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Abstract. Our changing climate is expected to affect ice core records as cold firn progressively transitions to a temperate state.

Thus there is a need to improve understanding and further develop quantitative process modeling, to better predict cold firn

evolution under a range of climate scenarios. Here we present the application of a distributed, fully coupled energy balance

model, to simulate high-alpine cold firn at Colle Gnifetti over the period 2003–2018. For the first time, we force such a model

with high-resolution, long-term and extensively quality-checked meteorological data measured in closest vicinity of the firn5

site, at the Capanna Margherita (4560 m a.s.l.). The model incorporates the spatial variability of snow accumulation rates, and

is calibrated using several, partly unpublished high-altitude measurements from the Monte Rosa area. The simulation reveals a

very good overall agreement in the comparison with a large archive of firn temperature profiles. The rate of firn warming at 20

m depth is estimated at 0.44 ◦C per decade. Our results show that surface melt over the glaciated saddle is increasing by 3–4

mm w.e. yr-2 depending on the location (29–36 % in 16 years), although with large inter-annual variability. Analysis of modeled10

melt indicates a marked tendency towards small melt events (< 4 mm w.e.), which collectively represent a significant fraction

of the melt totals. Atmospheric humidity is found to be a prominent control over melt occurrence, with considerable amounts

of sublimation happening in dry conditions. For future developments, we recommend implementing a physical simulation of

meltwater infiltration, to be calibrated with more measurements of percolation in cold firn.

1 Introduction15

Cold firn and ice – defined by negative temperatures year-round – are recognized as a valuable archive of past atmospheric

conditions, accessed through ice cores (Wagenbach et al., 2012). In the recrystallization and recrystallization-infiltration firn

facies, meltwater infiltration is respectively absent or limited to the near-surface layer of the firn (Shumskii, 1964; Hoelzle et al.,

2011). This enables preservation of the original layering of accumulated snow, which can be dated to provide an atmospheric

record including greenhouse gases, aerosols, and isotopic temperature proxies (Wagenbach et al., 2012).20

The longest records are found in ice cores from the polar regions. Nonetheless, cold firn is also present in the Alps above

3400–4150 m a.s.l., depending on location and aspect (Suter et al., 2001). Such alpine cold firn is located close to major,

historical sources of European anthropogenic emissions, thus providing a particularly valuable record of man-made changes
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to atmospheric composition (Wagenbach et al., 2012). Moreover, the Alpine region features a historically high density of

meteorological observations as well as other paleoclimatic records (such as tree rings and speleothems), enabling calibration25

and comparison of the atmospheric archives (Wagenbach et al., 2012).

Beside its importance for ice core studies, cold firn also acts as a buffer against mass losses brought upon glaciers by a

warming climate. Specifically, meltwater refreezing close to the surface does not contribute to water runoff: thus an increased

input in the firn surface energy balance (SEB), with enhanced meltwater production, does not directly affect mass balance

(e.g., Harper et al., 2012). As a result, rising temperatures – instead of mass losses – are the main expression of 20th-century30

atmospheric warming in cold firn (Haeberli and Beniston, 1998; Buri, 2013).

Climate change is expected to trigger a progressive transition from cold to temperate firn, naturally advancing from the

lower elevations towards the higher (Darms, 2009). Expected consequences for sites of presently cold firn are the onset of mass

loss and an irremediable degradation of the climatic archive, induced by meltwater infiltration to increasing depths (Hoelzle

et al., 2011; de Blasi et al., 2019). Then a better understanding of this transition will become crucial to the continued viability35

of ice core campaigns, as well as the prediction of future runoff regimes in high-alpine and polar catchments. Particularly

valuable will be the acquisition of quantitative modeling capabilities and localized information on timing and uncertainties of

firn changes, also incorporating the regularly updated climatic scenarios.

Among alpine cold firn sites, the Colle Gnifetti saddle (CG; Fig. 1) in the Monte Rosa range (4450 m a.s.l., Swiss/Italian

Alps) stands out for the dense coverage of glaciological measurements, acquired continuously over almost 50 years. The very40

low annual accumulation rates of the area (between 0.3 and 1.2 m w.e.) enable ice core records covering the last millennium

and potentially extending into the late Pleistocene, more than any other glaciated site in the Alps (Jenk et al., 2009; Wagen-

bach et al., 2012; Bohleber et al., 2018). Important climatological results from CG ice cores include a 1200-year time series

of air temperature, reconstructed from mineral dust proxies (Bohleber et al., 2018), as well as a glacio-chemical record of

anthropogenic alterations to atmospheric composition, starting before industrialization and extending to the recent emission45

reductions of some pollutant species (Schwikowski, 2004; Barbante et al., 2004; More et al., 2017; Gabrieli et al., 2011).

Parallel to ice core investigations, borehole measurements starting in 1976 (Haeberli and Funk, 1991) provide a detailed

picture of the thermal conditions at the CG saddle. Firn temperatures below the depth of annual fluctuations (about 18 m) range

from -13.5 ◦C to -10 ◦C, depending on aspect (Suter and Hoelzle, 2002). Haeberli and Funk (1991) found almost steady-state

temperature conditions in englacial profiles from 1983, noting only a weak influence of meltwater refreezing. Lüthi and Funk50

(2001) reported temperature profiles from 1995 having striking bends at a depth of about 30 m, and interpreted them as the

first published clues to a non-steady firn warming situation. Subsequently, Hoelzle et al. (2011) found evidence of accelerated

englacial warming exceeding the air temperature increase, exposing an enhanced role of meltwater percolation.

