
1 

 

Estimating subpixel turbulent heat flux over leads from MODIS 

thermal infrared imagery with deep learning 

Zhixiang Yin 1,2,3, Xiaodong Li 1, Yong Ge 4, Cheng Shang 1,2, Xinyan Li 1,2, Yun Du 1, Feng Ling 1 

1Key Laboratory for Environment and Disaster Monitoring and Evaluation, Hubei, Innovation Academy for Precision 

Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China 5 
2University of Chinese Academy of Sciences, Beijing 100049, China 
3Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, 230601, China 
4State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences & Natural 

Resources Research, Chinese Academy of Sciences, Beijing 100101, China 

Correspondence to: F. Ling (lingf@whigg.ac.cn) 10 

Abstract. Turbulent heat flux (THF) over leads is an important variable used for monitoring climate change in the Arctic. 

Presently, THF over leads is often calculated from satellite imagery. The accuracy of the estimated THF is low for mixed 

pixels that consist of ice and leads, because the mixed pixels along lead boundaries will lower the accuracy of the surface 

temperature measured over leads and the corresponding lead map. To address this problem, a deep residual convolutional 

neural network (CNN)-based framework is proposed to estimate THF over leads at the subpixel scale (DeepSTHF) with 15 

remotely sensed imagery. The DeepSTHF allows the production of a sea surface temperature (SST) image and a corresponding 

lead map with a finer spatial resolution than the input SST image using two CNNs, so that the subpixel scale THF can be 

estimated from them. The proposed approach is assessed using simulated and real MODIS imagery and compared against the 

conventional bicubic interpolation and pixel-based methods. The results demonstrate that the proposed CNN-based method 

can effectively estimate subpixel-scale information from the coarse data and performs well in producing fine spatial resolution 20 

SST images and lead maps, thereby allowing researchers to obtain more accurate and reliable THF over leads. 

1. Introduction 

Leads form as a linear area of open water and thin floating ice within a closed pack ice (Willmes and Heinemann, 2015). They 

develop as the result of various forces, such as thermal stress and wave action (Tschudi et al., 2002). Through leads, the sea 

surface contacts the atmosphere allowing a direct exchange of sensible and latent heat flux (Marcq and Weiss, 2012). Even 25 

though leads only cover a relatively small part of the total sea ice area in the polar regions, they serve as the primary window 

for turbulent heat flux (THF) because the sea ice itself significantly reduces any air–sea interaction (Maykut, 1978). In the 

central Arctic, leads comprise no more than 1% of sea area during winter, but provide a channel for more than 70% of the 

upward heat flux (Marcq and Weiss, 2012). Additionally, it has been revealed that small changes in leads would cause a 

considerable change in temperature near the surface (Lüpkes et al., 2008). Consequently, the estimation of THF over leads is 30 

a crucial part of climate studies (Maykut, 1978;Ebert and Curry, 1993). 
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Remotely sensed satellite images have become a promising data source that is often used to estimate the THF occurring 

over leads (Qu et al., 2019), because on-site measurement is always difficult given the harsh weather conditions typical of 

polar regions. To calculate the THF over leads with remotely sensed data, both a lead map and associated sea surface 

temperature (SST) are required. A lead map could be produced from various satellite data, including visible, thermal, and 35 

microwave imagery (Lindsay and Rothrock, 1995;Röhrs and Kaleschke, 2012;Willmes and Heinemann, 2015). Once a lead 

map has been generated, the corresponding SST image that is needed to estimate the THF that is often derived from Thermal 

Infrared (TIR) bands of satellite data. 

Based on the foregoing discussion, satellite TIR imagery is essential for the estimation of the THF occurring over leads 

because it can be used to generate a lead map and the associated SST imagery simultaneously. Thermal infrared images can 40 

be obtained from Landsat-8 and MODIS products. Landsat-8 TIR imagery has a spatial resolution of 100 m. However, the 

Landsat-8 satellite has an approximately 16-day revisit cycle, making it a challenge to estimate THF with appropriate timing. 

In contrast, MODIS has a daily repeat frequency, which is attractive for research that focuses on the rapid variation of THF 

over leads. However, MODIS imagery has a spatial resolution of 1 km, and unusually includes mixed pixels. The MODIS 

mixed pixel problem not only strongly affects the extraction of a lead map, but also affects the estimated surface temperature 45 

of leads. Therefore, the mixed pixel problem of MODIS imagery will result in a large error when calculating THF. 

The mixed pixel problem of MODIS TIR imagery that affects THF estimation can be solved through conducting a subpixel 

analysis (Ge et al., 2009;Atkinson, 2013;Ge et al., 2019;Foody and Doan, 2007;Wang et al., 2014;Zhong and Zhang, 2013). 

Image super-resolution (SR), which aims to enhance the spatial resolution of images, is a representative subpixel scale analysis 

technique that has been widely adopted in a variety of applications (Zhang, 2006;Ling et al., 2010;Leach and Sherlock, 50 

2013;Foody et al., 2005). A wide range of approaches have been proposed for images with SR (Wang et al., 2020;Glasner et 

al., 2009). Among them, convolutional neural network (CNN)-based methods have provided significantly improved 

performance in producing SR imagery, because they have a powerful ability to model the latent nonlinear relationship between 

fine spatial resolution image and the corresponding coarse spatial resolution one through a large amount of training data (Dong 

et al., 2014;Ledig et al., 2017;Ling et al., 2019;Jia et al., 2019;Ling and Foody, 2019). A CNN-based SR approach has a great 55 

potential in the downscaling of imagery such as fine spatial resolution SST imagery and lead maps that are useful in THF 

estimation. To the best of our knowledge, studies using CNN in the estimation of the THF occurring over leads have not yet 

been conducted. 

This study proposes a CNN-based framework used to estimate the THF at a subpixel scale from MODIS TIR imagery 

(hereinafter DeepSTHF). Specifically, a unified framework comprising two CNNs that simultaneously produce Landsat-like 60 

SST imagery and a corresponding binary map of leads, which are used in the estimation of the THF over leads, from the 

MODIS SST imagery, is proposed. The generated Landsat-like SST imagery and lead map are then employed to estimate the 

THF with an aerodynamic bulk formula (Marcq and Weiss, 2012;Qu et al., 2019). This study will provide a new perspective 

for solving the mixed pixel problem in the estimation of THF from remotely sensed imagery by extracting subpixel level 

information. 65 
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2. Study area and data 

2.1. Study area 

The Beaufort Sea, a marginal sea of the Arctic Ocean situated north of Canada and Alaska, was selected as the study area (Fig. 

1). The typically severe climate of the Beaufort Sea keeps the surface frozen most of the year. Multiple forces such as the anti-

cyclonic motion of the Beaufort Gyre cause the ice pack to fracture (Lewis and Hutchings, 2019) and linear cracks (leads) to 70 

form. Recently, global warming is causing the multi-year ice pack to shrink rapidly (Barber et al., 2014); as a consequence, 

the size and spatial extent of leads are increasing in the Beaufort Sea. Various floes along with leads of varying widths and 

lengths now occur in this region. 

