used, but that 
leaves considerable gray areas where an appropriate choice of UAV platform with a well 
designed mission could stretch the domain.  Future research and technological advances are 
needed to offer insights for snow science observation platforms and trade-offs.  
 
If the comment that the paper is “too equipment/system specific” is intended to mean that 
we should reduce the description of the equipment, we would push back because the 
authors strongly believe that the audience who is interested in replicating the experiment 
should be provided with adequate details to be able to do so. Authors who are interested in 
conducting similar studies with different instrumentation should be able to understand 
difference due to instrumentation versus those due to snow differences. Similarly, every 
experiment is equipment specific and most experiments across research groups do not use 
identical equipment. This author team has found papers very informative when methods 
and equipment are described in detail and not just overall results. When new methods and 
equipment are deployed in studies, the ability to recreate a study or examine the methods is 
important. This knowledge allows for repeatability, criticism of the experiment, and also 
can save a research team many hours when learning a new method or developing an 
experimental plan with technological equipment.  Early SfM, airborne lidar, and UAS 
optical work included specific equipment details and methodologies.  
 
We have slightly reduced our equipment description in the body of the text and reference 
supplemental material with a new table of technical specifications. We hope that this will 
balance out the reviewer’s concern. 
 
 Table S1. Technical specifications of the project UAS 
UAS  
UAS type quadcopter 
Manufacturer/Model UAV-America / Eagle X8 
Diameter  130 cm 
Height 70 cm 
Number of rotors 4 
Rotor diameter 27.5 in (~70cm) 
Motor Manufacturer/Model KDE Direct / 7208 
RPM/Volt (KV rating) 110 KV 
Aircraft empty weight 8 kg 
Aircraft weight at take-off (with payload) 16 kg 
Flight time at take-off weight ~7 minutes 
Tolerable wind speed (with payload) 5 m/s 
Flight controller Pixhawk PX4 
Flight Batteries 22,000 mAh 6 Cell Lipo (2X) 
  
Sensor Payload	 	
Gimble Gremsy H7 
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IMU/GPS   Applanix APX-15 
Lidar Velodyne VLP-16 
Payload weight 3 kg 

 
Lastly, considerable space in the text is given to thin, shallow snow covers, and other lidar and 
airborne methods of mapping snow. While clearly when there is a fixed error in snow depth 
mapping (e.g., ±3 cm), it is a more serious problem in thin snow. Ultimately this is a methods 
paper, and nothing described in the accuracy and operation of the lidar is limited or specific to 
thin snow. 
A. The reviewer makes a reasonable point that this work is more about pushing the 
envelope by reducing SD errors as opposed to thin snow per se and is relevant to any 
research that needs snow depth with a high vertical resolution. Based on the reviewer’s 
comment, we have broadened the motivation to include a range of scenarios where an 
improved vertical resolution of SD beyond the existing 10+ cm resolution would be 
welcome. We have also discussed where the lidar observations are likely specific to thin 
snow.  

 
Lines 28 to 61 Snowpacks are highly dynamic, accumulating and ablating throughout the winter 
with associated changes in snowpack density, grain size, and albedo (Adolph et al., 2017) as well 
as ice formation. Wind redistribution, sloughing of snow off slopes, trapping of snow by 
vegetation, and forest canopy interception also result in a range of spatial features at varying 
scales (Clark et al., 2011; Mott et al., 2011; Mott et al., 2018). The resulting snow depth 
variations may cause differences in snowpack metamorphosis and processes such as ripening 
during winter rain events and warmer air temperature than deeper snowpacks (Wever et al., 
2014) and the transport and refreeze of meltwaters (Watanabe and Osada, 2016).  Distributed 
modeling and mapping of snowpacks can increasingly provide output at fine spatiotemporal 
scales but snow state change validation typically relies on in situ observations (Hall et al., 2010; 
Gichamo and Tarboton 2019; Starkloff et al., 2017). Despite importance, few spatially 
continuous high-resolution snowpacks datasets are available to support modelling, and mapping 
efforts.   

 
Modest differences in snowpack depth can differentially impact many hydrologic, agricultural, 
and ecosystem processes.  Moderate differences in the magnitude of snowpack meltwaters can 
improve streamflow and volume forecasts (Gichamo and Tarboton, 2019), change the likelihood 
of spring floods (Tuttle et al., 2017) and intensify overland nutrient transport and soil erosion 
(Seyfried et al., 1990; Singh et al., 2009). In regions where snowpacks are typically shallow and 
ephemeral, high-resolution snow depth measurements are desirable for all of the winter. Even in 
mountainous regions with deep seasonal snowpacks, variations and patterns in snow depth are 
observed at multiple scales when measured at a high vertical resolution (see reviews in Clark et 
al., 2011). Early findings using ICE-Sat2 to provide routine, high-resolution Arctic snow depths 
reveal processes that are missed when using snow climatologies (Kwok et al. 2020).  