Several studies have previously applied simple firn models at CG, to reproduce englacial temperatures from idealized bound-

ary conditions (Haeberli and Funk, 1991; Lüthi, 2000; Lüthi and Funk, 2001). Suter (2002) presented a distributed model study55

of the area, simulating one year of SEB at daily resolution, and formulated one-dimensional firn temperature predictions ac-

cording to a simple parametric model. Buri (2013) used the coupled model GeoTOP to simulate energy balance and sub-surface

temperatures at several locations in the CG area.
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Figure 1. (a) Colle Gnifetti location map. Labeled model cells correspond to the point series in Fig. 6–9. ZS: Zumsteinspitze slope; CG:

Colle Gnifetti saddle point; SK: Signalkuppe slope. Several borehole locations were measured more than once (also see Fig. 5). (b) Overview

map of the Monte Rosa range with AWS locations (see Table 2 for more information). In both panels X and Y are metric CH1903/LV03

coordinates. Orthophoto and topographic map source: Federal Office of Topography swisstopo.
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A major challenge for firn models at CG is the complex boundary condition of surface accumulation: the low accumulation

rates are due to an extreme wind scouring of the snow surface, favored by the west-east saddle orientation. This process60

is countered by solar radiation through melt consolidation. Thus snow accumulation has a strong spatial gradient according

to terrain aspect and is biased towards summer; a significant interannual variability is also observed (Alean et al., 1983;

Wagenbach et al., 2012). Surface accumulation directly controls the cold content and initial stratigraphy of the firn. However,

the complex accumulation patterns at CG have not been addressed in past modeling studies, even within models coupling the

energy balance to the sub-surface. Suter et al. (2001) considered accumulation only as a proxy for vertical velocities at the65

surface, to account for ice advection in a minimal firn temperature model. Buri (2013) only simulated individual borehole

locations in the CG area, relying for all of them on weather data collected at the Corvatsch automatic weather station (AWS),

almost 160 km away and over 1 km lower in altitude. More recently, Licciulli (2018) established a flow model independent on

surface accumulation, and obtained distributed accumulation from the model on the assumption of steady state conditions.

Moreover, surface melt – increasingly occurring at high altitudes in a warming climate – is expected to play a central role70

in the transition from cold to temperate firn. Gilbert et al. (2014) found on Mont Blanc that melt patterns can strongly affect

the overall energy balance of a cold firn pack in summer. To this day, little knowledge exists on the atmospheric conditions

leading to melt events in cold firn, or the dynamics of such melt events. Suter et al. (2001) modeled CG firn temperatures with

a 1 day time-step, too coarse compared to the time scales of melt and infiltration processes. Buri (2013), while using an hourly

time-step, did not examine melt amounts and dynamics. Licciulli (2018), focusing on ice flow, modeled the firn at CG with a 175

year time-step, assuming no meltwater infiltration in the firn.

Here, we present the application of a physically-based coupled model to simulate firn evolution at CG, over a 16 year period

on a high-resolution gridded domain. After validation against a large archive of firn temperature measurements, the model is

used to investigate the conditions and dynamics of high-alpine melt events. For the first time, model forcing is based on the

extensively processed hourly time series of the Capanna Margherita (CM) AWS (Martorina et al., 2003), which benefits from80

an exceptional location at 4560 m a.s.l. and within 400 m of the CG saddle point.

The data used within the study are described in Sect. 2, the coupled model in Sect. 3, the results are presented in Sect. 4 and

discussed in Sect. 5, while the last section provides the conclusions and some perspectives for future cold firn research.

2 Data

2.1 Meteorological time series85

Meteorological forcing of the coupled model consists of an hourly time series, describing air temperature, atmospheric pressure,

wind speed, relative humidity, fractional cloud cover and precipitation (Fig. 2). The series was primarily assembled using

data from the CM AWS, located on the Signalkuppe summit at 4560 m a.s.l. (Fig. 1a). The station records air temperature,

barometric pressure, wind speed and direction, and global radiation (Table 1). The measured parameters are available as hourly

instantaneous values.90
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Table 1. Sensors installed at the CM AWS.

Parameter Sensor Notes

Air temperature CAE TU20 thermometer Rated accuracy 0.2 ◦C

Rated ambient radiation influence < 0.8 ◦C

Not artificially ventilated

Barometric pressure CAE BA20 barometer Rated accuracy 0.5 hPa

Global radiation CAE HE20/K pyranometer Rated daily accuracy 5 %

Wavelength band 305–2800 nm

Wind speed CAE VV20 cup taco-anemometer Rated accuracy 0.07 m s-1 or 1 %

Wind direction CAE DV20 gonio-anemometer Rated accuracy 2.8◦

The consistent availability (> 95 %) of long-term data (since mid-2002) makes the series a valuable data-set for high-

alpine research. Still, an extensive evaluation and processing of the data is essential due to the extreme measuring conditions

(Martorina et al., 2003). In particular, freezing of the anemometer – as well as snow and ice accumulation interfering with the

pyranometer – are relatively common occurrences. Therefore, the hourly data from eight other high-altitude AWS located in

the region (Fig. 1b, id 2–9 in Table 2) were used to perform quality checks, to fill gaps in the CM time series, and to provide95

data for parameters not measured at CM. The selection of stations to include was determined by the availability of different

parameters measured at each site, by the effort to provide an unbiased geographic coverage in all directions from the CM AWS,

and by the station tendency towards concurrent failures in challenging conditions, such as winter storms.

All AWS series were pre-processed to remove clock errors, detected with cross-correlation analysis. Then each series was

entirely reconstructed from the data of the best correlated others using quantile mapping (Cannon et al., 2015; Feigenwinter100

et al., 2018), to provide a reference for robust outlier detection. High-resolution reanalysis series of the parameters measured

at CM were also collected as an additional basis for comparison (COSMO-REA2 and COSMO-REA6: Wahl et al., 2017;

Bollmeyer et al., 2015; Frank et al., 2018). Due to the large volume of data involved, an automated pre-filtering routine was

implemented, based on objective criteria (absolute values, rates of change, comparison with reconstructed series and reanalysis)

to mark single values as potential outliers, which were then manually checked. The CM AWS was always processed last in105

order to be compared to the highest-quality data. After quality check, all gaps in the hourly CM series were filled with the

corresponding reconstructed values. The close match of the reconstructed series (Table 3) despite the large elevation differences

involved (Table 2) confirms the benefit of the extensive processing described.

The CM AWS does not record series of relative humidity (RH) or cloudiness, which are required within the model input.

Thus RH was entirely derived from the other quality-checked time series; cloudiness was reconstructed from the incoming110

SW radiation at CM when available, and otherwise computed from the incoming LW radiation and observed cloud cover,

respectively at Stockhorn and Plateau Rosa. Lapse rates of temperature and pressure – used to extend the AWS record to the

gridded model domain – were computed from the difference between CM and the other stations. Further details on the series
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Table 2. AWS series included in this study. Numbering corresponds to Fig. 1b. X, Y and Z are metric CH1903/LV03 coordinates. dCG is the

horizontal distance to the CG saddle point. Stations 10 and 11 were deployed temporarily for energy-balance studies; permanent stations 3,

4 and 6 were installed between 2006 and 2010, while the others were already operational before the CM AWS. Further AWS information is

reported in Mattea (2020).

