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Abstract. As a consequence of a diminishing sea ice cover in the Arctic, activity is on the rise. The position of the sea ice edge,

which is generally taken to define the extent of the ice cover, changes in response to dynamic and thermodynamic processes.

Forecasts for sea ice expansion on synoptic time scales due to an advancing ice edge will provide information that can be of

significance for open ocean operations in polar regions. However, the value of this information depends on the quality of the

forecasts. Here, we present methods for examining the quality of forecasted sea ice expansion on sub-seasonal time scales5

and the geographic location where the largest expansion are expected from the forecast results. The algorithm is simple to

implement, and an examination of two years of model results and accompanying observations demonstrates the usefulness of

the analysis.

Copyright statement. This work is distributed under the Creative Commons Attribution 4.0 License.

1 Introduction10

Due to climate change the sea ice extent is in decline in the Arctic (Parkinson, 2014). This change has led to increased activity

in the region, and commercial shipping in open waters via Arctic sea routes will become increasingly economically viable in

the 21st century (Aksenov et al., 2017). Thus, data sets for monitoring and forecasting sea ice conditions are receiving growing

attention.

The past years have seen a flurry of activity related to assessing the quality of sea ice data sets. Dukhovskoy et al. (2015)15

presented a review and comparison of various traditional metrics for assessments of the skill of sea ice models. Goessling et al.

(2016) introduced the Integrated Ice-Edge Error (IIEE), a quantity for describing mismatching sea ice extents from two data

sets to analyze the predictability of the sea ice edge. Melsom et al. (2019) took advantage of the IIEE in their examination

of various metrics for assessment of the quality of forecasts for the sea ice edge position. Methods for examining the quality

of probabilistic results for sea ice conditions have been introduced by Goessling and Jung (2018) and Palerme et al. (2019).20

Recently, Cheng et al. (2020) examined the accuracy of a visually estimated ice concentrations monitoring product.

The changing position of the sea ice edge is generally not only shifted by dynamic advection, but can be significantly

affected by the thermodynamics as well (Bitz et al., 2005). Thus, the temporal displacement of the sea ice edge will be affected

by freezing along the perimeter of the sea ice extent in winter, and melting in summer. Hence, pattern-recognition algorithms
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for displacements using maximum cross-correlation (MCC) methods such as those introduced by Leese et al. (1971) for wind25

vectors, and later for ocean surface currents (Tokmakian et al., 1990) and sea ice vectors (Lavergne et al., 2010), are not ideal

for tracking displacements of the sea ice edge.

Ebert and McBride (2000) examined the position error of the contiguous rain area in weather forecasts. They determined the

error vector from a total squared error minimization method when shifting the forecasted rain region to match the corresponding

observations. Their preference of applying an error minimization algorithm rather than an MCC approach was motivated by the30

former having better representations of displacement of rainfall maxima. An object-based approach with a focus on assessing

the quality of forecasts for highly localized and episodic phenomena was introduced by Davis et al. (2006). Like in Ebert and

McBride (2000), their focus when evaluating displacement is on the objects’ centroid. Displacement of the perimeter of the

contiguous rain area was not addressed in either investigation.

We begin this study by presenting a new algorithm for assessing the quality of representations of the sea ice edge by35

comparing results for two different data sets. We examine displacements over time of the sea-ice edge, and compare model

results for displacement distances versus observed displacements. The method is described in Sect. 2 with an idealized case

study. In Sect. 3 we apply the algorithm to analyze displacements of the sea ice edge in the Barents Sea. Finally, we provide

our concluding remarks in Sect. 4. Technical details and extensions are provided in two appendices.

2 Methods40

In order to illustrate the validation metrics that are introduced in this section, a set of idealized ice edges is introduced, as

depicted in Fig. 1. The domain is divided into 1000× 500 square grid cells, and we set the length of the side of a grid cell

to 1. Denote the curve that separates regions with binary values 0 and 1 as an edge curve, and let LO(t) and LM (t) denote

observed and modeled edges, respectively, at time t. Idealized examples with edges for LO and LM at two different times, t0

and t0 + ∆t, are displayed. In the context of forecasting, LM (t0) may be taken to represent the model initialization at t0 and45

LM (t0 + ∆t) is then the forecast at a temporal range of ∆t. The other binary fields can represent observations at the same

times.

2.1 Validation metrics for ice edge displacement in one data set

We aim at defining metrics that describe differences in maximum sea ice expansion from sea ice edge displacements between

two data sets. In order to do so, we must first introduce a quantity that properly measures the maximum displacement in one50

data set. Here a definition is provided which is a gridded, signed, one-sided variation of the Hausdorff distance (Dukhovskoy

et al., 2015).