 
High-resolution snow depth measurements are also needed to discern processes that depend on 
the snow state. Insulation by seasonal snow in the Arctic and Antarctic slows sea ice growth 
(Sturm et al., 2002). Thin, ephemeral snowpacks have limited insulation and allow the 
underlying soils to freeze more readily in the winter (Groffman et al., 2001; Starkloff et al. 2017; 
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Yi et al. 2019). Soil frost severity impacts soil respiration, carbon sequestration, nutrient 
retention, and microbial communities as well as a plant root health and tree growth (Aase and 
Siddoway, 1979; Isard and Schaetzel, 1998; Monson et al., 2006; Henry, 2008; Aanderud et al., 
2013; Tucker et al., 2016; Sorensen et al., 2018; Reinmann and Templer, 2018). When the frozen 
soils impede meltwater infiltration, flooding and erosion may increase (Watanabe and Osada, 
2016). Detection and mapping of rapid thinning of snowpacks followed by frigid cold during 
“winter whiplash” events (Casson et al. 2019) is therefore important for understanding 
ecosystem impacts of soil freezing events, which are otherwise not well quantified (Kraatz et al. 
2018; Prince et al. 2019). Snowpacks as thin as 15 cm also provide a critical subnivean refugia 
important for overwintering of many species, including soil microbes, plants, insects, small 
rodents and the predators that are sustained by their populations (Pauli et al., 2013), and the 
southern boundary of subnivean habitat is already being lost to a warming climate (Zhu et al. 
2019). High vertical resolution snow mapping could greatly improve understanding how this 
unique habitat is changing these ecological communities at a local scale.  

 
 
I am going to recommend that this paper be returned for major revisions and specifically the 
inclusion of more extensive testing across a wider set of snow and terrain conditions. In revision, 
I would suggest that the focus of the paper be honed to be squarely focused on the methodology 
and not waste journal space on issues related to thin snow covers, for which no real new 
information was presented. 
Recommendation: Return for major revisions and strengthen with more flights over a wider 
range of terrain and vegetation. 
 
Thank you for the recommendations here and in the following sections.  We have refined 
the focus and the thin snow covers discussion is now only one aspect of the broader 
motivation for a new combination of sensors and platform to provide higher vertical 
resolution SD measurements.  Please see the previous comment and response. 
 
The reviewer requested consideration of canopy and terrain variations. At this site, there 
are notable variations in slope as well as forest type. We conducted a new analysis to better 
quantify the canopy variations and to determine if the mean snow depth and the confidence 
intervals differ by slope or land-use. We found statistically significant differences for all 
combinations. Land-use differences include a new delineation of the forest by coniferous or 
deciduous trees. A new methods section 2.4 Slope and Vegetation Cover Classification and 
Analysis was added. The findings are reported in results section 3.3 Snow Depth Maps 
from UAS Lidar with an additional figure showing boxplots.  
 
Lines 183 to 205 2.4 Slope and Vegetation Cover Classification and Analysis 
The snow-off DTM was used to develop a 1 m resolution map of slope (Horn, 1981). Vegetation 
cover type (field/forest) was determined from the known boundaries of field and forest.  The 
forested area was further classified as coniferous or deciduous for the study region using the 
following methodology (Figure 1). Within the forested area (Figure 1), a Canopy Height Model 
(CHM) was used to distinguish the intact upper canopy from other forest cover using our snow-
off survey, collected with leaf off in the spring (Sullivan et al., 2017). The CHM was generated 
by subtracting the DTM produced using ground-classified points from the DSM produced using 
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all lidar points. This results in a digital model consisting solely of canopy heights with no terrain 
or topography.  The CHM generation used raster images with a 1 m resolution.  A 3 by 3 
maximum convolve filter was used to enhance the edges of canopy crowns and expand smaller 
regions that might have just one pixel of an intact canopy or a whole in a larger canopy (Palace 
et al., 2008).  A 15 m threshold was used to differentiate between the upper level intact 
coniferous canopy. CHM pixels that were below this threshold were deemed deciduous canopies 
(see supporting information for intermediate figures). The 5.6 ha forested area has a forest type 
that is 65% deciduous and 35% coniferous.   
 
Once the vegetation forest type was classified, the raster binary image was vectorized.  Within 
the forest and field regions of our study, a subsample was created from the entire image of 5000 
random points in the field and 5000 random points each of the eastern and western forested areas 
(Palace et al., 2017).  At each of these random points, slope, vegetation type (field, deciduous, 
coniferous), and snow depth and snow depth confidence interval values were extracted.  Because 
of missing values in the raster images, not all random points extracted values and resulted in 
different numbers of samples points for the forest and forest types. Slope was assigned to one of 
three categories: 0-10 degrees, 10-20 degrees, and greater than 20 degrees. Because the extracted 
datasets (i.e., snow depth, confidence interval, and slope) were not normally distributed, the non-
parametric Steel-Dwass Method test was used to test for differences. This non-parametric 
method is useful when sample numbers are large and groups are small, because it allows type I 
errors to be controlled (Dolgun and Demirhan, 2017).  
 
Lines 301 to 329 3.3 Snow Depth Maps from UAS Lidar 
The UAS-mapped snow depth, mapped by subtracting snow-off DTMs from snow-on DTMs, 
reveals a shallow snowpack whose depth ranges from less than 2 cm to over 18 cm (Figure 5). 
The mean lidar snow depth was 10.3 cm in the field and 6.0 cm in the forest. Despite the shallow 
conditions, spatially coherent patterns are readily discernible. The field snowpack depth has 
higher spatial variability than the west forest snowpack and more spatial organization. In the 
field, the deepest snow is in the low-lying northeast areas that are sheltered from westerly winds. 
A relatively moderate and consistent snowpack occurs in southern part of the east field and west 
of the small pond. The shallowest snowpack is found in the center portion of the field, which is 
slightly elevated and, unlike most of the field, was not mowed. Lower snow depth at the forest 
edge distinguishes the field to forest transition. A non-parametric Steel-Dwass test found 
significant variation for the mean snow depth among the two forest types and field (p < 0.0001) 
(Figure 6a). A pairwise Steel-Dwass test showed that snow depths were significantly different 
between the three pairs of field and forest types (p < 0.0001).  When comparing just field and 
forest as categories, the test also found significant differences for snow depth (p < 0.0001). Snow 
depth was also determined to be significantly different among the three slope group categories 
using the Steel-Dwass test where regions with a limited slope (Group 1) had more decidedly 
different snow than steeper regions (p < 0.0001) (Figure 6b).   
 