Id Name X [m] Y [m] Z [m a.s.l.] Variablesa dCG [m] Reference

1 Capanna Margherita 634007 86266 4560 T, P, W, S 380 ARPA Piemonte (2020)

2 Gornergrat 626900 92512 3129 T, P, H, W, S, D 9100 MeteoSwiss (2020)

3 Stockhorn 629900 92850 3415 T, H, N, W, S, L 7400 Gruber et al. (2004)

4 Monte Rosa Plattje 629149 89520 2885 T, P, H, W, S 5500 MeteoSwiss (2020)

5 Passo dei Salati 633339 80689 2970 T, H, W 5900 Visit Monte Rosa (2020)

6 Macugnaga Rifugio Zamboni 637094 88977 2075 T, P, H, N, S, R 4200 ARPA Piemonte (2020)

7 Passo del Moro 641664 94075 2820 T, H, R, W, S 11000 ARPA Piemonte (2020)

8 Plateau Rosa 620840 87123 3488 T, P, H, W, C 12900 MeteoAM (2020)

9 Bocchetta delle Pisse 635910 80543 2410 T, N, R, W, S 6400 ARPA Piemonte (2020)

10 Seserjoch 633727 85785 4292 T, H, N, W, S, L, G, F 820 Suter et al. (2004)

11 Colle del Lys 632665 85360 4236 T, H, N, S, W 1700 Rossi et al. (2000a,b)

a T: air temperature. P: atmospheric pressure. W: wind speed and direction. S: SW radiation. L: LW radiation. H: relative humidity. D: sunshine duration. N: snow height. C:

cloud cover. R: precipitation. G: surface temperature. F: firn temperature. Not all measured variables were used in the study.

Table 3. Performance metrics of the simulated CM weather series with respect to the quality-checked hourly measurements.

Variable RMS BIAS

Air temperature [◦C] 1.82 0.02

Barometric pressure [hPa] 1.26 0.00

Wind speed [m s-1] 5.77 -0.08

Global radiation [W m-2] 114 -2

processing can be found in Mattea (2020). Figure 2 shows the final time series of all meteorological parameters assigned to

CM and used as model input.115

To determine some of the model calibration parameters (Table 4), we also re-analysed data from two additional weather and

energy-balance stations (10 and 11 in Table 2), temporarily installed above 4000 m a.s.l. within the ALPCLIM project (Auer

et al., 2001). The Seserjoch station operated from September 1998 to October 2000 for the detailed SEB investigations of Suter

et al. (2004); the Colle del Lys station (Rossi et al., 2000a,b) was active between 1996 and 2000.
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Figure 2. Quality-checked and gap-filled hourly weather series used as model input (reference elevation 4560 m a.s.l.). Black lines represent

monthly means. For readability, only monthly means are shown for the precipitation down-scaling coefficient (Sect. 3.3). The reduced

variability in temperature lapse rates in late 2016 is due to a 4 months data gap, where the series was entirely reconstructed from lower

altitude stations. Pie charts show the contribution of the original CM AWS series to the model input. For cloudiness, the contribution is

based on values reconstructed from SW radiation measurements. "Discarded" includes values rejected during quality check as well as night-

time SW radiation measurements; "missing" includes data gaps and parameters not recorded at CM. All such values were replaced with the

reconstructed series.
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2.2 Sub-surface data120

For model validation (Sect. 4.1) we used archived firn temperature profiles (Fig. 1a), measured between 2003 and 2018. Beside

the CG saddle, we included two profiles from the Grenzgletscher slopes and four from Seserjoch. In total, we considered 25

temperature profiles from 18 boreholes, some locations having been measured more than once. Detailed description of the

profiles is reported in Hoelzle et al. (2011) and GLAMOS (2017). Earlier information on the deep temperatures (Haeberli and

Funk, 1991) was also used as reference during model set-up (Sect. 3.4).125

Moreover, we compiled point measurements of annual accumulation (Fig 3a), derived from layer thicknesses in GPR profiles

(Konrad et al., 2013) and from the stake network of Suter and Hoelzle (2002), as well as from archived ice core measurements

(densities and annual dating) acquired at CG between 1982 and 2019. In total, 14 core profiles were available; only one (core

Zumsteinkern, from 1991) is located on the high-accumulation, south-facing Zumsteinspitze slope (Fig. 3a). Description of the

individual cores can be found in Licciulli (2018) and Lier (2018).130

Finally, we hand-drilled a 5.5 m core (unifr-2019, Fig. 1a) near the CG saddle point on June 25, 2019, analyzing density and

stratigraphy in the field. Core description is presented in the appendix.

2.3 Topography

The model grid was based on a 20 m digital elevation model (DEM). Due to the Swiss-Italian border crossing the modeling

domain, the DEM was produced by merging the stereo-photogrammetric SwissAlti3D dataset (acquired in 2015 with a vertical135

accuracy of 1–3 m) on the Swiss side, and the ICE LiDAR digital terrain model (acquired in 2011 with a vertical accuracy

of 0.3–0.6 m) on the Italian side (Regione Piemonte, 2011). Elevation mismatch along the border (RMS error of 3.2 m) was

corrected via smoothing, to avoid unwanted biases in slope and aspect.

3 The coupled energy-balance and firn model (EBFM)

The coupled model used in this work was introduced by van Pelt et al. (2012) to simulate mass balance of Nordenskiöldbreen140

(Svalbard). Driven by a meteorological time series, the model computes energy fluxes on the snow surface: short-wave (SW )

and long-wave (LW ) radiation, sensible (QSH ) and latent (QLH ) turbulent fluxes, heat advection from rainfall (Qrain) and

heat conduction into the snow or ice (Qg). Then the SEB (Eq. 1) is solved for surface temperature and melt amounts: these,

together with the lower boundary condition of geothermal heat flux, drive the sub-surface evolution.

Qmelt = SWnet +LWnet +QSH +QLH +Qrain +Qg (1)145

Simulation of surface processes is developed along the lines of Klok and Oerlemans (2002), while the multi-layer sub-surface

snow model is based on the SOMARS approach (Simulation Of glacier surface Mass balance And Related sub-surface pro-

cesses, Greuell and Konzelmann, 1994). In this work, the model version described by van Pelt et al. (2019) was used, with

a parametrized water percolation routine simulating preferential flow (Marchenko et al., 2017), and an updated scheme for

8
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albedo decay based on Bougamont et al. (2005). This model participated in the firn meltwater Retention Model Intercompari-150

son Project (RetMIP) under the designation "UppsalaUniDeepPerc" (Vandecrux et al., 2020).