2.2. Datasets and preprocessing 

The proposed method, DeepSTHF, used MODIS SST images as the input data to calculate the THF at a subpixel scale. 75 

Remotely sensed images derived from the Landsat-8 Operational Land Imager (OLI) were used as fine-resolution data to train 

the CNN models and assess the accuracy of the result in the experiments. Additionally, associated meteorological data (i.e., 

wind speed, air temperature, and dew point temperature) were obtained as well to estimate the THF occurring over leads. 

 

Figure 1. Location of the study area. Background image is the band 2 (B2) reflectance of a Moderate Resolution Imaging 80 
Spectroradiometer (MODIS) image acquired on 25 April 2015. The black area generally represents leads.  
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2.2.1. MODIS data 

The MODIS Level-1B product MOD021KM, acquired by the sensor aboard Terra satellite, was used in this research, and it 

was obtained from the US National Aeronautics and Space Administration’s Level 1 and Atmosphere Archive and Distribution 85 

System Distributed Active Archive Center (https://ladsweb.modaps.eosdis.nasa.gov/). The MOD021KM data set was stored 

in the Hierarchical Data Format-Earth Observing System swath structure, which was designed to support the data archiving 

and storage needs of the Earth Observing System. It is mainly comprised of data and geolocation fields. The data file contained 

36 calibrated and geolocated spectral bands from the optical to TIR wavelength regions and have a spatial resolution of 1 km 

comprised of 1354 by 2030 pixels. Cloud pixels in the MOD021KM were identified with MODIS cloud mask product 90 

(MOD35_L2) and pixels with a zenith angle > 25° were not used to reduce the panoramic bowtie effect (Eythorsson et al., 

2019). The TIR bands 31 and 32 which are respectively centered on 11.03 and 12.02 µm, were used to retrieve the SST using 

a split-window algorithm (Hall and Riggs, 2001) that is adapted for use with MODIS data, whose accuracy was reported within 

2°C. Additionally, longitude and latitude coordinates, which were provided in the geolocation field and given at a 5 km 

resolution, were used to tie the swath to points on the Earth's surface. We collected MODIS images with cloud cover of < 10% 95 

during March–May from 2013 to 2020, because leads in these three months were abundant with a variety of sizes and shapes 

from visual inspection. 

2.2.2. Landsat-8 data 

This study used the Landsat-8 Level 1 terrain-corrected (L1T) data product, which was acquired from the United States 

Geological Survey Earth Explorer website (http://earthexplorer.usgs.gov/). Because the Landsat-8 data product includes 100 

images acquired from May 2013 to present, here we selected scenes with < 10% cloud cover acquired during 2013–2020. 

Likewise, only images acquired during March–May in each year were obtained. 

These Landsat-8 data were used to produce fine-resolution SST reference images and lead maps. The split-window 

algorithm that was developed for the Landsat-8 data (Du et al., 2015), which is suitable for various surface types including ice 

and water, was employed to retrieve SST data. The algorithm estimates temperature from two thermal infrared bands of 105 

Landsat-8 data and has an accuracy of better than 1.0°C (Du et al., 2015). Note that the Landsat-8 TIR Sensor had an issue 

with stray light, which refers to unwanted radiance from outside the field-of-view entering the optical system (Montanaro et 

al., 2015). Nevertheless, corrections have been applied in the current Landsat-8 LIT data product and the stray light artifact 

has been reduced (Gerace and Montanaro, 2017). However, this artifact was amplified and obvious in the generated SST image 

(Fig. 2a), which could impact the estimation of THF. A median filtering method (Eppler and Full, 1992;Qu et al., 2019) was 110 

then used to further remove the noise in the Landsat-8 SST image caused by this type of artifact (Fig. 2b). The reference lead 

maps were manually drawn by referring to Landsat-8 OLI spectral bands; an example is shown in Fig. 2c. 
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For the obtained Landsat-8 data product, both the OLI spectral bands and the TIRS bands have a pixel size of 30 m. 

Considering the fact that TIRS bands at 30 m resolution were up-sampled from 100 m raw data by cubic interpolation to match 

the OLI spectral bands, the TIRS bands were resampled to 100 m by average strategy to retain the original spatial resolution. 115 

 

Figure 2. Sea surface temperature (SST) images derived from Landsat-8 imagery and corresponding corrected SST image on 31 

March 2020: (a) original SST image, (b) corrected SST image by the median filtering method; and (c) the manually produced lead 

map. Lead and ice-covered areas are marked as blue and white, respectively.  

2.2.3. Meteorological data 120 

An aerodynamic bulk formula was adopted to calculated the THF occurring over leads in this research (Goosse et al., 2001). 

Aside from the leads’ surface temperature, the aerodynamic bulk formula requires the corresponding 10 m wind speed, 2 m 

air temperature, and dew point temperature. These corresponding meteorological data were collected from the European Center 

for Medium-Range Weather Forecasts ERA5 reanalysis hourly dataset (https://cds.climate.copernicus.eu/). All of the data 

were resampled to 100 m resolution. 125 

2.2.4. Co-registration of MODIS and Landsat-8 imagery 

Note that MODIS and Landsat-8 products employ different spatial reference systems, because the MOD021KM data set uses 

a geolocation subset comprised of longitude and latitude coordinates to provide a geographic location, while Landsat-8 imagery 

uses a projected coordinate system. These datasets need to be converted to the same spatial reference system when used in the 

same experiment. To avoid deviations of footprints in the different projected coordinate systems and achieve an accurate 130 

registration, we transformed Landsat-8 data into the geolocation data grid of MOD021KM using latitude and longitude data. 

Specifically, the geolocation data of MOD021KM given at a 5 km resolution was interpolated to form a 100 m resolution 

geolocation grid by a subpixel interpolation strategy. This strategy comprised three processes (Fig. 3). First, for a 100 m 

resolution pixel P to be interpolated, four bounded 5 km resolution pixels P1 to P4 were searched. Second, we obtained two 

pixels P' and P" with 100 m resolution on the along-track line, which lies the same along-scan line with P; then, the positions 135 
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(longitude, latitude) of P' and P" were interpolated using P1/P3 and P2/P4. One reasonable approximation done here is that 

two successive scan lines are parallel to each other. Third, the position of P was interpolated with P'/P". For each pixel in the 

interpolated geolocation grid, corresponding Landsat-8 pixels were searched using the latitude and longitude of the grid center. 

Since points on the earth surface with the same longitude and latitude are identical to each other in difference spatial reference 

systems, the proposed approach can register the different datasets accurately. 140 

 

Figure 3. The process used to generate a fine resolution geolocation grid 

3. Methods 

The estimation of the THF at a subpixel scale involved two main processing steps (Fig. 4). First, a fine-resolution SST image 

and the corresponding fine-resolution lead map are produced from a coarse-resolution SST image with a CNN-based integrated 145 

framework. Second, the THF is estimated from the fine-resolution SST image and a lead map using an aerodynamic bulk 

formula, and finally the accuracy of the results is assessed. 
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Figure 4. The flowchart of the estimation of turbulent heat flux at the subpixel scale with the proposed deep residual convolutional 150 
neural network-based framework. Note: SST, sea surface temperature. 

