Topography exerts primary control on the rate of Gulf of Alaska ice-marginal lake area change over the Landsat record<u>and</u> potential physical controls

Hannah R. Field^{1,2}, William H. Armstrong¹, and Matthias Huss^{3,4,5}

⁵ ¹Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC 28607, USA

²School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA

³Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, 8093, Switzerland ⁴Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland

10 ⁵Department of Geosciences, University of Fribourg, Fribourg, Switzerland

Correspondence to: armstrongwh@appstate.edu

Abstract. Lakes in contact with glacier margins can impact glacier evolution as well as the downstream biophysical systems, flood hazard, and water resources. Recent work indicates that suggests positive feedbacks between glacier 15 wastage influencesand ice-marginal lake evolution, although precise physical controls are not well understood. Here, we quantify ice-marginal lake area change in understudied northwestern North America from 1984 - 2018 and investigate climatic, topographic, and glaciological influences on lake area change. We delineate timeseries of sampled lake (n = 107)-perimeters (n = 107 lakes) and find that regional lake area has increased 58 % in aggregate, with individual proglacial lakes growing by 3.081.28 km² (125 %) and ice-dammed lakes shrinking by 0.8804 km² (-20 15 %) on average. A statistical investigation of climate reanalysis data suggests that changes in summer temperature and winter precipitation exert minimal direct influence on lake area change. Utilizing existing datasets of observed and modelled glacial characteristics, we find that large, wide glaciers with thick lake-adjacent ice are associated with the fastest rate of lake area change, particularly where they are undergoing rapid mass loss in recent times. We observe a dichotomy in which large, low-elevation coastal proglacial lakes have changed most in absolute terms, while small, 25 interior lakes at high elevation changed most in relative terms. These systems Generally, the fastest changing lakes have not experienced the most dramatic temperature or precipitation change, nor are they associated with the highest rates of glacier mass loss. Our work suggests that, while climatic and glaciological factors must play some role in determining lake area change, the influence of a lake's specific geometry and topographic setting overrides these external controls.

1.1 Introduction

The development and evolution of ice-marginal lakes (both proglacial and ice-dammed lakes) may have implications for both upstream glacier systems and downstream fluvial environments (Baker et al., 2016; Otto, 2019; Tweed and Carrivick, 2015). The formation and growth of a proglacial lake (a lake that forms downstream of a glacier terminus)
marks a fundamental transition in alpine landscapes, with the intervening lake modifying transport of water, sediment and nutrients to the downstream river, and altering mass loss and dynamics of the upstream glacier (Baker et al., 2016; Bogen et al., 2015; Dorava and Milner, 2000; Jacquet et al., 2017; Ratajczak et al., 2018). Additionally, the presence of ice-dammed lakes (lakes dammed by a glacier that often form in tributary valleys or at the glacier margin) enables glacial outburst floods (GLOFs) that contribute to short-term changes in downstream geomorphologic and hydrologic dynamics and may pose a serious hazard (Carrivick and Tweed, 2016; Roberts et al., 2003; Tweed and Russell, 1999). The response of ice-marginal lakes, both in terms of number and size, to climate change is an important issue for alpine environments globally because of these inter system links (Stokes et al., 2007; Zemp et al., 2015). Despite the critical role of these lakes, little is known about physical controls on ice-marginal lake formation and evolution <u>The</u> development and evolution of ice-marginal lakes (both proglacial and ice-dammed lakes) may have implications for

- 45 both upstream glacier systems and downstream fluvial environments (Baker et al., 2016; Otto, 2019; Tweed & Carrivick, 2015). The formation and growth of a proglacial lake (a lake that forms downstream of a glacier terminus) marks a fundamental transition in alpine landscapes, with the intervening lake modifying transport of water, sediment and nutrients to the downstream river, and altering mass loss and dynamics of the upstream glacier (Baker et al., 2016; Bogen et al., 2015; Dorava & Milner, 2000; Jacquet et al., 2017; Ratajczak et al., 2018). Additionally, the presence of
- 50 ice-dammed lakes (lakes dammed by a glacier that often form in tributary valleys or at the glacier margin) enables glacial outburst floods (GLOFs) that contribute to short-term changes in downstream geomorphologic and hydrologic dynamics and may pose a serious hazard to downstream communities (Carrivick & Tweed, 2016; Roberts et al., 2003; Tweed & Russell, 1999). The response of ice-marginal lakes, both in terms of number and size, to climate change is an important issue for alpine environments globally because of these inter-system links (Stokes et al., 2007; Zemp et al
- 55 al., 2015). Despite the critical role of these lakes, little is known about physical controls on ice-marginal lake formation and evolution (Falatkova et al., 2019; Magnin et al., 2020). To address this knowledge gap, we investigate trends in ice-marginal lake area change across northwestern North America, a relatively unstudied region, over the satellite record and explore physical controls on observed behavior.

Globally, proglacial lakes have expanded and increased in number over the 20th-21st centuries (Shugar et al., 2018;
Stokes et al., 2007; Tweed and Carrivick, 2015; Wang et al., 2015). Iceland has experienced an increase in number of proglacial lakes, with individual lakes increasing in area by up to 18 km² (Canas et al., 2015; Tweed and Carrivick, 2015). Across the Hindu Kush Himalaya, glacial lake change has been variable and appears to be indirectly linked to glacier change Globally, proglacial lakes have expanded and increased in number over the 20th-21st centuries (Shugar et al., 2020; Stokes et al., 2007; Tweed & Carrivick, 2015; Wang et al., 2015). Iceland has experienced an increase in number of proglacial lakes, with individual lakes increasing in area by up to 18 km² (Canas et al., 2015; Tweed & Carrivick, 2015; Wang et al., 2015). Iceland has experienced an increase in number of proglacial lakes, with individual lakes increasing in area by up to 18 km² (Canas et al., 2015; Tweed & Carrivick, 2015; Wang et al., 2015). Across the Hindu Kush Himalaya, glacial lake change has been variable and appears to be indirectly

linked to glacier change (Gardelle et al., 2011). Glacial lakes in the Central and Eastern Himalayas have significantly expanded both in number and size over the past 30 – 40 years, which coincides with glacier retreat and precipitation changes in those regions (Bajracharya et al., 2015; Gardelle et al., 2011; Khadka et al., 2018; Shukla et al., 2018;
 Treichler et al., 2019; Wang et al., 2015; Zhang et al., 2019). In the Western Himalayas where glaciers are experiencing less retreat, lakes appear to be shrinking. Glacial lakes in the Central and Eastern Himalayas have significantly expanded both in number and size over the past 30 – 40 years, which coincides with glacier retreat and precipitation changes in those regions (Bajracharya et al., 2015; Gardelle et al., 2011; Khadka et al., 2018; Shukla et al., 2018; Treichler et al., 2019; Wang et al., 2015; Chang et al., 2015; Gardelle et al., 2011; Khadka et al., 2018; Shukla et al., 2018; Treichler et al., 2019; Wang et al., 2015; Zhang et al., 2019). In the Western Himalayas where glaciers are experiencing changes in those regions (Bajracharya et al., 2015; Gardelle et al., 2011; Khadka et al., 2018; Shukla et al., 2018; Treichler et al., 2019; Wang et al., 2015; Zhang et al., 2019). In the Western Himalayas where glaciers are experiencing less retreat, lakes appear to be shrinking (Gardelle et al., 2011). In the southern Andes, glacier lakes (including some less retreat, lakes appear to be shrinking (Gardelle et al., 2011).

lakes not in direct contact with glaciers) appear to be primarily growing in number, with smaller cumulative area increase (7%) than seen elsewhere (Wilson et al., 2018). Less is known about ice marginal lakes in northwestern North America, a region that is experiencing increasing air temperatures and changing precipitation that has generally resulted in negative glacier mass balance (Larsen et al., 2015) and loss of glacier coverage (Arendt et al., 2009). Wolfe
 et al. (2014) indicate that the glacier dammed lakes have become less common over 1971-2008. The total number of ice dammed lakes decreased by 23 %, though 34 % of lakes existing in 2008 were newly formed (Wolfe et al., 2014). We expand upon the work of Wolfe et al. (2014) by assessing change on proglacial lakes in addition to ice dammed

lakes, characterize area change in addition to quantity, and probe the underlying physical controls.

85 The development and evolution of proglacial lakes may exert significant influence on both upstream glacier dynamics and downstream ecosystems (Engel et al., 2012; Otto, 2019; Tsutaki et al., 2011). Theoretically, the presence of proglacial lakes can influence glacier ablation through thermal and mechanical processes (Tweed and Carrivick, 2015). Observations of the glaciological impact of lake formation is mixed, with some studies finding increased rates of mass loss (King et al., 2019; 2020) and speed (Tsutaki et al., 2011; Watson et al., 2020) on lake terminating glaciers, while other studies suggest glacier averaged mass balance is minimally affected by the presence of a proglacial lake (Larsen et al., 2015). The presence of a lake at the terminus of a glacier may allow thermally induced subaqueous melt (e.g., Robinson and Matthaei, 2007) and may also increase glacier mass loss by enabling increased calving (e.g., Chernos et al., 2016) and/or bys modulating subglacial hydraulics (Tsutaki et al., 2011). However, despite their similarity to marine terminating (tidewater) glaciers, lake terminating glaciers likely calve less vigorously and experience less submarine melt than their tidewater counterparts due to shallower and colder water near the terminus and the lack of upwelling meltwater plumes (Truffer and Motyka, 2016).

In addition to these glaciological factors, ice marginal lakes impact downstream ecosystems by altering sediment fluxes, geochemical cycling, and downstream geomorphological characteristics, among other impacts (Baker et al., 2016; Dorava and Milner, 2000). The reduced suspended sediment load in glacier fed streams and rivers downstream from proglacial lakes enhances habitats for aquatic organisms (Bogen et al., 2015; Dorava and Milner, 2000). Stream temperature is higher and less time variable below lakes, and this thermal regulation is also beneficial for many aquatic species (Dorava and Milner, 2000; Fellman et al., 2014). Proglacial lakes may also stabilize downstream channel

morphology, contributing increased bank stability (Dorava and Milner, 2000).. In the southern Andes, glacier lakes
 (including some lakes not in direct contact with glaciers) appear to be primarily growing in number, with smaller cumulative area increase (7%) than seen elsewhere (Wilson et al., 2018). Less is known about ice-marginal lakes in northwestern North America, a region that is experiencing increasing air temperatures and changing precipitation that has generally resulted in negative glacier mass balance (Larsen et al., 2015) and loss of glacier coverage (Arendt et al., 2009). Wolfe et al. (2014) indicate that Alaska glacier-dammed lakes have become less common over 1971-2008.
 The total number of ice-dammed lakes decreased by 23 %, though 34 % of lakes existing in 2008 were newly formed (Wolfe et al., 2014). We expand upon the work of Wolfe et al. (2014) by assessing change on proglacial lakes in addition to ice-dammed lakes, characterize area change in addition to quantity, and probe the underlying physical controls.

The development and evolution of an ice-marginal lake can impact its associated glacier. Theoretically, the presence of proglacial lakes can influence glacier ablation through thermal and mechanical processes (Tweed & Carrivick, 2015). Observations of the glaciological impact of lake formation is mixed, with some studies finding increased rates of mass loss (King et al., 2019; 2020) and speed (Tsutaki et al., 2011; Watson et al., 2020) on lake-terminating glaciers, with support from non-numerical modeling (Sutherland et al., 2020), though other observational studies suggest glacier-averaged mass balance is minimally affected by the presence of a proglacial lake (Larsen et al., 2015). The presence of a lake at the terminus of a glacier may allow thermally-induced subaqueous melt (e.g., Robinson and Matthaei, 2007) and may also increase glacier mass loss by enabling increased calving (e.g., Chernos et al., 2016) and/or by modulating subglacial hydraulics (Tsutaki et al., 2011). However, despite their similarity to marine-terminating (tidewater) glaciers, lake-terminating glaciers likely calve less vigorously and experience less subaqueous
melt than their tidewater counterparts due to shallower and colder water near the terminus and the lack of upwelling meltwater plumes (Truffer & Motyka, 2016).

Above, we discuss the impacts of ice-marginal lake change on their associated glacier, but this is a two-way process, with glacier change also impacting their associated lakes. Globally-Conversely, ice-dammed lakes may increase the rate of channel migration and contribute to more transient channel geometry due to outburst flooding (Jacquet et al., 2017). Furthermore, ice-marginal lakes, and particularly ice dammed lakes, can pose significant risk to downstream environments due to their potential to experience glacial lake outburst floods (GLOFs) (Allen et al., 2019; Hewitt and Liu, 2010; Veh et al., 2019; Wolfe et al., 2014). Understanding the development and evolution of these lakes is critical due to their influence both local and regional environments.

135

Proglacial lakes are found downstream of glacier termini, and it is logical to suspect that glacier wastage is the primary control on lake behavior. Indeed, globally, the extensive retreat of glaciers been associated with the increase of the number and size of proglacial lakes (Otto, 2019; Stokes et al., 2007)(Otto, 2019; Stokes et al., 2007). However, the exact mechanisms driving lake area change and its sensitivity to climate change are not well understood. Glacier processes (e.g., sensitivity of glacier mass balance to temperature change, glacier response time) and local subglacial

topography both likely contribute to how lakes change over time and space (Debnath et al., 2018; Otto, 2019; Song et al., 2017), and these factors themselves may interact and/or change over time. Previous work suggests that the main factor in lake development is the presence of glacial overdeepenings and confining topography (Buckel et al., 2018; Cook and Swift, 2012; Farías-Barahona et al., 2020; Haeberli et al., 2016; Otto, 2019). (Buckel et al., 2018; S. Cook
45 & Swift, 2012; Farías-Barahona et al., 2020; Haeberli et al., 2016; Otto, 2019). (Buckel et al., 2018; S. Cook
te al., 2012; Farías-Barahona et al., 2020; Haeberli et al., 2016; Otto, 2019). (Changing air temperature and precipitation also play an important role in proglacial lake area change by influencing glacial thinning, retreat, and meltwater runoff (Debnath et al., 2018; Treichler, et al., 2019)(Debnath et al., 2018; Treichler, et al., 2019), though Brun et al. (2020) found), focusing on closed basins not in direct contact with glaciers minimal influence of glacier mass loss on Tibetan lake volume change. Shifting climate conditions are also associated with In Alaska ice-dammed
150 lake change. Glacier, glacier thinning and tributary disconnection alter basin morphology, and the distribution of ice-dammed lakes shifted up into higher elevation over the late 20th century (Wolfe et al., 2014). Glaciological factors such as debris cover and regional glacier mass loss may(Wolfe et al., 2014). Glaciological factors such as debris cover

Ice-marginal lakes can impact downstream ecosystems by altering sediment fluxes, geochemical cycling, and downstream geomorphological characteristics, among other impacts (Baker et al., 2016; Dorava & Milner, 2000). The reduced suspended sediment load in glacier-fed streams and rivers downstream from proglacial lakes enhances habitats for aquatic organisms (Bogen et al., 2015; Dorava & Milner, 2000). Stream temperature is higher and less time variable downstream from lakes, and this thermal regulation is also beneficial for many aquatic species (Dorava & Milner, 2000; Fellman et al., 2014). Proglacial lakes may also stabilize downstream channel morphology, contributing increased bank stability (Dorava & Milner, 2000). Conversely, ice-dammed lakes may increase the rate of channel migration and contribute to more transient channel geometry due to outburst flooding (Jacquet et al., 2017). Understanding the development and evolution of these lakes is critical due to their influence both local and regional environments.

and regional glacier mass loss may also influence proglacial lake evolution (Song et al., 2017).

165

170

175

The complicated interrelations of geomorphic, climatic, and glaciologic influences on ice-marginal lake area change must be untangled to develop a better understanding of the main drivers of ice-marginal lake area dynamics. A <u>conceptual</u> model for physical controls on both proglacial and ice-dammed lake behavior is necessary for predicting their evolution in a warming world, highlighting which lakes may be most sensitive to perturbations, and assessing potential impacts on their adjacent biophysical systems.

_This study <u>hasseeks to narrow this knowledge gap in</u> two <u>primary goalsways</u>. First, we document what is happening – how are proglacial lakes changing across northwestern North America? What are the rates and spatial patterns of change? Secondly, we investigate why this is happening – what are the dominant physical controls on ice-marginal lake behavior? Do these controls vary across space? Explicitly, we employ statistical analyses to explore climatic, glaciological, and topographic controls onassociations with ice-marginal lake area change. By answering the questions

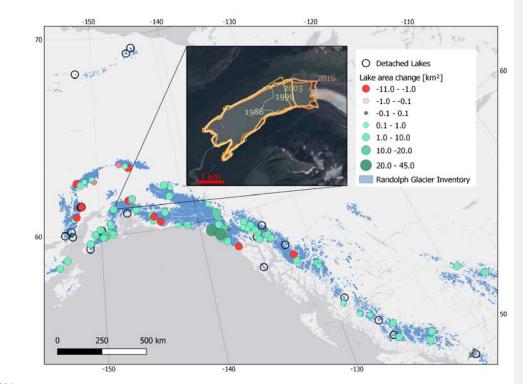
Formatted: French (Switzerland)

above, we hope to inform our understanding of this critical landscape interface to enhance prediction of how upstream and downstream systems will evolve in a warming world.

180

185

2 Study area, datasets, and data pre-processing


Below, we introduce the study region and then describe our climatic, glaciologic, and geomorphic data sources for statistical analyses employed to investigate drivers of lake area change. In Secs. 2.2-2.4, we describe the datasets used to evaluate potential control variables for ice-marginal lake area change (Table 1). Later in the manuscript, we use the terms "environmental variables" or "predictor variables" to collectively describe these climatic, glaciologic, and topographic descriptors of each lake's setting.

2.1 Study area

190 2.1 Study area

Our 107We study a sampling of ice-marginal lakes (n = 107) that span 48 - 68 °N and 116 - 154 °W, covering much of northwest North America along the Gulf of Alaska and into the interior. The lakes are found from the Brooks Range, to the Washington Cascades, and Canadian Rockies, and are located in the states and provinces of Alaska, Washington, Yukon Territory, British Columbia, and Alberta (Fig. 1). The region is extensively glacierized (101,700

195 km²) and contains 14% of the world's glaciers and ice caps (GIC) by area (Randolph Glacier Inventory Regions 01 and 02; Gardner et al., 2013). Glaciers across northwestern North America are losing mass faster than any other region (-73 Gt a⁻¹ or -0.85 m w.e. a⁻¹ for Alaska; -12 Gt a⁻¹ or -0.83 m w.e. a⁻¹ for Western Canada and continental USA; Zemp et al., 2019) and account for 26% of GIC contributions to sea level rise, despite comprising only 14% of global GIC volume (Zemp et al., 2019). Despite this general picture of glacier wastage, significant spatial and temporal variability exists in the pattern of glacier mass loss (Menounos et al., 2019).

205 Figure 1. Map of study region showing sampled lakes, where symbol size indicates the magnitude of lake area change between 1984 and 2018, with green (red) symbols representing increasing (decreasing) lake area. "Detached lakes" indicate lakes that were no longer in contact with their associated glacier by the end of the study period (basemap from Esri and DeLorme (n.d.)).

210 2.2 Data retrieval and potential sources of error

In this section, we describe the datasets used to evaluate potential control variables for ice marginal lake area change (Table 1). Later in the manuscript, we use the terms "environmental parameters" or "predictor variables" to collectively describe these climatic, glaciologic, and topographic descriptors of each lake's setting.

Table 1. Climatic, glaciologic, and topographic datasets and respective variables retrieved and used in our analyses.

Source	Variables Retrieved • Summer air temperature (1960's, 1980's, 2000's - Jun, Jul, Aug decadal average) Winter precipitation (1960's, 1980's, 2000's - Dec, Jan, Feb decadal average)			
Scenarios Network for Alaska Arctic Planning (SNAP)				
USGS GTOPO30	Elevation			
Randolph Glacier Inventory (RGlv6.0)	Glacier geometry (glacier area, minimum, maximum, and median elevation of glacier, mean slope of glacier surface, orientation of glacier surface, length of longest flowline on glacier)			
Farinotti et al. (2019) ice thickness product	Mean, maximum, and standard deviation of ice thickness across glacier, glacier volume, near terminal ice thickness			
Huss and Hock (2015) mass balance dataset	Mean annual mass balance (1980's, 1990's, 2000's, 2010's), summed balance 1980's - 2010's, terminal balance, winter accumulation, glacier response time, mass balance gradient			

2.3 Climatic parameters

220

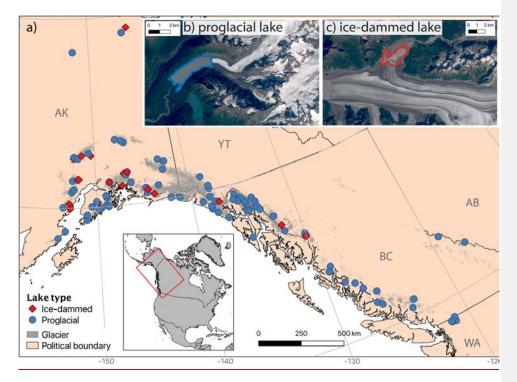


Figure 1. a) Map of study region showing sampled proglacial (blue circles) and ice-dammed (red diamonds) lakes. Glacier extent is shown as gray fill (RGI, 2017) and black lines indicate political boundaries. Two-letter state and province abbreviations are given in gray text. The inset map shows the location of the study area (red box) in northwestern North

 America. Examples are shown of b) a proglacial lake (Unnamed lake downstream from Twentymile Glacier; 60.94 N, -148.78 E) and c) an ice-dammed lake (Van Cleve Lake dammed by Miles Glacier; 60.70 N, -144.41 E).

2.2 Climatic variables

We retrieve climate data from the Scenarios Network for Alaska + Arctic Planning (SNAP) database (accessible at 230 http://ckan.snap.uaf.edu/dataset). The database includes 2 km × 2 km resolution gridded climate data downscaled from the Climate Research Unit Time-series (CRU TS3.10) and Parameter-elevation Regressions on Independent Slopes Model (PRISM) datasets (Daly et al., 1997; Harris et al., 2014). SNAP provides access to historical air temperature estimations including seasonal, annual, and decadal monthly means. We retrieve decadal summer air temperature and winter precipitation data, which are the most relevant parameters to non-equatorial glacier mass balance (Fig. 2a b) 235 (Cuffey and Paterson, 2010). We retrieve decadal summer air temperature and winter precipitation data (Fig. S1a-b), which are the most relevant quantities to non-equatorial glacier mass balance (Cuffey & Paterson, 2010). The summer temperature products have average uncertainties of +/- 0.3°C, with a 0.1° C cold bias (Bieniek et al., 2016). Precipitation data includes estimates of monthly totals and means of annual, seasonal, and decadal monthly means of total precipitation. The winter precipitation estimates have an uncertainty of +/- 4.1 mm d⁻¹, with a -0.9 mm d⁻¹ dry 240 bias (Bieniek et al., 2016). These data do not subdivide precipitation into rain and snow. We investigated the influence of 10-year averages of winter (December, January, and February) precipitation, summer (June, July, and August) air temperature, and the changes in these quantities between the 2000-2009 decade and the 1960-1969 decade (Fig. 2eS1cd). We utilize the 1960s decade to consider the longest-term comparison allowed by the SNAP dataset. We manually measure the -shortest distance between each lake and a simplified representation of the Gulf of Alaska coastline (Fig. 245 S2) to provide a metric for a lake's continentality.

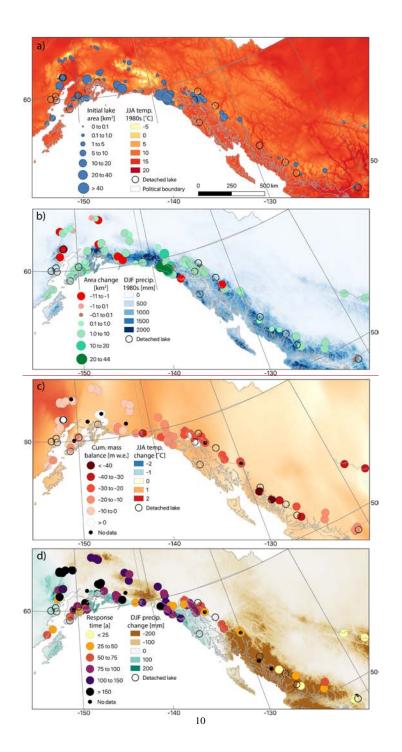


Figure 2: Map-view of select climatological and glaciological parameters investigated in this study, along with ice-marginal lake attributes. 2.3 Glaciologic variables

Glaciologic variables (a) Reanalysis summer (June, July, August) air temperature averaged over 1980-1989 (raster data) and lake area at the start of the study period (point data). Lakes that detached from their associated glacier during the study period are shown as unfilled circles. Political boundaries are shown as gray lines. (b) Reanalysis winter (December, January, February) precipitation totals averaged over 1980-1989 (raster data), along with ice-marginal lake area change over the study period (point data). (c) Change in summer air temperature averages between the 2000-2009 decade and the 1960-1969 decade (raster data), Modeled mass balance of each lake-associated glacier, cumulated over 1980-2016 (point data). (d) Change in winter precipitation totals averaged between 2000-2009 and 1960-1969 (raster data). Estimated time required for glaciers to equilibrate with a step change in climate for all lake-associated glaciers (point data). Climate reanalvsis data are from Scenarios Network for Alaska + Arctic Planning (SNAP), accessible http://ckan.snap.uaf.edu/dataset.