For the remainder of this investigation we will take the binary fields to be representations of sea ice, with values assigned

to 0 and 1 for conditions of no ice and ice, respectively. We will here associate the presence of ice (value 1) with sea ice

concentration c exceeding cedge = 0.15. In a gridded representation the ice edge can then be taken to be constituted by the grid55
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Figure 1. Binary fields with values of 1 (ice) and 0 (no ice/ocean) are displayed by white and blue color shading, respectively. Light shades

of blue indicate regions with a non-overlapping ice cover, as indicated by the color legend. The derived modeled and observed ice edges LM

and LO at t=t0+∆t are drawn as red and black curves, respectively. The corresponding ice edges that are taken to represent the situation at

t0 are drawn as light red and gray curves. The full black circle indicates the position on the observed ice edge at t0+∆t which has the largest

distance to the ice edge at t0 (the full gray circle). The largest displacement of the model ice edge is marked by full diamonds. The full red

circle is the position along the model ice edge at t=t0+∆t closest to the full black circle, while the full light red circle is the position of the

observed ice edge at t0 closest to the full red circle. All dashed lines represents displacements as defined by Eq. (3). Open circles indicate a

random selection of displacement positions for the model results, see the text for details.

cells e= [i, j] that meet the condition

c[i, j]≥cedge ∧ min
(
c[i− 1, j], c[i+ 1, j], c[i, j− 1], c[i, j+ 1]

)
< cedge (1)

where ∧ is the logical AND operator. Denoting the N(t) grid cells that satisfy this condition for time t by e(t)
1 ,e

(t)
2 , . . . ,e

(t)
N the

ice edge for time t is then the curve

L(t) = {e(t)
1 ,e

(t)
2 , . . . ,e

(t)
N(t)} (2)60

This follows the algorithm presented in Melsom et al. (2019). Let L(t0),L(t0 + ∆t) denote the sea ice edges at times t0 and

t0 + ∆t, respectively. Furthermore, let d∆t
n be the displacement distance between a grid cell e(t0+∆t)

n in L(t0 + ∆t) and curve

L(t0), i.e.

d∆t
n = snmin ||e(t0+∆t)

n −L(t0)|| (3)

Here, ||z|| is the Euclidean distance of z and the minimum is considered for the distances between grid cell e(t0+∆t)
n and each65

of the grid cells belonging to L(t0). Furthermore, sn is +1 or -1 when e(t0+∆t)
n is on the no ice or ice side of L(t0), respectively,
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i.e.

sn =

 −1 if c[e(t0+∆t)
n ](t0)≥ cedge

+1 if c[e(t0+∆t)
n ](t0)< cedge

(4)

where c[e(t0+∆t)
n ](t0) denotes the sea ice concentration at the time t0.

Figure 1 shows an idealized example where a modeled and an observed sea ice edge are displaced. Presently, we consider70

metrics for one product. To illustrate, focus here on the ice edges derived from the model product (light red and red lines). The

length of dashed lines in Fig. 1 then correspond to model displacements min ||e(t0+∆t)
n −L(t0)|| for selected cells e(t0+∆t)

n .

We introduce the maximum expansion displacement as

d∆t
max = max(d∆t

n ) , n= 1,2, . . . ,N(t0 + ∆t) (5)

Note that the definition of the sign s in Eq. (3) has been chosen so that Eq. (5) will return the largest positive value among75

d∆t
n . If all values of d∆t

n are negative, the result is the negative value distance with the lowest magnitude. The definition of s

was designed so that d∆t
max will represent the displacement of the largest sea ice advance from L(t0) to L(t0 + ∆t).

If we briefly introduce d−∆t
m as the shortest distance from a grid cell em of L(t0) to the curve L(t0 + ∆t), we note that the

Hausdorff distance dH between curves L(t0 + ∆t) and L(t0) is

dH =max(|d∆t
n |, |d−∆t

m |) (6)80

Here, dH is symmetric with respect to the distance when swapping the two compared data sets (usually an observed and a

modeled feature). The corresponding distance measure introduced in Eq. (5), on the other hand, is asymmetric by design:

Distances are compute from the grid cells of the updated ice edge at t0 + ∆t to the ice edge curve from the initialization at t0.