3.1. Generation of a fine-resolution SST image and lead map 

With the coarse-resolution SST image as input, the proposed integrated framework (Fig. 4) aims to produce an SST image and 

a lead map both with fine resolution. Specifically, provided that the original coarse-resolution SST image  has H×W pixels, 

the objective of the integrated framework is to generate an SST image  and a lead map 
Leads

FRM , both of which contain 155 

(z×H)×(z×W) pixels, where z is the scaling factor that equals ten in this study. 

Although the key factors for SR SST image reconstruction and lead mapping both involve modeling the nonlinear 

relationship between coarse- and fine-resolution data, the objectives of each one are different. The process of generating fine-

resolution SST images focuses on recovering a fine spatial pattern, while in producing a fine-resolution lead map, it is crucial 

to classify each sub-pixel in addition to recovering the fine spatial pattern. Therefore, we used two CNNs, a very deep residual 160 

CNN and a multi-level feature fusion residual CNN, with different structures in the integrated framework to achieve generation 

of a fine-resolution SST image and a lead map. For fine-resolution SST image reconstruction, a very deep residual CNN which 

has been widely used in image SR (Zhang et al., 2018;Ledig et al., 2017) was used (Fig. 5). The SR lead mapping method 

essentially is a type of image segmentation. Considering the good performance of an encoder-decoder structure in image 

segmentation (Ronneberger et al., 2015;Badrinarayanan et al., 2017), we combined the very deep CNN and encoder-decoder 165 

structure, and applied a multi-level feature fusion residual CNN (Fig. 5) to SR lead mapping. 

SST

CRI

SST

FRI

https://doi.org/10.5194/tc-2020-363
Preprint. Discussion started: 11 January 2021
c© Author(s) 2021. CC BY 4.0 License.



8 

 

The procedure of CNN-based SR SST reconstruction and lead mapping comprises three parts: (1) training data preparation, 

(2) CNN model training, and (3) fine-resolution SST image and lead map prediction with the trained CNN models. The 

following subsection explains the two CNNs more fully. 

3.1.1 Architecture of the integrated framework 170 

 

Figure 5. Architecture of the two convolutional neural networks for sea surface temperature (SST) image super-resolution 

reconstruction and super-resolution lead mapping. Note: PReLU, parametric rectified linear unit.  

A very deep residual CNN model with 48 layers was used for SR SST reconstruction. The input coarse SST image was 

followed by a convolution layer with 64 filters of size 3 × 3 and a parametric rectified linear unit which was used to ensure the 175 

output is a nonlinear expression of the input data. At the core of the very deep residual CNN are nine residual blocks, each of 

which contains two convolution layers with 64 filters of size 3 × 3 × 64 followed by batch norm layers and parametric rectified 

linear unit functions (termed here as Resblock). The last layer of the very deep residual CNN consists of a single filter of size 

3 × 3 × 64. 

A multi-level feature fusion residual CNN model was used for SR lead mapping. The model includes a symmetric encoder-180 

decoder module and a feature fusion unit. The backbone of the encoder-decoder also consisted of nine residual blocks. The 

sizes of filters for the first convolution layer in each Resblock in the decoder part was 3 × 3 × 128, while all other filters in the 

Resblock had a size of 3 × 3 × 64. Additionally, a max-pooling layer which contained 64 filters of size 2 × 2 with a sliding 

step of 2 was added behind each Resblock in the encoder procedure to downscale the feature maps and amplify the receptive 

field. A transpose convolution, which is a reverse process to normal convolution (Noh et al., 2015), and a concatenation 185 

operation were used in the decoder procedure to enlarge the size of feature maps and fuse multi-level features, respectively. 

An attention mechanism module was employed in the concatenation to increase the feature difference at the boundary of a 
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lead and ice. In the feature fusion part, extracted features in the decoder part were up-sampled and fused with element-wise 

summing to combine multi-level features. The scaling factors of the four up-sampling modules (from left to right) were 8, 4, 

2, and 1, respectively, according to the scale differences between the extracted features and the output image. The last layer 190 

after the feature fusion part comprised a softmax function as the activation function to estimate the class label (lead or not lead) 

of every pixel. 

3.1.2 Implementation details of the CNNs 

According to the structure of the CNN models, the input SST image should match the size of the fine-resolution images. 

Therefore, the coarse‐resolution SST image in training samples must be interpolated. A standard method such as bicubic 195 

interpolation may be used to generate this input data set. The CNN models can be trained using the interpolated coarse-

resolution SST image patches x, the corresponding referenced fine-resolution SST image patches y, and lead map patches l. 

Given the different objectives of image SR SST reconstruction and image SR lead mapping, mean square error (MSE) loss 

and cross entropy loss were used as the loss functions for the two associated CNNs, respectively. They can be calculated 

following Eqs. (1) and (2): 200 
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where n is the number of training samples, F(·) denotes the networks, w is the weight parameters of the networks to be updated 

in the training process, subscripts represent different networks, SR-SST and SR-LM denote SR of SST and lead mapping, 

respectively. For optimization, adaptive moment estimation (Adam) (Kingma and Ba, 2014) with standard back propagation 205 

was applied to minimize the loss and update the network weights until convergence; the parameters of Adam were set as: β1=0, 

β2=0.999. The learning rate α was initialized as 1 × 10−4. 

Once the two networks have been trained, they can be used to generate the fine spatial resolution SST images and 

corresponding lead maps. During this procedure, the coarse-resolution SST image was fed into the integrated framework. The 

fine-resolution SST image was directly produced from the SR SST reconstruction CNN, while the output of the SR lead 210 

mapping CNN was a lead indicator image. An appropriate threshold was used to binarize the lead indicator image into a lead 

map according to specific requirements. Here, the threshold value was empirically set to 0.5, meaning that a fine spatial 

resolution pixel in the indicator image exceeding 0.5 would be classified as a lead pixel. 

3.2. Estimating THF over leads 

Given a set of data including fine-resolution SST images, the corresponding lead maps and related meteorological data (10 m 215 

wind speed, 2 m air temperature, and dew point temperature), the THF over each lead was estimated using the traditional 
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aerodynamic bulk formula (Brodeau et al., 2017;Goosse et al., 2001). Note that overall THF is comprised of two parts including 

sensible (Hs) and latent heat fluxes (Hl). In the bulk formulae, it is assumed that Hs and Hl were mainly determined by the 

temperature and humidity differences between the leads’ surface and atmosphere at a certain height r (2 m used in this study), 

and they can be calculated following Eqs. (3) and (4): 220 

 p shs r s rH c C U T T 
,                                                                                                                                           (3) 

 w lel r s rH L C U q q 
,                                                                                                                                          (4) 

where ρ is the air density, cp is the specific heat of air, and Lw is the latent heat of evaporation; these are constants in the bulk 

formula. In addition, Ur, Tr, and qr represent the air velocity, temperature, and specific humidity, respectively, at the certain 

height r=2 m; Ts and qs are the surface temperature and specific humidity at the leads’ surface, respectively; Csh and Cle are 225 

transfer coefficients. All of these variables can be acquired or calculated from the SST image and meteorological data. A more 

detailed description can be found in the original article (Goosse et al., 2001). Once Hs and Hl have been calculated, the overall 

THF can be obtained by summing up them. 