In the following we highlight the main EBFM routines and their respective adaptations to the CG setting. The model was

originally developed over large, polythermal Arctic glaciers: set-up for a high-alpine cold firn saddle was possible thanks to a

rich archive of energy-balance measurements from the Monte Rosa area.

3.1 Radiative fluxes155

The model computes incoming SW radiation as

SWin(x,y) = TOAshaded(x,y) trg tw ta tcl (2)

tcl(n) = 1− an− bn2, (3)

where TOAshaded(x,y) is the unattenuated top-of-atmosphere radiation corrected for topographic shading, trg, tw, ta and tcl

gaseous, water vapor, aerosol and cloud transmissivities, n fractional cloud cover, and a and b calibration parameters. Values for160

a and b (Table 4) were derived from Greuell et al. (1997) as calibrated in high-alpine terrain, compared to the EBFM defaults

which were tuned from measurements in the Arctic. The choice was supported by a distribution analysis of the incoming SW

flux, measured at the CM AWS under overcast sky conditions.

Reflected SW radiation is controlled by a broadband, isotropic surface albedo (Eq. 4). Albedo evolution is modeled after

Oerlemans and Knap (1998) as an exponentially decaying function of time since last significant snowfall (Eq. 5), bounded165

by constant values for fresh snow and firn. Decay time-scale is a function of snow surface temperature (Eq. 6) to account for

slower metamorphism in cold conditions (Bougamont et al., 2005; van Pelt et al., 2019):

SWout = αsnowSWin (4)

αsnow(t) = αfirn + (αfresh−αfirn)e−
t

t∗ (5)

t∗(T ) =





t∗wet T = 0 ◦C

t∗dry +K max(T,Tmax,t∗) T < 0 ◦C,
(6)170

where t∗ is the computed albedo decay time-scale, t∗wet (t∗dry) time-scale for a melting (dry) surface at 0 ◦C, K a calibration

parameter, T snow surface temperature and Tmax,t∗ a temperature cut-off value for decay slow-down. Values for these param-

eters (Table 4) were estimated from a new analysis of albedo evolution, measured at the Seserjoch and Colle del Lys stations

respectively in 1999 and between 1996 and 2000.
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Table 4. EBFM parameters considered for calibration. Additional model parameters not listed here were kept at the default value (van Pelt

et al., 2012; van Pelt and Kohler, 2015; van Pelt et al., 2019).

Parameter Definition Unit Value Source

a Cloud SW transmissivity coefficient - 0.233 Greuell et al. (1997), verified with CM AWS data

b Cloud SW transmissivity coefficient - 0.415 Greuell et al. (1997), verified with CM AWS data

αfresh Fresh snow albedo - 0.83 Tuned from Seserjoch and Colle del Lys radiation

αfirn Firn albedo - 0.52 EBFM default (van Pelt and Kohler, 2015)

t∗wet Decay time-scale (melting snow surface) d 10 Tuned from Seserjoch and Colle del Lys radiation

t∗dry Decay time-scale (dry snow surface at 0 ◦C) d 30 EBFM default (Bougamont et al., 2005)

K Increase of t∗dry at negative temperatures d ◦C-1 14 Tuned from Seserjoch and Colle del Lys radiation

Tmax,t∗ Temperatures cut-off for the t∗dry increase ◦C -10 EBFM default (Reijmer et al., 2005)

b Constant in LW emission formula - 0.420 Tuned from Seserjoch LW measurements

ecl Clouds emissivity - 0.960 Tuned from Seserjoch LW measurements

z0 Surface roughness length m 0.001 Suter et al. (2004) from Seserjoch wind profiles

Qground Geothermal flux W m-2 0.040 Lüthi and Funk (2001) from CG boreholes

ρfresh Fresh snow density kg m-3 350 Klok and Oerlemans (2002)

zlim Characteristic depth of meltwater infiltration m 4 Tuned to CG 20 m firn temperatures

Incoming LW radiation is computed with the Stefan-Boltzmann law for grey-body radiation (Eq. 7); sky emissivity is mod-175

eled after Konzelmann et al. (1994) as a function of cloud cover, air temperature and humidity (Eqs. 8 and 9):

LWin = eσT 4 (7)

e= ecs(1−n2) + ecln
2 (8)

ecs = 0.23 + b

(
V P

T

)0.125

, (9)

where ecs is clear-sky emissivity, b a calibration parameter, V P vapor pressure, T air temperature, e sky emissivity, n fractional180

cloud cover and ecl cloud emissivity. Parameters b and ecl were estimated for CG from radiation measurements at Seserjoch.

3.2 Turbulent heat fluxes

In the EBFM, turbulent heat exchange is modeled with the glacier katabatic wind parametrization of Oerlemans and Grisogono

(2002). This was developed with a focus on large valley glaciers; notably, it computes heat fluxes which are independent on

the ambient wind field, since wind speeds are estimated from the katabatic flow model (Oerlemans and Grisogono, 2002). This185

was deemed inadequate for a high-alpine, wind-exposed saddle: thus the EBFM computation of turbulent heat exchange was

re-implemented, following the bulk aerodynamic equations of Essery and Etchevers (2004). These were chosen due to their

operational simplicity, allowing calculation of turbulent fluxes from a single measurement level of wind speeds. The fluxes are
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computed as

QSH = ρacpChV1(T1−Ts) (10)190

QLH = ρaLs,vChV1(q1− qs), (11)

where ρa is air density, cp specific heat of dry air, V wind speed, T air temperature, Ls,v latent heat of sublimation or vaporiza-

tion (chosen depending on the modeled surface temperature), q specific humidity, and the s and 1 subscripts refer respectively

to the snow surface and the measurement level (2 m). Exchange coefficient Ch is defined as

Ch = Chnfh, (12)195

where Chn is the value under neutral conditions and fh a correction for atmospheric stability, expressed in terms of the bulk

Richardson number RiB :

Chn = k2

(
log
(
z1
z0

))−2

(13)

fh =





(1 +10RiB)−1 RiB ≥ 0 (stable)

1− 10RiB
(
1 +10Chn

√−RiB

fz

)−1

RiB < 0 (unstable)
(14)

RiB =
gz1
V 2

1

(
T1−Ts

T1
+

q1− qs
q1 + ε(1− ε)−1

)
(15)200

fz =
1
4

(
z0
z1

)0.5

. (16)

Here, k is the von Kármán constant, z1 the measurement level, z0 the surface roughness length, g the gravity acceleration,

and ε the ratio of molecular weights for water and dry air.