The one-sided confidence interval values of the mean snow depth estimate are remarkably 
consistent in the field and typically are between 0.5 to 1 cm regardless of snow depth (Figure 
5b). Modestly larger confidence intervals occur adjacent to the north-south road where the fields 
were not mowed prior to winter as well as the northern and southern extents of the flight lines 
likely due to the reduced sampling density. The forest had an average one-sided confidence 
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interval of 3.5 cm, which is considerably higher than the field. Where the forest is predominantly 
comprised of deciduous trees, the typical one-sided confidence intervals of the mean snow depth 
were as low as 1 to 2 cm. The largest one-sided confidence interval values occur in the middle of 
the field where there is dense shrubbery, at the edge of the fields, and in clusters within the forest 
where the forest sections are dominated by coniferous trees. The nexus of flight lines in the take-
off and landing area resulted in a local area with very high confidence. A non-parametric Steel-
Dwass test found significant variation for confidence intervals of the mean snow depth among 
the two forest types and field (p < 0.0001) (Figure 6c). A pairwise Steel-Dwass test showed that 
confidence intervals were significantly different between the three pairs of field and forest types 
and (p < 0.0001). Confidence intervals were also significantly different among the three slope 
categories as determined using a Steel-Dwass test  (p < 0.0001) (Figure 6d). 

 
 

Figure 6. Snow depths (a,b) and their one sided confidence intervals (c,d) from the random sample points of the field and forest 
at Thompson Farm, Durham, NH on January 23, 2019 from the individual cells for 1 m2 cells by vegetation cover (a,c) and slope 
group (b,d). Boxplots show the lower quartile, median, upper quartile, and whiskers with the median value noted. Because of 
missing values in the raster images, not all random points extracted values and resulted in different numbers of samples points for 
vegetation cover classes.  
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While more extensive testing across a wider set of snow and terrain conditions would 
certainly be welcome, the previous literature with SfM SD shows that there is a place in the 
literature for limited, targeted, early studies and that these papers provide tremendous 
value as evidenced by their heavy citation rate and how they have informed subsequent 
research. Also, most of the early SfM SD papers were published in The Cryosphere.  The 
additional analysis on snow depth variations by land cover and slope add novel results for 
this region. In addition, there are very few snow depth studies in regions that have a 
relatively limited range of snow depths such as the northeastern U.S. or the Great Plains, 
U.S. and previous mapping using SfM would be unlikely to capture those limited 
differences. This study demonstrates that UAV lidar can quantify the contribution of land 
cover and slope on the ephemeral snowpacks that are increasingly characteristic of this 
region. 
 
Our manuscript closely follows the model used by the early SfM studies and provides early 
guidance on methods for surveying and ground-based sampling as well as early results that 
provide insights to potential outcomes, performance and challenges. The requested 
additional datasets would very much change this submission and, as the request would 
require an additional winter field season, delay the communication of these early findings 
by over a year.  
 
We hope our responses and explanations on why this paper is novel and a contribution to 
the field of shallow snowpack estimation using remotely sensed data warrants 
consideration of publication. We believe that our work presented in this manuscript is 
valuable for the community of researcher who are increasingly likely to consider including 
lidar UAS systems in experiments, with timely information to support decisions regarding 
whether to proceed with UAS lidar observations, to inform equipment purchases, and to 
plan field campaigns. 

 
Detailed Comments 
Abstract: First three sentences could be deleted. 
Lines 1 to 98 could readily be deleted with no loss to the topic of the paper (thin snow 
discussion). 
 
A. Based on the reviewer’s comment, we have revised the motivation to include a range of 
scenarios where an improved vertical resolution of SD beyond the 10+ cm resolution would 
be welcome. Beyond shallow snowpacks, lines 54 forward provide a review of the methods 
used to measure SD and their limitations. A review of this literature is important to put this 
current new technology and methods in context. Based on the reviewer’s comments the 
introduction section was entirely rewritten.  
 
Lines 28 to 74 Snowpacks are highly dynamic, accumulating and ablating throughout the winter 
with associated changes in snowpack density, grain size, and albedo (Adolph et al., 2017) as well 
as ice formation. Wind redistribution, sloughing of snow off slopes, trapping of snow by 
vegetation, and forest canopy interception also result in a range of spatial features at varying 
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scales (Clark et al., 2011; Mott et al., 2011; Mott et al., 2018). The resulting snow depth 
variations may cause differences in snowpack metamorphosis and processes such as ripening 
during winter rain events and warmer air temperature than deeper snowpacks (Wever et al., 
2014) and the transport and refreeze of meltwaters (Watanabe and Osada, 2016).  Distributed 
modeling and mapping of snowpacks can increasingly provide output at fine spatiotemporal 
scales but snow state change validation typically relies on in situ observations (Hall et al., 2010; 
Gichamo and Tarboton 2019; Starkloff et al., 2017). Despite importance, few spatially 
continuous high-resolution snowpacks datasets are available to support modelling, and mapping 
efforts.   
 