3.3. Accuracy assessment 

The outputs obtained from DeepSTHF were compared with those from the bicubic interpolation-based subpixel-scale method 230 

(termed here as CubicSTHF) and the pixel-scale method (termed here as OriTHF). For the CubicSTHF method, the coarse-

resolution SST image was first super-resolved by cubic interpolation. Then the resulting super-resolved SST image was used 

to produce a corresponding lead map with a pixel-based classification approach (Willmes and Heinemann, 2015). Finally, the 

THF over leads was calculated using the super-resolved SST image and lead map. For the OriTHF method, the THF over leads 

was estimated using the original coarse-resolution SST image and the corresponding lead map, which was also produced from 235 

the coarse-resolution SST image with the pixel-based approach. 

The results of image SR reconstruction of the SST, SR lead mapping, and estimated THF over leads were all assessed as 

follow. (1) For the result of SST image SR reconstruction in a simulated test, the root mean square error (RMSE), and the 

Pearson coefficient (R) were calculated using the real fine resolution SST image as a reference. (2) For the SR lead mapping, 

the fine-resolution lead map drawing from Landsat-8 imagery was taken as a reference; we employed the overall accuracy, the 240 

omission error, the commission error, and the mean intersection over union (MIOU) to evaluate the results in both simulated 

and real tests. (3) For the estimation of THF, the overall error (OE) and RMSE were calculated for the result of simulated test 

using the result calculated from the fine-resolution images as a reference. 

 

https://doi.org/10.5194/tc-2020-363
Preprint. Discussion started: 11 January 2021
c© Author(s) 2021. CC BY 4.0 License.



11 

 

4. Experiments and Results 245 

4.1. Experiment with simulated MODIS imagery 

A simulated experiment with Landsat-8 data was first applied to explore the strengths of DeepSTHF as well as to avoid the 

uncertainty of co-registration and temperature estimation differences between Landsat-8 and MODIS data. In this experiment, 

MODIS SST images were simulated from the Landsat-8 SST images using the pixel aggregate method and were used as the 

input coarse-resolution data. The original Landsat-8 SST images and corresponding lead maps were used as the fine-resolution 250 

data as a reference. 

4.1.1. Training and testing data 

The training samples of the CNN models were generated from the SST images and lead maps derived from ten Landsat-8 

images acquired during 2013–2017. The SST images and lead maps were clipped into image patches, each of which had a size 

of 80 × 80 pixels; the step size for the clipping was 40. The clipped SST image patches were degraded to 1000 m to simulate 255 

the MODIS SST imagery. A total of 36,000 image patches, comprising degraded SST image patches, original Landsat-8 SST 

image patches, and lead map patches, were randomly selected to form the training data. The degraded SST image patches, and 

the corresponding original SST image patches were used to train the SR SST image reconstruction CNN. Similarly, the 

degraded SST image patches, and the corresponding lead map patches were used to train the SR lead mapping CNN. 

During the testing process, an SST image and lead map obtained from the Landsat-8 scene (p071r010) acquired on 31 March 260 

2020 were used. We degraded the SST image to 1000 m and used it as the input of the trained CNNs. The original SST image 

and lead map were used as real data to validate the results. 

4.1.2. Results 

The simulated coarse-resolution MODIS SST image, SR SST images produced by CubicSTHF as well as DeepSTHF, the 

reference fine-resolution Landsat-8 SST image, and the error images for the coarse resolution image and SR results are shown 265 

in Fig. 6. Note that the overall spatial texture of the output from DeepSTHF is more like the reference Landsat-8 SST image 

than the coarse-resolution image and that from CubicSTHF. The SR result for CubicSTHF is blurred in lead areas. Though the 

SR results for CubicSTHF and DeepSTHF methods are similar with the reference data for areas covered by ice, the DeepSTHF 

method produced more accurate results in areas with leads. From the error images, the original coarse-resolution SST image 

has the largest RMSE, which is more than twice as much as those of CubicSTHF and DeepSTHF. Even though CubicSTHF 270 

generated a smaller number of errors when compared with the coarse-resolution image, the errors in the lead areas were more 

significant than those of DeepSTHF. 
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Figure 6. (a) Simulated moderate resolution imaging spectroradiometer (MODIS) sea surface temperature (SST) image with super-275 
resolution results using different methods, specifically (b) the bicubic interpolation-based subpixel-scale method (CubicSTHF) or (c) 

by a deep residual convolutional neural network-based framework used to estimate THF over leads at the subpixel scale (DeepSTHF); 

(d) the corresponding Landsat-8 SST image and the error images for (e) simulated MODIS image and super-resolution results, (f) 

the CubicTHF method, and (g) the DeepSTHF method. The red rectangle indicates the large error of CubicSTHF.  

Fig. 7 shows the scatter plots allowing a comparison between reference SST in generated lead areas against corresponding 280 

SST from the coarse-resolution image and the super-resolved images of CubicSTHF and DeepSTHF. For the plot with OriTHF, 

the R2 was only 0.274. Much higher coefficients were observed for CubicSTHF and DeepSTHF, indicating the results of SR 

methods have a much stronger correlation with the fine-resolution image. Among the two SR methods, DeepSTHF resulted in 

a higher R2, as well as a lower RMSE than CubicSTHF. Additionally, it is apparent that the CubicSTHF method underestimated 

most pixels with a reference temperature > −6°C because substantial data points fall below the diagonal line (Fig.7b). This 285 

problem has been improved by using the DeepSTHF method; with this method data points fall closer to the diagonal line and 

comparable data points are located in both sides of the line when comparing the two methods. Overall, the DeepSTHF method 

achieved the most accurate SST image SR results. 
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Figure 7. Scatter plots between sea surface temperature in lead areas from Landsat against that from simulated moderate resolution 290 
imaging spectroradiometer (MODIS) image at the pixel-scale (OriTHF) and the super-resolution results with the (b) bicubic 

interpolation-based subpixel-scale method (CubicSTHF), and (c) the deep residual convolutional neural network-based framework 

method used to estimate THF over leads at the subpixel scale (DeepSTHF). The red dashed lines are fitted linear regression lines of 

the data points  

Fig. 8 shows the lead maps produced with the OriTHF, CubicSTHF, and DeepSTHF methods. The main lead networks 295 

generated from the three methods are similar to those in the reference fine-resolution lead map (Fig. 8c), especially for leads 

wider than several kilometers. However, the boundaries of mapped leads for OriTHF are not smooth and not visually realistic. 