3.3 Precipitation model

The model precipitation routine was adapted to reproduce the extreme spatial gradient of snow accumulation distinctive of205

the site (Sect. 1). Since the EBFM does not include a blowing snow routine, the simple model of linear precipitation rates

with altitude (van Pelt et al., 2019) was replaced by a gridded precipitation time series, already corrected for snow lost to

wind scouring. This was computed with a three-phase anomaly method inspired from New et al. (2000), by combining a fixed

climatological grid, an annual anomaly series, and a temporal down-scaling coefficient. Specifically, for grid cell (x,y), at

simulation time-step t, in year i, precipitation was expressed as210

P (x,y, t) = C(x,y)A(i)D(t), (17)

where C is the long-term annual accumulation climatology, A the domain-wide annual anomaly, and D the down-scaling

coefficient. The main assumption of the method is that spatial patterns of relative accumulation do not change over time. The

climatological grid C was assembled by interpolating point values of long-term net accumulation, estimated from the snow
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mass of dated firn cores and from the mean layer thickness in GPR profiles (Fig. 3a). To extend data coverage and reduce the215

occurrence of extrapolation, stake measurements from Suter and Hoelzle (2002) were also used in the western and southern

domain regions. Accumulation measured at each stake over a single year was re-scaled to a mean annual estimate by using the

overlaps with firn cores and GPR points.

For annual anomalies A, the multiplicative snow mass anomaly of the KCC deep core (Bohleber et al., 2018) was found to

be moderately anti-correlated with wind speed measured at the CM AWS (Fig. 3b). Linear fit over 9 annual data points yielded220

the formulation

A= 1.46− 0.21V (18)

where A is core snow mass anomaly and V the median wind speed observed at CM over the corresponding year. Anomaly

from the KCC core was then applied to the whole domain.

Finally, the down-scaling coefficients D were computed by normalizing to a unit sum each year of hourly precipitation,225

averaged over the three closest rain gauges (Passo Monte Moro, Bocchetta delle Pisse and Rifugio Zamboni: Fig. 1b, Table 2).

Equation 17 produces an hourly series of gridded precipitation (already corrected for wind erosion) which was used to force

the EBFM.

3.4 Water infiltration

The EBFM features a parametrized water infiltration routine, which routes any liquid water from the snow surface towards230

depth, instantly and according to a constant vertical distribution (Marchenko et al., 2017), as long as the modeled near-surface

layers are not impermeable. Water at depth can then refreeze, be held by capillary forces as irreducible water, or form slush

layers which drain gradually (van Pelt et al., 2012). In this study, the water vertical distribution was chosen to follow the normal

law; the maximum depth zlim was tuned to a value of 4 m, to match the firn temperature of the CG saddle point at a depth of

20 m (Haeberli and Funk, 1991).235

3.5 Model initialisation

The model grid was initialized to steady state conditions by looping eight times over the 2004–2011 weather input: the period

was selected to exclude the extreme melt year of 2003 and the increasing temperature warming of the 2010s. Then two main

model runs were performed, with 20 m / 1 h and 100 m / 3 h spatio-temporal resolution. The coarser version was introduced to

decrease the large computational volume of sub-surface investigations (Fig. 6) and to perform simple sensitivity experiments.240

On the depth axis, the model grid included 250 layers up to 10 cm thick, for an effective modeling depth of about 20 m (EBFM

layers follow a Lagrangian discretization to prevent numerical diffusion, so their thickness is variable over time: van Pelt et al.,

2019).
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Figure 3. (a) Long-term net annual accumulation climatology at CG, serving as spatial component for the distributed accumulation model.

Dense point sequences in the north-east were derived from GPR profiles. X and Y are metric CH1903/LV03 coordinates. Topographic map

source: Federal Office of Topography swisstopo. (b) Linear fit of annual snow mass anomaly at core KCC versus median annual wind speed

at the CM AWS.

4 Results

The EBFM computes and logs a wide variety of surface and sub-surface variables. In the following, we focus on firn tempera-245

tures and melt amounts as relevant descriptors of current cold firn evolution. For these variables, a conspicuous archive of field

measurements and model estimates exists at CG, allowing verification and comparison of our results.

4.1 Firn temperatures

Comparison of modeled firn temperatures to measured borehole profiles (Table 5, Fig. 4 and 5) shows that most model de-

viations are similar in magnitude to the spatial variability of firn temperatures. Indeed, profiles CG08-1/08 and CG08-2/08250

(acquired in the flat region, on the same day and within a radius of 20 m: Fig. 4e/f) report measured temperature differences

in excess of 2 ◦C at all depths. Model residuals show a clear spatial pattern: simulated profiles tend to be too cold on shaded,
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north-facing slopes, and too warm in the flat or south-facing regions of CG and Seserjoch. Moreover, model biases appear to

be maintained over time for boreholes with repeated measurements (e.g., CG05-1 and CG13-1).

Table 5. Performance metrics of the modeled firn temperatures.

Model run Profiles RMS [◦C] BIAS[◦C]

20 m / 1 h
CG only 1.3 -0.4

All 1.4 -0.3

100 m / 3 h
CG only 1.4 0.0

All 1.6 0.1

The time series of modeled firn temperatures (Fig. 6) shows large differences over rather small distances at the CG saddle,255

depending on surface aspect. Still, relative annual deviations are consistent across locations. The annual cycle on average

reaches an amplitude of 40 ◦C at the snow surface and is fully damped at a depth of 20 m.

The model simulates the frequent summer occurrence of infiltration and refreezing, reflected in sudden near-surface warming

events (inset in Fig. 6). Magnitude of these events shows a high variability, with especially large heat amounts simulated in

the summers of 2003, 2008, 2015 and 2017. With more meltwater refreezing, the sun-exposed ZS slope commonly shows260

sustained near-melting temperatures in the topmost 4 m; conversely, these conditions almost never appear at the shaded SK

location.