2.4 Glaciologic parameters

265

250

255

260

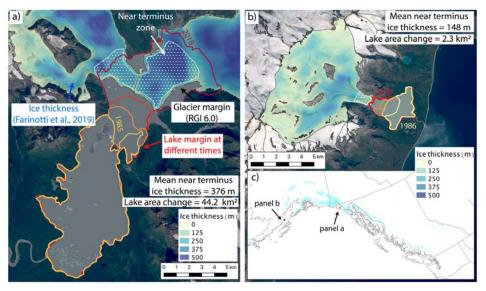
Glaciologic parameters may be subdivided into variables that describe glacier geometry and those that describe glacier mass balance. To investigate the influence of geometric attributes of each lake's adjacent glacier, we use the Randolph Glacier Inventory (RGI) version 6.0, a globally complete, frozen-in-time snapshot of glacier outlines produced to provide an inventory of glaciers at the start of the twenty-first century (Pfeffer et al., 2014; RGI 2017). The RGI also provides glacier geometrical characteristics, including glacier area, elevation, mean surface slope, flow direction, and the length of the longest flowline. Additionally, we use information on glacier ice thickness based on the Farinotti et al. (2019) consensus ice thickness product. This dataset relies on glacier surface characteristics of RGI glaciers to 270 produce predicted ice thickness distributions from an ensemble of up to five models (Farinotti et al., 2019). This dataset relies on glacier surface characteristics of RGI glaciers to produce predicted ice thickness distributions from an ensemble of up to five models (Farinotti et al., 2019). The ensemble approach produces ice thickness estimates that are more robust and accurate than any individual model, with 50 % of all modeled mean ice thickness agreeing with observations to within +30/-20 % (Farinotti et al., 2019). (Farinotti et al., 2019). Despite this overall agreement, local 275 deviations up to two times the observed ice thickness do exist (Farinotti et al., 2019)(Farinotti et al., 2019). We further process these data to compute metrics such as the mean, median, maximum ice thickness of each glacier, as well as its total volume.

280

To assess the influence of glacier mass balance on ice-marginal lake area change, we use data from Huss and Hock (2015), who estimated mass balance distribution for individual RGI 6.0 glaciers for the period 1980 - 2016 based on the Global Glacier Evolution Model (GloGEM). GloGEM employs a calibrated temperature-index model driven by ERA-interim re-analysis climate data. Huss and Hock (2015) report that 66 % of modeled net annual mass balance estimates agree with observations to within +/- 0.25 m w.e. a⁻¹. For the estimates that fall outside of this range, smaller glaciers are more prone to mass balance overestimates than large glaciers (Huss and Hock, 2015).(Huss & Hock, 285 2015). From this dataset, we investigate parametersvariables that characterize annual mass balance, cumulative mass balance, near terminal mass balance, glacier response time, and mass balance gradient. Glacier response (+T) time has been determined based on the strongly simplified context proposed by Johannesson et al. (1989) based on maximum ice thickness and mass balance at the glacier terminus as $\neq \underline{T} = -H_{max}/b_t$ where H_{max} is the maximum thickness of the glacier and bt is mass balance of the lowermost elevation band (10 m) of the glacier (Johannesson et al., 1989; Huss and Hock, 2015). Mass balance gradients have been determined by a linear fit with elevation through computed mass balances in the ablation area for each year individually as an average over the entire study period.

2.54 Topographic parametersvariables

290


We extract surface elevation data from the U.S. Geological Survey (USGS) GTOPO30, a 1 km resolution global 295 digital elevation model (Danielson and Gesch, 2011).(Danielson & Gesch, 2011). For the United States, GTOPO30 utilizes the USGS digital elevation models and in Canada utilizes the Digital Terrain Elevation Data and the Digital Chart of the World datasets. The relatively coarse resolution of this dataset is sufficient for the purpose of providing a general estimate of lake surface elevation.

300 For each lake-associated glacier, we extract glacier width as well as the width of its confining valley in the terminus region from Google Earth imagery. The valley width is estimated from ridge to ridge measurement, which we manually identify using an elevation overlay. Near-terminal glacier width is measured at the terminus of the glacier in contact with the proglacial lake. For ice-dammed lakes, valley width is estimated as the ridge to ridge distance transverse to the dammed valley axis. Near terminal glacier width in ice-dammed settings is approximated as the 305 straight-line length of the glacier-lake interface.

In the previous section we described glacier-wide attributes that may be associated with lake area change. However, it is plausible that glacier attributes in the region immediately bordering an ice-marginal lake may be more important for the lake's evolution. To assess the influence of local ice thickness, we extract these data for the lake-adjacent 310 region of the glacier associated with each sample lake (Fig. 32). Ice thickness in the lake-adjacent area better reflects the extent to which a subglacial overdeepening exists that can allow for further lake growth. We delineate these lakeadjacent regions using the RGI 6.0 outline and recent satellite data. We then extract the Farinotti et al. (2019) ice thickness in this zone and compute its statistics. For glaciers associated with proglacial lakes, we define the "nearterminal zone" as the terminal 20 % of the upstream glacier. For ice-dammed lakes, we define the lake-adjacent region 315 as 10 % of the glacier length up- and down-glacier from the lake - glacier junction. We used a fixed relative area (scaled by glacier area) to ensure uniformity across study sites in our definition of the near-terminus zone, but could have instead used a fixed absolute area. We can see advantages and disadvantages to either metric and it is not immediately clear how this choice affects our results, because varying length scales for sampling near terminus ice thickness will yield higher or lower estimates of average ice thickness depending on the direction and angle of bed slope in this zone ...

320

Field Code Changed

330

Figure 32: Illustration of the potential importance of the near terminus topography. (a) Time-varying lake margins (red) and estimated ice thickness distribution (blue) at Harlequin Lake below Yakutat Glacier, Alaska (59.48 N, -138.90 E). Zone for calculating near terminus ice thickness is shown as stippled white, and the RGI 6.0 glacier margin is shown as a black line. This specific glacier-lake system is discussed in Trüssel et al. (2015). (b) Same as in (a), but for an unnamed lake below Fourpeaked Glacier, Alaska (58.77 N, -153.45 E). Ice thickness color bar and map scale are identical between panels a and b. Trüssel et al. (2015). (b) Same as in (a), but for an unnamed lake below Fourpeaked Glacier, Alaska (58.77 N, -153.45 E). (c) Overview map showing locations of panels a and b. Ice thickness data are from Farinotti et al. (2019). Glacier outlines are from RGI (2017). Background imagery is from Landsat 8.

3 Methods

Below we describe the procedure we use for sampling and delineating lakes and follow with a description of the analyses we perform to investigate physical controls on the evolution of ice-marginal lake area for our sample set.

335

340

3.1 Lake sampling and delineation

We use the term "ice-marginal lake" to describe any lake that is in direct physical contact with one or more glaciers, regardless of whether it occurs at a terminal or lateral margin, and independent of dam type (e.g., bedrock, moraine, glacier ice). We use "proglacial lake" to describe an ice-marginal lake that is immediately downstream from a glacier's terminus. We consider an "ice-dammed lake" to be an ice-marginal lake that is found at a glacier's lateral margin and appears to be impounded by glacier ice. Most of the study lakes remained in contact with a glacier for the entire study period, and we discard lakes that detached from their associated glacier from later statistical analyses (described below). Our dataset for area change analysis includes 107 ice-marginal lakes (88 proglacial and 19 ice-dammed). For

statistical analyses, this number is decreased to 73 proglacial lakes and 14 ice-dammed lakes (87 ice-marginal lakes 345 in total) due to the discarded lakes that detached from their associated glacier during the study period.

We accessed the Landsat 5 – 8 record using Google Earth Engine to estimate lake area change between 1984 – 2018
 by utilizing the Google Earth Digitization Tool (GEEDiT) (Lea, 2018). GEEDiT was initially developed by Lea (2018)
 for delineating glacier termini, however we adapted it to manually digitize lake boundaries from pan sharpened true
 color optical imagery (Fig. S1). Adapting GEEDiT for this purpose required a post processing step to close polylines
 into polygons, which was accomplished using the Shapely package in Python (Gillies et al., 2007).

Each lake's margin was manually digitized between 4-7 times with intervals of approximately 5 - 10 years separating images (Table S1) for a total of 540 digitized lake outlines.-We exclusively utilize summery imagery (June, July, 355 August) to increase confidence in lake perimeter digitization and to minimize the influence of seasonal cycles on our estimates of lake area change. Due to the time-consuming nature of high-accuracy manual lake digitization, we do not attempt to delineate every single ice-marginal lake in the study area, but rather sample an evenly distributed subset of lakes to provide an estimate of regional lake area change behavior. We utilize a gridded map and select a similar number of lakes in each grid cell to avoid biased site selection and clustering. A subset of lakes (n = 40) is sampled 360 from a historical catalog of ice-marginal lakes in Alaska (Post and Mayo, 1970)(Post & Mayo, 1971) to avoid undersampling lakes that disappeared and could not be observed in recent satellite imagery. Our dataset for area change analysis includes 107 ice-marginal lakes (88 proglacial and 19 ice-dammed). For statistical analyses, this number is decreased to 73 proglacial lakes and 14 ice-dammed lakes (87 ice-marginal lakes in total) due to the discarded lakes that detached from their associated glacier during the study period. Of the 40 lakes sampled from Post 365 and Mayo (1971), 19 lakes were ice-dammed and the rest of our sample set are proglacial lakes of uncategorized dam material (e.g., moraine, bedrock, or landslide). Our study lakes are generally relatively small, with a median (mean) initial area of 0.78 km² (4.06 km²). Excluding lakes that appeared during the study period, the median (mean) initial area is 1.08 km² (4.42 km²), with an interquartile range of 0.26 to 3.66 km².

 We accessed the Landsat 5 – 8 record using Google Earth Engine to estimate lake area change between 1984 – 2018 by utilizing the Google Earth Digitization Tool (GEEDiT) (Lea, 2018). GEEDiT was initially developed by Lea (2018) for delineating glacier termini, however we adapted it to manually digitize lake boundaries from pan-sharpened true color optical imagery (Fig. 1b-c). Adapting GEEDiT for this purpose required a post-processing step to close polylines into polygons, which was accomplished using the Shapely package in Python (Gillies et al., 2007). Each lake's margin was manually digitized between 4 -7 times with intervals of approximately 5 – 10 years separating images (Table S1) for a total of 540 digitized lake outlines. We exclusively utilize summer imagery (June, July, August) to increase confidence in lake perimeter digitization and to minimize the influence of seasonal cycles on our estimates of lake area change.

380 3.2 Lake area change analysis

385

We determine absolute lake area change (ΔA) as the simple difference in area between our last and first lake delineations, where a positive area change indicates a growing lake. This simple difference means that our characterization of area change is sensitive to the exact value of lake area at the time of image acquisition. This sensitivity will not produce significant error if interannual and seasonal variations in lake area change are small relative to the long-term trend. However, where short-term variability is large relative to the long-term trend, this single-pair area change metric may be less accurate in estimating the true long-term lake area change. This may make our estimates of ice-dammed lake area change more uncertain because these lakes are susceptible to period outburst flooding. We determine relative lake area change as $\Delta A/A_0$, where A_0 is the lake's first observed area and ΔA represents the absolute change in lake area over the study period.

390

Lake area change takes one of two forms: 1) progression along a continuum, such as a small lake growing larger, or; 2) a system switch, such as the appearance of a new lake, or disconnection of an ice-marginal lake from its associated glacier. We characterize these styles of lake area change in two distinct ways, as described below.

395 For lakes moving along a continuum, we observe that there are several different patterns of lake area change over time. We quantify these behaviors by categorizing the area change time series of each lake as linear, exponential, or logarithmic change over the study period. The accuracy of this characterization again assumes that interannual and seasonal variations in lake area are small relative to the long-term trend. This assumption may be problematic for icedammed lakes that experience regular outburst flooding resulting in lake drainage followed by a refilling period. Anecdotally, we did not observe any lakes to disappear and then re-appear in our study sample, and so assume this 400 source of error is small in our overall analysis. Further, our main conclusions do not rely heavily on this metric, and we present it here merely as a tool to explore varied lake change behavior. In addition to the temporal styles of change described above, we defined stable lakes as those with area change of ≤ 0.10 km². We use this relatively high stability threshold to produce conservative results that do not classify area change styles unless the signal is large. We interpret 405 linear area change trends to represent steady growth or shrinkage, while exponential trends indicate either accelerating growth or decelerating shrinkage, and logarithmic change suggests decelerating growth or accelerating shrinkage over time. We utilize the Ezyfit Toolbox in MATLAB version R2019b in order to determine the best fitting line type for each lake area change timeseries. Lakes were categorized as having the growth style with the line fit that explains the highest variance in the data, (i.e., highest r^2 , value).

410

415

The system switches of new lake appearance or lake disconnection represent the first and final stages of ice-marginal lake evolution- (Emmer et al., 2020). We record the date of the first image in which the lake either appeared or became detached. We denote lakes that appeared during the study period as "new lakes" in later figures but include them with extant lakes for all analyses. We exclude lakes that detached from their adjacent glacier (n = 18; 13 proglacial lakes and 5 ice dammed lakes) from our lakes area change analyses and investigation of physical controls because they complicate interpretation, particularly where the lake detached early in the study period. WeHowever, we retain these

lakes in this inventory to represent the late stages of proglacial lakes in deglaciating environments and their<u>the</u> date of their disconnection may yield meaningful insight, though we omit these lakes from lake area change characterization and analysis. Additionally, we observed that some lakes (n = 9) appeared during the study period. We include these lakes in area change analyses and investigations of physical controls because they represent the early proglacial lake growth, and all appeared early in our study period.

3.3 Correlation testing

We utilize the non-parametric Kendall correlation test to assess the strength and significance of relationships between 425 lake area change (both absolute and relative) and potential physical control variables. We also employ Kendall correlation to test for statistical relationships between environmental variables. The Kendall test makes no assumption of data normality and is calculated from the rank of data points rather than their actual values, which makes it robust to outliers (Helsel and Hirsch, 1992).(Helsel & Hirsch, 1992). Further, the Kendal test does not assume variables are associated linearly, and can be applied to any monotonic relationship. All of these attributes make the non-parametric 430 Kendall test preferable to parametric tests such as Pearson's linear correlation test because many of our datasets are non-normally distributed, contain outliers, and exhibit non-linear relationships. We also employ the non-parametric Kendall-Theil robust line (a.k.a. Sen slope) to estimate best fit lines that are insensitive to outliers (Helsel and Hirsch, 1992). (Helsel & Hirsch, 1992). The Kendall-Theil robust line is implemented in MATLAB through a third party code, available at https://www.mathworks.com/matlabcentral/fileexchange/34308-theil-sen-estimator. We restrict our 435 statistical analyses to the ice-marginal lakes that remained in contact with their associated glacier(s) throughout the study period (n = 87). We implement an alpha level of 0.1 for testing correlation significance. Analyses are performed using MATLAB version R2019b and we use the corr function to determine both the significance level (p-value) and Kendall t test statistic. Further, we employed principal components (PC) analysis to reduce data dimensionality and test for correlations between lake area change and PC axis scores.

440

420

3.4 Principal components analysis procedure and interpretation

In addition to the single-variable correlation tests described in Sec. 3.3, we undertake principal components analysis (PCA) to reduce the dimensionality of the datasets of topographic, climatic, and glaciologic factors, many of which are themselves correlated (see Sec. 4.4 for discussion of covariance). To prevent high-valued environmental variables
(e.g., glacier area, which can exceed 1000 km²) from dominating dataset variance relative to low-valued variables (e.g., mass balance gradient, which is generally 0.1 – 1 m w.e. per 100 m), we standardize input variables (Table 3) by their minima and maxima to ensure that all variables range from 0 to 1. We then run PCA on the standardized environmental variables using Matlab's pca function. We investigate the variance explained by each principal component axis (i.e., "scree plot") and the input variable loadings onto each axis (Table S2). After determining which principal component axes are most relevant (described below), we correlate the lakes' principal component scores to lake area change, using the same procedure described in Sec. 3.3.

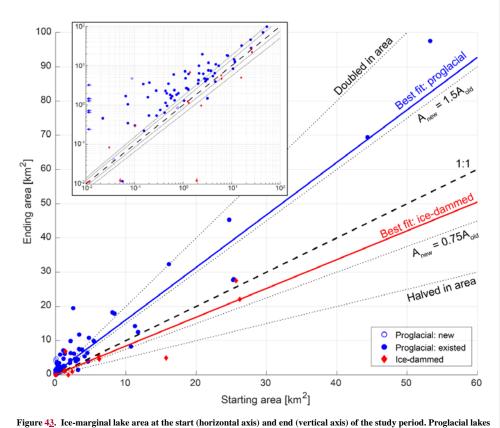
Formatted: Default Paragraph Font, Font: +Body (Calibri), 11 pt, Font color: Auto

Formatted: Normal

4 Results

455

470


In this section, we first provide summary statistics of- lake area change for the subset of northwestern North America ice-marginal lakes considered in this study, both in terms of absolute and relative change. We follow by presenting statistical associations between lake area change and predictor variables such as climate, glacier mass balance, and surrounding topography. Absolute and relative area change have substantially different statistical associations with predictor variables, and we thus discuss these findings in separate sections. We first perform bivariate correlations between individual environmental variables and lake area change, then discuss covariance between individual 460 environmental variables, and finally present multivariate statistical analyses. We present both bivariate and multivariate results because each type of analysis provides context for the other. Comprehensive investigation of both types of statistical tests provides the strongest foundation for interpretation of potential physical controls on icemarginal lake area change.

465 4.1 Summary of regional lake area change

Of the 107 ice-marginal lakes (both proglacial and ice-dammed) investigated in this study, which does not include every lake in the region, we find that 75 (70 %)% grew in area, 13 (12 %)% shrank, and 19 (18 %)% remained relatively constant, changing by less than ± 0.1 km² (Figs. <u>3-4 and 5; Table 2</u>). Of proglacial lakes (n = 88), 7287), 83 % grew, 45 % shrank, and 1213 % remained relatively steady. In contrast, of the 1920 ice-dammed lakes, only 315 % increased in area, while 945 % shrank, and 740 % were relatively unchanged (Figs. 4 and 3-5; Table 2). Analyzing all ice-marginal lakes together, lake coverage increased in cumulative area by 59 % relative to 1984 (432 to 687 km²). Dividing the study lakes into their sub-classes, proglacial lakes grew in total area by 81 % (336 to 608606 km²) while ice-dammed lake area shrunk by -17 % (96 to 79 km²80 km²; Table 2).

- 475 Individual proglacial lakes experienced a median area change of $+1.3 \text{ km}^2$ (mean = $+3.1 \text{ km}^2$), with the middle 80 % of lakes an interdecile range (10th to 90th percentile area change) growing between 0.0 and 6.58 km² (Figs. 4 and 5a4a; Table 2). At the extremes, we observe a minimum proglacial lake area change of -2.4 km² and maximum of +44.2 km². In terms of lake number, 83 % of the investigated proglacial lakes (n = 88 in total) grew, 10 % shrunk, and 7 % were relatively stable, changing by less than $\pm 0.1 \text{ km}^2$. In terms of area change relative to each lake's initial area, we 480 find a median proglacial lake growth of +123125 %, with an interquartile range of +42 to +384 % (Figs. 4 and 5b3-4b). Considering the full range of relative area change produces physically meaningless values where lakes did not exist or were very small at the start of the record.
- 485

In contrast, ice-dammed lakes in this study experienced a median area change of -0.0304 km² (mean = -0.87 km²; 14 % decrease in total area coverage; Figs. 4 and 5a) with the middle 80% an interdecile range of ice dammed lakes changing byarea change from -3.7571 to 0.5236 km². (Figs. 3-4a; Table 2). At the extremes, one ice-dammed lake shrunk by -010.8 km² and one grew by +5.4 km². Of ice dammed lakes, roughly 17 % grew, 58 % shrunk, and 25 % were relatively stable, changing by less than ± 0.1 km². In terms of area change relative to each lake's initial area, we find a median ice dammed lake area decline of $-\frac{1615}{15}$ %, with an interquartile range of $-\frac{5756}{15}$ to +48 % (Figs. 4 and 5b3-4b).

495 <u>lakes</u>") are <u>shown as</u> unfilled <u>symbols</u>. Red diamonds depict ice-dammed lakes. The dashed line shows 1:1 (i.e., lakes with constant area), while the <u>dasheddotted</u> lines show various levels of relative area change. The blue (red) solid lines show the Theil-Sen estimator line of best fit to proglacial (ice-dammed) lakes. The inset shows the same data in log-log space to better display the behavior of small lakes.

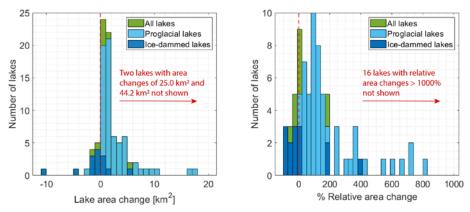
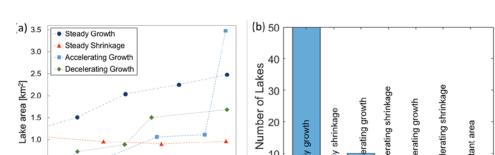
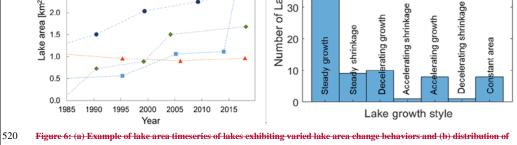
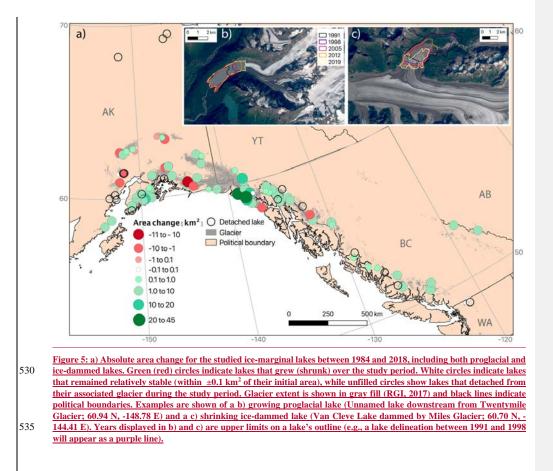


Table 2. Summary statistics for proglacial and ice-dammed study lake area change. Steady lakes are defined as having changed by less than ± 0.1 km². Summary statistics are shown for the change of individual lakes, as well as the cumulative area of all study lakes. For descriptors of individual lakes, we use the robust statistics of the median and 10th and 90th percentile lake area change because the existence of extreme values makes the minimum, mean, and maximum area change less meaningful. Relative area change is scaled by a lake's initial area, so a 100% increase indicates a lake that doubled in area, while -100% indicates a lake that completely disappeared.

	Proglacial			Ice-dammed		
Number of lakes	Growing	Steady	Shrinking	Growing	Steady	Shrinking
(- , %)	72 (83%)	11 (13%)	4 (5%)	3 (15%)	8 (40%)	9 (45%)
Absolute area change	10th %	Median	90th %	10th %	Median	90th %
(individual, km ²)	0.01	1.28	6.76	-3.7	-0.04	0.36
Relative area change	10th %	Median	90th %	10th %	Median	90th %
(individual, %)	8%	125%	>1000%	-82%	-15%	212%
Cumulative area	1984	2018	Change	1984	2018	Change
(km²)	336	606	270 (81%)	96	80	-17 (-17%)

510 Of the 107 ice-marginal lakes considered in this study, 18 lakes (17 %)% detached from their associated glacier during our study period or between the Post and Mayo (1971)Post and Mayo (1971) catalog and the beginning of our record. Lakes that detached from their associated glacier are found throughout the study region (Fig. 5). Nine proglacial lakes formed during the study period, with no new ice-dammed lakes observed in our lake subset. We use the term "new lakes" to denote lakes that formed during the study period (e.g., Fig. 3), but do not separate these lakes for later 515 statistical analyses. Of growing lakes, 50 lakes (73 %) exhibit linear growth, while 8 (12 %) and 10 (15 %) lakes


exhibit accelerating and decelerating growth, respectively. Of shrinking lakes, 9 (75 %) exhibit linear shrinkage, while two (17 %) and one (8 %) lake exhibits accelerating and decelerating shrinkage, respectively (Fig. $\underline{S4}$).

area change styles of study lakes

Formatted: Font: 10 pt, Not Bold

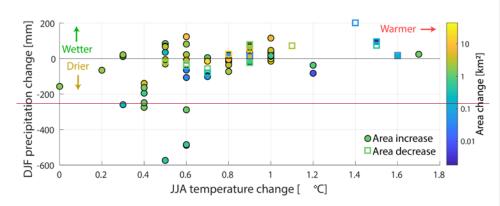
There is no obvious spatial organization of observed lake area change (Fig. <u>15</u>), with all manners of change observed across the study area. We again stress that we investigate a subset of ice-marginal lakes (<u>n = 107</u>), not every lake in the area (<u>n = 107</u>), and determining their representativeness of population-scale regional lake behavior must be the subject of future work.

4.2 Controls on Bivariate correlations with absolute lake area change

540 **4.2.1 Climatic** controls on <u>correlations with</u> absolute area change

We investigate the potential influence of climatological parametersvariables on absolute ice-marginal lake area change between 1984 – 2018 using the nonparametric Kendall correlation test (Table 23). Average decadal summer (June, July, Aug.) air temperature is positively associated with proglacial lake absolute area change (p < 0.05; τ = 0.19) and winter (Dec., Jan., Feb.) precipitation is inversely correlated with ice-dammed lake area change (p < 0.05; τ = -0.46).
Physically, this meansAs mentioned in Sec. 2.2, we run correlations between winter precipitation and summer temperature because these are the climate variables most relevant to glacier mass balance. Physically, these correlations mean that proglacial lakes in regions with warm summers are growing faster, and ice-dammed lakes in regions with wet winters are shrinking more rapidly. Despite these correspondences with mean climate statesyariables.