Many narrow lead networks were not extracted by OriTHF and CubicSTHF (red ellipses in Figs. 8a and 8b). In contrast, the 

lead map produced using the DeepSTHF method is more visually realistic and much closer to the reference lead map. Many 

narrow leads were correctly mapped, and their connectivity was well‐maintained. Note that some very narrow lead, especially 300 

for leads with a width smaller than 5 pixels in the fine-resolution lead map, became disconnected in the DeepSTHF model (red 

rectangle in Fig. 8c), because the ice lead fraction in the mixed pixels of the coarse-resolution SST image is too small to 

provide detailed lead information. 

 

 305 
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Figure 8. Lead maps generated from the simulated sea surface temperature image of coarse spatial resolution by different methods 

(a, b, and c) and (d) the reference lead map extracted from Landsat-8 operational land imager data. Lead and ice-covered areas are 310 
marked as blue and white, respectively. Lead maps generated by the bicubic interpolation-based at (a) pixel scale (OriTHF) and (b) 

bicubic interpolation-based sub-pixel scale (CubicSTHF) with the temperature anomaly threshold approach, (c) is the lead map 

generated by the deep residual convolutional neural network-based framework method used to estimate THF over leads at the 

subpixel scale (DeepSTHF) based on convolutional neural network model. The red ellipses represent lead networks that have not 

been mapped by (a) OriTHF and (b) CubicSTHF. (c) The red rectangle indicates an area with very narrow leads that have not been 315 
mapped by DeepSTHF. 

The quantitative assessment results for lead mapping of the OriTHF, CubicSTHF, and DeepSTHF methods is demonstrated 

in Table 1. The DeepSTHF method has a greater overall accuracy and MIOU, and a smaller omission error than OriTHF and 

CubicSTHF. The omission errors for the OriTHF and CubicSTHF methods were 0.341 and 0.240, much greater than that for 

the DeepSTHF, indicating that many lead pixels were not extracted, which is consistent with the visual performance (Fig. 8). 320 

Additionally, although more lead pixels have been identified by the DeepSTHF method, it did not increase the rate of 

commission errors. Overall, the DeepSTHF method allowed the production of the most accurate lead map. 

Table 1. Accuracies of leads produced by the threshold approach and convolutional neural network model. (The most accurate 

results are highlighted in bold text) 

Method Overall accuracy Commission error Omission error MIOU 

OriTHF 0.961 0.015 0.341 0.756 

CubicSTHF 0.975 0.008 0.240 0.834 

DeepSTHF 0.980 0.008 0.171 0.865 

Note: MIOU, mean intersection over union; OriTHF, the pixel-scale turbulent heat flux estimation method; CubicSTHF, the bicubic 325 
interpolation-based sub-pixel scale heat flux estimation method; DeepSTHF, the deep residual convolutional neural network-based 

sub-pixel heat flux estimation method. 

For both SST image SR reconstruction and SR lead mapping, the DeepSTHF method generated the most accurate results. 

This mainly occurred because the CNN-based DeepSTHF model has the ability to extract a potential spatial pattern in the 

coarse- and fine-resolution SST images/lead maps through learning and built an appropriate nonlinear relationship between 330 

them to implement subpixel analysis, which is essential for producing reliable SR results. Meanwhile the CubicSTHF method 

generated a value for each pixel in the SST image SR result that is a linear combination of surface temperature of neighboring 
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pixels, which makes it difficult to represent the complex nonlinear relationship between fine- and coarse-resolution images. 

Additionally, the threshold approach was applied in the CubicSTHF method to extract leads; this is a pixel-based method and 

cannot achieve subpixel analysis. 335 

Fig. 9 shows the distribution of the THF over leads estimated by the three methods. The DeepSTHF method preserved 

abundant spatial texture and achieved a more accurate result than OriTHF and CubicSTHF. Because OriTHF and CubicSTHF 

failed to retrieve many small leads, the THF over these leads was not calculated (Figs. 9a and 9b) and thus significant errors 

in the corresponding areas are shown in the error map (Fig.9e). Additionally, even though the estimated THF for large leads 

with OriTHF and CubicSTHF was close to the reference data, the obtained THF along boundaries was much lower than the 340 

true value and resulted in large errors (Figs. 9e and 9f), especially for the error image of OriTHF. In contrast, DeepSTHF 

produced the smallest overall error. 

 

 

Figure 9. Spatial distribution of turbulent heat flux (THF) calculated by different methods (a–c) and (d) the reference distribution 345 
and the error maps of the distribution of THF estimated by (e) the pixel-scale turbulent heat flux estimation method, (f) the bicubic 

interpolation-based sub-pixel scale heat flux estimation method, and (g) the deep residual convolutional neural network-based sub-

pixel heat flux estimation method. 

The scatter plots of the reference THF data plotted against those estimated from OriTHF, CubicSTHF, and DeepSTHF are 

shown in Fig. 10. Generally, data points of plot created with the DeepSTHF method fall closer to the diagonal line than those 350 

created with OriTHF and CubicSTHF. Few calculated THF values of OriTHF and CubicSTHF were less than 0.25 × 106 W; 

this mainly occurred because small leads were not mapped and thus the corresponding THFs were not estimated. The R2 for 

the plots of CubicSTHF and DeepSTHF are both much higher than that of OriTHF. Even though the result of CubicSTHF has 

a higher correlation with the reference data than that of OriTHF, it is evident that most of the pixels’ values were underestimated 
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(Fig. 10 b). Note that, for all of the plots, several data points fell on the vertical and horizontal axes; this resulted from the 355 

omission (points on the horizontal axis) and misclassification (points on the vertical axis) of lead pixels of the three methods 

during the lead mapping. 

 

Figure 10. Scatter plots of the turbulent heat flux calculated from the reference data and those from the estimated from (a) the pixel-

scale turbulent heat flux estimation method (OriTHF), (b) the bicubic interpolation-based sub-pixel scale heat flux estimation 360 
method (CubicSTHF), and (c) the deep residual convolutional neural network-based sub-pixel heat flux estimation method 

(DeepSTHF). The red dashed lines are fitted linear regression lines of the data points.  