A slight positive temperature anomaly can be seen at depth after the extreme melt year of 2015, persisting over the following

years despite non-record melt amounts. Across the CG saddle, overall firn warming modeled at 20 m depth over 2003–2018

amounts to 0.64–0.75 ◦C. At the saddle point, this corresponds to a rate of 0.44 ◦C per decade.265

4.2 Melt amounts and dynamics

Modeled mean annual melt amounts have an extreme spatial variability (Fig. 7), broadly reflecting surface elevation, slope

and aspect. Values increase from less than 1 cm w.e. yr-1 on the steepest slopes of the Signalkuppe, to 17 cm w.e. yr-1 at the

saddle point, and about 23 cm w.e. yr-1 on the Zumsteinspitze slope. Even higher melt amounts, exceeding 30 cm w.e. yr-1, are

simulated for the lower elevation Grenzgletscher slopes (towards the western border of the domain) and for Seserjoch. Grid270

average is 21 cm w.e. yr-1. Within the overall energy balance, melt represents a relatively minor component (Fig. 8): the largest

mean monthly contribution, in August, is well below 10 %, and in every month sublimation is a more effective energy sink

than melt. Still, in the NE domain region – where wind scouring is strongest – annual melt amounts correspond to a significant

fraction of net accumulation (Fig. 3a). With regard to temporal patterns, the entire surface was found to always refreeze at night

over the modeled period. Moreover, no melt is simulated between November and March, with only minor amounts in April275

and October (Fig. 8).
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Figure 4. Measured and modeled borehole temperature profiles, sorted chronologically. Axes range is the same in all plots. The bottom depth

of 20 m corresponds to the deepest simulated values and to the depth of zero amplitude of the annual cycle. Profile codes follow the scheme

XXYY-Z/WW, with XX location code, YY borehole year, Z borehole number, and WW year of the profile measurement (Hoelzle et al.,

2011; GLAMOS, 2017). Letter codes correspond to Fig. 5.

Despite the large spatial heterogeneity, and an inter-annual variability exceeding 50 %, a common trend of melt increase

could be detected in the annual time series (Fig. 9): the fitted slope ranges between (3± 2) and (4± 3) mm w.e. yr-2 across

the saddle. While the trend is somewhat masked by the 2003 extreme melt year at the very beginning, it becomes statistically

significant over the rest of the period.280

The EBFM shows a marked tendency towards small melt amounts: frequency of modeled melt events decays exponentially

with their magnitude (Fig. 10a), and a significant fraction of total melt amounts is contributed by micro-melt events under 4

mm w.e. (Fig. 10b).
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Figure 5. Map of mean residuals of modeled borehole temperature profiles (20 m grid, 1 h time-step). Letter codes correspond to Fig. 4. X

and Y are metric CH1903/LV03 coordinates. Topographic map source: Federal Office of Topography swisstopo.

Investigation of the weather conditions leading to melt occurrence (Fig. 11) reveals the relationship between weather vari-

ables and surface melt. Air temperature provides a critical control over melt rates and total amounts, unlike cloud cover which285

appears to have almost no effect (Fig. 11a/b). The majority of melt happens under clear-sky conditions, and significant amounts

are simulated between -5 and 0 ◦C (Fig. 11b). Non-zero (though minimal) melt amounts are modeled down to air temperatures

of -7 ◦C, under clear skies and moderate to high humidity. Conversely, in very dry conditions (Fig. 11c/d) sublimation losses

hinder melt even at slightly positive temperatures. Finally, wind speed appears to have a minor effect on long-term mean melt

rates, slightly decreasing the likelihood of melt under high winds (Fig. 11e/f).290

5 Discussion

At CG, the repeated, long-term investigations enable interpretation of the model output against a rich literature background. The

following sections evaluate and put into context the model results for firn temperatures, meltwater infiltration and refreezing,

as well as melt amounts.
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Figure 6. Time-depth plots of modeled firn temperatures at (a) CG, (b) SK and (c) ZS (map in Fig. 1a). 100 m grid, 3 h time-step. Inset

shows 2003 summer temperatures down to 3.5 m depth.

Figure 7. Mean (2003-2018) modeled annual melt amounts (20 m grid, 1 h time-step). Marked cells correspond to the representative points

of Fig. 1a. X and Y are metric CH1903/LV03 coordinates. Topographic map source: Federal Office of Topography swisstopo.
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Figure 8. Mean (2003-2018) monthly distribution of modeled energy balance components at (a) SK and (b) ZS. 20 m grid, 1 h time-step.

Distribution of fluxes at CG (not shown) is intermediate between the two.

Figure 9. Time series of modeled annual melt amounts at three representative grid cells (solid lines; CG: saddle point, SK: Signalkuppe slope,

ZS: Zumsteinspitze slope). Linear least-squares fits (each including n = 16 annual values) are shown as dashed lines. Reported annual melt

trends and corresponding p-values are computed both on the whole 2003–2018 modeling period (first number), and excluding the extreme

melt year of 2003 (second number, in parentheses). 20 m grid resolution, 1 h time-step.

5.1 Firn temperatures295

The EBFM shows considerable potential at simulating cold firn. In addition to reproducing individual borehole profiles, the

model confirms broader patterns such as the strong firn temperature gradient towards the Grenzgletscher slopes (Suter and
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Figure 10. (a) Distribution of magnitudes of modeled melt events (defined as total daily melt amounts). Y-axis is logarithmic. (b) Cumulative

melt amounts sorted by the magnitude of contributing melt events. Melt amount for each event is averaged over the whole domain of Fig. 7.

20 m grid resolution, 1 h time-step.

Hoelzle, 2002) and the depth of zero annual temperature oscillation, at about 20 m (Hoelzle et al., 2011). This last observation

indicates a realistic simulation of heat conduction.

The spatial distribution of model residuals (Fig. 5) could be affected by the lack in the modeled SEB of radiation reflected300

from the surrounding terrain. This process is expected to induce a net energy transfer from the more sun-exposed cells towards

the more shaded ones, which could partially re-balance the aspect dependence of model residuals.

In addition, boreholes with positive model bias are often simulated with too strong near-surface temperature gradients,

leading to sharp positive deviations in the profile near the surface (e.g., Fig. 4f/k/p/q). Such a behavior suggests too deep

refreezing is occurring in the simulation, which could be linked to the parametrized preferential infiltration routine (Sect. 3.4).305

Indeed, below a depth of 0–4 m (where refreezing is occurring) the simulation appears to be unbiased at most locations.