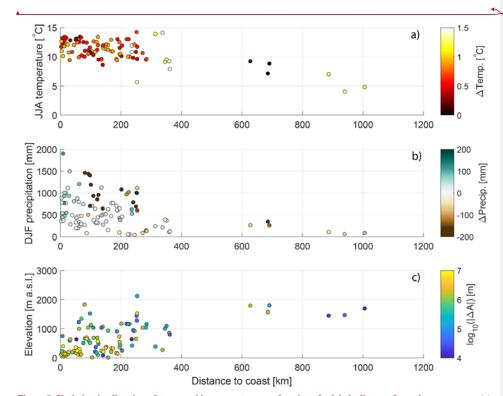
Formatted: Comment Reference, Font: +Body (Calibri), 11 pt, Font color: Auto


550

555

we find little evidence for relationships between lake area change and the long-term change in summer air temperature or winter precipitation. The greatest rates of absolute ice-marginal lake area change are generally occurring in regions with minimal changes in winter precipitation and moderate warming (Figs 7 – 8; Fig. S3S5-S6). We do observe a significant positive relationship between the change in winter precipitation and proglacial absolute lake area change, yet there is not a clear physical mechanism to explain greater lake expansion in regions with more winter precipitation – we expand upon this idea in our discussion.Secs. 4.4 and 5.4. A proglacial lake's distance from the open ocean is inversely associated with its absolute area change (p < 0.05; $\tau = -0.23$; Fig-8.S9), indicating that coastal proglacial lakes are growing faster than inland lakes. The strength of this correlation is of similar magnitude to those relating proglacial lakes to other climate parametersvariables, and in Sec. 4.3 we later-argue covariance between climate parametersvariables and continentality provideprovides a more plausible explanation for unintuitive correlations between absolute lake area and climatic parametersvariables.

Table 23. Kendall rank correlation coefficient (τ) values for monotonic relationships between absolute (middle columns) and relative (rightmost columns) lake area change with associated climatological, glaciological, and topographic parametersvariables. In each category, test statistics are reported separately for proglacial and ice-dammed lakes. Bold numbers indicate correlations that are significant at $p \le 0.05$, while regular text indicates relationships where 0.05 . Dashes indicate a correlation with <math>p > 0.1. Positive (negative) correlation coefficients indicate a direct (inverse) relationship between the examined variables.


	Parameter		Absolute area change		Relative area change	
Faidfileter		Proglacial	Ice-dammed	Proglacial	Ice-dammed	
Climatological	Mean summer temperature (2000s)	0.19	-	-0.13	-	
	Change in summer temperature (2000s-1960s)	-	-	-	-	
	Mean winter precipitation (2000s)	-	-0.46	-	-	
	Change in winter percipitation (2000s-1960s)	0.20 -		-0.15	-	
	Distance to open ocean	-0.23	-	0.16		
	Glacier area	0.22	-		-	
Glaciological	Glacier width	0.32	-	-	-	
	Median lake-adjacent ice thickness	0.25	-	-	0.47	
	Mass balance gradient	-	-	-0.18	-	
	2010s average annual mass balance	-0.17	-		-	
	1980-2016 summed annual mass balance	-	-	-	-	
Topographic	Latitude	-	-		-	
	Longitude	-	-		-	
	Elevation	-0.27	-	0.19	-	
	Initial lake area	0.33	-0.41	-0.53	-	

575

570

Figure 7. Changes in glacier mass-balance relevant elimatic parameters and absolute ice-marginal lake area change (colors). Climatic changes are computed as the difference between the 2000-2009 decadal average and the 1960-1969 decadal average, as estimated by the SNAP elimate reanalysis dataset. Filled circles correspond to lakes with increasing area, whereas empty squares denote lakes with decreasing area. The greatest lake area change occurs in regions with near-zero (or slightly positive) winter precipitation change and moderate summer warming, suggesting that lake area change is not elosely tied to changing elimatic factors that decrease glacier mass balance.

Formatted: Font: 9 pt, Bold

Formatted: Left, Tab stops: 0.94", Left

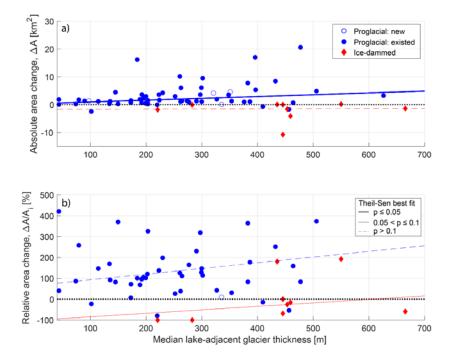
580 Figure 8. Variation in climatic and topographic parameters as a function of a lake's distance from the open ocean. (a) Summer air temperature (y axis) and its change (colored filled) between the 1960s and 2000s. (b) Winter precipitation (y axis) and its change (colored filled) between the 1960s and 2000s. (c) Lake elevation (y axis) and absolute lake area change (colored filled) between the 1984 and 2018.

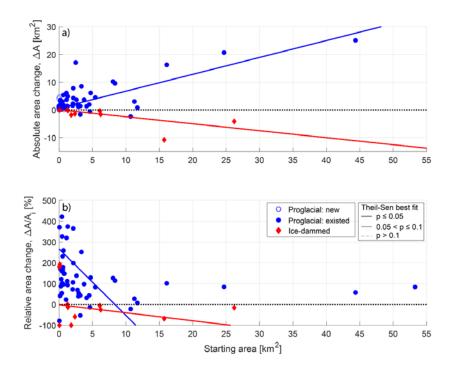
585 **4.2.2 Glaciologic** controls on <u>correlations with</u> absolute area change

590

We find statistical associations between several glaciologic parametersvariables and absolute proglacial lake area change, but not with ice-dammed lake area change (Table 23). For all lakes, the only glacier mass balance variable with a statistically significant correlation with absolute lake area change is the average mass balance in the 2010s ($\tau = -0.17$; Fig. S6aS7a). The sign of this correlation indicates that proglacial lakes are growing more rapidly downstream from glaciers with a more negative mass balance in recent times. Notably, we do not find any statistical links between lake area change and the associated glacier's cumulative mass balance over the 1980 – 2016 period (Table S2).-3). Considering glacier geometric factors, however, we find several significant correlations with proglacial lake area change (Table 23). Glacier area ($\tau = 0.22$), width ($\tau = 0.32$; Fig. S5aS8a), and near-terminal median ice thickness ($\tau = 0.25$; Fig. 9a6) all exhibit correlations with proglacial lake area change at a p < 0.05 level (Table 23). This indicates

595 that proglacial lakes are growing most rapidly where they exist downstream of large and wide glaciers with thick ice near the terminus. We find no evidence for statistical links between absolute ice-dammed lake area change and glacier geometric nor mass balance parametersvariables (Table S23).




Figure 96. (a) Absolute and (b) relative lake area change as a function of median lake-adjacent glacier ice thickness (see Section 2.43) for proglacial (blue circle) and ice-dammed (red diamond) lakes. On both panels, lines show the linear fit to proglacial (blue) and ice-dammed (red) lakes as estimated to by the non-parametric Theil-Sen robust line. Thick solid lines show relationships that are significant at the $p \le 0.05$ level, thin solid lines show 0.05 relationships, and thin dashedlines show p > 0.1 relationships. All significance values are estimated by the Kendall rank correlation test. The black dotted 605 line shows zero lake area change. Unfilled symbols indicate lakes that appeared during the study period.

4.2.3 Geometric and geomorphic controls oncorrelations with absolute area change

610

Of all our climatic, glaciologic, and geometric parameters variables, initial lake area is one of the strongest predictors of absolute lake area change, exhibiting a moderately strong statistically significant positive association with proglacial lake area change ($\tau = 0.33$; Table 23; Fig. 10a7a) and a strong inverse relationship with ice-dammed lake area change ($\tau = -0.41$; Table 23; Fig. 10a7a). We also find that glacier width at terminus ($\tau = 0.32$) is significantly associated with lake area change. Additionally, a moderately strong inverse relationship exists between absolute lake

area change and elevation ($\tau = -0.27$; Fig. 8a), with low elevation lakes growing most rapidly. Together, these associations suggest that large, low elevation lakes occupying wide valleys have grown most rapidly over the 1984 – 2018 study period. Harlequin Lake (below Yakutat Glacier, Alaska; Fig. 3a2a), the fastest growing study lake ($\Delta A = 44.2 \text{ km}^2$), exemplifies these traits.

615

Figure 107: (a) Absolute lake area change as a function of initial lake area for all proglacial lakes (blue circles) and icedammed lakes (red diamonds). (b) Relative lake area change as a function of initial lake area. On both panels, lines show the linear fit to proglacial (blue) and ice-dammed (red) lakes as estimated to by the non-parametric Theil-Sen robust line. Thick solid lines show relationships that are significant at the $p \le 0.05$ level, thin solid lines show 0.05 relationships,and thin dashed lines show <math>p > 0.1 relationships. All significance values are estimated by the Kendall rank correlation test. The black dotted line shows zero lake area change.

625

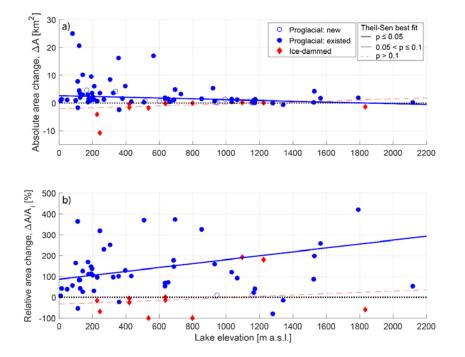


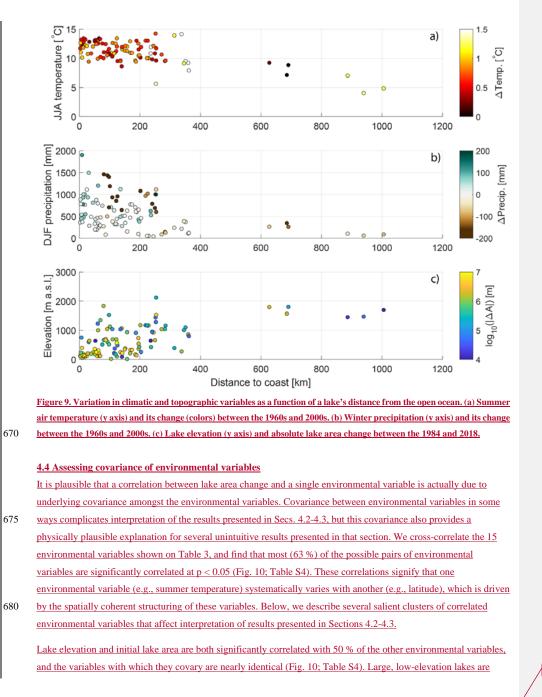
Figure 11.8: (a) Absolute and (b) relative lake area change as a function of lake elevation for proglacial (blue circle) and ice-dammed (red diamond) lakes. On both panels, lines show the linear fit to proglacial (blue) and ice-dammed (red) lakes as estimated to by the non-parametric Theil-Sen robust line. Thick solid lines show relationships that are significant at the $p \le 0.05$ level, thin solid lines show 0.05 relationships, and thin dashed lines show <math>p > 0.1 relationships. All significance values are estimated by the Kendall rank correlation test. The black dotted line shows zero lake area change. Unfilled symbols indicate lakes that appeared during the study period.

4.3 Controls on Bivariate correlations with relative lake area change

630

635 In Section 4.2, we discussed statistical associations between environmental variables and <u>absolute lake area change</u>. In this section, we investigate statistical links between *relative* lake area change and those same <u>predictorenvironmental</u> variables. We first discuss statistical results for climatic <u>parametersvariables</u>, followed by glaciologic and geometric variables.

We find no statistically significant links between climate parametersvariables and relative ice-dammed lake area
 change, with a few p < 0.1 associations for proglacial lakes (Table 23). The same climatic parametersvariables that were significant for absolute area change are again significant for relative proglacial lake area change, though theirwith opposite signs have flipped. We observe inverse correlations between relative proglacial lake area change

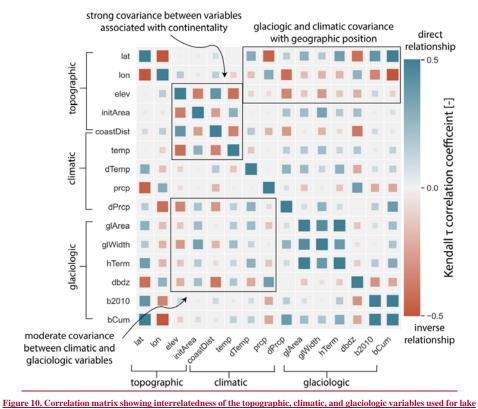

Formatted: Font: Italic

and average summer air temperature ($\tau = -0.13$, p = 0.02) as well as the change in winter precipitation ($\tau = -0.15$, p = 0.01). We find a direct relationship between relative proglacial lake area change and distance from the open ocean ($\tau = 0.16$, p = 0.01; Fig.-Figs. 9c and S9b). As we discuss in Secs. 4.2 and 4.4S4)- As mentioned above, summer air temperature and winter precipitation change are both themselves correlated with distance from the open ocean (Fig. 8Figs. 9c-10), and we suggest continentality is the most physically-plausible driver of observed statistical links. While maritime proglacial lakes are growing most rapidly in terms of *absolute* area, interior proglacial lakes are growing most rapidly *relative* to their initial size (Fig. 84S9b).

Relatively few of the considered glaciologic parametersvariables are significantly correlated with relative ice-marginal lake area change. However, we do find a strong direct relationship between relative ice-dammed lake area change and lake-adjacent ice thickness (τ = 0.47, p = 0.07; Fig. 9b6b). Physically, this suggests that lakes dammed by thick glaciers have shrunk least, relative to their initial area. Additionally, relative proglacial lake area change is inversely correlated with the associated glacier's mass balance gradient (τ = -0.18, p = 0.04; Fig. S6S7b). This
indicates that proglacial lakes downstream from glaciers with "flat" mass balance gradients (i.e., little change in

645

- mass balance with increasing elevation) have grown most rapidly, relative to their initial area. This is consistent with interior proglacial lakes growing more rapidly in relative terms, because maritime glaciers generally have steeper mass balance gradients, with the opposite being true for continental glaciers, as discussed in greater detail in Sec. <u>4.4</u>.
- For the geometric and geomorphic parameters<u>variables</u>, we again find the same statistically significant variables as seen for absolute area change, but with opposite sign. While low elevation lakes tend to grow more rapidly in terms of absolute area change, high elevation lakes grow more quickly in relative terms ($\tau = 0.19$, p = 0.02; Fig. 8b). We observe a strong inverse correlation between relative lake area change and initial lake area ($\tau = -0.52$, p < 0.01; Fig. 7b), but we interpret this to be an artifact of data processing because initial lake area is used to compute relative lake area change. That being said, this result suggests that smaller lakes are experiencing greater relative area change, while large lakes are experiencing greater absolute change.



significantly associated with the following variables: proximity to the coast, high summer temperatures, winters that
 have gotten wetter, larger glaciers, wider glaciers, thicker glaciers, and glaciers with a steeper mass balance gradient.
 Distance to the coast is significantly correlated with a similar set of environmental variables, but lacks significant association with the variables describing glacier size (i.e., area, width, lake-adjacent ice thickness).

Notably, variables describing glacier mass balance are not significantly correlated with lake elevation, initial area, or distance from the coast. Glaciers with more negative cumulative mass balance instead are significantly associated with locations further south and east; warm summers; wet winters; winters that are becoming drier; smaller,

narrower, and thinner glaciers, and; glaciers with a steep mass balance gradient.

690

695

700

area change correlations (Table 2). Symbol color scales with the Kendall tau correlation coefficient between the environmental variables associated with that point's row and column. Symbol size scales with the absolute value of the correlation coefficient. Black boxes highlight covarying environmental variables that are discussed in the text. Meanings for variable names are as follows: lat = latitude; lon = longitude; elev = lake elevation; initArea = lake initial area; coastDist = distance from the open ocean; temp = JJA temperature; dTemp = change in JJA temperature; prcp = DJF precipitation; dPrcp = change in DJF precipitation; glArea = area of the lake-adjacent glacier; glWidth = width of that glacier; hTerm = lake adjacent median ice thickness; dbdz = mass balance gradient; b2010 = average annual mass balance for 2010 – 2016; bCum = cumulative mass balance for 1980 – 2016.

4.5 Multivariate correlations between lake area change and environmental variables

To supplement bivariate correlations and the above discussion of covariance between environmental variables, we
 undertake non-parametric correlation testing between ice-marginal lake area change and principal components scores.
 We first must interpret the physical meanings of the PC axes. The first four principal components axes explain 73.3
 % of the variance found in the 15 environmental variables for which we present correlation results (Table 2). After inspecting the loadings of environmental variables onto each principal component axis (Table S2) and plotting the

quasi-exponential decay explained by increasing PC axis numbers, we retain only the first four PC axes for correlation
testing. Some interpretation is required to understand the physical meaning of PCA results: Strong loadings of PC axis (PC1, absolute value ≥ 0.25) are found for environmental variables associated with a lake's geographic location (e.g., latitude, longitude, elevation), and so we interpret this axis to largely reflect a lake's position on the earth surface. This interpretation is supported by PC scores varying systematically along a latitudinal gradient (Fig. S3a). Strong PC2 loadings are indicative of a maritime setting; high PC2 scores are associated with low elevation, proximity to the open ocean, high mass balance gradients, and high winter precipitation (Table S2). This interpretation is again supported by the spatial distribution of PC2 scores, with a systematic decrease in scores moving away from the coast (Fig. S3b). Glacier-size related variables load most strongly onto PC3, while climate and climate change-related variables load most strongly on PC4 (Table S2; Fig. S3-d). We thus interpret PC axes 1 – 4 to aggregate individual environmental variables related to geographic position (i.e., latitude and longitude), continentality, glacier size, and climate (and its change), respectively.

The results show significant correlations for only PC2 (Table 4), the PC axis we interpret to reflect continentality (Sec 3.4). Proglacial (ice-marginal) lakes exhibit a significant direct (inverse) correlation between PC2 and absolute lake area change. An inverse correlation (*p* ≤ 0.05) exists between PC2 and relative proglacial lake area change (Table 4).
Due to the details of PCA data transformation, high PC2 scores are related to factors associated with a maritime setting. Therefore, a positive correlation coefficient indicates greater lake growth being associated with a maritime setting. A negative correlation coefficient either indicates greater lake area decline in a maritime setting, or greater area increase towards the continental interior. These findings are consistent with the bivariate correlation results (Sec. 4.2 - 4.3; Table 3), in which coastal proglacial lakes experienced the higher rates of relative area change.

In addition to these results, the relative area change of proglacial lakes is directly correlated (0.05
 PC3 (Table 4), which we interpret to reflect glacier size (Sec 3.4). This suggests that proglacial lakes associated with large glaciers are experiencing higher rates of relative area change. No significant relationships between glacier
 geometric characteristics and relative area change were found for the bivariate correlations (Table 2). This discrepancy in significance between single-variable and multivariate analyses suggests that either: 1) by combining multiple glacier-related characteristics, the association between glacier size and relative lake area change becomes more apparent; 2) other variables that load strongly onto PC3 (e.g., elevation, longitude) underly this association, or: 3) our interpretation of the physical meaning of PC3 is incorrect. No other PC scores were associated with ice-marginal lake area change, either in an absolute or relative sense at the p ≤ 0.1 level (Table 4).

Table 4. Kendall rank correlation coefficient (τ) values for monotonic relationships between absolute and relative lake areachange with the four leading principal components axis scores. The interpretation for a physical meaning of each axis islisted beside the axis number. In each category, test statistics are reported separately for proglacial and ice-dammed lakes.Bold numbers indicate correlations that are significant at $p \le 0.05$, while regular text indicates relationships where 0.05 < p ≤ 0.1 . Dashes indicate a correlation with p > 0.1. Due to details of PCA data transformation, a positive (negative) correlationwith PC2 indicates higher proglacial (ice-dammed) lake area growth (shrinkage) being associated with environmentalvariables characteristic of a maritime setting (e.g., close to coast, high mass balance gradient, low elevation). A positivecorrelation with PC3 indicates higher proglacial lake growth being associated with variables characteristic of larger glaciers(e.g., high glacier area, high lake adjacent ice thickness).

PC axis	Interpretation	Absolute	area change	Relative area change		
number		Proglacial	Ice-dammed	Proglacial	Ice-dammed	
1	Spatial location	-	-	-	-	
2	Continentality	0.31	-0.61	-0.22	-	
3	Glacier size	-	-	0.18	-	
4	Climate (change)	-	-	-	-	

5 Discussion

745

750

The discussion aims to (1) put our findings of regional lake area change behavior against the backdrop ofin context
 with global ice-marginal lake change found in existingearlier works; (2) interpret the physical meaning of the pattern of statistical associations between predictor variables and absolute and relative lake area change, and; (3) examine the limitations of our datasets and our analyses.

5.1 Regional lake change behavior

760 We observe diverging trends in lake area between studied ice-dammed and proglacial lakes. Many ice-dammed lakes (47 %) are shrinking in absolute area, while most proglacial lakes (82 %) are growing (Fig. 5a) and proglacial lakes also increase in number. This dichotomy makes intuitive sense in the context of widespread glacier wastage in this area (Arendt et al., 2009). Proglacial lakes expand headward as their associated glaciers retreat. Meanwhile, icedammed lakes shrink because thinner ice dams are less capable of impounding large reservoirs, and ice-dammed 765 tributary valleys are drained as trunk glaciers retreat. We find an average area decrease of 17 % among our studied ice dammed lakes, slightly lower but broadly similar to the estimates of Wolfe et al. (2014), who found a 28 % decrease in Alaska ice dammed lake area between 1971 2000Many ice-dammed lakes (45 %) are shrinking in absolute area, while most proglacial lakes (83 %) are growing (Figs. 3-4; Table 2) and proglacial lakes also increase in number. This dichotomy makes intuitive sense in the context of widespread glacier wastage in this area (Arendt et 770 al., 2009). Proglacial lakes expand headward as their associated glaciers retreat. Meanwhile, ice-dammed lakes shrink because thinner ice dams are less capable of impounding large reservoirs, and ice-dammed tributary valleys are drained as trunk glaciers retreat. We find an average area decrease of 17 % among our studied ice-dammed lakes, slightly lower but broadly similar to the estimates of Wolfe et al. (2014), who found a 28 % decrease in Alaska ice-dammed Formatted: Heading 1 Char

Formatted: Heading_1, Line spacing: single

lake area between 1971 – 2000. We note that, while we here document lake area change, i.e. a readily observable
 quantity, similar results would likely emerge if we estimated lake volume change because lake area scales with lake
 volume (Cook and Quincey, 2015; Shugar et al., 2020). However, converting area to volume in the absence of field
 observations requires the use of empirical scaling relationships (Cook and Quincey, 2015; Shugar et al., 2020) and
 would make the presented data more uncertain; we therefore only consider area change in the present study.

780 Similar studies of proglacial lakes undertaken across the Himalayas (Gardelle et al., 2011; Shukla et al., 2018; Wang et al., 2015; Zhang et al., 2019)(Gardelle et al., 2011; Shukla et al., 2018; Wang et al., 2015; Zhang et al., 2019), northern Europe (Canas et al., 2015; Tweed and Carrivick, 2015), and Peruvian(Canas et al., 2015; Tweed & Carrivick, 2015), and Andes (Wilson et al., 2018; Emmer et al., 2020) found increases in proglacial lake area ranging from 7 % to 110 %. We find that between 1984 - 2018 proglacial lakes in northwestern North America investigated in this study have increased in cumulative areal coverage by approximately 58 %, with a median individual lake growth of 123125 785 % (1.2728 km²). In aggregate, this increase in proglacial lake area is also in agreement with conceptual models of proglacial lake expansion in size and number as overdeepened basins are exposed as their upstream glaciers retreat (Emmer et al., 2020; Otto, 2019). The fact that our aggregate Gulf of Alaska lake area change sits in the middle of previously reported values likely partly stems from the fact that Alaska lakes are the early to middle stages of 790 proglacial lake development. In less heavily glaciated areas such as the Peruvian Cordillera Blanca or European Alps, the extant glaciers have already retreated into steep, high elevation basins with little potential for further lake development, while glaciers in Alaska still extend to flatter low elevations with more potential for lake development following glacier retreat. The extensive debris cover found on Alaska glaciers, most similar to Himalayan glaciers, could affect ice-marginal lake formation in several competing ways. While debris-covered glaciers tend to thin rather 795 than retreat in response to climate warming (potentially limiting lake growth), they are also associated with lower surface slopes (potentially enhancing lake growth; e.g., Anderson et al., 2018). Assessing the importance of such factors provides an avenue for future research. Beyond these physical factors, some variation in lake area change between regions arises from slightly varying temporal spans or definition of glacier-related study lakes.

Lake area change occurs either along a continuum (e.g., a small lake getting bigger) or as a system switch (e.g., lake completely disappearing). These different modes of area change impact their adjoining environments in different ways. We document the temporal growth style of lakes moving along a continuum (Fig. S4) and find the majority of lakes (64 %) exhibit steady, linear growth trends over the study period. Assuming lake area change is tied to glacier retreat, this implies constant rates of glacier retreat, despite generally accelerating rates of mass loss (Gardner et al., 2013; Hugonnet et al., 2021; Zemp et al., 2019). This growth style could reflect the linear planform shape of many valleys in which ice-marginal lakes form, which allow lakes to grow in length but inhibit large changes in width. Of the investigated proglacial lakes (n = 73), ten (14 %) exhibit decelerating change (either growth or shrinkage), which is indicative of either: 1) lake area coming into a steady state in equilibrium with the current environment, or; 2) lakes reaching late stage in their growth history in which they will soon detach from their associated glacier (Emmer et al., 2020). Regardless of the mechanism for decelerating change, both of these styles represent stabilizing lake area. In

Formatted: Normal, Justified, Line spacing: 1.5 lines

contrast, eight (11 %) lakes exhibit accelerating change. The paucity of lakes exhibiting stabilizing growth styles suggests that ice-marginal lakes in this area are in the middle stages of their growth history and will likely continue to change for the foreseeable future. Of our 107 study lakes, nine appeared during our study period and 18 disconnected from their associated glacier (three disconnected during our 1984 – 2018 study period, while 15 disconnected before <u>1984</u>). Either of these transitions mark a fundamental shift in landscape connectivity and function (e.g., Dorava and Milner, 2000; Baker et al., 2016).