For the various quantities we reference model results and observations by superscripts M and O. For the set of binary fields

depicted in Fig. 1, we find that dM ;∆t
max = 113.2 (the distance between the red and light red diamonds in the figure), while85

dO;∆t
max = 97.9 (the distance between the black and gray full circles).

The maximum distance in Eq. (5) provides a single measure to examine the ice-edge displacement. However, it can be more

informative to analyze the whole distribution of the displacements d∆t
n defined by Eq. (3), rather than their maximum only.

This can be done by inspecting a histogram of the displacements d∆t
n (Fig. 2). Another option is to present the cumulative

probability distribution of d∆t
n (Fig. 3).90

To avoid inflating the sample size beyond its degrees of freedom, displacement results can be subsampled at the spatial

decorrelation length along the ice edge . For the distribution of d∆t
n a proper decorrelation length can be computed if the edge

cells e(t0+∆t)
n are in sequence along L(t0 + ∆t). A detailed description for this procedure is given in Appendix A. In Sect. 3.3

we will present results for the time series d∆t
max(t) derived from subsampling based on decorrelation.
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Figure 2. Histograms for the distribution of displacement distances computed from Eq. (5) for the ice edges displayed in Fig. 1. The mean

displacement distances for model results and observations are 82 grids and 61 grids, respectively. The corresponding median values are

88 grids and 70 grids, respectively.

2.2 Comparison of the displacements of modeled and observed ice edges95

In the previous section we focused on metrics which describe the displacement of a single (modeled or observed) sea ice edge.

In this section we extend these to assess the differences in the displacements of the modeled versus observed ice edge. For this

purpose, binary fields that are taken to represent observations as well as model results are introduced, as displayed in Fig. 1.

We aim to compare model results for displacement distances with the corresponding displacements from observational data.

Here, we discuss results for the idealized case depicted in Fig. 1.100

In Fig. 2 the histograms for all displacements d∆t
n are shown, with the histograms to the left and right representing model

results and observations, respectively. The results have been binned into categories that each span distances of 20 grid cell

units. Displacement distances are not evenly distributed, as they have about half of the distance values in one of six categories,

and this specific category is shifted by one category from observations to model results.

Next, the cumulative distributions of displacement distances are displayed in Fig. 3. Here, the results were subsampled by the105

decorrelation length along the edge curves prior to the analysis. We find that the model displacements are shifted approximately

20 grid units higher for the entire distribution, as the two curves are nearly parallel.

Hence, Fig.s 2 and 3 both reflect the distributions’ near uniform shift of 20 grid units, and show that this shift is not

qualitatively impacted from subsampling at the decorrelation length.

From the perspective of an observer, a useful attribute is the quality of the forecasted maximum displacement of the binary110

field, over the forecast period. A simple metric which provides this type of information is the difference in the maximum

displacement as given by Eq. (5), i.e.

∆d∆t
max = dM ;∆t

max − dO;∆t
max (7)
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Figure 3. Cumulative distributions of the separation (ice edge displacement) distances from t0 to t0 + ∆t, for model results (red curve) and

observations (black curve). Shown here are results for the idealized example displayed in Fig. 1, with distances subsampled at intervals of

the decorrelation lengths, which are 42 and 38 grid cells along the ice edge for the model results and observations, respectively. The mean

separation distance difference for the present subsample of ice edge grid cells is the integral of the area between the curves, here displayed

by gray shading. In this case, the mean difference is 20.9 in grid cell units, with larger displacement values in model results than from

observations.

where dO;∆t
max is computed from observed ice edges at t0 and t0 + ∆t (black and gray curves in Fig. 1, respectively), and dM ;∆t

max

is computed from the corresponding model results. For the results in the idealized example that was introduced in Sect. 2.1,115

the model is over-estimating the maximum displacement, by ∆d∆t
max = 15.3 grid cell units.

A similar quantity that provides local information is the local difference in displacement of the model ice edge in proximity

of the maximum displacement found in the observations. Let eO;(t0+∆t)
0 be the position in LO(t0 +∆t) to which the maximum

edge displacement is found in the observations. Then, determine εM ;(t0+∆t)
0 , the model edge grid cell positioned closest to

e
O;(t0+∆t)
0 at the same time. In Fig. 1, the positions eO;(t0+∆t)

0 and εM ;(t0+∆t)
0 are indicated by the full black and full red120

circles, respectively. Following Eq. (3) the corresponding local edge displacement in the model results is

δM ;∆t
0 = smin ||εM ;(t0+∆t)

0 −LM (t0)|| (8)

For the idealized example, we find that δM ;∆t
0 = 83.9. The local difference in displacement between model and observations,

with reference to the position eO(t0+∆t)
0 , becomes

∆δ∆t
max = δM ;∆t

0 − dO;∆t
max (9)125
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We recall from Sect. 2.1 that dO;∆t
max = 97.9 so, for the idealized example we have ∆δ∆t

max =−14, i.e. a local underestimation

of the displacement in the model results.