Modest differences in snowpack depth can differentially impact many hydrologic, agricultural, 
and ecosystem processes.  Moderate differences in the magnitude of snowpack meltwaters can 
improve streamflow and volume forecasts (Gichamo and Tarboton, 2019), change the likelihood 
of spring floods (Tuttle et al., 2017) and intensify overland nutrient transport and soil erosion 
(Seyfried et al., 1990; Singh et al., 2009). In regions where snowpacks are typically shallow and 
ephemeral, high-resolution snow depth measurements are desirable for all of the winter. Even in 
mountainous regions with deep seasonal snowpacks, variations and patterns in snow depth are 
observed at multiple scales when measured at a high vertical resolution (see reviews in Clark et 
al., 2011). Early findings using ICE-Sat2 to provide routine, high-resolution Arctic snow depths 
reveal processes that are missed when using snow climatologies (Kwok et al. 2020).  
 
High-resolution snow depth measurements are also needed to discern processes that depend on 
the snow state. Insulation by seasonal snow in the Arctic and Antarctic slows sea ice growth 
(Sturm et al., 2002). Thin, ephemeral snowpacks have limited insulation and allow the 
underlying soils to freeze more readily in the winter (Groffman et al., 2001; Starkloff et al. 2017; 
Yi et al. 2019). Soil frost severity impacts soil respiration, carbon sequestration, nutrient 
retention, and microbial communities as well as a plant root health and tree growth (Aase and 
Siddoway, 1979; Isard and Schaetzel, 1998; Monson et al., 2006; Henry, 2008; Aanderud et al., 
2013; Tucker et al., 2016; Sorensen et al., 2018; Reinmann and Templer, 2018). When the frozen 
soils impede meltwater infiltration, flooding and erosion may increase (Watanabe and Osada, 
2016). Detection and mapping of rapid thinning of snowpacks followed by frigid cold during 
“winter whiplash” events (Casson et al. 2019) is therefore important for understanding 
ecosystem impacts of soil freezing events, which are otherwise not well quantified (Kraatz et al. 
2018; Prince et al. 2019). Snowpacks as thin as 15 cm also provide a critical subnivean refugia 
important for overwintering of many species, including soil microbes, plants, insects, small 
rodents and the predators that are sustained by their populations (Pauli et al., 2013), and the 
southern boundary of subnivean habitat is already being lost to a warming climate (Zhu et al. 
2019). High vertical resolution snow mapping could greatly improve understanding how this 
unique habitat is changing these ecological communities at a local scale.  
 
Because snowpacks have considerable spatiotemporal variability, a large number of snow depth 
measurements are often needed to characterize the snowpack (Dickinson and Whiteley, 1972). 
Using traditional, precise point measurements with a limited sample size, the experimental 
design requires a balance between the sampling extent and sample spacing (Clark et al. 2011).  
However, the choice of sampling resolution may yield different measures of snow depth spatial 
variability when the snow exhibits multifractal behaviour (Deems et al. 2006). Over the past two 
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decades, remote sensing methods, providing spatially continuous, high-resolution snow depth 
maps at local and regional scales, have greatly advanced the ability to characterize the 
spatiotemporal variability of snow depth over earlier work using snow probes (see reviews in 
Deems et al., 2013; López-Moreno et al., 2017). Spaceborne photogrammetry (e.g. Marti et al. 
2016, McGrath et al. 2019, Shaw et al. 2019), airborne laser scanning (ALS) (Deems et al., 2013; 
Harpold et al., 2014; Kirchner et al., 2014), terrestrial laser scanning (TLS) (Grünewald et al. 
2010; Currier et al. 2019), and structure-from-motion photogrammetry (SfM) (Nolan et al., 2015; 
Bühler et al., 2016; Harder et al., 2016) have emerged as viable methods to map surface 
elevations with snow-off and snow-on conditions in order to differentially map snow depths.  
 
 
Figure 1: Nice graphic. . .very clear. 
A. Thank you. 
 
Line 84: Ground control points are mentioned, but I don’t see any indication that they used 
control points for the SfM maps beyond the 200hz measurement rate, and I don’t understand how 
that works. 
A. We are not sure what the reviewer means. We did not create any SfM maps for this 
paper. Line 84 is the literature review not methods. The 200hz referred to in the methods 
and conclusion is the sampling rate of the inertial navigation system (INS), which measures 
the position of the UAS during acquisition flights. Those data are then used to calculate the 
location of lidar returns. We do use GCPs in the same sentence as 200hz once, and it is to 
point out that one of the benefits of our lidar payload over SfM approaches is that a 
payload that relies on an INS does not require GCPs, while SfM does.  
 
Line 158: DTM not defined, which reflects a certain unevenness in the technical level of the 
paper. Who is this paper for? The new practitioner or the veteran GIS and UAV group? There are 
many acronyms in the paper all of which should when first presented be defined. 
A. The acronyms were reviewed and defined. We apologize for the original omission of the 
definition of digital terrain model (DTM) and now include it. 
 
Lines 169 to 174 We used a set of window sizes of 1, 3, 5, and 9 m, and elevation thresholds of 
0.2, 1.5, 3, and 7 m, which were determined by varying value sets and assessing digital terrain 
models (DTMs) to determine the parameter sets that produced a visually smooth surface over a 
dense grid (in sensu Muir et al., 2017). 
 