815

The evolution of ice-marginal lakes impacts downstream flood hazard due to their association with glacial lake outburst floods (GLOFs), also known as jökulhlaups. The majority our ice-dammed study lakes shrunk, while
 proglacial lakes predominantly grew. Maximum outburst flood discharge (both instantaneous and cumulative) scales with the reservoir size (Björnsson, 2010; Nye, 1976). The diverging trends between ice-dammed and proglacial lakes suggests that the outburst hazard associated with ice-dammed lakes may be, on average, decreasing across the study reach, while the hazard associated with proglacial lakes may be growing.

 5.2 Topographic and geometric factors most strongly controlassociated with ice-marginal lake area change StatisticalBoth bivariate and multivariate statistical analyses suggest that topographic and geometric controls such as lake elevation and initial area exert the strongest influence on absolute ice-marginal lake area change (Table 2Tables <u>3-4</u>). As we discuss below, even parametersvariables we have previously called climatic or glaciologic may be thought of as geometric parameterstopographic variables because they are closely associated with the shape of the basin into which a lake may grow as its associated glacier retreats and thins.

Initial lake area is the strongest bivariate predictor for absolute proglacial lake area change ($\tau = 0.33$; Fig. 7a) and is the second strongest predictor for absolute ice-dammed lake area change ($\tau = -0.41$; Fig. 7a). The greatest possible area loss of an ice-dammed lake is that associated with complete lake drainage. Thus, a small ice-dammed lake is 835 fundamentally limited in its maximum area loss, while a large lake can experience significant shrinkage. We posit that this geometric control underlies the inverse correlation between absolute ice-dammed lake area change and its initial area. We hypothesize two mechanisms that may explain the fact that initially larger proglacial lakes have grown faster than initially small lakes: 1) The initial existence of a large lake requires a large basin, and basins generally do not end abruptly. Therefore, the simple existence of a large lake suggests that there is higher potential growth in a regionally-840 extensive depression. This explanation would require Alaska's proglacial lakes to be in an early stage of development (Emmer et al., 2020), with ample room to grow into overdeepened basins. Alternatively, 2) larger lakes likely have greater surface area at the glacier-lake interface, which may lead to higher rates of frontal ablation. Simply, a wider calving front would give rise to greater lake area growth for a set amount of up-valley glacier retreat - a notion supported by our observation that proglacial lakes downstream from wide glaciers have grown most rapidly in absolute 845 terms (Table 3). One can posit other mechanisms to explain this observation, perhaps that large lakes tend to be warmer (Sugiyama et al., 2016; Truffer & Motyka, 2016), which could affect rates of subaqueous melting and, consequently, glacier retreat. Alternatively, lake depth scales with lake area (S. J. Cook & Quincey, 2015), and deeper water at a

glacier's terminus generally enhances its calving flux and thus retreat rate (e.g., Benn et al., 2007). Exploring such possibilities provides an interesting opportunity for future research, but is beyond the scope and data constraints of the current study.

850

Initial lake area is the strongest predictor for absolute proglacial lake area change ($\tau = 0.33$; Fig. 10a) and is the second strongest predictor for absolute ice dammed lake area change ($\tau = -0.41$; Fig. 10a). The greatest possible area loss of an ice dammed lake is that associated with complete lake drainage. Thus, a small ice dammed lake is fundamentally 855 limited in its maximum area loss, while a large lake can experience significant shrinkage. We posit that this geometric control underlies the inverse correlation between absolute ice dammed lake area change and its initial area.-We hypothesize two mechanisms to explain the fact that initially larger proglacial lakes have grown faster than initially small lakes: 1) The initial existence of a large lake requires a large basin, and basins generally do not end abruptly. Therefore, the simple existence of a large lake suggests that there is higher potential growth in a regionally-extensive 860 depression. Alternatively, 2) larger lakes may have longer zones of glacier lake contact and/or calving fronts. Simply, a wider calving front would give rise to greater lake area growth for a set amount of up valley glacier retreat a notion supported by our observation that proglacial lakes downstream from wide glaciers have grown most rapidly in absolute terms (Table 2). One can posit other mechanisms to explain this observation, perhaps that large lakes tend to be warmer, which could affect rates of submarine melting and, consequently, glacier retreat. Alternatively, lake depth 865 scales with lake area (Cook and Quincey, 2015), and deeper water at a glacier's terminus generally enhances its calving flux and thus retreat rate (e.g., Benn et al., 2007). Exploring such possibilities provides an interesting opportunity for future research, but is beyond the scope and data constraints of the current study.

Several other factors that are statistically significantly linked can be explained using the framework of topographic 870 factors exerting primary control on absolute lake area change. Lake elevation is inversely associated with absolute proglacial lake area change, with low-elevation lakes growing most rapidly (Fig. are statistically significantly linked can be explained using the framework of topographic factors exerting primary control on absolute lake area change. Lake elevation is inversely associated with absolute proglacial lake area change, with low-elevation lakes growing most rapidly (Fig-118a; Table 23). A lake's distance to the ocean may be used to predict absolute proglacial lake area 875 change, with maritime lakes growing most rapidly (Fig. S4Figs. 9 and S9; Table 23). Finally, the median thickness of glacier ice in the region immediately abutting a proglacial lake is directly correlated with that lake's area change, with lakes downstream from thick glaciers growing most rapidly (Figs. 3 and 9; Fig. 6; Table 3). Multivariate statistics support these interpretations, with significant correlations found between both proglacial and ice-dammed lakes and PC2 scores (Table 4), the PC axis with strong loadings from topographic variables such as lake elevation and distance 880 from the coast (Table S2). All of these associations can be explained by the lake basin geometry expected to be encountered on an idealized transect from the coast towards the interior of the continent, as follows. 2). All of these associations can be explained by the lake basin geometry expected to be encountered on an idealized transect from the coast towards the interior of the continent, as follows. The Gulf of Alaska region is tectonically active, featured widespread glacier coverage during the Pleistocene, (Kauman & Manley, 2004) and has experienced vigorous

geomorphic work by glaciers, rivers, and waves-<u>(Péwé, 1975)</u>. These facts mean that, moving inland from the Gulf of Alaska coast, one first encounters broad lowlands composed of unconsolidated sediment, followed by wide valleys carved by Pleistocene ice streams which have been reworked by modern fluvial processes, and then higher, steeper, and narrow valleys occupied by modern glaciers (Péwé, 1975). In this idealized transect, we expect the large glaciers extending into the coastal plain to be capable of excavating deep basins into weak sediments without significant lateral constraint. Moving inland, steeper and more confined valley geometries inhibit absolute lake growth. -In this idealized transect, we expect the large glaciers extending into the coastal plain to be constraint. Moving inland, steeper and more confined valley geometries inhibit absolute lake growth. -In this idealized transect, we expect the large glaciers extending into the coastal plain to be constraint. Moving inland, steeper and more confined valley geometries inhibit absolute lake growth. -In this idealized transect, we expect the large glaciers extending into the coastal plain to be capable of excavating deep basins into weak sediments without significant lateral constraint. Moving inland, steeper and more confined valley geometries inhibit absolute lake growth. -Thus, we propose that even parametersvariables that at first appear to be associated with climate or glaciology, such as distance from the open ocean or glacier area, may actually be associated with absolute lake area change due to underlying links with lake basin geometry.

In contrast, several of the same climatic, glaciologic, and topographic variables discussed above for *absolute* lake area change exhibit statistically significant relationships with relative proglacial lake area change, but with the opposite sign. In terms of *relative* area change, it is the inland, high elevation proglacial lakes that are growing most rapidly.
 In contrast, several of the same climatic, glaciologic, and topographic parameters discussed above for *absolute* lake area change exhibit statistically significant relationships with relative proglacial lakes that are growing most rapidly.
 In contrast, several of the same climatic, glaciologic, and topographic parameters discussed above for *absolute* lake area change exhibit statistically significant relationships with relative proglacial lakes that are growing most rapidly. This finding is consistent with the global scale study of Shugar et al. (2020), who observed that the increase in the number of ice marginal lakes primarily occurred through the generation of new lakes at high elevation. Like that work, our results suggest that inland, high elevation regions are undergoing greater relative change.

This finding is consistent with the global-scale study of Shugar et al. (2020), who observed that the increase in the number of ice-marginal lakes primarily occurred through the generation of new lakes at high elevation. Like that work, our results suggest that inland, high-elevation regions are undergoing greater relative change, which is especially relevant given the potential for hydropower development in these locations (Farinotti et al., 2019b).

910

5.3 Lack of <u>evidence for</u> strong direct climatic or glaciologic <u>control onassociation with</u> ice-marginal lake area change

Beyond the parametersyariables discussed above, which we argue largely reflect lake-adjacent topography, <u>bivariate</u>
 and <u>multivariate statistical analyses suggest that</u> climatic and glaciologic parameters appear tovariables exert minimal influence on either absolute or relative ice-marginal lake area change. Though we observe some associations between mean climate and ice marginal lake area change, we do not find any statistically significant associations between temperature change over 1960s – 2000s, and only an unintuitive inverse correlation between winter precipitation change and proglacial lake area change (Sect. 5.5; Table 2). This is somewhat surprising, because glacier change must somehow be linked to ice-marginal lake area change, and glacier change is sensitive to these quantities. Where we do find statistically significant relationships between absolute lake area change and climatie factors, they occur in

manners that defy simple explanation. For example, it is difficult to see why proglacial lakes experiencing positive/neutral changes in winter precipitation would experience greater lake growth (Figs. 7 8Secs. 4.2.1 and 5.4; Table 3). We find a 0.05 relationship between relative proglacial lake area change and PC3 (Table 4), the925 PC axis with strong loadings from variables associated with glacier size (Sec. 3.4). Aside from this weaker correlation, though, we find no multivariate statistical evidence for associations between lake area change and the PC axes that load strongly with glaciological or climatological variables (Table 4). This is somewhat surprising, because glacier change must somehow be linked to ice-marginal lake area change, and glacier change is sensitive to these quantities. Where we do find statistically significant relationships between absolute lake area change and climatic factors, they 930 occur in manners that defy simple physical explanation. For example, it is difficult to see why proglacial lakes experiencing positive/neutral changes in winter precipitation would experience greater lake growth (Figs. 285, 86d, S10d; Table 3) because increasing winter precipitation likely benefits glacier mass balance and would thus inhibit glacier retreat and associated lake growth. We suggest these correlations with climatic factors reflect underlying covariance in our datasets, discussed in greater detail in Sections 5.24.4 and 5.54. Summer temperature, winter 935 precipitation, and their changes, all systematically vary with distance from the open ocean, (Figs. 9-10), as does a lake's elevation (Fig.8). We. 10) and we suggest seemingly "backwards" unintuitive climatic correlations, such as that described above, are actually driven by a lake's distance from the coast (Fig. 8). Figs. 9, 10, and S9; Table S4). Lakes that are further inland experience a more continental climate, but this relationship could also largely express topographic and geometric controls, as described in Section 5.42. We note that we do not run correlations between 940 lake area change and mean annual precipitation because variations in winter precipitation and summer temperature show strong relationships with Alaska glacier mass balance, particularly for coastal glaciers (e.g., McGrath et al., 2017), though changes in precipitation throughout the whole year could be more important for glacier mass balance elsewhere. Probing relationships with environmental variables beyond those presented here provide productive avenues for future research. The lack of strong associations with these external factors may suggest that although 945 climate and associated glacier change are the overarching factors of lake area change, the specific response of a lake to these changes is largely shaped by local factors, such as overdeepening shape and associated lake growth potential. These local factors are more closely tied to topography than climatological or glaciological factors.

950

1

955

Another reason that we do not observe strong associations between climatic factors with ice-marginal lake area change could be due to the processes underlying glacier evolution obscuring the climate signal. Glaciers display varied sensitivity to climatic forcing (e.g., Jiskoot et al., 2009; McGrath et al., 2017; O'Neel et al., 2019; McNeil et al., 2020), so we may expect glacier mass balance, rather than climatic factors alone, to better explain lake behavior. We do find an association between absolute proglacial lake area change and average annual glacier mass balance over 2010 – 2016 (Table <u>23</u>; Fig. <u>S6aS7a</u>), but do not observe links with decadal average mass balance for any other period, nor cumulative mass balance over a longer period. The variable sensitivity of glacier length change to mass balance perturbation (e.g., Che et al., 2017) likely complicates the link between lake area change and glacier mass balance. In addition, glaciers act as low pass filters on climate variability (e.g., Roe, 2011; Anderson et al., 2014). We therefore suggest the lack of a statistical relationship between most mass balance parameters and lake area change is due to the

fact that glacier retreat, and associated lake growth, We therefore suggest the lack of a statistical relationship between most mass balance variables and lake area change is due to the fact that glacier retreat, and associated lake growth, is responding to climate change in a lagged and smoothed manner. The average response time of lake-associated glaciers is 92 years (Figure 2dFig. S1d), while our record length is only 34 years. Thus, the relevant period of climate change to best predict lake area change may either require a longer or earlier period of record than we investigate.

965 5.4 System evolution

Lake area change occurs either along a continuum (e.g., a small lake getting bigger) or as a system switch (e.g., lake completely disappearing). These different modes of area change impact their adjoining environments in different ways. We document the temporal growth style of lakes moving along a continuum (Fig. 6) and find the majority of lakes (64 %) exhibit steady, linear growth trends over the study period. Assuming lake area change is tied to glacier retreat, this implies constant rates of glacier retreat, despite generally accelerating rates of mass loss (Gardner et al., 2013; Zemp et al., 2019). This growth style could reflect the linear planform shape of many valleys in which ice-marginal lakes form, which allow lakes to grow in length but inhibit large changes in width. Of the investigated proglacial lakes (n = 73), ten (14 %) exhibit decelerating change (either growth or shrinkage), which is indicative of either: 1) lake area coming into equilibrium with the current environment, or; 2) lakes reaching late stage in their growth history in which they will soon detach from their associated glacier (Emmer et al., 2020). Regardless of the mechanism for decelerating change, both of these styles represent stabilizing lake area. In contrast, eight (11 %) lakes exhibit accelerating change. The paucity of lakes exhibiting stabilizing growth styles suggests that ice-marginal lakes in their area are in the middle stages of their growth history and will likely continue to change for the foreseeable future.

980 The evolution of ice dammed lakes impacts downstream flood hazard due to their association with glacial lake outburst floods (GLOFs), also known as jökulhlaups. The majority our ice-dammed study lakes shrunk, with six (43 %) and one (7 %) doing so in a steady (linear) or accelerating fashion, respectively or remained relatively steady (21 %). Because maximum outburst flood discharge scales with the ice dammed reservoir, this suggests that outburst flood hazard may be, on average, decreasing across the study reach. However, we did observe six cases of growing ice dammed lakes. For these lakes, and their downstream environments, outburst flood hazard may be increasing.

Of our 107 study lakes, nine appeared during our study period and 18 disconnected from their associated glacier (three disconnected during our 1984 – 2018 study period, while 15 disconnected before 1984). Either of these transitions mark a fundamental shift in landscape connectivity and function. All lakes that form during our study period (n = 9)
 appear before 2000, with 4 (44 %) lakes appearing before 1990 and 5 lakes (56 %) appearing between 1990 to 1999. Of the 18 detached lakes in this study, only 4 (22 %) detached during the study period, while 14 (78 %) detached sometime between the Post and Mayo (1970) catalog and the start of our record. As discussed in Section 5.1, we find some evidence for the largest relative landscape change occurring at high, interior sites, in agreement with recent global scale work (Shugar et al., 2020).

995

Formatted: Normal, Justified, Line spacing: 1.5 lines

5.5 Data and statistical limitations

1000

When considering climatological, glaciologic, and topographic controls on lake area change, it is important to note that these variables are often intertwined (Fig. 10; Table \$3\$4). For example, glacier thickness, area, and slope are highly correlated (e.g., Bahr et al., 2015). Further, we expect these glaciologic variables to be related to climate - a large glacier is more likely to be found in an area of high winter precipitation and low summer temperature. We provide this as one example of interrelated controlenvironmental variables, but acknowledge that others like it exist within our the existence of covariance between environmental variables is pervasive in this dataset- and makes interpretation of statistical results more complicated. Principal components analysis does not entirely solve this problem because, while it provides independent PC axes, an individual axis still contains correlated environmental 005 variables, and thus does not allow for the disentanglement of all variables. In Sect. 4.2.1 previous sections, we reportpresent several statistical associations that area change of ice dammed lakes is inversely correlated with mean winter precipitation, such that lakes with higher winter precipitation experienced greater rates of area decline (shrinkage). There is no obviouslack a straightforward physical mechanism to explain this relation, and in Section 5.2 we posit continentality may be the true cause of this relationship, withexplanation and suggest that underlying 010 covariance in environmental variables is the most plausible explanation for these associations. Proximity to the coast and general topographic features associated with coastal or interior settings provides a coherent and physically plausible framework for understanding many of these unintuitive correlations. However, a lake's distance from the ocean tied to winter precipitation (Fig. 8). Another unintuitive correlation is revealed in our finding greater rates of relative proglacial coast is also correlated with its initial area and elevation (Fig. 10). This covariance means that we 015 cannot definitively say whether it is a lake's proximity to the coast, its size, or elevation is what truly matters most in providing a physical explanation for the observed patterns of ice-marginal lake area change-where has been more winter precipitation (Table 2). Correlations between variables used in this study (Table S3), as well as correlations with unexplored variables, complicate interpretation of results in places, and limit our ability to identify true "physical controls", due to our work's purely correlational nature, However, highlighting the fact that these correlations exist 020 provides avenuestestable hypotheses for future researchstudies to investigate the physical mechanisms underlying these relationships in more detail.

1025

1030

Additionally, weWe find more statistically significant associations between climatic, glaciologic, and topographic parametersyariables and proglacial lake area change than we do for ice-marginal lake area change. This may occur because proglacial lakes are actually more sensitive to these environmental factors, but there is likely some role due to differing sample sizes between the proglacial and ice-dammed groups. OurDue to exclusion of lakes that detach from their associated glacier during the study period, our statistical analyses investigate 73 proglacial lakes but only 14 ice-dammed lakes. For a given effect size (i.e., correlation strength), a smaller sample will produce a higher pvalue (i.e., less significant) than a larger sample (Helsel and Hirsch, 1992). Therefore, the fact we observe fewer statistically significant relationships for ice-dammed lakes should not be taken to mean that these relationships do not exist, but simply that a larger scale study is needed to more definitively investigate controls on ice-dammed lake area change. Such a study is beyond the scope of this work.

Additionally, our study of physical controls on lake area change is only as robust as the datasets upon which we rely. 1035 In reality, there may be a link between a parametervariable we have investigated and lake area change, but the relationship does not manifest itself in our study because our representation of that parametervariable is in error. These datasets we employ were optimized to minimize misfit over a large area, and the accuracy of a single value for any one glacier or pixel may be higher than the average values reported in SectSecs. 2.32-2.4. Despite this uncertainty, these datasets provide our best estimates of these values over our study area, which is too large and remote to allow 1040 more detailed characterization of individual sites. We therefore utilize these datasets to allow a preliminary investigation of the importance of these factors over a large area, which can later be refined with more detailed studies.

6 Conclusion

1050

1045 We investigate the time evolution of 107 ice-marginal lakes across northwestern North America over 1984 - 2018 and find the majority (8283 %) of proglacial lakes are growinggrew (median relative change = 123125 %) while many (4745 %) ice-dammed lakes shrunk (median relative change = -1615 %). Non-parametric bivariate and multivariate statistical analyses assess correlations between ice-marginal lake area change and potential physical controls such as climatic, glaciologic, and topographic attributes of the regions surrounding each lake. Our findings indicate that factors associated with a lake's geometry and its adjacent topography are most strongly linked to lake area change. Large, coastal, low-elevation lakes associated with large, wide, thick glaciers underwent the largest area changes, while small, inland, high elevation lakes changed most relative to their initial areas. Covariance between continentality and climatic parametersvariables likely underlies the observed unintuitive correlations with those factors, and wethough this same covariance also makes it difficult to assess whether a lake's distance from the open ocean, its elevation, or its initial 055 area is the most important variable in predicting recent lake area change. We caution authors of similar work to consider such tiescovariance between climatic, glaciologic, and topographic factors when investigating apparent physical controls on lake behavior. We find some evidence for enhanced lake area change being associated with glaciers undergoing greater rates of mass loss over the most recent decade, but do not find correlations with long-term cumulative mass balance nor changes in climatic parametersvariables in ways that decrease glacier mass balance (i.e., 1060 summer warming, winter drying). We suggest that, while climate change and associated glacier wastage must be the primary external driver for lake area change, topographic and geometric factors exert primary control because a lake cannot expand if no basin exists to accommodate its growth. We have shown that ice-marginal lakes have changed substantially over the Landsat record and that many will likely continue to evolve. These shifts in lake area have likely impacted adjacent biophysical systems by changing the timing and magnitude of water and sediment fluxes and will 1065 continue to do so. Our study provides initial suggestions of the environmental variables most strongly associated with ice-marginal lake area change. However, to better understand how these glacial lakes will continue to evolve in the face of global climate change, we must further investigate the physical mechanisms by which ice-marginal lakes change, undertake more sophisticated multivariate analyses of these systems, and explore the influence of environmental factors not examined in this work.

Code and data availability

1075

1085

A shapefile of time-varying lake outlines and a spreadsheet containing data for statistical analyses can be found at https://arcticdata.io/xxcatalog/view/urn%3Auuid%3Aaa9c6897-9acb-4f9f-8031-e267043d49ad. Python and Matlab scripts for GIS and data processing as well as statistical analyses can be found at https://github.com/armstrwa/xx-proglacialLakes. Climate reanalysis data are available at xx. The Randolph Glacier Inventory is located at https://ckan.snap.uaf.edu/dataset. The Randolph Glacier Inventory is located at https://www.glims.org/RGI/. Geotiffs of ice thickness data from Farinotti et al. (2019) can be downloaded from https://doi.org/10.3929/ethz-b-000315707. Glacier mass balance data are from Huss and Hock (2015) and may be requested from those authors.

Author contributions

HRF undertook lake delineation, data processing, statistical analyses, and drafted manuscript text. WHA designed the study, performed geospatial data extraction, advised HRF, secured funding, and contributed to manuscript writing and revision. MH modeled glacier mass balance <u>parametersvariables</u>, assisted with statistical design, and contributed to the text.

1080 Acknowledgements

We thank Regine Hock for discussing unpublished modeled glacier mass balance data. We appreciate <u>conversations</u> <u>with</u> Dominik Schneider-and, Steve Hageman'sHageman, Maggie Sugg, and Hasthika Rupasinghe, which provided great insight on the use of multivariate statistical methods. We thank Dan McGrath for discussing climate reanalysis data and Leif Anderson for discussing glacier response times. We gratefully acknowledge the Department of Geological and Environmental Sciences at Appalachian State University (ASU) for funding HRF as an undergraduate research assistant. We recognize the ASU Office of Student Research for conference travel funding. This work was supported by NSF award OPP-1821002. We thank Jenna Sutherland, an anonymous reviewer, and Associate Editor Chris Stokes for constructive reviews that improved the rigor, clarity, and contextualization of this work.

References

 Anderson, R.S., Anderson, L.S., Armstrong, W.H., Rossi, M.W., & Crump, S.E. (2018). Glaciation of alpine
 valleys: The glacier – debris-covered glacier – rock glacier continuum. *Geomorphology*, 311, 127-142. https://doi.org/10.1016/j.geomorph.2018.03.015

Allen, S. K., Zhang, G., Wang, W., Yao, T. and Bolch, T.: Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach, Sci. Bull., 64(7), 435–445, doi:https://doi.org/10.1016/j.scib.2019.03.011, 2019.

095 Anderson, L. S., Roe, G. H. and Anderson, R. S.: The effects of interannual climate variability on the moraine record, Geology, 42(1), 55–58, doi:10.1130/G34791.1, 2014.