Model under-estimation of firn temperatures appears to correlate with the lowest mean annual accumulation values (Fig. 3a

and 5). At these locations wind scouring is strongest, and melt amounts represent a significant fraction of net annual accumu-

lation. Simple sensitivity tests showed that the simulation of profiles at borehole location CG05-1 improves substantially by

forcing increased precipitation amounts. This suggests that the accumulation model – which computes precipitation amounts310

already corrected for losses from wind scouring – may be problematic whenever melt totals approach the value of net accumu-

lation. Indeed, accumulation at CG results from summer precipitation events (Sect. 1), but modeled precipitation is distributed

more evenly throughout the year, as it is based on weather station measurements (Sect. 3.3). Thus we expect modeled precipita-

tion to be under-estimated in summer compared to the actual accumulation. As such, in summer modeled melt can temporarily

approach (or even locally exceed) the low accumulated snow amounts. Then the parametrized percolation would generate315

dense, thick firn layers: their limited refreezing capacity could reduce the heat release at depth during subsequent melt events,

inducing under-estimation of the englacial temperatures.

Among past modeling efforts at CG, both Lüthi and Funk (2001) and Suter (2002) formulated independent predictions for

firn temperatures evolution by 2020. As the target time frame for verification is reached, a major limitation of their modeled

scenarios is found in the expected magnitude of atmospheric warming: while they assumed linear air temperature increases320
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Figure 11. Mean melt rates (left) and cumulative melt amounts (right) modeled over 2003-2018 at the CG saddle point (20 m grid / 1 h

time-step), sorted according to the respective weather conditions: air temperature and (a-b) cloud cover, (c-d) relative humidity, (e-f) wind

speed. Tiles of weather conditions not encountered in the input series are not drawn.

by respectively 0.4 and 0.45 ◦C between 2000 and 2020, the fitted trend at the CM AWS (series in Fig. 2) amounts to 0.05
◦C yr-2, corresponding to a much stronger warming of 1 °C over the period. For the CG saddle region, the two studies predict

firn temperature increases at 18 m by 0.42 and 1.06 ◦C respectively, between 2000 and 2020. By comparison, the EBFM
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simulates 0.70 ◦C of warming between 2003 and 2018, which can be uniformly rescaled over 2000–2020 to 0.88 ◦C. Such a

firn warming is consistent with the results of the two studies, but lower when compared to the assumed air temperature increase.325

A contributing factor could be the EBFM spin-up: temperatures were initialized with repeated model runs over 2004–2011,

thus the initial grid at all depths is in equilibrium with the mean forcing over that period. By contrast, an adjustment time of

2–4 years is to be expected at the considered depth (Hoelzle et al., 2011). Therefore at the beginning of the simulation the

EBFM may be slightly over-estimating deep firn temperatures (Fig. 4a/b), resulting in a lower trend for 2003–2018.

5.2 Meltwater infiltration330

A key parameter used for model set-up is the percolation depth zlim, which defines the maximum depth reached by infiltrated

meltwater through preferential flow. In cold firn such a parameter is crucial: simulated firn temperatures (Fig. 6) indicate that all

meltwater can be expected to refreeze not far from the initial location (controlled by the parametrized vertical distribution: Sect.

3.4). Thus zlim effectively determines not only the initial meltwater distribution, but also the depth of refreezing heat release.

The calibrated value of 4 m, together with the Gaussian vertical distribution, correspond to a mean preferential percolation335

depth of 1.06 m. Unfortunately, in situ quantitative measurements of infiltration depths are scarce and mostly indirect. Evidence

from winter snow packs and glacier accumulation areas shows that percolation and refreezing are strongly dependent on the

meltwater supply amounts and rates (Marchenko et al., 2017), the temperature of the firn matrix (Koerner, 1970) and its

stratigraphy (Illangasekare et al., 1990), notably affected by the previous history of infiltration and refreezing. An obvious

consequence is the increase of percolation depths over the melting season (Marchenko et al., 2017). At CG, Alean et al. (1983)340

observed slight melting but no meltwater percolation during a warm spell in summer 1981. Suter (2002) attempted to directly

track meltwater refreezing by continuously logging a temperature profile at Seserjoch in 1999, but the setup failed before the

onset of summer melt. Hoelzle et al. (2011) reported evidence for increasing infiltration depths, indicating (at Seserjoch and on

the Grenzgletscher slopes) a transition to a percolation regime spanning several annual firn layers. By contrast, the stratigraphy

of core unifr-2019 (Fig. A1) revealed dry firn layers interspersed with thin ice crusts, suggesting small amounts of infiltration345

and refreezing, except for a thick, ice-rich layer at 4.5 m depth. Therefore in our simulation we consider zlim more as a tuning

parameter than a realistic percolation depth.

Stratigraphy of the firn core points to a shortcoming of the subsurface model: meltwater distributed in cold firn along the

parametrized vertical profile usually refreezes in place, producing a diluted density increase in the simulation. Instead, distinct

ice layers are known to form at depth after preferential percolation, affecting the mechanical, hydrological and thermodynam-350

ical properties of the snow pack (Quéno et al., 2020). In the present EBFM formulation, such ice layers would not appear even

with a very fine model grid. Refreezing after parametrized infiltration also distributes heat instantly over a fixed, large vertical

extent, resulting in unrealistic, frequent warm pulses at depth after each melt event – no matter how small (inset in Fig. 6).

These observations indicate the need for a physically based percolation routine in the EBFM, accounting for the time evolution

of zlim and its dependence on snow density and stratigraphy.355
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5.3 Melt amounts

Modeled melt amounts can be compared to the amount of refrozen ice observed in core unifr-2019 (Fig. A1). According to the

computed climatology (Fig. 3a), the core location has a mean long-term accumulation of about 50 cm w.e. yr-1: thus the 5.5 m

core should span an estimated period of about 5–6 years (with a fairly large uncertainty due to the inter-annual accumulation

variability). The model predicts about 85–100 cm w.e. of melt over such a time span (Fig. 7), while the core was found to360

contain only 31 cm of ice layers. Some observations can be brought forward to put the apparent discrepancy into context.