Line 166: Ground probe sampling method was a 5-sample cross pattern, with a GNSS GPS point 
in the center of the cross, but the authors wait until line 175 to tells us they averaged these 5 
samples. What was the logic behind the sampling protocol and why only 5 points per 0.4 m 
sampling pixel, when the lidar was producing between 25 and 90? Surely more could have been 
measured? Also, later in the paper a core tube (Federal s ampler?) is mentioned but no other 
details about it. About here in the paper it would also be good to mention the nature of the 
ground surface and depth of freeze, instead of later when trying to explain the discrepancy 
between the forest and field measurements errors. 
A. Because the lidar observations were anticipated to give very high-resolution 
observations, we used an approach that would provide very high spatial precision for the in 
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situ observation coordinates. The ground sampling protocol was informed by the methods 
used to validate SfM SDs. Harder (2016), Bühler et al. (2016), and Adams et al. (2018) used 
the same 5-sample cross pattern with a GNSS GPS point in the center of the cross. Our in 
situ SD observations were measured using the magna probe and then the center point was 
surveyed to a horizontal uncertainty of 2.51cm and 4.17cm for the field and forest, 
respectively, that meets or exceeds previous studies. The downside is that this procedure 
limits the number of in situ validation points.  
 
The federal snow sampling tube was originally described on lines 172 and 173 (2.4 Snow 
Depth Ground Truth) and the later reference to the “tube” has been clarified. The section 
2.4 Snow Depth Ground Truth section has been modified to 2.4 In Situ Observations. This 
section now includes requested a discussion of the ground surface and depth of freeze as 
well as additional details on the sampling methods.  
 
Lines 180 to 203 2.4 In Situ Observations 
A 1.2-m Global Positioning System (GPS)-equipped magnaprobe (Sturm and Holmgren, 2018) 
was used to compare to the unmanned aerial system (UAV) lidar surveys (hereafter noted as 
ALS measurements) over two transects. The first transect consisted of 12 sample locations in the 
field and 5 locations in the eastern forest of our study site. The second transect consisted of 11 
sample locations in the western forest. Sample locations were separated by approximately 10 m. 
The field transect follows the prevailing westerly wind direction with its west side at the foot of a 
modest depression (approximately 2 m below the land further to the west) and the east side 
transitioning into a wooded area. Following (Harder et al. 2016) and (Bühler et al. 2016), each 
sample location includes 5 samples in a cross pattern with the four ordinal directions sampled 
approximately 20 cm from the center sampling location in the cross. The five samples are used to 
provide a measure of SD central tendency and variation over a 0.4 x 0.4 m pixel. Because the 
magnaprobe GPS has an absolute accuracy of 8 m, a Trimble© Geo7X GNSS Positioning Unit 
with Zephr™ antenna was used to collect each sampling location’s center point with an estimated 
horizontal uncertainty of 2.51cm (standard deviation 𝜎 0.95 cm) and 4.17cm (σ 4.60 cm) for the 
field and forest, respectively after differential correction. Along the same forest and field 
transects, a federal snow tube sampler was used to collect a single sample of snow depth and 
snow water equivalent at each magnaprobe sample location for a total of 12 field samples and 16 
forest samples. Snow depth was measured by inserting the aluminium tube vertically into the 
snowpack and a core was extracted and weighed using a spring scale.  
 
An independent study collected soil frost depth from three locations at the Thompson Farm 
Research Observatory using Gandahl-Cold Regions Research and Engineering Laboratory 
(CRREL) style frost tubes. The frost tubes have flexible, polyethylene inner tubing filled with 
methylene blue dye whose color change is easy to differentiate when extruded from ice (Gandahl 
1957). A nylon string housed inside the polyethylene tubing affixes ice during periods of thaw. 
The outer tubing consists of PVC pipe installed between 0.4 to 0.5 m below soil surface (Ricard 
et al., 1976; Sharratt and McCool, 2005). Prior to the January 19th and 20th, 2019 snowfall event, 
soil frost was 23.5 to 25.5 cm in the field and 5.5 to 8.5 cm in the west forest.  
 
Line 240-Figure 4: The maps look quite good, and the inclusion of the confidence map is to be 
commended. But several aspects shown on this figure go unremarked. Specifically, how was the 
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location of the ground validation determined, and why so few ground data? It is unfortunate that 
for the field ground data, other data from the shallower area bracketing the road wasn’t obtained 
so that a second thinner field comparison could be made. As for the confidence map, the very 
high confidence area in the center of western forest is at the nexus of all the flight lines. . ..is that 
why the confidence is high there? Conversely, comparing Fig. 1 to 4a and 4b, there are gaps and 
openings in the trees in both east and west forest where the confidence drops considerably, yet 
one might have expected these to function like the open filed. Why does it drop? 
 
A. Thank you. Additional remarks about this figure were added based on the reviewer’s 
comments including the point about the nexus of flight lines resulting in high confidence. 
The forest locations having a marked decreased confidence are locations where there is a 
dense canopy and limited lidar penetration combined with increased pulse loss. The higher 
variability in confidence in the forest is likely due to the heterogeneity of the forest 
structure, not canopy gaps as this is a continuous forest canopy. Instead, what the reviewer 
perceives to be gaps are more likely areas with more deciduous trees and variable terrain. 
A new analysis was conducted and added to the paper to examine the variability within the 
forest. The areas with marked decreased confidence are locations where there is a dense 
canopy and limited lidar penetration.  
 