The total THF estimated with OriTHF, CubicSTHF, and DeepSTHF, and the accuracies of each method are listed in Table 

2. Generally, the total estimated THF estimated by the DeepSTHF method was the closest value to the reference data. Although 

the THF calculated from OriTHF was relatively closer to the reference value than that from the CubicSTHF, the RMSE of it 365 

was much larger. In contrast, the THF estimated from DeepSTHF had the smallest RMSE, greatest R2, and smallest OE, 

especially for the OE; the OE from OriTHF and CubicSTHF was almost three times than that from DeepSTHF. The THF error 

(real value minus estimated value) distributions of the three methods are further demonstrated in Fig. 11. More than 70% of 

the errors found in DeepSTHF data are located in the small error bin ([−0.25 × 1011W, 0.25 × 1011W]), which is much greater 

than those of OriTHF (less than 50%) and CubicSTHF (less than 60%). For the DeepSTHF method, the errors have close to a 370 

normal distribution and the rate of positive errors is close to that of negative errors. Meanwhile, for CubicSTHF, the THF of 

most pixels was underestimated (Fig. 10); the rate of positive errors was significantly larger than the corresponding negative 

errors, and the errors were biased. Therefore, compared with CubicSTHF, although the improvement of DeepSTHF in RMSE 

was not very large, the total estimated THF of it was much closer to the reference data because the most positive and negative 

errors tended to cancel each other out, which is statistically good. These findings indicated that the proposed method, 375 

DeepSTHF, can produce a more favorable result and is able to estimate THF over leads at a subpixel scale. 

 

 

 

 380 
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Table 2. Accuracies of the estimated turbulent heat flux (THF) estimated by different methods 

Method 
Reference THF 

(W) 

Estimated THF 

(W) 
OE RMSE (W) R2 

OriTHF 

2.243×1011 

1.871×1011 3.72×1010 5.162×105 0.260 

CubicSTHF 1.765×1011 4.78×1010 3.576×105 0.623 

DeepSTHF 2.115×1011 1.28×1010 2.970×105 0.705 

Note: OriTHF, the pixel-scale turbulent heat flux estimation method; CubicSTHF, the bicubic interpolation-based sub-pixel scale 

heat flux estimation method; DeepSTHF, the deep residual convolutional neural network-based sub-pixel heat flux estimation 

method. 

 385 

Figure 11. Error distribution of estimated turbulent heat flux for three different methods: OriTHF, the pixel-scale turbulent heat 

flux estimation method; DeepSTHF, the deep residual convolutional neural network-based sub-pixel heat flux estimation method; 

and CubicSTHF, the bicubic interpolation-based sub-pixel scale heat flux estimation method.  

4.2. Experiment with real MODIS imagery 

To assess the performance of the proposed DeepSTHF model in practical applications, an experiment using real MODIS SST 390 

imagery was conducted. In this experiment, MODIS images were used to form the input coarse-resolution SST images, while 

Landsat-8 images were used to produce the reference fine-resolution SST images and lead maps. 

4.2.1. Training and testing data 

Ten MODIS SST images and the corresponding Landsat-8 SST images and lead maps acquired during 2013–2017 were used 

to create training samples of the CNN models. The Landsat-8 images were converted to a MODIS geolocation grid to achieve 395 

accurate co-registration between Landsat-8 and MODIS imagery. Using the same method used in the simulated SST 

experiment, we clipped these images into image subsets with a size of 80  80 pixels at a step size of 40. For SR SST image 
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reconstruction using a CNN and image SR lead mapping with a CNN, a total of 36,000 randomly selected MODIS SST image 

patches along with the corresponding Landsat-8 SST image and lead map patches were used as the training data sets. 

Three MODIS SST images, one each acquired on 25 April 2018, 9 May 2019, and 31 March 2020, were used to estimate 400 

the THF at a subpixel scale. For each MODIS image, a subset containing leads with different widths and lengths was selected 

for the experiment. Three corresponding Landsat-8 scenes (p057r010, p111r240, and p071r010) were employed to provide 

reference fine-resolution data used to validate the results. The generalization ability of the proposed model could be accurately 

validated because the test images were located in different regions and observed on different dates. 

Note that, large temperature differences could be observed between MODIS and Landsat-8 SST images, which had mainly 405 

resulted from the different overpass times of the MODIS and Landsat-8 satellites. A possible way to reduce this inconsistency 

is to apply a temporal correction method (Zhao et al., 2019). In practice, however, the temporal correction method would bring 

about an additional layer of error. Considering this factor, MODIS and Landsat-8 SST were normalized for training by the 

min–max normalization method. During the testing stage, the MODIS SST image SR results were not evaluated quantitatively 

due to a lack of true fine resolution SST reference imagery. For lead mapping, it was assumed that the range of leads varies 410 

little from the MODIS observation time to Landsat-8 observation time, so that the lead maps produced from Landsat-8 OLI 

data could be used to validate the SR lead mapping results. 

4.2.2. Results 

The MODIS SST images and the result of image SR reconstruction for them with CubicSTHF and DeepSTHF are shown in 

Fig. 12. A visually assessment of the results from CubicSTHF and DeepSTHF show those results are more realistic than those 415 

of the original MODIS SST images, which are not smooth along the boundaries of the lead networks. Compared with the 

results generated by the CubicSTHF method, finer spatial textures can be observed in the images produced by DeepSTHF. For 

lead networks, the SR result is blurred to some extent for CubicSTHF, but it is more sharp for DeepSTHF. The temperature 

difference between lead and ice areas along boundary for DeepSTHF is more significant than that for CubicSTHF. 

 420 
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Figure 12. Sea surface temperature images acquired on: (a)–(c) 25 April 2018, (d)–(f) 9 May 2019, and (g)–(f) 31 March 2020 and 

the super-resolution result of each set of images. Each set of three images include the (a, d, g) original moderate resolution imaging 

spectroradiometer image (OriTHF), and the super-resolution results for sea surface temperature estimated with the (b, e, h) bicubic 

interpolation-based sub-pixel scale heat flux estimation method (CubicSTHF) and (c, f, i) the deep residual convolutional neural 425 
network-based sub-pixel heat flux estimation method (DeepSTHF), respectively.  

The generated lead maps produced using the OriTHF, CubicSTHF, and DeepSTHF methods are displayed in Fig. 13. 

Generally, the lead maps yielded by DeepSTHF were more like the reference data maps than those produced by the other 

methods. The results produced by OriTHF and CubicSTHF failed to identify many narrow leads and the corresponding lead 

networks became disconnected (red rectangles in Figs. 13b, 13f, and 13j). Some parts of ice-covered regions surrounded by 430 

leads were misclassified as leads by OriTHF and CubicSTHF (red ellipses in Figs.13b and 13j). Even though the main lead 

networks were mapped by the OriTHF method, the boundaries of the produced lead networks were jagged (Figs. 13q and 13u). 