First, refrozen ice amounts recorded in the core are affected by repeated cycles of melt-refreeze. Indeed, the very small

amounts of meltwater produced during less intense (but rather frequent: Fig. 10) melt events can be expected to refreeze in the

very first snow centimeters. Then any subsequent melt occurring before the next snowfall would affect the same ice surface,

contributing to total melt amounts but without significant increases in ice layer thickness. Such surface crusts of relatively365

impermeable ice have already been observed at CG (e.g., Lier, 2018). Since melt mostly happens in clustered patterns (almost

only in summer and within a specific set of weather conditions: Fig. 8 and 11), contribution of repeated melt-refreeze cycles

could potentially be very large.

With daily melt amounts often close to the size of single crystals (Fig. 10a), it is suggested that detection of some refrozen

forms would require a resolution not achieved during our field analysis. Investigations of such minimal melt processes are very370

limited in the literature. Still, Das and Alley (2005) performed hot-box experiments on the formation of thin refreeze layers

in Antarctic snow, finding that a profile resolution of 1 mm was necessary to capture small-scale melt processes. Moreover,

in their experiments the wetted and refrozen snow next to melt layers did not show any type of melt feature detectable in firn

core stratigraphy (Das and Alley, 2005), possibly enabling some refrozen layers to remain undetected. The possibility of an

overlooked vertical ice gland embedded in our core also cannot be ruled out (measured core sections were not broken up after375

analysis). In fact, the presence of undetected ice would be consistent with the high density variability encountered in the core

profile (Fig. A1). Still, this observation could also be linked to wind compaction, and its interplay with wind erosion exposing

older, denser snow.

An estimation of refreezing amounts from profile density anomalies was proposed by Lier (2018), using several new and

archived cores in the CG area. The method involved sizable uncertainties due to a poorly constrained surface density value.380

At the Sattelkern and Zumsteinkern cores (respectively at the saddle point and on the south-facing slope), estimated refreezing

rates are respectively in the 1–13 and 3–33 cm ice yr-1 ranges (Lier, 2018). The EBFM predicts approximately 19 and 25 cm

ice yr-1 of melt. On the shaded Signalkuppe flank, values span the range 0–15 cm ice yr-1 from multiple cores; the EBFM

result over the same region is between 5 and 12 cm ice yr-1 of melt. Considering the very strong inter-annual variability of melt

amounts (Fig. 9), the results are largely compatible.385

The significant melt amounts modeled at sub-freezing temperatures suggest reconsideration of degree-day models for sim-

ulating melt at high-alpine (and possibly high-latitude) locations. This is consistent with the findings of Suter et al. (2004) at

Seserjoch, who observed several surface melt events but no days with positive mean temperatures over the whole 1999 sum-

mer. Indeed, laboratory experiments by Beck et al. (1988) revealed the occurrence of melt already at -4 ◦C with 475 W m-2 of
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incoming SW radiation. At the CM AWS values in excess of 1000 W m-2 are a common summer occurrence, supporting the390

plausibility of melt under even colder conditions (Fig. 11). From a theoretical perspective, Kuhn (1987) analytically explored a

standard SEB equation (neglecting sub-surface heat conduction), in relation to common weather situations on an alpine glacier.

The conclusion was that melt onset likely happens at air temperatures between -10 and +10 ◦C, very much comparable to our

results.

6 Conclusions and outlook395

This work marked a first effort to apply a coupled, high-resolution EBFM to alpine cold firn, within a multi-year simulation

forced with extensively processed meteorological data, acquired at high altitude and in closest vicinity of the study site. In both

cold and near-temperate conditions, the model can achieve promising results for firn temperatures, comparable in accuracy to

the spatial variability of the measurements. Therefore the EBFM can be deemed suitable for further investigations of future

cold firn evolution, based on localized climate scenarios.400

At CG, our results corroborate earlier observations on the spatial patterns of surface melt and the trends of deep temperatures.

A previously unreported feature in melt dynamics is the occurrence of micro-melt events, with daily amounts below 4 mm w.e.:

these remain difficult to detect, but our analysis hints at a possibly significant impact on melt totals and firn temperatures, hence

on calibration and ground-truthing of model results. More field observations are needed to verify the occurrence and improve

the understanding of such events, also assessing their potential effect on subsequent water infiltration.405

Our model results point to significant melt happening at negative temperatures, confirming earlier field observations: this

would re-affirm the importance of using a full energy-balance model over a parametrized melt approach in cold conditions.

Additional field investigations of the meteorological conditions at the onset of melt would be a valuable development.

Moreover, we found a novel trend of increasing surface melt amounts, currently on the edge of statistical significance.

Further evolution of this tendency should be closely monitored, since in the near future it could affect the site suitability for410

retrieving climate records from ice cores. Estimations of local melt amounts may also contribute to the localization of future

core drilling efforts: this provides motivation to attempt model deployment at other cold firn/ice sites and potentially on a larger

scale.

For such an application, it would be beneficial to better constrain patterns and depths of meltwater percolation, by imple-

menting a physical infiltration routine and acquiring vital calibration data. In addition to thermal tracking, recent developments415

in non-destructive analysis methods (e.g., Heilig et al., 2018; Katsushima et al., 2020) could advantageously serve this purpose.

Code availability. The EBFM code used in this study is available at https://doi.org/10.5281/zenodo.4327090. Due to their large volume,

modeled grids are available upon request.
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Appendix A: Core unifr-2019

The 5.5 m firn core (Fig. A1) was recovered with a manually operated Kovacs Mark II corer. Firn density was measured in420

20 cm sections using a digital scale, while stratigraphy was visually inspected at a resolution of 0.5 cm. Mean core density is

474 kg m-3, with a high variability and no clear densification trend towards depth. Relatively dense snow (up to 600 kg m-3)

was encountered near the surface at around 0.5 m, with no ice layers concurrently observed. The first traces of refreezing were

found at a depth of about 2 m. In total, 31 cm of refrozen layers could be identified, typically less than 2 cm thick and with

variable ice content. At 4.5 m several ice-rich layers mixed with icy firn were found, over a contiguous thickness of 23 cm.425

Figure A1. Density and stratigraphy of firn core unifr-2019. Values between 3.7 and 3.9 m are missing due to broken core during recovery.

Drilling location is in metric CH1903/LV03 coordinates.

Author contributions. EM performed the analysis and wrote the paper. HM and EM drilled the firn core. MH provided unpublished data

and previous works. All authors contributed to the discussion of the results. WvP supplied the EBFM model code and support to use it. MB

provided the main meteorological data-set and extensive clarification on the CM AWS.
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