Formatted: Font: Bold

Formatted: Suppress line numbers

1	Arendt, A., Walsh, Jand., & Harrison, W (2009), Changes of Glaciers and Climate in Northwestern North		Formatted: Font color: Auto	
	America during the Late Twentieth Century, J. Clim., Journal of Climate, 22(15), 4117–4134,	A	Formatted	
	https://doi: <u>.org/</u> 10.1175/2009JCLI2784.1 , 2009_	\nearrow	Formatted: Indent: Left: 0", Hanging: 0.33"	
1100	Bahr, D. B., Pfeffer, W. T . and., & Kaser, G., (2015), A review of volume-area scaling of glaciers , Rev. Geophys.,	-	Formatted	
	<u>Reviews of Geophysics</u> 53(1), 95–140 , 2015			
	Bajracharya, S. R., Maharjan, S. B., Shrestha, F., Guo, W., Liu, S., Immerzeel, W and., & Shrestha, B.:. (2015), The		Formatted	
	glaciers of the Hindu Kush Himalayas: current status and observed changes from the 1980s to 2010, Int. J., International Journal of Water Resources Development, 31(2), 161–173, 2015,			
1105	Baker, M. A., Arp, C. D., Goodman, K. J and., Marcarelli, A. M., & Wurtsbaugh, W. A. (2016), Stream-Lake		Formatted	
	Interaction : Understanding Coupled Hydro-Ecological Systems, ,lake interaction: understanding coupled hydro-ecological systems. In Stream Ecosystems in a Changing Environment (pp, 321–348, 2016). Elsevier,		(<u></u>)
	Benn, D. I., Hulton, N. R. Jand., & Mottram, R. H.:. (2007), 'Calving laws', 'sliding laws' and the stability of		Formatted	
	tidewater glaciers, Ann. Glaciol., Annals of Glaciology, 46, 123–130, . https://doi:.org/DOI:	\square	lomated	<u></u>
1110	10.3189/172756407782871161 , 2007,			
	Bieniek, P. A., Bhatt, U. S., Walsh, J. E., Rupp, T. S., Zhang, J., Krieger, J. Rand., & Lader, R.:. (2016),		Formatted	
	Dynamical downscaling of ERA-Interim temperature and precipitation for Alaska, J. Appl. Meteorol.			
	Climatol., Journal of Applied Meteorology and Climatology 55(3), 635–654, 2016.			
	Björnsson, H. (2010). Understanding jökulhlaups: From tale to theory. Journal of Glaciology, 56(200), 1002–1010.			
1115	https://doi.org/DOI: 10.3189/002214311796406086			
	Bogen, J., Xu, M . and A. & Kennie, P.:. (2015), The impact of pro-glacial lakes on downstream sediment delivery in	-	Formatted: Font color: Auto	
	Norway-, Earth Surf. ProcessSurface Processes and Landforms, 40(7), 942–952, 2015,	\sum	Formatted: Indent: Left: 0", Hanging: 0.33"	
	Brun, F., Treichler, D., Shean, D., and., & Immerzeel, W. W.: (2020), Limited Contribution of Glacier Mass Loss to		Formatted	
	the Recent Increase in Tibetan Plateau Lake Volume, Frontiers in Earth Science, 8(November), 1–14,	\nearrow	Formatted	
1120	https://doi÷.org/10.3389/feart.2020.582060, 2020,			
	Buckel, J., Otto, JC., Prasicek, G. and., & Keuschnig, M.: (2018), Glacial lakes in Austria-Distribution and		Formatted	
	formation since the Little Ice Age, Glob. Planet. Global and Planetary Change, 164, 39-51, 2018,			<u></u>)
	Canas, D., Chan, W. M., Chiu, A., Jung-Ritchie, L., Leung, M., Pillay, L and., & Waltham, B (2015), Potential		Formatted	
1	Environmental Effects of Expanding Lake Jökulsárlón in Response to Melting of Breiðamerkurjökull, Iceland,			<u> </u>
1125	Cartogr. Int. J. Geogr. Inf. Cartographica: The International Journal for Geographic Information and	/		
	Geovisualization _e 50(3), 204–213 , 2015			
	Carrivick, J. L. and., & Tweed, F. S.: (2016), A global assessment of the societal impacts of glacier outburst floods,	-	Formatted	
1	Glob. Planet. Global and Planetary Change, 144, 1–16, https://doi:.org/10.1016/j.gloplacha.2016.07.001,			
		/	Formatted: Font: Times New Roman, 10 pt	
1	43			

	2016 _a		Formatted: Font color: Auto	
1130	Chernos, M., Koppes, Mand., & Moore, R. D.; (2016), Ablation from calving and surface melt at lake-terminating Bridge Glacier, British Columbia, 1984-2013, Cryosphere, 10(1), 2016.)	7	Formatted	
	Consortium, R. G. I	1	Formatted	
1135	Cook, S. J. and Quincey, D. J.: Estimating the volume of Alpine glacial lakes, , 559–575, doi:10.5194/esurf 3-559- 2015, 2015.			
	Cook, S. J. and & Swift, D. a.: (2012), Subglacial basins: Their origin and importance in glacial systems and		Formatted: Indent: Left: 0", Hanging: 0.33"	
	landscapes, <i>Earth-Science</i> Rev., <i>Reviews</i> , 115(4), 332–372, https://doi+.org/10.1016/j.earscirev.2012.09.009, 2012,	\geq	Formatted	
1140	Cook, S. J., & Quincey, D. J. (2015). Estimating the volume of Alpine glacial lakes. <i>Earth Surface Dynamics</i> , 3(4), 559–575. https://doi.org/10.5194/esurf-3-559-2015			
	Cuffey, K. M. and, & Paterson, W. S. B.: (2010), The physics of glaciers, Academic Press., 2010		Formatted: Font color: Auto	
	Daly, C., Taylor, G. H and., & Gibson, W. P.:. (1997), The PRISM approach to mapping precipitation and	\searrow	Formatted: Indent: Left: 0", Hanging: 0.33"	
	temperature, (pp. 20–23,) Citeseer, 1997.	\nearrow	Formatted	
1145	Danielson, J. J. and., & Gesch, D. B.: (2011), Global multi-resolution terrain elevation data 2010 (GMTED2010).		Formatted	
1145	2011.). Open-File Report. https://doi.org/10.3133/ofr20111073	/	Formatted	
	Debnath, M., Syiemlieh, H. J., Sharma, M. C., Kumar, R., Chowdhury, A <u>. and., & Lal, U.; (2018)</u> , Glacial lake dynamics and lake surface temperature assessment along the Kangchengayo-Pauhunri Massif, Sikkim Himalaya, 1988–2014, <i>Remote Sens. Appl. Soc. Environ., Sensing Applications: Society and Environment</i> , 9,	/	Formatted	
1150	26-41 , 2018			
	Dorava, J. M . and., & Milner, A. M.:. (2000), Role of lake regulation on glacier-fed rivers in enhancing salmon		Formatted	
	productivity: the Cook Inlet watershed, south-central Alaska, USA , Hydrol. Process., <i>Hydrological</i> <u>Processes</u>, 14(16-17), 3149–3159, 2000,			
	Emmer, A., Harrison, S., Mergili, M., Allen, S., Frey, H and., & Huggel, C.:. (2020), 70 years of lake evolution and		Formatted	
1155	glacial lake outburst floods in the Cordillera Blanca (Peru) and implications for the future, <i>Geomorphology</i> , 107178, 2020	/		
	Engel, Z., Šobr, M. and Yerokhin, S. A.: Changes of Petrov glacier and its proglacial lake in the Akshiirak massif,			
	central Tien Shan, since 1977, J. Glaciol., 58(208), 388-398, doi:10.3189/2012JoG11J085, 2012.			
	Esri, H. and DeLorme, M.: Light Gray Canvas Map [Base map]. Retrieved July, 2020, n.d.		Formatted: Font: Times New Roman, 10 pt	
1	44			

1160	Falatkova, K., Šobr, M., Neureiter, A., Schöner, W., Janský, B., Häusler, H., Engel, Z. and Beneš, V.: et al. (2019), 🛧	+	Formatted: Font color: Auto	
	Development of proglacial lakes and evaluation of related outburst susceptibility at the Adygine ice-debris	\mathbf{i}	Formatted	
	complex, northern Tien Shan , <i>Earth</i> Surf. Dyn., Surface Dynamics, 7(1) , 301–320, 2019,		Formatted: Indent: Left: 0", Hanging: 0.33"	
	Farías-Barahona, D., Wilson, R., Bravo, C., Vivero, S., Caro, A., Shaw, T. E., Casassa, G., Ayala, Á., Mejías, A.,			
	Harrison, S., Glasser, N. F., McPhee, J., Wündrich, O. and Braun, M. H.: et al. (2020), A near 90-year record	-	Formatted	
1165	of the evolution of El Morado Glacier and its proglacial lake, Central Chilean Andes, J. Glaciol., Journal of	/		
	<u>Glaciology</u> 66(259), 846–860, <u>. https://doi+.org/</u> DOI: 10.1017/jog.2020.52, <u>2020</u>			
	Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, Fand., & Pandit, A.: (2019), A		Formatted	
	consensus estimate for the ice thickness distribution of all glaciers on Earth, doi:10.1038/s41561-019-0300	/		
	Nature Geoscience, 12(3, 2019), 168–173.			
1170	Farinotti, D., Round, V., Huss, M., Compagno, L., & Zekollari, H. (2019). Large hydropower and water-storage			
	potential in future glacier-free basins. <i>Nature</i> , 575(7782), 341–344.			
	Fellman, J. B., Nagorski, S., Pyare, S., Vermilyea, A. W., Scott, D. and, & Hood, E.:. (2014), Stream temperature			
	response to variable glacier coverage in coastal watersheds of Southeast Alaska, <u>2073(March 2013</u>)	\nearrow	Formatted: Font color: Auto	$ \longrightarrow $
	<u>Hydrological Processes, 28(4)</u> , 2062–2073 , doi:10.1002/hyp.9742, 2014	\sum	Formatted: Indent: Left: 0", Hanging: 0.33" Formatted	
175				
1175	Gardelle, J., Arnaud, Y. and., & Berthier, E.: (2011), Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009, Glob. Planet. Global and Planetary, Change, 75(1-2), 47-	1	Formatted	
	Filmataya mountain range between 1990 and 2009 , Glob. Planet. <u>Global and Planetary</u> Change, 73(1-2), 47- 55 , 2011 ,			
	55 , 2011 ,			
	Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W.			
	T. and Kaser, G.: et al. (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009,	1	Formatted	
1180	Science (80 .)., 3 40(6134), 852–857 , 2013			
	Gillies, S. A. B. K. L. O. T.: (2007), Shapely: manipulation and analysis of geometric objects, 2007, Retrieved	-	Formatted	
	from https://shapely.readthedocs.io/en/latest/manual.html			
	Haeberli, W., Linsbauer, A., Cochachin, A., Salazar, C. and., & Fischer, U. H. (2016), On the morphological		Formatted	
	characteristics of overdeepenings in high-mountain glacier beds, <u>1990(June. Earth Surface Processes and</u>	1	Tornacca	
1185	Landforms, 41(13), 1980–1990, https://doi÷.org/10.1002/esp.3966, 2016,			
	Harris, I., Jones, P. D., Osborn, T. J . and. , & Lister, D. H.:. (2014), Updated high-resolution grids of monthly			
	climatic observations-the CRU TS3. 10 Dataset- <u>Int. J. Climatol.</u> , International Journal of Climatology,	1	Formatted	
	34(3), 623–642 , 2014			
	Helsel, D. R. and., & Hirsch, R. M. (1992), Statistical methods in water resources, (Vol. 49), Elsevier., 1992,		Formatted	
1190	Hewitt, K. and Liu, J.: Ice-Dammed Lakes and Outburst Floods, Karakoram Himalaya: Historical Perspectives on			
	Emerging Threats, Phys. Geogr., 31(6), 528-551, doi:10.2747/0272-3646.31.6.528, 2010.			
I			Formatted: Font: Times New Roman, 10 pt]
i i	45			
	45			

	Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., et al. (2021). Accelerated global glacier			
	mass loss in the early twenty-first century. Nature, 592(7856), 726-731.			
	Huss, M and., & Hock, R.:. (2015), A new model for global glacier change and sea-level rise, Front. Frontiers in		Formatted: Font color: Auto	
1195	Earth Sci., Science, 3(September), 1-22, doi:10.3389/feart.2015.00054, 2015.54,	\nearrow	* Formatted	
	Jacquet, J., McCoy, S. W., McGrath, D., Nimick, D. A., Fahey, M., O'Kuinghttons, J., Friesen, B. A. and Leidich,		Formatted: Indent: Left: 0", Hanging: 0.33"	(
	J.:et al. (2017), Hydrologic and geomorphic changes resulting from episodic glacial lake outburst floods: Rio		Formatted	
	Colonia, Patagonia, Chile , Geophys. Res. Lett.,. <i>Geophysical Research Letters</i>, 44(2), 854–864, 2017,	/	romatteu	L
	Jiskoot, H., Curran, C. J., Tessler, D. Land., & Shenton, L. R.: (2009), Changes in Clemenceau Icefield and Chaba	_	r	
1200	Group glaciers, Canada, related to hypsometry, tributary detachment, length-slope and area-aspect relations,		Formatted	[
200	Ann. Glaciol., Annals of Glaciology, 50(53), 133–143, https://doit.org/DOI: 10.3189/172756410790595796,	//		
	2009.	/		
	Jóhannesson, T., Raymond, C. Fand., & Waddington, E. D.: (1989), A simple method for determining the	_	Toursetted	
	response time of glaciers, in. In <i>Glacier fluctuations and climatic change</i> , (pp. 343–352;), Springer., 1989.	/	Formatted	[
	response une of glacters, m. monacter fractions and chinance change, mp. 515-552, gopfinger, 1909			
1205	Kauman, D. S., & Manley, W. F. (2004). Pleistocene Maximum and Late Wisconsinan glacier extents across			
	Alaska, U.S.A. Developments in Quaternary Science, 2(PART B), 9-27. https://doi.org/10.1016/S1571-			
	<u>0866(04)80182-9</u>			
	Khadka, N., Zhang, G. and & Thakuri, S.:. (2018), Glacial Lakes in the Nepal Himalaya: Inventory and Decadal		Formatted: Font color: Auto	
	Dynamics (1977–2017), <i>Remote</i> Sens., Sensing, 10(12),). https://doi:.org/10.3390/rs10121913, 2018;	\sum	Formatted: Indent: Left: 0", Hanging: 0.33"	
1210	King, O., Bhattacharya, A., Bhambri, R . and., & Bolch, T (2019), Glacial lakes exacerbate Himalayan glacier		Formatted	
	mass loss, <u>,</u>	\geq	Formatted	
	King, O., Bhattecharya, A., Ghuffar, S., Tait, A., Guilford, S., Elmore, A.C., and Bolch, T.: Six decades of glacier			
	mass chagnes around Mt Everest are revealsed by historical and contemporary images. One Earth, 3, 608 620, doi:			
	10.1016/j.oneear.2020.10.019, 2020.			
1215	Larsen, C. F., Burgess, E., Arendt, A. A., O'Neel, S., Johnson, A. J . and <u>& K</u>ienholz, C.:. (2015), Surface melt		Formatted: Font color: Auto	
	dominates Alaska glacier mass balance, Geophys. Res. Lett., Geophysical Research Letters, 42(14), 5902-	$\langle \rangle$	Formatted: Indent: Left: 0", Hanging: 0.33"	
	5908, doi:10.1002/2015GL064349, 2015	\geq	Formatted	
	Lea, J. M.: The. (2018), Google Earth Engine Digitisation Tool (-GEEDiT-)), and the Margin change Quantification		Formatted	
	Tool (-MaQiT)	\square	Tomatteu	[
1220	Earth Surface Dynamics, 6(3), 551–561, 2018			
	Magnin, F., Haeberli, W., Linsbauer, A., Deline, Pand., & Ravanel, L.: (2020), Estimating glacier-bed		Formatted	
1	overdeepenings as possible sites of future lakes in the de-glaciating Mont Blanc massif (Western European	/		[
	Alps);), Geomorphology, 350, 106913, 2020.			
		/	Formatted: Font: Times New Roman, 10 pt	
		/		

	McGrath, D., Sass, L., O'Neel, S., Arendt, Aand., & Kienholz, C (2017), Hypsometric control on glacier mass	Formatted	
1225	balance sensitivity in Alaska and northwest Canada, <i>Earth's</i> Future, 5(3), 324–336, 2017,		
	McNeil, C., O'Neel, S., Loso, M., Pelto, M., Sass, L., Baker, E. H. and., & Campbell, S.: (2020), Explaining mass	Formatted	
	balance and retreat dichotomies at Taku and Lemon Creek Glaciers, Alaska, J. Glaciol., Journal of		
	<u>Glaciology</u> 66(258), 530–542 ,. https://doi.org/ DOI: 10.1017/jog.2020.22 , 2020,		
	Menounos, B., Hugonnet, R., Shean, D., Gardner, A., Howat, I., Berthier, E., Pelto, B., Tennant, C., Noh, M.J.,		
1230	Brun, F., and Dehecq, A. Heterogenous changes in western North American glacier linked to decadal variability in		
	zonal wind strenght. Geophys. Res. Lett., 46, 200-209, doi: 10.1029/2018GL080942, 2019.		
	Nye, J. F. (1976). Water Flow in Glaciers: Jökulhlaups, Tunnels and Veins. Journal of Glaciology, 17(76), 181-207.		
	https://doi.org/DOI: 10.3189/S002214300001354X		
	O'Neel, S., McNeil, C., Sass, L. C., Florentine, C., Baker, E. H., Peitzsch, E., McGrath, D., Fountain, A. G. and	Formatted: Font color: Auto	
1235	Fagre, D.:et al. (2019), Reanalysis of the US Geological Survey Benchmark Glaciers: long-term insight into	Formatted: Indent: Left: 0", Hanging: 0).33"
	climate forcing of glacier mass balance, J. Glaciol., Journal of Glaciology, 65(253), 850-866, 2019,	Formatted	
	Otto, JC.:. (2019), Proglacial Lakes in High Mountain Environments, in In Geomorphology of Proglacial Systems,	Formatted	
	(pp. 231–247 ,) Springer., 2019		
	Péwé, T. L. (1975). Quaternary geology of Alaska (Vol. 835). US Government Printing Office.		
1240	Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J. O., Hock, R., Kaser, G.	Formatted: Font color: Auto	
	and Kienholz, C.:et al. (2014), The Randolph Glacier Inventory: a globally complete inventory of glaciers, J.	Formatted: Indent: Left: 0", Hanging: 0).33"
	Glaciol., Journal of Glaciology, 60(221), 537–552, 2014.	Formatted	
	Post, A. . and & Ma yo, L. R. (1971), Glacier Dammed Lakes dammed lakes and Outburst Floods outburst floods in	Formatted	
	Alaska, Hydrol. Investig. Atlas, 1–10, 1970. US Geological Survey Washington, DC		
1245	Ratajczak, Z., Carpenter, S. R., Ives, A. R., Kucharik, C. J., Ramiadantsoa, T., Stegner, M. A., Williams, J. W.,		
	Zhang, J. and Turner, M. G.:et al. (2018), Abrupt Change in Ecological Systems -: Inference and Diagnosis,	Formatted	
	Trends Ecol. Evol., in Ecology & Evolution, 33(7), 513–526, https://doi+.org/10.1016/j.tree.2018.04.013,	//	
	2018		
	Roberts, M. J., Tweed, F. S., Russell, A. J., Knudsen, Ó- and & Harris, T. D.:. (2003), Hydrologic and geomorphic	Formatted	
1250	effects of temporary ice-dammed lake formation during jökulhlaups, <i>Earth Surf. Process. Surface Processes</i>		
	and Landforms J. Br. Geomorphol. Res. Gr.,: The Journal of the British Geomorphological Research Group	//	
	<u>28(</u> 7), 723–737 , 2003		
	Robinson, C. Tand., & Matthaei, S.:. (2007), Hydrological heterogeneity of an alpine stream-lake network in	Formatted	
	Switzerland, Hydrol. Process., Hydrological Processes: An Int. J., International Journal, 21(23), 3146-3154,	//	
1255	2007 <u>,</u>		
I		Formatted: Font: Times New Roman, 10) pt
I	47		

Roe, G. H.: What do glaciers tell us about climate variability and climate change ?, , 57(203), 567-578, 2011. Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S., Kennedy, M. C., Bevington, A. R., Betts, R. Formatted: Font color: Auto A. and Harrison, S.: et al. (2020), Rapid worldwide growth of glacial lakes since 1990, Nat. Clim. Chang., Formatted: Indent: Left: 0", Hanging: 0.33" Nature Climate Change, 10(10), 939-945. https://doi:.org/10.1038/s41558-020-0855-4, 2018, Formatted 260 Shukla, A., Garg, P. K.-and., & Srivastava, S.-. (2018), Evolution of glacial and high-altitude lakes in the Sikkim, Formatted Eastern Himalaya over the past four decades (1975-2017), Front. Environ. Sci.,). Frontiers in Environmental Science, 6, 81, 2018, Song, C., Sheng, Y., Wang, J., Ke, L., Madson, A. and., & Nie, Y.: (2017), Heterogeneous glacial lake changes and Formatted links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas, Geomorphology, 265 280, 30-38, 2017, Stokes, C. R., Popovnin, V., Aleynikov, A., Gurney, S. D.-and., & Shahgedanova, M.: (2007), Recent glacier retreat Formatted in the Caucasus Mountains, Russia, and associated increase in supraglacial debris cover and supra-/proglacial lake development, Ann. Glaciol., Annals of Glaciology, 46(5642 m), 195-203,. https://doi+.org/10.3189/172756407782871468, 2007, 270 Sugiyama, S., Minowa, M., Sakakibara, D., Skvarca, P., Sawagaki, T., Ohashi, Y., et al. (2016). Thermal structure of proglacial lakes in Patagonia. Journal of Geophysical Research: Earth Surface, 121(12), 2270-2286. https://doi.org/10.1002/2016JF004084 Treichler, D., Kääb, A., Salzmann, N. and., & Xu, C.-Y.÷. (2019), Recent glacier and lake changes in High Mountain € Formatted: Font color: Auto Asia and their relation to precipitation changes, Cryosph., The Cryosphere, 13(11), 2977-3005, Formatted: Indent: Left: 0", Hanging: 0.33" 275 https://doi+.org/10.5194/tc-13-2977-2019, 2019, Formatted ſ ... Truffer, M. and., & Motyka, R. J.: (2016), Where glaciers meet water: Subaqueous melt and its relevance to glaciers Formatted in various settings, Rev. Geophys., Reviews of Geophysics, 54(1), 220-239, doi:10.1002/2015RG000494, 2016 Trüssel, B. L., Truffer, M., Hock, R., Motyka, R. J., Huss, M. and., & Zhang, J.: (2015), Runaway thinning of the Formatted **...** 280 low-elevation Yakutat Glacier, Alaska, and its sensitivity to climate change, J. Glaciol., Journal of Glaciology, 61(225), 65-75, https://doi:.org/DOI: 10.3189/2015JoG14J125, 2015, Tsutaki, S., Nishimura, D., Yoshizawa, T.- and., & Sugiyama, S., (2011), Changes in glacier dynamics under the Formatted influence of proglacial lake formation in Rhonegletscher, Switzerland, Ann. Glaciol., Annals of Glaciology, 52(58), 31-36-. https://doi:.org/10.3189/172756411797252194, 2011. 285 Tweed, F. S. and., & Carrivick, J. L .: (2015), Deglaciation and proglacial lakes, Geol. Geology, Today, 31(3), 96-Formatted 102, https://doi.org/10.1111/gto.12094, 2015, Formatted Tweed, F. S. and., & Russell, A. J .: (1999), Controls on the formation and sudden drainage of glacier-impounded Formatted: Font: Times New Roman, 10 pt

48

1				
	lakes: implications for jökulhlaup characteristics, Prog. Phys. Geogr., Progress in Physical Geography 23(1),	7	Formatted	
	79–110 , doi:10.1191/030913399666727306, 1999 ,			
1290	Veh, G., Korup, O. and Walz, A.: Hazard from Himalayan Glacier Lake Outburst Floods, Proc. Natl. Acad. Sci.,			
	117, doi:10.1073/pnas.1914898117, 2019.			
	Wang, W., Xiang, Y., Gao, Y., Lu, A and., & Yao, T: (2015), Rapid expansion of glacial lakes caused by climate 🔸	-	Formatted: Font color: Auto	
	and glacier retreat in the Central Himalayas, Hydrol. Process., Hydrological Processes, 29(6), 859–874,	$\langle \rangle$	Formatted: Indent: Left: 0", Hanging: 0.33"	
	doi:10.1002/hyp.10199, 2015	\geq	Formatted	
1295	Watson, C. S., Kargel, J. S., Shugar, D. H., Haritashya, U. K., Schiassi, E. and., & Furfaro, R.:. (2020), Mass Loss			
1293	From Calving in Himalayan Proglacial Lakes, 7(January), 1–19, doi: Frontiers in Earth Science .	1	Formatted	
	Retrieved from https://www.frontiersin.org/article/10.3389/feart.2019.00342, 2020,			
	$\underline{\text{Refleved from https://www.fromeisin.org/article_10.5369/feart.2019.00542, 2020}_{}$			
	Wilson, R., Glasser, N. F., Reynolds, J. M., Harrison, S., Iribarren <u>Anacona, P. I.</u> , Schaefer, M . and <u>A.</u> & Shannon, S.:		Formatted	
	(2018), Glacial lakes of the Central and Patagonian Andes, Glob. Planet. Global and Planetary, Change,	/		
1300	162 (January), 275–291 , doi:_https://doi.org/https://doi.org/ 10.1016/j.gloplacha.2018.01.004 ,2018,			
	Wolfe, D. F. G., Kargel, J. S. and., & Leonard, G. J.: (2014), Glacier-dammed ice-marginal lakes of Alaska, Glob.		Formatted	
	L In Global Land, Ice Meas. Measurements, from Sp., Space (pp, 263–295, doi:10.1007/978-3-540-79818-	Λ		
	7_12, 2014). Springer,			
	Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F.,			
1305	Ahlstrøm, A. P., Anderson, B., Bajracharya, S., Baroni, C., Braun, L. N., Càceres, B. E., Casassa, G., Cobos,			
1505	G., Dàvila, L. R., Delgado Granados, H., Demuth, M. N., Espizua, L., Fischer, A., Fujita, K., Gadek, B.,			
	Ghazanfar, A., Hagen, J. O., Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V.,			
	Portocarrero, C. A., Prinz, R., Sangewar, C. V., Severskiy, I., Sigurdsson, O., Soruco, A., Usubaliev, R. and			
	Vincent, C.:et al. (2015), Historically unprecedented global glacier decline in the early 21st century, J.	_	Formatted	
1310	Glaciol., Journal of Glaciology, 61(228), 745–762, https://doi:.org/10.3189/2015JoG15J017,-2015,	/	Formatted	<u> </u>
	Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S.			
	U. and Gärtner-Roer, I.:et al. (2019), Global glacier mass changes and their contributions to sea-level rise	7	Formatted	
	from 1961 to 2016 , <i>Nature</i>, 568(7752), 382–386, 2019,			
	Zhang, G., Bolch, T., Allen, S., Linsbauer, A., Chen, W and., & Wang, W.: (2019), Glacial lake evolution and		Formatted	
1315	glacier-lake interactions in the Poiqu River basin, central Himalaya, 1964-2017, J. Glaciol., Journal of			
	<u>Glaciology</u> 65(251), 347–365, <u>https://doiorg/</u> DOI: 10.1017/jog.2019.13, 2019, 347–365, <u>https://doi000000000000000000000000000000000000</u>			
I				
			Formatted: Font: Times New Roman, 10 pt	

Supplementary material for "Topography exerts primary control on the rate of Gulf of Alaska ice-marginal lake area change over the Landsat record and potential physical controls" 320 Hannah R. Field^{1,2}, William H. Armstrong¹, and Matthias Huss^{3,4,5} ¹Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC 28607, USA ²School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA 1325 ³Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, 8093, Switzerland ⁴Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland ⁵Department of Geosciences, University of Fribourg, Fribourg, Switzerland Correspondence to: armstrongwh@appstate.eduarmstrongwh@appstate.edu Formatted: Font: 11 pt, Italic Formatted: Line spacing: Double 330 **Table of contents** This supplement contains the following materials: • Figures S1 - S10 • Tables S1 – S4. Tables S1 and S3 are very large and difficult to display on a single page. These tables are provided 335 as comma separated values files in the supplemental online material.