The results from CubicSTHF are smoother than those from OriTHF, but some parts of large lead networks are also 
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discontinuous (Figs. 13r and 13v), which increased lead widths in them to some extent. In contrast, the proposed method, 

DeepSTHF, generated more promising results. First, it identified most small leads and maintained their connectivity. Second, 435 

the boundaries of the segmented leads were smooth and much closer to those of reference leads (subareas r1–r3). Third, most 

ice-covered areas surrounded by leads were correctly classified, even if the areas were relatively small (dashed red rectangle 

in Fig. 13 k). Note that, although DeepSTHF extracted most leads accurately, it failed to perform well on some very narrow 

leads (especially those with widths of < 5 pixels in the fine-resolution map), because the lead fraction for these leads in the 

coarse image was too small and could hardly be mapped them the fine resolution lead map through the CNN model. 440 

Additionally, the results of DeepSTHF were influenced by some abnormal pixels in the input data. For instance, some pixels 

were misclassified in a narrow rectangular area (red dashed ellipse in Fig. 13 c) because the temperature of this area did not 

correctly reflect the actual case in the ocean (Fig. 12 a). 
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 445 

Figure 13. Lead maps generated from moderate resolution imaging spectroradiometer sea surface temperature imagery with the 

three methods acquired on: (a)–(d) 25 April 2018, (e)–(h) 9 May 2019, and (i)–(l) 31 March 2020. Lead and ice-covered areas are 

marked as blue and white, respectively. Each set of four parts of the figure (a)–(d), (e)–(h), and (i)–(l) are results from the (pixel-

scale turbulent heat flux estimation method (OriTHF), the bicubic interpolation-based sub-pixel scale heat flux estimation method 

(CubicSTHF), the deep residual convolutional neural network-based sub-pixel heat flux estimation method (DeepSTHF), and the 450 
reference lead maps based on data acquired on 25 April 2018, 9 May 2019, and 31 March 2020, respectively. In addition, each set of 

four parts of the figure (m)–(p), (q)–(t), and (u)–(x) are the results for OriTHF, CubicSTHF, DeepSTHF, and the reference data, 

respectively, for subareas r1, r2, and r3, respectively. The black rectangles in d, h, and i represent subareas. The red rectangles in 

b, f, and j represent lead networks that have been mapped by CubicSTHF. The red ellipses in b and j show the ice-covered regions 

that have been misclassified as leads by CubicSTHF. The red dashed rectangle in k represents ice-covered areas that have been 455 
correctly classified by DeepSTHF. The red dashed ellipse in c shows the pixels misclassified as leads by DeepSTHF due to the errors 

in the sea surface temperature. 
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The quantitative performances of the generated lead maps by the three methods were compared (Table 3). The DeepSTHF 

method provided the highest overall accuracy and MIOU, as well as a lowest rates of errors of commission and omission on 460 

25 April 2018 and 31 March 2020. Although the commission error rate of DeepSTHF on 9 May 2019 is higher than those of 

OriTHF and CubicSTHF, the overall accuracy and MIOU of DeepSTHF is larger. The accuracy of OriTHF is the lowest except 

for 9 May 2019. The commission error rates of the three methods on 9 May 2019 is small, because the lead areas mainly 

consisted of a large lead network that could be more easily extracted from this data. For all dates, the omission error rates for 

OriTHF and CubicSTHF were much larger than those for the CNN, demonstrating that many lead pixels were not correctly 465 

classified, which was consistent with the visual results analyzed subjectively (Fig. 13). Therefore, the proposed framework 

was also effective in image SR lead mapping with real MODIS data. 

Table 3. Accuracies of the produced lead maps produced by the pixel-scale turbulent heat flux estimation (OriTHF), bicubic 

interpolation-based sub-pixel scale heat flux estimation (CubicSTHF), and deep residual convolutional neural network-based sub-

pixel heat flux estimation (DeepSTHF) methods represented by the first, second, and third number in each entry, respectively. The 470 
most accurate results are in bold text. 

Date Overall accuracy Commission error Omission error MIOU 

25 April 2018 0.960/0.966/0.978 0.027/0.024/0.015 0.247/0.185/0.126 0.745/0.779/0.843 

9 May 2019 0.968/0.966/0.973 0.004/0.006/0.010 0.254/0.265/0.162 0.843/0.833/0.873 

31 March 2020 0.956/0.960/0.972 0.022/0.021/0.018 0.319/0.281/0.156 0.742/0.764/0.831 

Note: MIOU, mean intersection over union 

The THF over mapped leads was estimated by the OriTHF, CubicSTHF, and DeepSTHF methods (Fig. 14). Because the 

estimated THF was dependent on the generated lead maps, the spatial distribution of the estimated THF was consistent with 

the lead maps. Specifically, in the plots of the OriTHF and CubicSTHF, the THF of most small leads has not been depicted 475 

and the boundaries of lead were also not smooth, especially for the plot based on the OriTHF method. Additionally, the 

estimated THF of pixels along the boundaries of lead networks was relatively small for CubicSTHF, which may be a result of 

the underestimation of temperature in the SR SST image. Meanwhile, for DeepSTHF, the THF over many of the small leads 

was estimated, and the overall spatial pattern of the estimated THF in the plot was much finer than OriTHF and CubicSTHF. 

 480 
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Figure 14. Spatial distribution of turbulent heat flux (THF) calculated by the (a, d, h) pixel-scale turbulent heat flux estimation 

method (OriTHF), (b, e, i) the bicubic interpolation-based sub-pixel scale heat flux estimation method (CubicSTHF), and (c, f, j) the 

deep residual convolutional neural network-based sub-pixel heat flux estimation method (DeepSTHF) on: (a)–(c) 25 April 2018, (d)–

(f) 9 May 2019, and (h)–(j) 31 March 2020.  485 

The quantities of estimated THF on different dates estimated using the three methods are shown in Table 4. Although more 

leads were identified using the CubicSTHF method than with OriTHF (indicated by the smaller number of omission errors) on 

25 April 2018 and 31 March 2020, the estimated THF from CubicSTHF was slightly smaller than that from OriTHF on both 

dates. This mainly occurred because the temperature of lead pixels along lead networks was lowered in the SR process with 

the CubicSTHF method (Fig. 12). Meanwhile, for DeepSTHF, because more leads have been mapped and the reconstructed 490 

temperature of lead pixels along lead nets was close to the pixels in the central part of lead networks, the total calculated THF 

of DeepSTHF on all dates were greater than those of OriTHF and CubicSTHF. It is evident that the THF difference between 

DeepSTHF and the other two methods on 31 March 2020 was the largest, followed by that on 25 April 2018, while that on 9 

May 2019 was the smallest. A main reason for this is that the test area for 31 March 2020 comprised many small leads that 
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were correctly classified by OriTHF and CubicSTHF, and the test area for 9 May 2019 was mainly consisted of a large lead 495 

network that was successfully extracted by all three methods, where only a few small lead networks were mapped by the 

DeepSTHF method (Fig. 13 g). Therefore, DeepSTHF can achieve more accurate results in areas comprised of leads with 

abundant widths and lengths. A large difference was observed for the estimated THF with the three methods from the simulated 

and real MODIS images on 31 March 2020; for example, the THF obtained by DeepSTHF from simulated and real MODIS 

images were 2.115×1011 W and 1.747×1011 W, respectively. This may have resulted from the temperature differences between 500 

MODIS and Landsat-8 data. 