We were intrigued by the reviewer’s comments about the confidence in the forests and 
revisited the forest locations. A new analysis of the forest canopy profiles and the ground 
versus nonground returns in the forest and field for both snow on and snow-off conditions 
was added. 
 
Lines 324 to 325 The nexus of flight lines in the take-off and landing area resulted in a local area 
with very high confidence.  
 
Lines 278 to 279 To provide insight to differences between the forest and field observations, 
mean height profiles were calculated for a 25 m2 square region centered on forest and field study 
plots from lidar data (Figure 4). To do this, all lidar returns were extracted from the bounding 
box of each plot, then the mean elevation of ground returns was calculated within each plot. 
Return heights for each plot were determined by subtracting the mean ground elevation of the 
plot, then the normalized return elevations were binned in 0.1 m height increments. Within 
forests, an average of 2142 and 2889 returns were classified as ground and non-ground in snow-
free conditions per 25 m2 plot, respectively with 2218 ground returns and 1721 non-ground 
returns in snow-on conditions. In field plots, an average of 5666 ground returns and 154 non-
ground returns in snow-free conditions were obtained per 25 m2 plot, with 7567 ground returns 
and 25 non-ground returns in snow-on conditions. Figure 4 also shows that there is a greater 
range of ground return elevations in the forest as compared to the field. In forest plots, ground 
return elevations had an average standard deviation of 0.157 m and 0.154 m in snow-free and 
snow-on conditions, respectively, while in field plots, ground return elevations had standard 
deviations of 0.058 m and 0.050 m in snow-free and snow-on conditions, respectively.  
 
The limited number of ground sampling points is discussed in the response to the previous 
section. We agree it is unfortunate that our field data didn’t capture more of the 
variability. Unfortunately, because lidar post-processing takes some time, it is not possible 
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to develop a sampling plan based on the lidar observations because the field data needs to 
be collected at nearly the same time as the lidar data. Similarly, field data collection occurs 
after the lidar acquisition because snow sampling and movement of people across the 
landscape alters the snow field.  
 
Regarding how was the location of the ground validation determined: Our working 
hypothesis that informed the ground sampling design was that there would be limited local 
variations in precipitation in the field and that wind redistribution would drive variations 
in snow depth across the field. The field transect was set up along the prevailing wind 
direction with the west side at the foot of a modest depression (approximately 3-4 m below 
the land further to the west) and the east side transitioning into a wooded area in an effort 
to capture wind driven variations. The results instead showed limited SD variations along 
the transect as compared to notable SD variations and patterns that were readily evident 
from the lidar SD maps. This suggests opportunities for further research and will inform 
future in situ sampling strategies. We updated the methods to describe how the field 
transect was located. 
 
Lines 184 to 186 The field transect follows the prevailing westerly wind direction with its west 
side at the foot of a modest depression (approximately 3-4 m below the land further to the west) 
and the east side transitioning into a wooded area.  
 
 
Figure 7: OK...but anyone new to airborne lidar will not understand it, and anyone already doing 
SfM or lidar will not need it. Think of who you are writing for. 
A. This is a reasonable point and was also noted by Reviewer #1. We moved this to 
supplemental materials and modified the text. Because our target audience will likely 
include readers who are new to airborne lidar, this figure has been revised and the 
supporting text have been rewritten to make this important information for accessible to 
that audience. Additional explanatory text and figures were added to the discussion on 
boresighting in order to provide a specific example to anyone who is new to airborne lidar. 
Our goal is to provide a specific example using a snow depth survey that will provide 
information beyond that available in a standard textbook discussion of boresighting. We 
hope that the placement in supplementary material will allow readers who are new to lidar 
to have a specific example that is linked to this analysis, but will remove the material from 
the main body of the paper for those who do not need it.  
  
S2 Boresight Calibration 
The deployment of a lidar system mounted on a UAV platform for snow depth monitoring 
requires flight patterns designed for calculating boresight alignment and post-processing to 
ensure that point clouds are properly aligned (Painter et al., 2016). Provided that GNSS data are 
accurate, the most common reason for misalignment of point clouds is boresight angle errors (Li 
et al., 2019). Boresighting is the process of calculating the differences between lidar sensor and 
IMU roll, pitch, and yaw angle measurements to correct those errors in point clouds. 
Traditionally, boresighting calibration is performed using antiparallel flight lines in addition to a 
perpendicular flight line (Keyetieu and Seube, 2019). Due to battery flight time limitations, it 
was not possible to complete the flight pattern that is commonly used for boresighting alignment. 
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Because of this, the first two antiparallel flight lines were leveraged for boresighting calibration. 
Offsets between sensor and IMU are calculated by observing misalignments between lidar data 
collected from different flight lines, and iteratively adjusting roll, pitch, and yaw angles of the 
IMU data to produce sub-datasets into the same planes. To determine roll offset, broad (10 m) 
along-path cross-sections over flat terrain were assessed, and to determine pitch offset narrow (1 
m) across-path cross-sections in sloped terrain where the point clouds overlapped were used 
(Figure S3). Though not shown here, unique features were leveraged within the data acquisition 
region, including barn roofs and deciduous tree branches, to assess the resulting boresight angles 
(Kumari et al., 2011; Li et al., 2005). For this particular study, boresight calibration was 
performed manually and iteratively. Methods often require extensive user input (Li et al., 2005), 
however boresight calibration is an increasingly automated process with wide variation in 
algorithms and approaches (e.g. Maas, 2000; Kumari et al., 2011; Zhang et al., 2019). In future 
work, automated boresight calibration methods to improve the accuracy of point cloud data sets 
will be explored. 
 