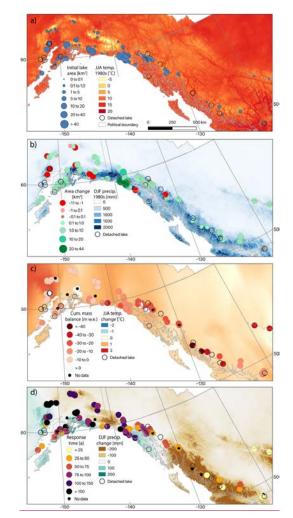
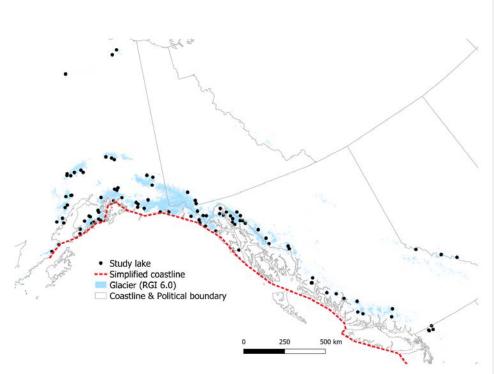


Figure S1: Map-view of select climatological and glaciological variables investigated in this study, along with ice-marginal lake attributes. (a) Reanalysis summer (June, July, August) air temperature averaged over 1980-1989 (raster data) and lake area at the start of the study period (point data). Lakes that detached from their associated glacier during the study period are shown as unfilled circles. Political boundaries are shown as gray lines. (b) Reanalysis winter (December, January, February) precipitation totals averaged over 1980-1989 (raster data), along with ice-marginal lake area change over the study period (point data). (c) Change in summer air temperature averages between the 2000-2009 decade and the 1960-1969 decade (raster data). Modeled mass balance of each lake-associated glacier, cumulated over 1980-2016 (point data). (d) Change in winter precipitation totals averaged between 2000-2009 and 1960-1969 (raster data). Estimated time required



 1345
 for glaciers to equilibrate with a step change in climate for all lake-associated glaciers (point data). Climate reanalysis data

 are from Scenarios Network for Alaska + Arctic Planning (SNAP), accessible at http://ckan.snap.uaf.edu/dataset.

1350

Figure S1. Examples of some of the different settings in which ice-marginal lakes are found, with a) proglacial bounded by a relatively uniform valley; b) proglacial lake that initially formed in a relatively unconstrained trunk valley and are expanding into more tightly constrained side valleys; c) a proglacial lake formed in a relatively flat area; d) a cirque proglacial lake, and; e) an ice-dammed lake. Images are from Landsat 8.

1355 Figure S2. Illustration of simplified coastline (dashed red line) used for measuring a study lake's (black dots) distance to the open ocean. The length of the shortest line between a lake and the simplified coastline was measured manually.

Formatted: Font: 9 pt, Bold

Formatted: Left, Tab stops: 0.94", Left

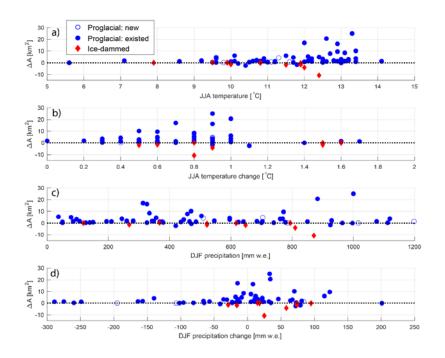
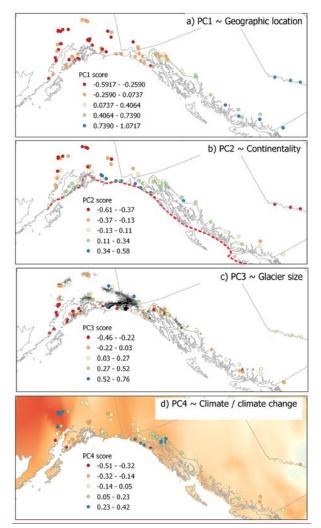



Figure S3. Absolute area change and climate parameters

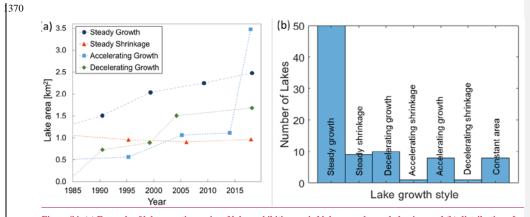

365

Figure S3. Map-view distribution of principal components scores for PC axes 1 – 4. We provide our physical interpretations for each axis in the upper right of each panel, with greater support provided in Sec 4.5 and Table S2. (a) PC1 scores, which vary systematically from northwest to southeast, and we interpret to primarily reflect a lake's geographic position. (b) PC2 scores, which vary systematically from distance to the open ocean (dashed red line), interpreted to reflect continentality. (c) PC3 scores, the axis that loads strongly with glaciological attributes (Table S2). Background image shows glaciers (RGI 6.0), where dark colors indicate glaciers with large area. (d) PC4 scores, the axis which loads strongly with climatic variables. Background image shows summer temperature change between 1960 – 1969 and 2000 – 2009, with red colors

indicating regions with greater summer temperature increase. A quantitative scale for this background image is shown in Fig. S1c.

Formatted: Font: Times New Roman, 10 pt

.

380

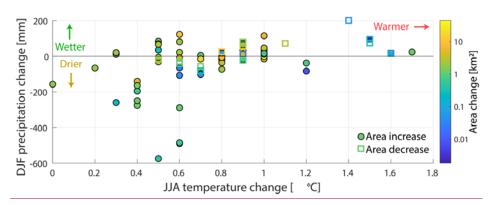
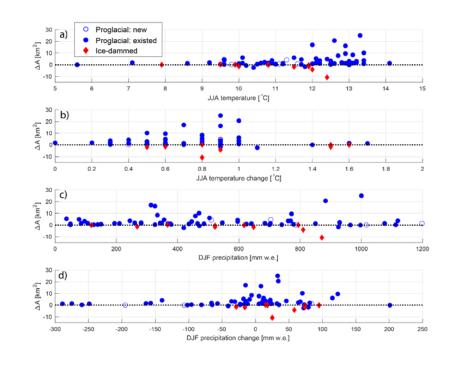
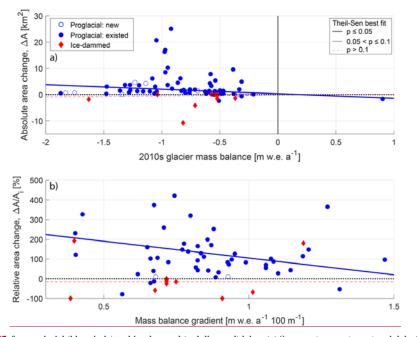



Figure S5. Changes in glacier mass-balance relevant climatic variables and absolute ice-marginal lake area change (colors). Climatic changes are computed as the difference between the 2000-2009 decadal average and the 1960-1969 decadal average, as estimated by the SNAP climate reanalysis dataset. Filled circles correspond to lakes with increasing area, whereas empty squares denote lakes with decreasing area. The greatest lake area change occurs in regions with near-zero (or slightly positive) winter precipitation change and moderate summer warming, suggesting that lake area change is not closely tied to changing climatic factors that decrease glacier mass balance.

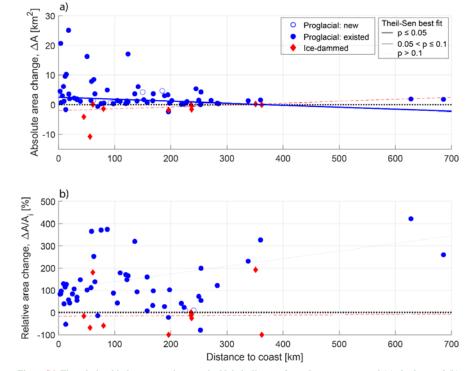
Formatted: Font: 9 pt, Bold

Formatted: Left, Tab stops: 0.94", Left



390

Figure S6. Absolute area change and climate variables for proglacial (blue circle) and ice-dammed (red diamond) lakes. (a) Summer temperature at each lake for the 2000 – 2009 decade. (b) Change in summer air temperature at each lake between 2000 – 2009 and 1960 – 1969. A positive change indicates warmer temperatures in recent times. (c) Winter precipitation at each lake for the 2009 – 2009 decade. (d) Change in winter precipitation at each lake between 2000 – 2009 and 1960 – 1969. A positive change indicates warmer temperatures in recent times. A positive change indicates wetter winters in recent times.


Formatted: Font: 10 pt, Not Bold

Formatted: Font: 10 pt, Not Bold

395

Figure S7,-for-proglacial (blue-circle) and ice-dammed (red-diamond) lakes, (a) Summer temperature at each lake for the 2000 – 2009 decade. (b) Change in summer air temperature at each lake between 2000 – 2009 and 1960 – 1969. A positive change indicates warmer temperatures in recent times. (c) Winter precipitation at each lake for the 2009 – 2009 decade. (d) Change in winter precipitation at each lake between 2000 – 2009 and 1960 – 1969. A positive change indicates warmer temperatures in recent times. A positive change indicates wetter winters in recent times.

1400

Figure S4. The relationship between an ice-marginal lake's distance from the open ocean and (a) absolute and (b) relative lake area change for proglacial (blue circle) and ice-dammed (red diamond) lakes. On both panels, lines show the linear fit to proglacial (blue) and ice-dammed (red) lakes as estimated to by the non-parametric Theil-Sen robust line. Thick solid lines show relationships that are significant at the $p \leq 0.05$ level, thin solid lines show 0.05 relationships, and thindashed lines show <math>p > 0.1 relationships. All significance values are estimated by the Kendall rank correlation test. The black dotted line shows zero lake area change. Unfilled symbols indicate lakes that appeared during the study period, a) shows that coastal lakes are growing faster in terms of absolute area, but interior lakes are growing faster in terms of relative area change.

1410

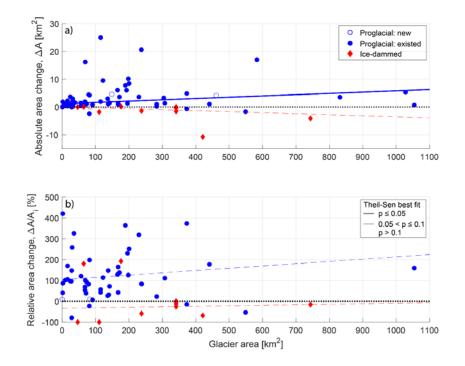
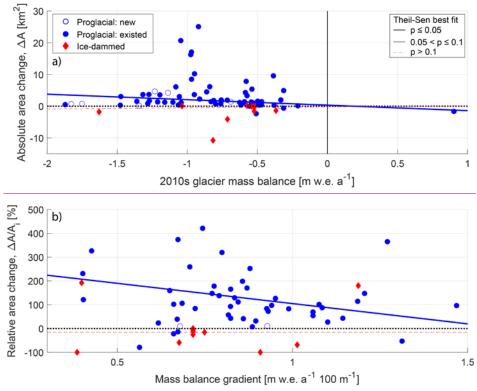



Figure S5. The relationship between lake-associated glacier area and (a) absolute and (b) relative lake area change for proglacial (blue circle) and ice-dammed (red diamond) lakes. On both panels, lines show the linear fit to proglacial (blue) and ice-dammed (red) lakes as estimated to by the non-parametric Theil Sen robust line. Thick solid lines show relationships that are significant at the $p \le 0.05$ level, thin solid lines show 0.05 relationships, and thin dashed lines show <math>p > 0.1 relationships. All significance values are estimated by the Kendall rank correlation test. The black dotted line shows zero lake area change. Unfilled symbols indicate lakes that appeared during the study period, a) shows that, in terms of absolute lake area, proglacial lakes downstream from larger glaciers are growing faster than those downstream from small glaciers.

1420

1425

Figure S6. The relationship between (a) absolute lake area change and modeled glacier balance over 2010 - 2016, and (b) relative ice-marginal lake area change and modeled glacier mass balance gradient. Proglacial lakes are indicated by blue circles and ice-dammed lakes as red diamonds. On both panels, lines show the linear fit to proglacial (blue) and ice-dammed (red) lakes as estimated to by the non-parametric Theil-Sen robust line. Thick solid lines show relationships that are significant at the $p \le 0.05$ level, thin solid lines show 0.05 relationships, and thin dashed lines show <math>p > 0.1 relationships. All significance values are estimated by the Kendall rank correlation test. The black dotted line shows zero lake area change. Unfilled symbols indicate lakes that appeared during the study period. The vertical black line in a) indicates a zero glacier-wide-average mass balance, indicating a glacier in equilibrium with climate. a) shows that proglacial lakes downstream from glaciers with more negative mass balance are growing fastest in terms of absolute lake area. b) shows that proglacial lakes downstream from glaciers with "flat" mass balance gradients, characteristic of continental glaciers, are growing more rapidly in terms of relative area change.

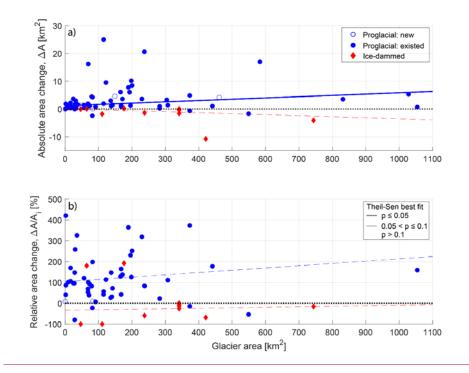


Figure S8. The relationship between lake-associated glacier area and (a) absolute and (b) relative lake area change for proglacial (blue circle) and ice-dammed (red diamond) lakes. On both panels, lines show the linear fit to proglacial (blue) and ice-dammed (red) lakes as estimated to by the non-parametric Theil-Sen robust line. Thick solid lines show relationships that are significant at the $p \le 0.05$ level, thin solid lines show $0.05 \le p \le 0.1$ relationships, and thin dashed lines show p > 0.1 relationships. All significance values are estimated by the Kendall rank correlation test. The black dotted line 440 shows zero lake area change. Unfilled symbols indicate lakes that appeared during the study period. a) shows that, in terms of absolute lake area, proglacial lakes downstream from larger glaciers are growing faster than those downstream from small glaciers.

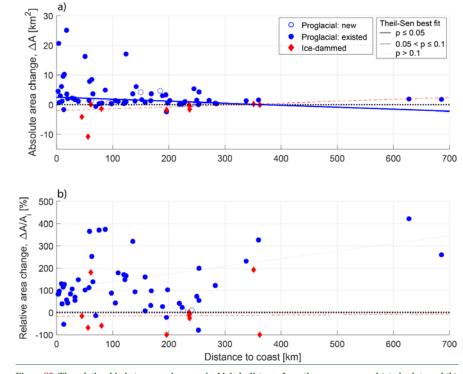


Figure <u>S9</u>. The relationship between an ice-marginal lake's distance from the open ocean and (a) absolute and (b) relative lake area change for proglacial (blue circle) and ice-dammed (red diamond) lakes. On both panels, lines show the linear fit to proglacial (blue) and ice-dammed (red) lakes as estimated to by the non-parametric Theil-Sen robust line. Thick solid lines show relationships that are significant at the *p* ≤ 0.05 level, thin solid lines show 0.05 ≤ *p* ≤ 0.1 relationships, and thin dashed lines show *p* > 0.1 relationships. All significance values are estimated by the Kendall rank correlation test. The black dotted line shows zero lake area change. Unfilled symbols indicate lakes that appeared during the study period. a) shows that coastal lakes are growing faster in terms of absolute area, but interior lakes are growing faster in terms of relative area change.

1455

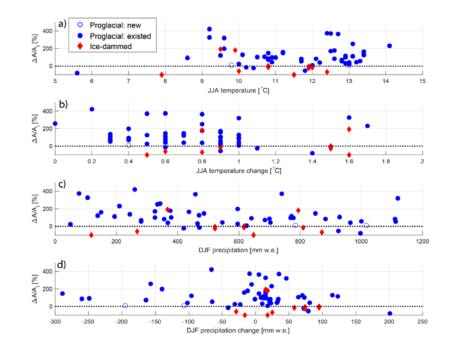
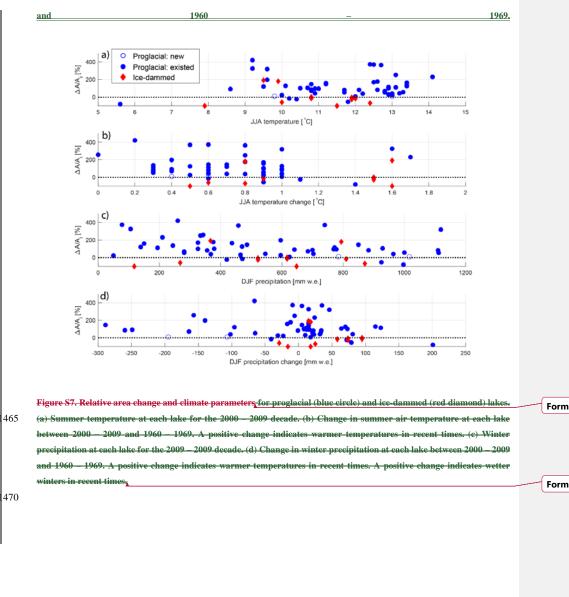



Figure S10. Relative area change and climate variables for proglacial (blue circle) and ice-dammed (red diamond) lakes. (a) Summer temperature at each lake for the 2000 – 2009 decade. (b) Change in summer air temperature at each lake between 2000 – 2009 and 1960 – 1969. A positive change indicates warmer temperatures in recent times. (c) Winter precipitation at each lake for the 2009 – 2009 decade. (d) Change in winter precipitation at each lake between 2000 – 2009

1460

Formatted: Font: 10 pt, Not Bold

Formatted: Font: 10 pt, Not Bold

A positive change indicates wetter winters in recent times. A positive change indicates wetter winters in recent times.

1475

Supplementary Table 1. Excel spreadsheet with lake arearea time series and area change, as well as extracted climatic, glaciologic, and geometric parametersvariables for all study lakes. This file is provided as a separate Excel spreadsheet.

Formatted: Font: Bold

Supplementary Table 2, Results of principal components analysis. The leftmost columns show environmental variables, where the rightmost columns show input variable loadings onto each principal component (PC) axis. The second row shows percent variance in the input variables (after standardization) explained by each principal component axis. High absolute value loadings indicate a variable that is important in setting that PC axis score. Positive (negative) loadings indicate that a large positive (negative) value of the input variable is associated with a large positive (positive) score for that PC axis. The variance explained decreases in a quasi-exponential fashion with increasing PC axis number. Variable loadings with absolute values greater than 0.25 appear bolded and in red font. PC5 duplicates many of the strong loadings as PC4. Given this fact, and that explained variance declines for the following PC axes, we discard the remaining PC axes from further analysis. However, we do display variable loadings for PCs 5-8 here in gray text.

	PC axis number	1	2	3	4	5	6	7	8
	Variance explained (%)	35.2	18.2	12.1	7.8	6.4	4.4	3.8	3.0
le	JJA Temperature	-0.13	0.28	-0.04	-0.28	-0.29	-0.29	-0.11	-0.17
ogic	JJA Temp. Change	-0.26	-0.04	0.00	0.63	0.18	0.01	-0.44	-0.09
ţġ	DJF Precipitaiton	0.15	0.32	0.00	0.29	0.62	-0.05	0.08	0.25
Climatological	DJF Precip. Change	-0.23	0.05	-0.11	0.07	0.08	-0.04	0.02	0.02
G	Distance from coast	0.12	-0.33	0.09	0.13	-0.11	-0.19	-0.13	-0.13
	Glacier area	-0.24	0.09	0.62	-0.11	-0.14	-0.08	-0.21	0.59
cal	Glacier width	-0.13	0.12	0.23	0.04	0.04	-0.33	0.31	0.19
Glaciological	Lake adjacent median ce thickness	-0.39	0.01	0.53	-0.01	0.11	0.31	0.09	-0.55
<u>c</u> i	Mass balance gradient	0.15	0.56	0.02	-0.28	0.18	0.45	-0.10	-0.07
ច្រ	2010s average annual mass balance	-0.15	-0.18	-0.03	-0.35	0.43	-0.33	-0.27	-0.11
	1980-2016 cumulative annual mass balance	-0.24	-0.11	-0.08	-0.36	0.37	-0.19	-0.13	-0.08
hic	Latitude	-0.36	-0.08	-0.06	0.09	-0.11	0.24	0.13	0.04
Topographic	Longitude	0.55	0.10	0.41	0.10	-0.04	-0.21	-0.28	-0.30
Bod	Elevation	0.27	-0.52	0.26	-0.16	0.27	0.24	0.29	0.11
D 10	Initial lake area	-0.05	0.20	0.10	0.17	0.06	-0.39	0.58	-0.26

495

485

490

Supplementary Table 3. Results from Kendall correlation tests between each variable investigated in this study and lake area change of all ice-marginal lakes (proglacial and ice-dammed). The correlation coefficient (τ) and p-value are shown for each statistical test. Red boxes indicate relationships that are significant at the $p \le 0.05$ level, while yellow boxes show relationships with 0.05 . This file is provided as a separate Excel spreadsheet.

			Absolute a	rea change	2		Relative a	rea change	
		Prog	lacial	-	mmed	Prog	lacial	-	mmed
index	Parameter	τ	р	τ	р	τ	р	τ	р
1	'lake area change'	N/A	N/A	N/A	N/A	0.14	0.07	0.56	0.00
2	'long'	-0.06	0.47	-0.16	0.45	0.05	0.53	0.01	1.00
3	'lat'	0.03	0.74	0.23	0.28	0.13	0.10	0.01	1.00
4	'elevation_m'	-0.27	0.00	0.30	0.15	0.19	0.02	0.12	0.58
5	'temp_jja_1960s_degC'	0.17	0.03	-0.26	0.23	-0.14	0.09	-0.12	0.58
6	'temp_jja_1980s_degC'	0.20	0.01	-0.20	0.35	-0.14	0.09	-0.07	0.78
7	'temp jja 2000s degC'	0.19	0.02	-0.20	0.35	-0.13	0.10	-0.07	0.78
8	'tempChange_jja_2000s-1960s_degC'	0.04	0.63	0.09	0.70	0.00	0.99	0.02	0.96
9	precip_djf_1960s_mm'	-0.06	0.49	-0.46	0.03	-0.07	0.40	-0.06	0.83
10	'precip_djf_1960s_mm'	-0.02	0.79	-0.43	0.04	-0.09	0.28	-0.03	0.91
11	precip djf 1960s mm	-0.02	0.78	-0.46	0.03	-0.08	0.31	-0.06	0.83
12	precip_dfj_change_2000s-1960s_mm	0.20	0.01	-0.11	0.62	-0.15	0.06	0.11	0.62
13	'Init_lake_area'	0.33	0.00	-0.41	0.05	-0.52	0.00	-0.05	0.83
14	'glacier_Area'	0.29	0.00	-0.38	0.11	-0.02	0.80	0.10	0.73
15	'Zmin'	-0.26	0.00	0.60	0.01	0.20	0.01	0.19	0.44
16	'Zmax'	0.07	0.43	0.13	0.62	0.01	0.93	0.16	0.53
17	'Zmed'	-0.07	0.41	0.32	0.18	0.07	0.42	0.22	0.36
18	'Slope'	-0.21	0.01	-0.02	1.00	0.05	0.56	-0.21	0.40
19	'Aspect'	0.08	0.35	0.03	0.94	-0.05	0.53	0.00	1.00
20	'Lmax'	0.27	0.00	-0.35	0.14	-0.05	0.58	-0.06	0.83
21	'glacierWid_m'	0.32	0.00	-0.18	0.46	-0.14	0.10	0.18	0.46
22	'valleyWid_m'	0.31	0.00	-0.30	0.20	-0.11	0.19	-0.06	0.84
23	'1980s_averageAnnualBalance_mwea'	0.00	0.99	-0.03	0.94	-0.08	0.37	0.06	0.83
24	'1990s_averageAnnualBalance_mwea'	-0.07	0.44	0.00	1.00	-0.06	0.48	0.10	0.73
25	'2000s_averageAnnualBalance_mwea'	-0.06	0.51	0.06	0.83	-0.06	0.51	0.16	0.53
26	'2010s_averageAnnualBalance_mwea'	-0.17	0.04	0.03	0.94	-0.10	0.22	0.00	1.00
27	'1980_2016_averageAnnualBalance_mwea'	-0.07	0.41	0.03	0.94	-0.07	0.40	0.13	0.62
28	'1980_2016_summedAnnualBalance_mwe'	-0.07	0.41	0.03	0.94	-0.07	0.40	0.13	0.62
29	'Area(km2)'	0.22	0.01	-0.38	0.11	0.08	0.37	0.10	0.73
30	'Volume(km3)'	0.20	0.02	-0.38	0.11	0.07	0.42	-0.03	0.94
31	'max_thick(m)'	0.18	0.04	-0.19	0.44	0.07	0.45	-0.03	0.94
32	'h_min'	-0.14	0.11	0.35	0.14	0.10	0.23	0.19	0.44
33	'h_max'	-0.08	0.36	0.16	0.53	0.19	0.03	0.13	0.62
34	'h_med'	-0.15	0.08	0.41	0.08	0.19	0.03	0.32	0.18
35	'slope_AVG'	-0.17	0.05	0.36	0.13	-0.01	0.87	-0.13	0.62
36	'b_tongue(mw.e.a-1)'	-0.09	0.28	0.22	0.36	-0.02	0.82	-0.13	0.62
37	'acc_win(mw.e.a-1)'	0.07	0.43	-0.64	0.01	-0.18	0.04	-0.16	0.53
38	'tau(year)'	0.12	0.18	0.16	0.53	0.13	0.15	0.00	1.00
39	'dBdz(mw.e./100m)'	0.14	0.11	-0.38	0.11	-0.18	0.04	0.10	0.73
42	'dBdz_acc(mw.e./100m)'	0.00	0.97	-0.29	0.23	0.08	0.37	0.02	1.00
43	'min_thickness_m'	0.18	0.05	0.29	0.29	0.03	0.71	0.47	0.07
44	'p25_thickness_m'	0.23	0.01	0.33	0.22	0.12	0.18	0.69	0.00
45	'median_thickness_m'	0.25	0.00	0.02	1.00	0.11	0.20	0.47	0.07
46	'mean_thickness_m'	0.24	0.01	0.02	1.00	0.10	0.24	0.38	0.16
47	'p75_thickness_m'	0.25	0.00	-0.02	1.00	0.09	0.30	0.42	0.11
48	'max_thickness_m'	0.24	0.01	-0.07	0.86	0.09	0.30	0.29	0.29
49	'igr_thickness_m'	0.24	0.01	-0.38	0.16	0.05	0.60	0.16	0.60
50	'stdev thickness m'	0.24	0.01	-0.33	0.22	0.06	0.49	0.11	0.73
51	dist to coast km'	-0.23	0.01	0.39	0.12	0.16	0.08	0.09	0.75

Formatted: Left

1500

Supplementary Table 3. Reported 4. Kendall tau values correlation coefficients for significant ($p \le 0.10$) singular linear bivariate correlations between climatic,	_
geomorphic, and glaciologic parameters variables investigated presented in this study. This file is provided as a separate Excel spreadsheet. Table 2. Bolded text	
indicate $p \le 0.05$ relationships, while regular text indicates $0.05 \le p \le 0.1$ relationships.	