Table 4. Total estimated turbulent heat flux measured with the three methods on 25 April 2018, 9 May 2019, and 31 March 2020 

(unit: W) 

Method 25 April 2018 9 May 2019 31 March 2020 

OriTHF 2.114×1011 2.074×1011 1.348×1011 

CubicSTHF 2.006×1011 2.096×1011 1.287×1011 

DeepSTHF 2.426×1011 2.337×1011 1.747×1011 

Note: OriTHF, the pixel-scale turbulent heat flux estimation method; DeepSTHF, the deep residual convolutional neural network-

based sub-pixel heat flux estimation method; CubicSTHF, the bicubic interpolation-based sub-pixel scale heat flux estimation 505 
method. 

5. Discussion 

The experiments involving simulated and real data show that the DeepSTHF method could increase the accuracy of THF 

estimation when compared with the method that uses the original MODIS data (OriTHF), and the method based on 

conventional bicubic interpolation (CubicSTHF). In practice, however, three issues that are related to the performance of 510 

DeepSTHF should be considered including the CNN architecture, parameter settings, and the uncertainty of SR lead mapping. 

5.1. The CNN architecture 

The enhanced performance of DeepSTHF relative to CubicSTHF arose primarily from the ability of DeepSTHF to 

automatically learn the complicated nonlinear relationships between the coarse resolution SST image and corresponding fine 

resolution SST image and lead map with the CNN models. This study applied two CNNs with different architectures for the 515 

SST image SR and SR lead mapping, because a single CNN architecture cannot achieve the different objectives of the two 

CNN models. We tested the performance of the multi-level feature fusion residual CNN, which was used for lead mapping, 

on a MODIS SR SST image (Fig. 15). Although most the fine spatial information has been recovered (red rectangles in Fig. 

15b), the retrieved surface temperature of lead pixels along boundaries were greater than those in the central regions and these 

were not visually continuous (red ellipses in Fig. 15b), which was unsatisfactory. This may have occurred because the multi-520 

level feature fusion residual CNN mainly focused on the semantic information of lead nets through the down-sampling layers, 

which may have caused the loss of spatial texture of the input data to some extent. Additionally, the very deep CNN used for 
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SR SST has also been proved to be invalid in lead mapping because it could not identify any lead networks. A major reason 

for this is that it did not comprise any down-sampling layers and therefore the semantic information of lead nets can only be 

extracted with some difficulty. 525 

 

Figure 15. Results of moderate resolution imaging spectroradiometer super-resolution (SR) sea surface temperature imaging for 

data acquired on 31 March 2020 by: (a) the cubic interpolation method, (b) a convolutional neural network (CNN) model with the 

backbone of the CNN used in SR lead mapping, and (c) the very deep residual CNN model. The red rectangles represent the fine 

spatial pattern has been recovered by the multi-level feature fusion residual CNN. The red ellipses represent the recovered surface 530 
temperature of lead pixels by the multi-level feature fusion residual CNN that were not visually continuous. 

5.2. Parameter settings 

Like many classic algorithms, the proposed DeepSTHF is not totally automatic; there are some customized parameters for the 

CNN models used in the DeepSTHF method. Overall, the batch size of the training samples, optimization method, and learning 

rate should be set in advance. The optimization method (or optimizer) is a major approach used for training a CNN model. 535 

Recently, Stochastic Gradient Descent (SGD) and Adaptive Moment Estimation (Adam) optimizers have been widely used; 

they are both gradient-based methods that update the parameters of CNN along the direction that would minimize the error 

rate. The two optimizers were tested in the present study; the results show that the Adam algorithm had a much faster 

convergence speed and performed better than the SGD algorithm. As a result, Adam was selected as the optimization method 

in the present study. Additionally, the exponential decay rates β1 and β2 of Adam were set to 0.9 and 0.999, respectively, which 540 

is typically recommended in practice (Reddi et al., 2019). The learning rate determines the step size at each iteration while 

moving toward a minimum of a loss function; a favorable value mainly depends on the training data set and the architecture 

of the CNN model. In this study, 10-4 was empirically set for the learning rate through substantial experiments. Batch size 

defines the number of training samples used in one iteration for the training process; Masters and Luschi (2018) suggested a 

batch size between 2 and 32 because this size can provide stable convergence. In the present study, the batch size was set to 545 

24 considering the trade-off between training speed and computational speed of the computer. The experiment showed that 

the DeepSTHF method was able to generate accurate subpixel THF data for data which were observed on different dates and 

covered different areas with these parameters. In fact, however, better parameters may be selected in the future and thus provide 
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more accurate results. Knowing how to acquire the best values for these parameters is a hot topic in deep learning and needs 

further investigation. 550 

5.3 Uncertainty of SR lead mapping 

The main limitation of the DeepSTHF method when used for the estimation of THF is that it was limited by the accuracy SR 

lead mapping. First, a large spatial resolution gap exists between Landsat-8 and MODIS surface temperature imagery, while 

some very narrow lead nets in the fine resolution image (especially those with width < 5 pixels), were not mapped with 

DeepSTHF. The reliability of DeepSTHF would decrease as the numbers of these very narrow leads increase. Second, we 555 

assumed that the lead networks do not change between the overpass time of MODIS and Landsat-8 satellites and used the lead 

maps produced from Landsat-8 data as the reference data in the MODIS imagery experiment; doing so may bring about some 

errors if an abrupt change occurs in the ice pack. 

6. Conclusions 

The turbulent heat flux over leads is an important variable for climate studies in the Arctic which has been estimated using 560 

remotely sensed data acquired from satellite sensors. Fine spatial resolution data is required for accurate calculation of the 

THF, although sometimes it is of limit use relative to coarse resolution data for some reasons including data availability. 

However, many mixed pixels along the edges of a lead will greatly decrease the accuracy of THF estimation when traditional 

methods are used. This paper proposes a deep learning-based method to calculate THF over leads at a subpixel scale 

(DeepSTHF) to address this problem. Specifically, two CNN models were first applied to generate a fine spatial resolution 565 

surface temperature image and a corresponding fine resolution lead map was produced from a coarse resolution surface 

temperature image; next, the fine spatial resolution data were then used for THF estimation. 

The results of two experiments showed that the proposed DeepSTHF can model the spatial pattern and relationship between 

coarse and fine resolution data quite well and achieve reliable results with a high level of accuracy. The main reason for the 

good performance of the DeepSTHF method is the potential of CNN models to specify complex nonlinear relationships 570 

between data. For SR SST image reconstruction, the bicubic interpolation-based method obtain the values of interpolated 

pixels by linearly combining the neighboring pixels. The spatial textures between coarse and fine resolution pixels, however, 

is not linear in some conditions (especially for pixels along lead boundaries). Therefore, the interpolated SST images 

commonly lacked a fine spatial pattern; the same problem could be seen in the lead maps produced by the threshold method 

since it is a pixel-based method. In contrast, the proposed CNN-based method learns the spatial patterns automatically from 575 

existing data, and so achieves a more powerful SR of data. The proposed method, DeepSTHF, is promising for calculating the 

THF over leads at a subpixel scale based on remotely sensed data. 
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