Figure S2 shows two examples of ground return point clouds before and after calibration in this 
study’s field region. Uncalibrated boresight angles between the INS and lidar sensor can result in 
poorly aligned point clouds (i and iii). Red and blue arrows in (A) and (B) show approximate 
flight direction during data acquisition superimposed on the LAS point cloud. Roll alignment 
errors present well in anti-parallel flight lines (flight lines flown parallel to each other but in the 
opposite direction) over flat terrain. The top panel in Figure S3 addresses roll misalignment with 
(a) showing the LAS point cloud and the two flight lines flown in opposite directions. The lidar 
returns within the box marked in red in (a) are shown in (a1) and (a2) at an oblique view angle. 
Figure (a1) shows how boresight errors of roll angles present, while (a2) shows proper boresight 
alignment for roll. Figure (b) shows the approximate location of returns and flight lines used for 
pitch boresight alignment error demonstration (b1) and its correction (b2). Pitch misalignment 
presents well in anti-parallel flight lines in areas with terrain relief while viewing across the 
flight track, as opposed to along the flight track as with roll alignment.  
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Figure S2. Boresight examples that show how uncalibrated boresight angles between the INS and lidar sensor can 
result in poorly aligned point clouds (a1 and b1). Arrows in (a) and (b) show approximate flight direction during 
data acquisition. The lidar returns within the box marked in red in (a) are shown in (a1) and (a2) at an oblique view 
angle. Figure (a1) shows how boresight errors of roll angles present, while (a2) shows proper boresight alignment 
for roll. Figure (b) shows the approximate location of returns used for pitch boresight alignment error demonstration 
(b1) and its correction (b2). Pitch misalignment presents well in anti-parallel flight lines in areas with terrain relief 
while viewing across the flight track, as opposed to along the flight track as with roll alignment. For (b, a1, a2, b1, 
and b2), only ground returns are shown for each flight line, while in (a), all returns are shown.  
 
 
Line 286 to 316: This is the first time that large vs. small UAVs are differentiated, though the 
weight of the lidar package would suggest a larger UAV was in use. But a quick scan of the web 
suggest that the drone used can handle about 14 kg. . .and recent some heavy lift drones are 
getting near 100 kg. Much of the discussion here seems like lessons learned that anyone trying to 
fly these larger drones probably already knows. It could be helpful, but they aren’t detailed 
enough to really guide a newcomer to a successful mission. See the general point of trying to 
write a paper that is generic rather than specific. . .. which for rapidly changing tech can be 
challenging. 
A. Agreed that additional details are needed to support the target audience. We envision an 
important audience of this research to be researchers who have used off the shelf systems 
such as the DJI Phantom IV and are considering instrumentation that would increase the 
UAV payload beyond that carrying light weight sensors such as optical sensors. We added 
a table of specifications to the supplemental materials and clearly differentiated this UAV 
from those used previously in SfM SD studies (same as presented earlier to this Reviewer). 
 
 Table S1. Technical specifications of the project UAS 
UAS  
UAS type quadcopter 
Manufacturer/Model UAV-America / Eagle X8 
Diameter  130 cm 
Height 70 cm 
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Number of rotors 4 
Rotor diameter 27.5 in (~70cm) 
Motor Manufacturer/Model KDE Direct / 7208 
RPM/Volt (KV rating) 110 KV 
Aircraft empty weight 8 kg 
Aircraft weight at take-off (with payload) 16 kg 
Flight time at take-off weight ~7 minutes 
Tolerable wind speed (with payload) 5 m/s 
Flight controller Pixhawk PX4 
Flight Batteries 22,000 mAh 6 Cell Lipo (2X) 
  
Sensor Payload	 	
Gimble Gremsy H7 
IMU/GPS   Applanix APX-15 
Lidar Velodyne VLP-16 
Payload weight 3 kg 
 
There is a total 55lb (~25 kg) limit on UAVs with our specific license. Heavier than that 
requires additional licensing. Our effort is to provide information on UAVs that can carry 
a lidar, GPS, and IMU appropriate for shallow snow depth retrieval. Because our work is 
intended to be helpful to new researchers and even seasoned UAV groups, we have tended 
on the side of presenting additional equipment attributes and settings. 
 
We entirely rewrote the discussion section and separated it into three distinct sections (4.1 
In Situ and UAS Sampling, 4.2 Flight Planning, and 4.3 UAS Sampling Strategies. 
Regarding the material on flight planning, this section is now much tighter. 
 