Formatted: Font: Times New Roman, 10 pt

Formatted: Font: Bold

s Parameter	Take_area_cha	nga" "lang" "lat" ^l alan n _a	itio 'tempija 'tempija 'tempij 1960., d. 1980., d. 2000., " agC agC agC agC	'tempCh a ange_jja_'precip_d 'precip_d 'pre 2 2000e - Jf_1960e_jf_2960e_jf_11 1960e_de mm' mm' m	sip_d fj_chang 'telt_lake 'glader 160_ e_2000area' Area' m' 1960_m	'Zmin' 'Zmax' 'Zmed' 'Si	ape' 'Aspect' 'Lmax' 'gladerW'' id_m'	all the two the two the	An erageAn 16_avera 16_aum ala nualitata geAnnual edAnn av nce_mw Balance_ Balanc	nm 'Area(km 'Volume('max_thi , nua 2)' km3(' ck(m)' te_	Noriol Junax' Juned Vice VG'	'b_tongu 'acc_wini 'tau(year 'dil e(mw.e.a- mw.e.a- 1)' 1)' '	dsjm 'dikts_sc 'sample_ 'sam /100 cjmw.e./ area_m2' area nj' 200mj'	ple_ 'min_thic 'p25_thic 'median_ 'n _px' kness_m' kness_m'	nean_th'p75_thic 'max_thi 'iqr_thi deness_ kness_m' deness_ ness_m m'
1 Take_area_cha	100 100	· · 4		IC.		416	ы				0.20		36		
2 Tong' 3 Tat' 4 'vievation r				-0.14 0.41 0.29 0 0.25 -0.51 -0.43 -0 -0.15	0.20 - 22 - 0.29 - 0.13 - 0.21 446 0.14 - 0.31 0.36 - 0.38 - 0.16 - 0.18 0.25 - - 0.18 0.25 0.13 - 0.18 0.25 0.13 - 0.33 - 0.24 89 0.21	0.15 - - - - 0 0.22 - 0.17 - - 0 - 0 - 0 - 0 - 0 - 0 17 - 0 - 0 17 - 0 - 0 17 - 0 - 0 - 0 17 0 2.9 - 0 - 0 17 0 17 0 17 0 2.9 - 0 - 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 17 17 17 17 17 17 17 17 17 <td< td=""><td></td><td>- - -0.15 -0.17 -0.29 -0.57 -0.45 -0.68 0.20 0.46 0.51 0.52 0.25 - - - 0.15 - - - 0.26 - - - 0.20 - - - 0.20 - - - 0.20 - - - 0.20 - - 0.15 0.20 - - 0.15</td><td>7 -0.21 -0.16 -0.16 5 -0.36 -0.52 -0.52 0.40 0.51 0.51 0.18 · ·</td><td>2 -0.17 -0.16 -0.16 0.26 0.26 0.28</td><td>0.15 · 0.21 · 0.18 0.56 0.25 0.48 0.14</td><td>-0.28 · -0.39 0 0.28 -0.26 0.52 -0</td><td>115 .</td><td>15 -0.16 -0.19 -0.18 21 0.27 0.35 0.33</td><td>-0.18 -0.18 -0.17 - 0.34 0.33 0.33 0.24</td></td<>		- - -0.15 -0.17 -0.29 -0.57 -0.45 -0.68 0.20 0.46 0.51 0.52 0.25 - - - 0.15 - - - 0.26 - - - 0.20 - - - 0.20 - - - 0.20 - - - 0.20 - - 0.15 0.20 - - 0.15	7 -0.21 -0.16 -0.16 5 -0.36 -0.52 -0.52 0.40 0.51 0.51 0.18 · ·	2 -0.17 -0.16 -0.16 0.26 0.26 0.28	0.15 · 0.21 · 0.18 0.56 0.25 0.48 0.14	-0.28 · -0.39 0 0.28 -0.26 0.52 -0	115 .	15 -0.16 -0.19 -0.18 21 0.27 0.35 0.33	-0.18 -0.18 -0.17 - 0.34 0.33 0.33 0.24
5 'temp_ja_1960s 6 'temp_ja_1980s	degC 0.20 degC 0.21	-0.130	0 0.36 -0.42 -0.41 56 1.00 0.97 0.99 12 0.97 1.00 0.96		- 0.22 - 0.18 0.25 -	-0.32 -0.17 -0.29 -0.36 -0.13 -0.29	- 0.33 0.21 18 - 0.13 -0.26 - 0.13 - 0.20	0.15		0.14	-0.28 -0.17 -0.31 -	0.314 - 0.26 - 0 - 0.26 - 0	25 0.25 · · ·	5	
7 temp_jja_2000s 8 'tempChange_jja_2000s 9 'precip_dif_1960		-0.150 -0.14 0.25 -0 0.41 -0.51 -	6 1.00 0.87 0.89 12 0.87 1.00 0.96 11 0.89 0.96 1.00 15 -0.24 · ·	100		- 0.17 - 0.67 0.16 0.41 0 -0.22 -0.17 0.29 -0.26 -0.13 0.29 -0.15 0.29 - - 0.15 0.29 - - 0.15 0.29	0.20 - 0.28 0.22 0.22 -	0.20 0.14 · · · 0.20 · · 0.15 · · 0.27 · 0.27 · 0.2		- 0.14 - 0.14 0.15 - 0.23 0.20 0.22 90.14 -	0.31 -0.14 -0.33 - -0.15	- 0.26 - 0 0.14 - 0.34 -0 -0.16 0.40 -0.22 0	122 0.22 0.17 0.1 124 -0.20 0.28 0.1 135 0.38 -0.19 -0.	14 · · · · 26 0.20 0.27 0.27 26 · · 0.17 ·0.16	0.27 0.26 0.27 0.23 -0.17 -0.16 -0.18 -
9 'precip_dif_1960 10 'precip_dif_1960 11 'precip_dif_1960	(mm) -			100	890.21 910.20 900.19	0.16 -0.16 -0.16 -0.20 -0.24 -0.16 -0.19 -0.22		0.27 -0.27 -0.2 0.18 -0.20 -0.2 0.20 -0.22 -0.2 0.24 0.44 0.28 0.30	9 -027 -0.29 -0.29 1 -0.21 -0.22 -0.22 1 -0.24 -0.24 -0.24 1 0.13 0.35 0.35	9 · · ·0.14 · · · · · · · · · · · · · · · · · · ·	0.15 -0.16 - -0.16 -0.21 -0.26 - -0.17 -0.19 -0.24 - -0.36 -0.26 -0.48 -0.14	-0.16 0.40 -0.22 0 - 0.46 -0.19 0 - 0.45 -0.17 0	122 0.22 0.17 0.1 124 -0.20 0.28 0.1 135 0.38 -0.19 -0. 138 0.40 -0.18 -0. 136 0.40 -0.16 -	160.17 -0.16 140.15 -	-0.17 -0.16 -0.18 - -0.140.15 -
12 'precip_dfj_change_200 13 'hit_lake_or 14 'glader_Are		0.12 -0.43 0.22 -0.46 -0.29 0.54 -0 -0.13 - 0 -0.21 0.31 -0 0.22 - 0	86 · 0.18 0.18 88 0.22 0.25 0.25		21 - - -0.20 00 - - -0.18 - 1.00 0.28 0.16 - 0.28 1.00 0.27 118 0.16 0.27 1.00	-0.44 · -0.21 · 0 -0.40 · -0.15 · 0	113 - 0.18 0.28 121 - 0.26 0.33	· -0.18 -0.20 -0.2 · -0.20 -0.22 -0.2 0.24 0.44 0.28 0.30 0.23 0.16 · · 0.49 0.24 0.23 0.31	0.21 0.22 0.22 0.24 0.24 0.24 0.13 0.35 0.35 0.24 0.24 0.24 0.25 0.25	0.29 0.18 0.26	-0.36 -0.26 -0.43 -0.14 -0.230.29 -0.22	- 0.21 0.16 - 0.28 - 0 - 0.47	122 0.22 0.17 0.1 124 -0.20 0.28 0.2 125 0.28 -0.19 -0. 128 0.40 -0.18 -0. 126 0.40 -0.16 -0. 126 0.17 0.16 -0. 126 0.10 -0.16 -0. 125 0.15 0.14 -0.		. 0.15 0.14 0.21
14 'glacier, Are 15 '2min' 16 '2max'	-0.16	-0.13 · -0 -0.21 0.31 -0 0.22 · 0 · 0.17 0	66 - 0.18 0.18 18 0.22 0.25 0.25 16 - - 0.13 7 -0.22 -0.36 -0.34 6 -0.17 -0.13 - 1 -0.29 -0.29 -0.29	0.24 -0.21 -0.20 -0 -0.150.16 -0 -0.19 -0.16 -0.20 -0	18 0.16 0.27 1.00 16 -0.44 -0.40 -0.20	0.15 -0.15 -0.15 -0.20 -0.24 -0.16 -0.19 -0.22 -0.440.11 -0 -0.400.15 -0 -0.20 -0.440 100 -0.15 -0.47 0.15 -0.07 0.47 -0.37 -0.00 -0 -0.15 -0.07 -0.15 -0.00 -0.15 -0.15 -0.1		0.49 0.24 0.23 0.31 -0.30 · · ·	0.16 0.24 0.24	0.120 0.94 0.72 -0.15 -0.15 -0.15	0.23 0.29 0.22 0.19 0.35 0.55 0.69 0.29 0.57 0.21		25 0.15 0.14 - 0.21 0.67 0.1 2.31 -0.24 -0.17 -0. 2.25 -0.52 0.31 - 2.28 -0.310. 2.28 -0.310.	19 0.38 0.60 0.62 21 - 0.14 -0.15 0.24 0.30 0.32	. 0.15 0.14 0.21 0.63 0.63 0.65 0.60 -0.15 -0.17 -0.15 -0.25 0.32 0.32 0.33 0.28
16 2max 17 2med' 18 Slope' 29 'Aspect'	-0.14	· 0.17 0. 0.17 · 0. · · 0.	6 -017 -014 - 1 -0.29 -0.29 -0.29 8	- 0.06 0.06 0.0 0 - 0.86 0.00 0 - 0.89 0.91 5 0.23 - 0.15 - 0.16 -0 0.19 -0.16 -0.20 -0 - 0.16 -0 - 0.1	0.28 1.00 0.27 1.18 0.16 0.27 1.00 1.16 -0.44 -0.40 -0.20 1.19 - - 0.43 1.22 -0.23 -0.15 - - -0.12 -0.21 -0.40	0.47 0.37 1.00 0 0.24 · 0.13 1	113 - 0.18 0.28 121 - 0.26 0.33 140 -0.20 0.66 0.48 24 - -0.18 -0.21 - 0.45 0.23 - 13 - -0.16 -0.21 00 0.15 -0.29 -0.22	0.27 0.27 0.27 0.27 - 0.18 0.23 0.22 - 0.20 0.22 0.2 0.24 0.44 0.23 0.3 0.33 0.16 0.48 0.34 0.23 0.31 - 0.20 - 0.14 - 0.22 0.14 0.15 0.15 - 0.27 0.21 0.35 0.15	0.16 · · · · · · · · · · · · · · · · · · ·	6 -0.38 -0.43 -0.45	0.18 0.34 0.31 · 0.52 0.31 0.92 · 0.26 · · 0.65	- 0.26 - 0 0.44 - 0.34 - 0.34 - 0.46 0.40 - 0.22 0 - 0.46 - 0.15 0 - 0.45 - 0.17 0 - 0.21 0.47 - 0.28 - 0 0.047 - 0.34 - 0.34 - 0.34 - 0.17 0.24 - 0.15 - 0.24	125 -0.52 0.41 - 128 -0.310. 0.36 -0.	22 25 -0.21 -0.32 -0.31	-0.31 -0.30 -0.29 -0.27
					18 0.18 0.26 0.86	- -0.55 -0.54 -0.15 -0.20 -0.24 -0.16 -0.20 -0.24 -0.16 -0.20 -0.24 -0.44 - -0.15 -0.2 -0.44 - -0.15 -0.2 -0.20 0.43 - -0.15 -0.20 0.43 - -0.2 -0.15 1.00 0.27 - -0.21 0.01 0.27 - -0.44 - 0.13 1 - - 0.21 1 - - - 0 - - - 0 - - - 0 - - - 0 - 0.23 - -	10 0.15 -0.39 -0.22 15 100 -0.30 - 129 -0.20 100 0.50 122 - 0.50 100 127 - 0.51 0.75	0.51 0.24 0.22 0.31 0.75 0.18 0.34 0.34 1.00 0.17 - 0.22	0.24 0.24	-0.24 -0.24 -0.20 0.85 0.85 0.78	-0.16 -0.21 -0.28 - -0.17 -0.21 -0.24 - -0.26 -0.26 -0.24 - -0.26 -0.26 -0.28 -0.22 -0.20 -0.25 -0.22 - -0.21 - - - - -0.26 -0.27 - 2.50 - 1.21 -0.26 -0.27 - 0.57 0.21 - - -0.26 -0.24 - 0.52 - - 0.52 - - 0.52 <td></td> <td>3.31 -0.24 -0.17 -0. 3.25 -0.52 0.31 - 3.28 -0.21 - 0. 3.28 -0.31 - 0. - - - 0.36 -0. - - - 0.36 -0. - - - 0.37 - 113 -0.34 0.66 0.1 - - 0.45 0.1 - - 0.46 0.2</td> <td>0.14 - 19 0.37 0.60 0.62 30 0.25 0.39 0.41 29 0.30 0.42 0.44</td> <td></td>		3.31 -0.24 -0.17 -0. 3.25 -0.52 0.31 - 3.28 -0.21 - 0. 3.28 -0.31 - 0. - - - 0.36 -0. - - - 0.36 -0. - - - 0.37 - 113 -0.34 0.66 0.1 - - 0.45 0.1 - - 0.46 0.2	0.14 - 19 0.37 0.60 0.62 30 0.25 0.39 0.41 29 0.30 0.42 0.44	
21 glacierWid, 22 'valleyWid, 23 '1990's maranakonailik	lance means'	-0.22 0.33 -0 -0.20 0.21 -0 -0.19 0.20 -0	13 . 13 0.20 0.20 15 0.15 0.20 0.20 . 0.14 . 0.14 	0.28 -0.22 -0.20 -0 0.22 0.20 0.27 -0.18 -0 - 0.27 -0.20 -0	H -	0.24 · 0.13 1 · · · · 0 · · · · · · · · · · · · · · · · · · ·	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- - - - 0.51 0.24 0.22 0.23 0.75 0.18 0.44 0.24 0.75 0.18 0.44 0.24 0.75 0.18 0.44 0.24 0.75 1.00 0.75 646 - 0.75 1.00 0.46 1.06 - 0.51 0.46 0.46 1.06 - 0.51 0.46 0.46 1.07 - 0.51 0.45 0.47 0.21 0.33 0.47 0.21 0.30 0.33 0.23 0.47 0.46 0.21 0.39 0.23 0.23 0.47 0.21 0.39 0.23	0.17 -	0 0.18 0.16 0.46 0.00 0.49 0.72 -0.11 -0.11 0.15 -0.15 -0.15 -0.12 -0.15 -0.15 -0.15 -0.23 -0.24 -0.44 -0.45 -0.24 -0.24 -0.24 -0.46 -0.21 0.21 0.20 0.21 -0.45 -0.27 0.45 -0.21 -0.20 0.21 0.20 0.21 -0.21 0.20 0.21 0.20 -0.21 0.20 0.21 0.21 -0.21 0.20 0.21 0.20 -0.21 0.20 0.21 0.20 -0.21 0.20 0.21 0.25 -0.21 0.20 0.21 0.20 -0.45 0.45 1.00 -0.45 0.45 1.00 -0.45 0.45 0.45	1.25 -2.26 -0.40 -0.41 3 - -2.25 -0.22 1.20 2.1 -0.22 -0.22 1.20 2.1 -0.22 -0.22 1.20 2.1 2.1 0.22 -0.22 1.20 2.1 0.21 0.22 0.22 1.20 2.21 0.21 0.22 0.22 1.20 0.21 0.22 0.22 0.22 1.20 0.24 - 0.26 0.22 0.22 1.20 0.24 - 0.26 0.24 0.20 0.24 1.20 0.24 - 0.24	0.49 - - 0.17 0.25 - 0.15 0.22 0.29 - 0.27 - 0.41 - 0.22 - 0.45 - 0.23 - 0.44 0.25 - 0.23 - 0.29 - 0.23 - 0.29 - 0.23 - 0.29 - - 0.47 -		B D Composition D <thd< th=""> D <thd< th=""> <thd< th=""> D <thd< <="" td=""><td> 044 0.44 0.44 0.44 0.44 041 0.41 0.44 0.44 0.44 021 0.21 0.21 0.21 0.21 021 0.21 0.21 0.21 0.21 024 0.44 0.44 0.44 0.44 021 0.21 0.21 0.21 0.21 024 0.21 0.21 0.21 0.21 025 0.24 0.21 0.21 0.21 026 0.26 0.26 0.26 0.26 0.26 026 0.26 0.44 0.20 0.27 0.27 027 0.28 0.28 0.28 0.28 0.29 0.29 028 0.58 0.58 0.58 0.59 0.29 0.29 0.28 0.28 0.29 0.29 0.29 0.29 0.20 0.28 0.28 0.29 0.20 0.20</td></thd<></thd<></thd<></thd<>	044 0.44 0.44 0.44 0.44 041 0.41 0.44 0.44 0.44 021 0.21 0.21 0.21 0.21 021 0.21 0.21 0.21 0.21 024 0.44 0.44 0.44 0.44 021 0.21 0.21 0.21 0.21 024 0.21 0.21 0.21 0.21 025 0.24 0.21 0.21 0.21 026 0.26 0.26 0.26 0.26 0.26 026 0.26 0.44 0.20 0.27 0.27 027 0.28 0.28 0.28 0.28 0.29 0.29 028 0.58 0.58 0.58 0.59 0.29 0.29 0.28 0.28 0.29 0.29 0.29 0.29 0.20 0.28 0.28 0.29 0.20 0.20
23 '2980s_averageAnnualik 24 '1990s_averageAnnualik 25 '2000s_averageAnnualik		-0.57 0.46 -0.45 0.51 -0.45 0.53		0.27 -0.18 -0 0.27 -0.20 -0 0.19 -0.29 -0.24 -0 0.27 -0.21 -0 0.29 -0.22 -0	22 0.28 · 0.23 24 0.30 · 0.31		15 - 0.22 0.14 117 - 0.31 0.24	· 0.75 100 0.68 0.22 0.68 0.68 100	0.63 0.97 0.97 0.97 0.43	0.20 0.19 0.18 0.27 0.27 0.27		0.29 · 0.37 · 4 0.34 · 0.41 · 4 0.22 · 0.45 · 4	118 · 0.14 · 123 ·0.13 0.14 · 126 ·0.16 0.23 0.1	0.18 0.21 0.20 0.22 0.25 0.24 16 0.27 0.31 0.31	0.21 0.21 0.20 0.16 0.26 0.25 0.23 0.19 0.31 0.31 0.30 0.26
26 '2022; sverageAnnual& 27 '1980,2026; sverageAnnua 28 '1980 2006; summedAnnu	lance_mwea' 0.21 Balance_mwea' 0.16 (Balance_mwe' 0.16	-0.57 0.46 -0.45 0.51 -0.45 0.53 -0.52 0.51 -0.52 0.51 -0.52 0.51 -0.17 0.26 -0.16 0.28 -0.15 - 0.5	* : : :	0.27 -0.18 -0 0.27 -0.20 -0 0.19 -0.29 -0.24 -0 0.27 -0.21 -0 0.29 -0.22 -0 0.29 -0.22 -0 0.23 0.20 -0.14 -	0.14 0.14 0.16 0.14 22 0.28 - 0.23 24 0.30 - 0.31 24 0.32 - 0.32 24 0.32 - 0.31 24 0.12 - - 24 0.25 - 0.24 34 0.25 - 0.24	0.16 0.17	116 0.24 0.15	0.17 1.00 0.75 0.64 - 0.75 1.00 0.64 22 0.64 0.66 1.00 - 0.51 0.64 0.66 - 0.51 0.64 0.66 0.15 0.85 0.87 0.77 0.47 0.21 0.20 0.22 0.47 0.21 0.29 0.22 0.47 0.21 0.29 0.22 0.45 0.20 0.18 0.27	1.00 0.63 0.63	0.21 0.20 0.18	0.17	0.22 - 0.45 -4 0.37 -0.14 0.25 -4 0.33 - 0.39 -4 0.33 - 0.39 -4	138 - 0.54 - 123 0.13 0.54 - - 126 0.16 0.23 0.1 - - 126 0.15 0.15 - - - - 127 0.15 0.15 -	0.14 0.15 - 0.22 0.25 0.24	0.14
29 'Area(km2) 30 Volume(km		-0.17 0.26	0.14 0.14 0.15 	0.20 -0.34 -	- 0.29 1.00 0.18 0.94	-0.15 0.38 - 0 -0.15 0.36 - 0 -0.15 0.36 - 0 0.69 0.18 0.52 0 0.29 0.54 0.31 0.57 0.31 0.92	138 -0.24 0.85 0.45 143 -0.24 0.85 0.44	0.47 0.21 0.20 0.27 0.47 0.21 0.29 0.27	- 0.21 0.21 - 0.20 0.20	1 100 0.94 0.71 0 0.94 100 0.75	0.15 - 0.18 0.250.15 -0.22 0.340.58 -0.27 0.290.56 100 - 0.49 0.14	0.33 - 0.39 4 - 0.47 - 0.47	0.31 0.66 0.2 0.29 0.66 0.2 0.25 0.61 0.2 133 - 0.20 - 0.19 -0	0.14 0.15 - 0.22 0.25 0.24 0 0.22 0.25 0.24 20 0.38 0.60 0.62 21 0.36 0.59 0.61 23 - 0.38 0.56 0.56 23 - 0.38 -0.16 - - 0.29 0.26 0.38 -	0.34 - - - 0.25 0.34 0.22 0.17 0.25 0.34 0.22 0.17 0.43 0.42 0.41 0.62 0.42 0.42 0.41 0.60 0.42 0.52 0.61 0.59 0.58 0.58 0.59 0.30 0.30 0.39 0.30 0.33
21 'nax_thickp 22 'h_min' 23 'h_max'	0" - - - 4.20	-0.16 0.28 0.15 - 0.1	6 -0.28 -0.21 -0.31 5 -0.17 -0.36 -0.14 8 -0.31 -0.33 -0.33	0.22 · · · -0.15 · -0.16 · 0 · -0.15 · 0.21 · 0 · -0.16 · 0.26 · 0	- 0.16 0.72 17 0.36 0.23 0.19 19 0.26 0.23 24 0.43 0.29 -	-0.15 0.300 0.69 0.18 0.52 0 0.29 0.84 0.31 0.57 0.31 0.92	138 -0.24 0.85 0.45 143 -0.24 0.85 0.44 145 -0.20 0.78 0.44 26 - 0.20 -0.26 0.14 0.36 -	0.45 0.20 0.18 0.27	0.18 0.18	0.11 0.75 1.00 -0.18 -0.22 -0.27	-0.27 0.29 · -0.56 100 · 0.49 0.14 · 1.00 0.35 ·	0.30 -0.29	0.25 0.61 0.3	M 0.33 0.56 0.56 230.18 -0.16	0.58 0.58 0.59 0.53 -0.18 -0.18 -0.16 -0.20 0.30 0.29 0.30 0.23
24 h_med 25 Vice AVG		0.15 - 0.1 0. 0.21 - 0. 0.18 0.				-0.15 0.380 -0.15 0.360 -0.15 0.300 0.469 0.18 0.52 0 0.29 0.84 0.21 0.57 0.31 0.92 0.21 0	121 0 0.34 0.18 15 0 0.22 0.34 117 0.31 0.34 0.35 116 0.34 0.15 0.34 116 0.24 0.15 0.14 128 0.24 0.85 0.44 0.24 0.25 0.44 0.24 0.25 128 -0.24 0.35 0.44 25 - 0.30 0.35 128 -0.24 0.35 0.44 25 - 0.30 0.35 129 - - - 120 - - 0.20 120 - - 0.20 120 - - 0.20 120 - - 0.20 120 - - 0.21 120 - - 0.21 120 - - 0.21 120 - -	-0.19 -0.16		5 -0.55 -0.58 -0.56	100 0.35 . 0.49 0.25 100 . 0.14 . . 100 0.20 . . . 0.20 . . . 0.20 . . . 0.20 . . .	0.51 0.30 -0.29 0.18 0.17 0.54 0.38 1.00 - 0.38 -	131 - 0.24 - 202 -0.13 0.21 0.11 202 -0.13 0.21 0.11 203 -0.23 0.21 0.11 203 -0.23 0.25 0.15 - 203 -0.23 0.45 0.15 - - -0.24 0.66 0.2 - - -0.23 0.415 0.15 - - -0.23 0.425 0.464 0.27 - -0.23 0.423 0.24 - 203 -0.23 0.424 0.47 - 203 -0.23 0.42 0.27 - 204 -0.24 0.42 0.47 - 203 -0.23 0.23 - - - 204 - - - - - 204 - - - - - 204 0.27 -	0.14 0.15 - 0.22 0.25 0.24 0.22 0.25 0.24 20 0.28 0.60 0.62 21 0.26 0.59 0.61 22 - - 0.18 0.16 23 - - 0.18 0.16 23 - - 0.29 0.28 23 - - - - 23 - - - - - 0.25 -0.42 -0.43 -	-0.43 -0.43 -0.43 -0.41