One aspect which is not disclosed by the metrics introduced thus far, is to what degree forecasts manage to reproduce the

geographical location of the observed maximum displacements. In order to examine such a relation, we first compute the

decorrelation length of displacements given by Eq. (3). If we denote this grid distance by ∆n, we restrict the analysis of grid130

cells and corresponding displacements to

{. . . , εM0−2∆n, ε
M
0−∆n, εM0+∆n, ε

M
0+2∆n, . . .}(t0 + ∆t), (10)

{. . . , δM ;∆t
0−2∆n, δ

M ;∆t
0−∆n, δM ;∆t

0+∆n, δ
M ;∆t
0+2∆n, . . .} (11)

respectively, limited by the first and last cells along the curve LM (t0 +∆t). Next, we construct bins analogously to the method

used for producing rank histograms (Talagrand diagrams) for ensemble forecasts (Hamill, 2001; Talagrand et al., 1997; Ander-135

son, 1996): First, distances listed in Eq. (11) are sorted by increasing values, and then bins are introduced for values smaller

than the minimum distance, the intervals between the sorted distances, and for values larger than the maximum distance. The

bin placement of δM ;∆t
0 then gives the rank of this displacement. With a perfect model, the maximum of δM ;∆t will occur at

the geographical position corresponding to the maximum displacement in the observations (dO;∆t
max ). This will place δM ;∆t

0 in

the highest (rightmost) bin. A flat histogram indicates a model with no skill, since each bin is equiprobable for random draws.140

In the present idealized example we find that ∆n= 42, and the rank of δM ;∆t
0 in the 24 resulting bins is 9. When multiple

forecasts are examined, the decorrelation length will generally change, as will the length of the edges. Thus, we randomly

subsample a fixed number of intervals from Eq. (11), so that the number bins is equal across different cases and results can be

aggregated.

For the idealized example, a set of nine randomly subsampled edge positions from those given by Eq. (10) for the model145

results at t= t0 + ∆t is displayed by open circles in Fig. 1. For this particular case, in the range from 1 to 10 the rank of

the displacement δM ;∆t
0 is 3. So, in this idealized, synthetic example, the model exhibits a poor positioning of the maximum

observed displacement.

3 Application of the new validation method

3.1 Description of sea ice data sets150

To illustrate the methodology introduced in Sect. 2, we examine model results from a coupled ocean – sea ice model, and

compare with relevant observational data. The model results are taken from the SVIM hindcast archive (SVIM, 2015). For the

present illustrative purpose we limit the analysis to the two year period from 1 January 2000 to 31 December 2001. Results are

available as daily means on the model configuration’s native 4 km stereographic grid projection (Lien et al., 2013).

The ocean module of the coupled model used for the regional simulation is the Regional Ocean Modeling System (ROMS),155

described in Haidvogel et al. (2008) and references therein. The sea ice module was developed by Budgell (2005). The ice
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Figure 4. Map of the full SVIM simulation domain. The Barents Sea analysis region in the present study is shown as a highlighted region

where a sample sea ice concentration distribution is depicted. The 40◦E meridian which will subsequently be used for dividing the domain

into two parts, is displayed by the red curve. The shading of ice concentration values is given in the label bar, where c is in the sea ice

concentration fraction. This sample shows the model results for 15 April 2000, with the horizontal resolution from the SVIM experiment.

model dynamics are based on the elastic-viscous-plastic (EVP) rheology after Hunke and Dukowicz (1997) and Hunke (2001),

and the ice thermodynamics are based on Mellor and Kantha (1989) and Hakkinen and Mellor (1992).

The model results for sea ice concentration are somewhat noisy on the grid cell scale, owing to the dispersiveness of the nu-

merical scheme. In some regions, the grid cells that constitute the ice edge as defined by Eq. (1) can then appear as a mesh-like160

collection of cells. In order to reduce the impact of this issue, we applied the second order checkerboard suppression algorithm

(Li et al., 2001) to the model results before conducting the present analysis. The sea ice concentrations from observations does

not suffer from this type of noise, thus such an algorithm was not applied to the observational data set.