Lines 440 to 470 4.2 Flight Planning  
Because larger UAVs that can carry heavier payloads have challenges that may differ from small 
UAVs, a well-formulated flight plan that addresses weather conditions, logistics of flying at 
proposed site, flight lines, UAS equipment, and personnel is clearly needed. Weather impacts 
operations. UAS surveys cannot be conducted when there is any type of precipitation or in dense 
fog/clouds because moisture can cause electronic components to malfunction and moisture build-
up on the propellers can also adversely affect lift production. Depending on the UAV, wind 
speeds exceeding 7 to 10 m/s may make flights more difficult. This project’s Eagle XF high lift 
capacity UAS cannot be flown comfortably in winds greater than 8 m/s. At the study site, wind 
speeds often exceeded this threshold in the days immediately following snowfall except early in 
the morning. High wind speeds can also significantly reduce battery life as well as impact the 
accuracy of sensor observations. Low air temperatures can cause batteries to rapidly discharge. 
For winter UAS surveys, all flight and operational batteries were kept warm in a building, 
vehicle, or insulated cooler prior to the UAS survey. This also applies to the computer used to 
upload flight lines and relay telemetry information. A MIL-STD-810 certified Panasonic 
Toughbook was used in this study to handle the anticipated cold temperatures. Additionally, cold 
temperatures can severely limit the dexterity of the person manipulating the flight controls.  
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High lift UAVs capable of carrying a lidar sensor package have the potential to cause significant 
damage to person and property. The selection of a survey site not only needs to meet the 
scientific objectives of the UAV survey, but also must have the proper attributes for safe and 
legal UAV operation including permission to operate the UAV at the site. Visual line of sight 
(VLOS) of the UAV needs to be maintained throughout the flight. When it is difficult to 
maintain VLOS (e.g., flying over forested or mountainous sites), spotters can be used if there is 
constant two-way communication between the spotters and the person operating the flight 
controls. For this study, an on-site, walk up tower with a spotter was necessary while the UAV 
was flown over the forest.  
  
The deployment of a UAV lidar system requires additional flight patterns designed for 
boresighting to ensure that point clouds are aligned (Painter et al., 2016). Provided that GNSS 
data are accurate, the most common reason for misalignment of point clouds is boresight angle 
errors (Li et al., 2019). Boresighting is the process of calculating the differences between lidar 
sensor and IMU roll, pitch, and yaw angle measurements to correct those errors in point clouds. 
Due to battery flight time limitations, we were unable to complete the flight pattern that is 
commonly used for boresighting alignment. Because of this, we leveraged our first two 
antiparallel flight lines for boresighting calibration. Additional details on boresighting 
calibration, our technique due to the flight time limitations, and examples of roll and pitch 
alignment errors observed during this field campaign appear in the supplemental materials. 
 
Lines 333 to 334: Heavy payload=short flight duration=small area mapped, hence better ground 
point density. While that makes sense, can’t that be achieved by slower speed, closer passes etc.? 
And mapping extent, of course can be larger if more missions are used. So, I was puzzled what 
this paragraph was really trying to say.  
A. This is a reasonable comment led to a modification of section 4.3 UAS Sampling 
Strategies to include a brief paragraph which appears at the end of the response. 
 
This comment reflects a general challenge that occurs when developing a spatial sampling 
strategy in which, for given resources, there is a trade-off between spatial extent and 
sampling density. An additional point is that the survey height can also be varied with 
higher altitudes increasing the spatial extent with trade-offs between the point density and 
number of missions. The main point was intended to provide the reader with the means to 
contrast this study’s sampling densities and the proportion of areas that are masked due to 
no ground returns with those from previous airborne lidar SD studies.  
 
A second point was added to a separate section to respond to the reviewer’s insights that 
regarding the trade-offs between using a UAV versus an airborne platform. While we agree 
in theory that “Heavy payload=short flight duration=small area mapped, hence better 
ground point density.” could be achieved by “slower speed, closer passes etc.” by an 
airborne platform, if the mapped area has a limited domain then using an airborne 
platform is probably overkill and inefficient for many studies. Similarly, the “mapping 
extent, of course can be larger if more missions are used”, but as the domain increases in 
size, much of the battery power would be used to reach the outer limits of the domain and 
the ability to maintain the required line of sight could also limit the domain. Thus, there 
are end-members for survey site or regions where it is self-evident as to whether a UAV or 



	 37	

an airborne platform should be used, but that leaves considerable gray areas where an 
appropriate choice of UAV platform and a well designed mission could stretch the domain.  
Future research and technological advances is needed to offer insights for snow science 
observation platforms and trade-offs. 
 
Finally, slower flights and lower altitude do increase the point density, but further limit the 
area covered.  We used three sets of batteries and flew over 2 hr period to collect our 
images.  Limitations on battery cost and time to fly restrict data collection. Flights over 
multiple days are not appropriate because snowpacks can change within 24 hours. 
 
Lines 490 to 501 A well understood challenge exists when developing a spatial sampling 
strategy in which, for given resources, there is a trade-off between spatial extent and sampling 
density (Clark et al. 2011). Increasing flight altitude can expand the spatial extent of an aerial 
survey. However, flying at higher altitudes results in a decreased point density. In theory, a 
higher point density could be achieved by slower speeds and increased swath overlap. The 
targeted spatial extent of an aerial survey dictates whether a manned aircraft or a UAV platform 
should be used. If the targeted area has a limited domain then using a manned airborne platform 
is probably overkill and inefficient for many studies and the use of a UAV would be more cost 
effective. However, as the domain increases in size, additional batteries would be required, much 
of the battery power would be used to reach the outer limits of the domain, and the ability to 
maintain the required line of sight could be difficult. Thus, there are end-members for survey site 
or regions where it is self-evident as to whether a UAV or an airborne platform should be used, 
but that leaves considerable gray areas where an appropriate choice of UAV platform with a well 
designed mission could stretch the domain.  Future research and technological advances are 
needed to offer insights for snow science observation platforms and trade-offs.  
 
The following references were added to the manuscript based on Reviewer 2’s input: 
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