35 'b_tongue(mw.s 37 'acc_win(mw.e	a-17 - a-17 -	-0.28 0.28 -0.26 -0	1 0.26 0.26 0.26	0.14 -0.16 - 0.40 0.46 0		-0.34 -0.17 -0.52	16 · · · 0.17 · · 0.49 0.35	-0.19 -0.16	0.37 0.33 0.33		0.30	100 0.38 4 100 0.38 4 0.38 100 0	.40		
28 'tau(yes)' 39 'dåds(mw.e./10 40 'dåds_sci(mw.e.)	0m)' 0.35	-0.29 0.52 -0.40 -0. 0.25 -0.40 -0. 0.21 -0.41 -0. -0.18 0.27 -0. -0.15 0.21 -0.	 15 0.25 0.23 0.22 15 0.25 0.24 0.22 19 . 0.17 0.17 13 . 0.15 0.14	-0.34 -0.22 -0.19 -0 -0.24 0.35 0.38 0 -0.30 0.38 0.40 0	45 0.21 0.28 - 17 0.16 - 0.47 36 - 0.25 - 40 - 0.15 -0.31 15 - 0.14 0.67	· 0.24 · 4 -0.31 · 0.25 · 0.28 -0.24 · 0.52 · 0.31	0.49 0.35 0.13 -	0.18 -0.23 -0.24 0.18 -0.23 -0.24	0.25 0.39 0.39 -0.30 -0.25 -0.25 -0.30 -0.15 -0.15	0 0.47 0.47 0.51 5	-0.29 -0.18 -0.54 - - 0.170.38 -0.33 -0.22 -0.29 - -0.20 -0.52 -0.33 -	- 100 - 0 0.38 - 100 - -0.40 0.44 -0.39 1 - 0.47 -0.25 0		12 0.30 0.45 0.47	0.47 0.46 0.48 0.42 · · · 0.34 · -0.31 ·0.30 ·0.32 ·0.34
41 'sample_area, 42 'sample_area, 43 'min_thicknes	m2 - ps' -	0.15 - 0. - - 0. 0.21 - 0. - - 0.58 0. - - 0.28 0.28 0.27 - - 0.26 - 0.26 - - - 0.36 - 0. 0.27 - 0.41 - - - 0.36 - 0.27 - 0.41 - 0.42 - 0.21 - 0.43 0.21 - 0.43 0.21 - 0.43 0.21 - 0.43 0.21 - 0.43 0.21 - 0.45 0.21 - 0.43 0.25 - 0.13 0.35 - 0.13 0.25 - 0.13 0.25 - 0.13 0.25 - 0.13 0.34 - 0.14 0.34 - 0.14 0.34 - 0.14 0.34 - 0.14 0.14	IS 0.25 0.23 0.22 IS 0.25 0.24 0.22 IB - 0.17 0.17 IB - 0.15 0.14	- 0.45 0.46 0. 0.34 0.22 0.19 0. 0.24 0.25 0.38 0. 0.22 0.38 0.45 0. 0.22 0.38 0.45 0. 0.22 0.19 0.18 0. 0.24 0.19 0.18 0. 0.25 0.19 0.18 0. 0.25 0.15 0.38 0. 0.27 0.15 0. 0.21 0.15 0. 0.21 0.25 0. 0.21 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		-0.14 -0.17 -0.13 . 0.34 -0 -0.12 -0.25 -0.28 -0.21 -0.24 -0.55 -0.28 -0.21 -0.31 -0.52 -0.21 -0.21 -0.31 - -0.22 -0.21 -0.31 - -0.21 -0.22 -0.31 - -0.21 -0.22 -0.35 0.22 - -0.21 -0.35 0.32 - -0.21 -0.35 0.32 - -0.21 -0.35 0.38 - -0.22 -0.35 0.38 - -0.22 -0.22 0.36 - -0.22 -0.35 0.38 - -0.22 -0.22 0.36 - -0.22 -0.25 0.38 - -0.22 -0.455 0.38 - -0.22	16 -	ID LO LO <thlo< th=""> LO LO LO<!--</td--><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>0 0.47 0.47 0.51 5 -0.11 -0.29 -0.25 6 0.66 0.66 0.61 0.20 -0.21 0.24 0.21 0.24 0.20 0.21 0.24 0.21 0.24 0.20 0.25 0.56 0.56 0.56 0.60 0.61 0.56 0.56 0.56 0.62 0.62 0.58 0.58 0.58 0.62 0.62 0.58 0.58 0.58 0.64 0.62 0.59 0.58 0.59 0.64 0.62 0.59 0.51 0.59</td><td>0.00 - - - 0.29 -0.18 -0.54 - - 0.17 - -0.28 -0.20 -0.28 -0.28 - -0.21 -0.22 -0.28 - -0.20 -0.22 - - - -0.21 - - 0.44 - - 0.20 - - 0.24 - 0.23 - - 0.24 - 0.23 - - 0.25 - 0.23 - - 0.25 - 0.23 - - 0.24 - 0.26 0.29 - - - 0.26 0.28 - - - 0.26 0.28 - -</td><td>-0.40 0.44 -0.29 5 - 0.47 -0.25 0 0.46 0.32 0.30</td><td>220 220 -<td>12 0.20 0.46 0.47 - - - - - - 0.20 -0.21 - 0.30 40 0.44 0.64 0.61 0.61 50 0.15 0.27 0.30 0.56 0.03 20 0.54 0.64 0.61 0.61 0.63 20 0.56 0.56 0.33 0.56 0.33 0.56 30 0.55 0.32 0.54 0.52 0.52 0.54 30 0.54 0.52 0.32 0.54 0.54 0.54 30 0.54 0.32 0.54 0.52 0.52 0.52 30 0.54 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.55 0.64 0.75 0</td><td>. </td></td></thlo<>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0.47 0.47 0.51 5 -0.11 -0.29 -0.25 6 0.66 0.66 0.61 0.20 -0.21 0.24 0.21 0.24 0.20 0.21 0.24 0.21 0.24 0.20 0.25 0.56 0.56 0.56 0.60 0.61 0.56 0.56 0.56 0.62 0.62 0.58 0.58 0.58 0.62 0.62 0.58 0.58 0.58 0.64 0.62 0.59 0.58 0.59 0.64 0.62 0.59 0.51 0.59	0.00 - - - 0.29 -0.18 -0.54 - - 0.17 - -0.28 -0.20 -0.28 -0.28 - -0.21 -0.22 -0.28 - -0.20 -0.22 - - - -0.21 - - 0.44 - - 0.20 - - 0.24 - 0.23 - - 0.24 - 0.23 - - 0.25 - 0.23 - - 0.25 - 0.23 - - 0.24 - 0.26 0.29 - - - 0.26 0.28 - - - 0.26 0.28 - -	-0.40 0.44 -0.29 5 - 0.47 -0.25 0 0.46 0.32 0.30	220 220 - <td>12 0.20 0.46 0.47 - - - - - - 0.20 -0.21 - 0.30 40 0.44 0.64 0.61 0.61 50 0.15 0.27 0.30 0.56 0.03 20 0.54 0.64 0.61 0.61 0.63 20 0.56 0.56 0.33 0.56 0.33 0.56 30 0.55 0.32 0.54 0.52 0.52 0.54 30 0.54 0.52 0.32 0.54 0.54 0.54 30 0.54 0.32 0.54 0.52 0.52 0.52 30 0.54 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.55 0.64 0.75 0</td> <td>. </td>	12 0.20 0.46 0.47 - - - - - - 0.20 -0.21 - 0.30 40 0.44 0.64 0.61 0.61 50 0.15 0.27 0.30 0.56 0.03 20 0.54 0.64 0.61 0.61 0.63 20 0.56 0.56 0.33 0.56 0.33 0.56 30 0.55 0.32 0.54 0.52 0.52 0.54 30 0.54 0.52 0.32 0.54 0.54 0.54 30 0.54 0.32 0.54 0.52 0.52 0.52 30 0.54 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.55 0.64 0.75 0
43 'min_thicknes 44 'p25_thicknes 45 'median_thicknes		-0.15 0.27 -0.19 0.35		020 · · · 027 ·0.17 ·0.15	0.60	- 0.24	121 - 0.37 0.25 132 -0.14 0.60 0.39 131 - 0.62 0.41 131 - 0.64 0.41	0.30 0.18 0.22 0.23 0.42 0.21 0.25 0.31 0.44 0.20 0.24 0.31 0.43 0.21 0.26 0.31	0.54 0.22 0.22 0.25 0.25 0.25 0.26 0.26	0.38 0.36 0.33 0.60 0.59 0.56 0.62 0.61 0.56	- 0.200.25 -0.18 0.290.42 -0.16 0.280.43 -0.18 0.300.43	- 0.30 - 0.45 - 0.47		15 100 0.59 0.56 27 0.59 100 0.93 30 0.56 0.93 100	0.56 0.53 0.50 0.33 0.59 0.88 0.82 0.61 0.56
46 'mean_thicknes 47 'p25_thickness 48 'max_thickness		-0.19 0.35 -0.18 0.33 -0.18 0.34 -0.18 0.33 -0.17 0.33		0.27 -0.17 -0.14 0.26 -0.16 - 0.27 -0.18 -0.15	0.15 0.63	-0.15 0.320	131 - 0.64 0.41 130 - 0.64 0.43	0.42 0.21 0.25 0.31 0.44 0.20 0.34 0.31 0.45 0.21 0.26 0.31 0.45 0.21 0.25 0.31 0.46 0.20 0.23 0.32 0.44 0.16 0.19 0.35	015 0.25 0.25 - 0.24 0.24 0.14 0.25 0.25 - 0.24 0.24 - 0.23 0.24 - 0.23 0.23 - 0.17 0.17	0.63 0.62 0.58	0.18 0.290.42 -0.16 0.280.43 -0.18 0.300.43 -0.18 0.290.43 -0.18 0.290.43 -0.16 0.300.44 -0.20 0.230.41	0.47	0.31 0.63 0.7 0.30 0.65 0.7	27 0.56 1.00 0.93 30 0.56 0.93 1.00 38 0.56 0.93 0.94 30 0.53 0.93 0.94 11 0.56 0.92 0.97 29 0.33 0.61 0.68	0.61 0.65 0.68 0.59 0.28 0.30 0.31 0.20 0.55 0.53 0.50 0.33 0.52 0.88 0.62 0.61 0.56 0.53 0.50 0.33 0.50 0.88 0.62 0.61 1.00 0.55 0.88 0.68 0.55 0.50 0.89 0.77 0.88 0.69 1.00 0.71 0.67 0.80 0.64 0.65
49 Tqr_thickness	<i>s</i>			0.26 -0.16 - 0.27 -0.18 -0.15 0.23 0.24 -0.12 -0.20 -0	- 0.15 0.61 - 0.14 0.65 - 0.21 0.60 - 0.20 0.61 17 -0.29 0.30 -	-0.17 0.32 · -0 -0.15 0.33 · -0 -0.25 0.28 · -0 -0.22 0.30 · -0 -0.22 0.30 · -0	120 - 0.64 0.43 129 - 0.66 0.44 127 - 0.61 0.41 128 - 0.65 0.42	0.45 0.21 0.25 0.33 0.46 0.20 0.23 0.38 0.44 0.16 0.19 0.26 0.45 0.19 0.22 0.38	- 0.23 0.23 - 0.17 0.17 - 0.21 0.21	0.63 0.62 0.58 0.64 0.63 0.59 0.60 0.59 0.53 0.63 0.62 0.56	0.18 0.290.43 -0.16 0.300.43 -0.20 0.230.44 -0.19 0.240.43 -0.34 0.33 0.43 0.39	0.46 0.48 -4 0.42	- 0.30 0.65 0. 1.14 -0.32 0.68 0. - 0.24 0.59 0. - 0.27 0.64 0.	11 0.50 0.82 0.87 29 0.33 0.61 0.68 28 0.36 0.68 0.75	0.88 0.89 100 0.71 0.68 0.73 0.71 100 0.75 0.80 0.81 0.86
50 htdey thicknee							128 - 0.65 0.42	-0.22			-0.19 0.24 ·0.43 0.34 0.33 0.43 0.19	0.324	.41 -0.28		
50 Itdex_thicknes 51 dist_to_cost	625	0.15 0.27 0 0.16 0	1 0.36 -0.34 -0.35	013 012 020 0	17 0.29 0.30 -										
50 http://ticknet	un - 125	<u> 016 · 0</u>	1 05 04 05	613 612 620 6	17 -0.29 -0.30 -										
S1 Gist_to_croat	lat	lon	elev		coastDist	temp	dTemp	prcp	dPrcp	glArea	glWidth	hTerm	dbdz	b2010	bCum
so view, bildness si view, bi const lat	lat 1.00	lon -0.59					dTemp 0.31	-0.46	dPrcp 0.16	glArea 0.29	0.18	0.37	dbdz -0.42	b2010 0.40	0.53
S1 Gist_to_croat	lat	lon	elev			temp				0	0				
lat	lat 1.00	lon -0.59	elev -	initArea -	coastDist -	temp -	0.31	-0.46	0.16	0.29	0.18	0.37	-0.42	0.40	0.53
lat lon	lat 1.00 -0.59	lon -0.59 1.00	elev - 0.16	initArea - -	coastDist - 0.15	temp - -0.11	0.31 -0.16	-0.46 0.31	0.16 -0.42	0.29 -0.17	0.18 -0.20	0.37 -0.19	-0.42 0.28	0.40 -0.35	0.53
lat lon elev	lat 1.00 -0.59 0.02	lon -0.59 1.00 0.16	elev - 0.16 1.00	initArea - - -0.38	coastDist - 0.15 0.41	temp - -0.11 - 0.42	0.31 -0.16	-0.46 0.31	0.16 -0.42 -0.35	0.29 -0.17 -0.14	0.18 -0.20 -0.28	0.37 -0.19 -0.14	-0.42 0.28 -0.21	0.40 -0.35 0.12	0.53 -0.53 -
lat lon elev initArea	lat 1.00 -0.59 0.02 -0.03	lon -0.59 1.00 0.16	elev - 0.16 1.00 -0.38	initArea - - -0.38 1.00	coastDist - 0.15 0.41 -0.27	temp -0.11 -0.42 0.28	0.31 -0.16 -	-0.46 0.31 -	0.16 -0.42 -0.35 0.21	0.29 -0.17 -0.14 0.24	0.18 -0.20 -0.28 0.35	0.37 -0.19 -0.14 0.18	-0.42 0.28 -0.21 0.22	0.40 -0.35 0.12	0.53 -0.53 - -
lat lon elev initArea coastDist	lat 1.00 -0.59 0.02 -0.03 0.10	lon -0.59 1.00 0.16 - 0.15	elev - 0.16 1.00 -0.38 0.41	initArea - -0.38 1.00 -0.27	- 0.15 0.41 -0.27 1.00	temp -0.11 -0.42 0.28 -0.36	0.31 -0.16 - - 0.18	-0.46 0.31 - - -0.20	0.16 -0.42 -0.35 0.21 -0.29	0.29 -0.17 -0.14 0.24	0.18 -0.20 -0.28 0.35 -0.20	0.37 -0.19 -0.14 0.18	-0.42 0.28 -0.21 0.22 -0.39	0.40 -0.35 0.12 -	0.53 -0.53 - -
lat lon elev initArea coastDist temp	lat 1.00 -0.59 0.02 -0.03 0.10 -0.01	lon -0.59 1.00 0.16 - 0.15 -0.11	elev - 0.16 1.00 -0.38 0.41 -0.42	initArea - -0.38 1.00 -0.27 0.28	- 0.15 0.41 -0.27 1.00 -0.36	temp -0.11 -0.42 0.28 -0.36 1.00	0.31 -0.16 - - 0.18 -0.14	-0.46 0.31 - - -0.20 -	0.16 -0.42 -0.35 0.21 -0.29 0.16	0.29 -0.17 -0.14 0.24 - 0.17	0.18 -0.20 -0.28 0.35 -0.20 0.24	0.37 -0.19 -0.14 0.18 -	-0.42 0.28 -0.21 0.22 -0.39 0.19	0.40 -0.35 0.12 - -	0.53 -0.53 - - - 0.15
lat lon elev initArea coastDist temp dTemp	lat 1.00 -0.59 0.02 -0.03 0.10 -0.01 0.31	lon -0.59 1.00 0.16 - 0.15 -0.11 -0.16	elev - 0.16 1.00 -0.38 0.41 -0.42 -	initArea - -0.38 1.00 -0.27 0.28 -	- 0.15 0.41 -0.27 1.00 -0.36 0.18	temp -0.11 -0.42 0.28 -0.36 1.00 -0.14	0.31 -0.16 - - 0.18 -0.14 1.00	-0.46 0.31 - - - -0.20 -	0.16 -0.42 -0.35 0.21 -0.29 0.16 0.28	0.29 -0.17 -0.14 0.24 - 0.17 0.24	0.18 -0.20 -0.28 0.35 -0.20 0.24 0.13	0.37 -0.19 -0.14 0.18 - - - 0.28	-0.42 0.28 -0.21 0.22 -0.39 0.19 -0.23	0.40 -0.35 0.12 - - -	0.53 -0.53 - - 0.15 0.15
lat lon elev initArea coastDist temp dTemp prcp	lat 1.00 -0.59 0.02 -0.03 0.10 -0.01 0.31 -0.46	lon -0.59 1.00 0.16 - 0.15 -0.11 -0.16 0.31	elev - 0.16 1.00 -0.38 0.41 -0.42 -	initArea - -0.38 1.00 -0.27 0.28 -	coastDist 0.15 0.41 -0.27 1.00 -0.36 0.18 -0.20	temp -0.11 -0.42 0.28 -0.36 1.00 -0.14	0.31 -0.16 - 0.18 -0.14 1.00	-0.46 0.31 - - - -0.20 - - 1.00	0.16 -0.42 -0.35 0.21 -0.29 0.16 0.28	0.29 -0.17 -0.14 0.24 - 0.17 0.24 -0.15	0.18 -0.20 -0.28 0.35 -0.20 0.24 0.13	0.37 -0.19 -0.14 0.18 - - 0.28 -0.15	-0.42 0.28 -0.21 0.22 -0.39 0.19 -0.23 0.37	0.40 -0.35 0.12 - - - -0.23	0.53 -0.53 - - - 0.15 0.15 -0.24
lat lon elev initArea coastDist temp dTemp prep dPrep	lat 1.00 -0.59 0.02 -0.03 0.10 -0.01 0.31 -0.46 0.16	lon -0.59 1.00 0.16 - - 0.15 -0.11 -0.16 0.31 -0.42	elev 0.16 1.00 -0.38 0.41 -0.42 - - -0.35	initArea - -0.38 1.00 -0.27 0.28 - - 0.21		temp -0.11 -0.42 0.28 -0.36 1.00 -0.14 - 0.16	0.31 -0.16 - 0.18 -0.14 1.00 - 0.28	-0.46 0.31 - - -0.20 - 1.00 -	0.16 -0.42 -0.35 0.21 -0.29 0.16 0.28	0.29 -0.17 -0.14 0.24 - 0.17 0.24 -0.15 -	0.18 -0.20 -0.28 0.35 -0.20 0.24 0.13 - 0.28	0.37 -0.19 -0.14 0.18 - - - 0.28 -0.15 -	-0.42 0.28 -0.21 0.22 -0.39 0.19 -0.23 0.37	0.40 -0.35 0.12 - - - - - - - - 0.23 0.16	0.53 -0.53 - - - 0.15 0.15 -0.24 0.38
lat lon elev initArea coastDist temp dTemp prcp dPrcp glArea	lat 1.00 -0.59 0.02 -0.03 0.10 -0.01 0.31 -0.46 0.16 0.29	lon -0.59 1.00 0.16 - 0.15 -0.11 -0.16 0.31 -0.42 -0.17	elev - 0.16 1.00 -0.38 0.41 -0.42 - - -0.35 -0.14	initArea - -0.38 1.00 -0.27 0.28 - - 0.21 0.24	- 0.15 0.41 -0.27 1.00 -0.36 0.18 -0.20 -0.29 -	temp 	0.31 -0.16 - - 0.18 -0.14 1.00 - 0.28 0.24	-0.46 0.31 - - - -0.20 - - 1.00 - - -0.15	0.16 -0.42 -0.35 0.21 -0.29 0.16 0.28 - -	0.29 -0.17 -0.14 0.24 - 0.17 0.24 -0.15 -	0.18 -0.20 -0.28 0.35 -0.20 0.24 0.13 - 0.28 0.44	0.37 -0.19 -0.14 0.18 - - 0.28 -0.15 - 0.67	-0.42 0.28 -0.21 0.22 -0.39 0.19 -0.23 0.37 - -0.14	0.40 -0.35 0.12 - - - - -0.23 0.16	0.53 -0.53 - - - 0.15 0.15 -0.24 0.38 0.23
lat lon elev initArea coastDist temp dTemp prcp dPrcp glArea glWidth	lat 1.00 -0.59 0.02 -0.03 0.10 -0.01 0.31 -0.46 0.16 0.29 0.18	lon -0.59 1.00 0.16 - 0.15 -0.11 -0.16 0.31 -0.42 -0.17 -0.20	elev - 0.16 1.00 -0.38 0.41 -0.42 - - -0.35 -0.14 -0.28	initArea - -0.38 1.00 -0.27 0.28 - - 0.21 0.24 0.35		temp -0.11 -0.42 0.28 -0.36 1.00 -0.14 - 0.16 0.17 0.24	0.31 -0.16 - - 0.18 -0.14 1.00 - 0.28 0.24 0.13	-0.46 0.31 - - -0.20 - - 1.00 - - -0.15 -	0.16 -0.42 -0.35 0.21 -0.29 0.16 0.28 - -	0.29 -0.17 -0.14 0.24 - 0.17 0.24 -0.15 - - 0.44	0.18 -0.20 -0.28 0.35 -0.20 0.24 0.13 - 0.28 0.44 1.00	0.37 -0.19 -0.14 0.18 - - - 0.28 -0.15 - 0.67 0.39	-0.42 0.28 -0.21 0.22 -0.39 0.19 -0.23 0.37 - -0.14	0.40 -0.35 0.12 - - - -0.23 0.16 -	0.53 -0.53 - - - 0.15 0.15 -0.24 0.38 0.23 0.20
lat lon elev initArea coastDist temp dTemp prcp dPrcp glArea glWidth hTerm	lat 1.00 -0.59 0.02 -0.03 0.10 -0.01 0.31 -0.46 0.16 0.29 0.18 0.37	lon -0.59 1.00 0.16 - 0.15 -0.11 -0.16 0.31 -0.42 -0.17 -0.20 -0.19	elev 0.16 1.00 -0.38 0.41 -0.42 - - -0.35 -0.14 -0.28 -0.14	initArea - -0.38 1.00 -0.27 0.28 - - 0.21 0.24 0.35 0.18	coastDist 0.15 0.41 -0.27 1.00 -0.36 0.18 -0.20 -0.29 - -0.20 -	temp -0.11 -0.42 0.28 -0.36 1.00 -0.14 - 0.16 0.17 0.24 -	0.31 -0.16 - - 0.18 -0.14 1.00 - 0.28 0.24 0.13 0.28	-0.46 0.31 - - -0.20 - - 1.00 - - -0.15 - -0.15	0.16 -0.42 -0.35 0.21 -0.29 0.16 0.28 - - - 0.28	0.29 -0.17 -0.14 0.24 - 0.17 0.24 -0.15 - - 0.44 0.67	0.18 -0.20 -0.28 0.35 -0.20 0.24 0.13 - 0.28 0.44 1.00 0.39	0.37 -0.19 -0.14 0.18 - - - - - 0.28 -0.15 - - 0.67 0.39 1.00	-0.42 0.28 -0.21 0.22 -0.39 0.19 -0.23 0.37 - -0.14 -	0.40 -0.35 0.12 - - - -0.23 0.16 - - 0.18	0.53 -0.53 - - - 0.15 0.15 -0.24 0.38 0.23 0.20 0.30

Formatted: Centered