We compare model results with observations from the Arctic Ocean Sea Ice Concentration Charts Svalbard which is a multi-

sensor data set that uses data from Synthetic Aperture Radar (SAR) instruments as its primary source of information (WMO,165

2017). This observational data set will be referred to as the ice chart data hereafter.

The ice chart data cover the northern Nordic Seas, the Barents Sea and adjacent ocean regions. The ice chart data deviates

from a passive microwave product in this region, particularly in the final months of the melting season (e.g. Sect. 6 in Melsom

et al. (2019)). Hence, the true sea ice extent is unknown.

The ice chart data are available on a stereographic grid projection with a resolution of 1 km. Data availability is restricted170

to working days. During a regular week, we then have four days with 24 h displacement results. The data set is also slightly
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reduced due to holidays, and a total of 354 days with 24 h ice edge displacement results were available from the present two

year period.

The present study will be restricted to results and data for the Barents Sea. The SVIM simulation domain is displayed in

Fig. 4, where the Barents Sea analysis region is highlighted. Ice chart results are integrated onto the SVIM domain using a175

mass conserving Riemann integral approach. All grid cells inside the Barents Sea region which lack proper values (usually due

to the presence of land) in at least one of the data sets are masked prior to the analysis. The analysis region is then constituted

by 80.399 wet grid cells, which represent an area of 1.29 · 106 km2.

3.2 Open boundaries and coasts

Situations may arise when the algorithm described in Sect. 2.1 gives rise to an unrealistic representation of displacement180

distances, and this may particularly affect the maximum value as defined by Eq. (5) and quantities that depend on this definition.

We can illustrate this issue by inspecting the change in the ice edge position from 23 October 2001 to 24 October 2001, which

is an extreme case in the present context. The evolution of the model results over this 24 h period is displayed in Fig. 5.

The example demonstrates that in such cases, the general algorithm in Sect. 2.1 mismatches ice edge grid cells when the al-

gorithm identify ice edge motion incorrectly. A straightforward implemention of the algorithm in Sect. 2.1 leads to a maximum185

sea ice displacement of 285 km as given by the thick black line close to the subdomain’s northern border.

Figure 5. Sample scene displaying the changes in model sea ice extent from 23 October 2001 (day 1) to 24 October 2001 (day 2). The black

line indicates the maximum displacement distance (d∆t
max, given by Eq. (5) with the original algorithm, while the red line shows the result

when grid cells along the open boundaries and coastlines are included (L̃(t0) from Eq. (B7)). The color coding is given by the label bar, and

note that only the northern part of the Barents Sea analysis region is displayed.
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This is clearly a case where sea ice is advected into the domain across an open boundary, and the algorithm must be

modified in order to avoid misinterpretations of results for displacement distances. This can be done by including grid cells

along the open boundary as potentially being neighbours to the sea ice edge. Corresponding modifications to the displacement

distance algorithm are introduced in Appendix B. The maximum distance using the modified algorithm becomes 79 km (red190

line). It must be noted that if the ice is advected into the domain, the distances associated with such a displacement will be

underestimated, since the real position of the ice edge outside of the analysis domain at t0 is unknown.

Situations where unrealistic representations for displacements may also arise when ice freezes along the coast, e.g. due to

colder air in the vicinity of continents, or less salty water masses close to the coastline. This issue may be treated analogously

to advection across an open boundary, see Appendix B for details.195

3.3 Validation results

We first examine the distribution of daily maximum ice edge displacements. From Fig. 4 we note that this examination will

be performed for a domain in which advection of sea ice across the open boundaries is relevant, as well as freezing along

coastlines of the continent and archipelagos. To address this issue, the analysis based on the algorithms in Sect. 2 will be

extended following the outline in Sect. 3.2, and detailed in Appendix B.200

In Fig. 6 results from the 354 days with 24 h maximum displacements from both data sets are displayed. We note that about

2/3 of the maximum displacements in model results are in the range 10 – 30 km. The corresponding distribution of results from

the ice chart data has two maxima, one for the range 20 – 40 km which accounts for nearly half of the cases, and a secondary

maximum for short (0 – 10 km) maximum displacements. The medians of the daily maximum displacement distances are

23 km and 32 km for the SVIM results and the ice chart data, respectively. We also note that the distribution frequencies for the205

two year period change only moderately when the adjustments for open ocean boundaries and coastlines that were described

in Sect. 3.2 are included in the analysis.

A conclusion that can be drawn from these results is that the largest expansions of sea ice extent in the model (SVIM) results

are underestimations when compared with observations (ice chart data). This is generally the case, as the SVIM median is in

the range 20 – 30 km, while the median of the ice chart data is in the range 30 – 40 km. The underestimation is also seen for210

extreme cases, as the frequency of maximum expansion exceeding 60 km is about five times as high for the ice chart data.

In order to examine the degree to which SVIM results reproduce the geographical location of the observed maximum

displacement, we apply the ranking method described in Sect. 2.2. We consider a fix number of 10 bins for the present investi-

gation. Hence, for each set of 24 h results for displacement distances, nine values are randomly selected from the displacements

in Eq. (11). Moreover, the requirement of at least nine additional ice edge positions separated by the decorrelation length scale215

restricts the cases that can be considered in this analysis. From the full set of 354 cases with 24 h displacement results, 235

cases could then be kept in the analysis of ranked displacements, as these cases met the requirement of at least 10 statistically

independent displacement distances. The size of the set of independent values is restricted by the temporally varying degrees

of freedom, as given by the ice edge length and the decorrelation length scale.
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Figure 6. Histograms for the distribution of daily maximum displacement distances ∆d∆t
max, defined by Eq. (5). Horizontal bars pointing

left and right correspond to results from SVIM model simulation and ice chart data, respectively. Light colored bars display results from the

original algorithm in Sect. 2.1, while bars with regular colors (labeled “OB&C restricted”) result after the extension in Appendix B for open

boundaries and coastlines is applied. Results from 354 days of 24h edge displacements have been analyzed, see the text for further details.

The resulting frequency distribution for each of the ten ranks is displayed as gray vertical bars in Fig. 7(a), with rank values220

from 0 to 9. The highest rank (9) results when the model displacement close to the site with maximum displacement in the

observations (the reference displacement, δM ;∆t
0 ) is larger than all displacements from the nine subsampled ice edge positions.

The next rank (8) corresponds to cases where one and only one of the subsampled positions have a larger displacement than

the reference displacement, and so on. In other words, high ranks indicate situations in which the position of the maximum

displacement is described with a relatively high quality.225

The histogram in Fig. 7(a) has nearly twice as many entries in ranks 5 – 9 than ranks 0 – 4. This mode for higher ranks indicate

some skill for results from the SVIM archive in detecting the location of the maximum displacements in the observations. The

average rank in the present analysis is 5.48. For a random distribution of 235 integer numbers in the range 0 –9 the 0.5th and

99.5th percentiles of the average rank are 4.02 and 4.98, respectively. Thus, the analysis reveals that while the model results

are far from perfect, the average rank of 5.48 is significantly higher than results from random spatial distributions of ice edge230

displacements. We have also applied the more traditional χ2-test for rank flatness Wilks (2019), and find that for the present

histogram we have χ2 = 52. This value is nearly twice the magnitude of χ2
crit when this is set to reject the null-hypothesis of

a flat distribution at an α level of 0.001.

We supplement this analysis by dividing the region into two subdomains, separated by the 40◦E meridian, as indicated by

the red line in Fig. 4. In order to retain the majority of the days in the analysis, the number of randomly chosen displacements235
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Figure 7. Rank histogram for model results for the local ice edge displacement corresponding to the position of the maximum observed

displacement. (a): Sets of nine alternative model displacements were derived for each of 235 days with 24 h displacements results. The nine

displacement values were ordered from lowest to highest, and the local displacement was given a rank from the slot in which this value

belonged, see the text for details. The blue curve shows the average local model displacement distances for results belonging to each of the

ranks, with negative numbers corresponding to local sea ice retreat in the model results. The average maximum observed displacement is

39 km. (b): Results obtained for a subdivision as indicated by the red line in Fig. 4. Here, sets of seven alternative displacements results were

derived for each subdomain. Then, results were available for 179 days and 224 days for the western and eastern subdomain, respectively.

The average maximum observed displacements are 36 km in both subdomains. The use of gray shading and line colors for the subdomains

are indicated by the inset label. The y-axes in (a) and (b) have been specified so that the black horizontal 0-axes lines for the righ-side axes

correspond to the frequency level of a flat distribution of frequencies (left-side y-axes).

was reduced to seven values. This was due to the reduced degrees of freedom when the same decorrelation length scale was

applied in smaller domains, with shorter ice edges.

The results for the eastern and western Barents Sea subdomains are displayed in Fig. 7(b). Contrasts between the frequency

distributions between panels (a) and (b) arise for several reasons. First, the domain split leads to a set of two time series

of maximum displacements where the maxima from the full domain will be distributed between the two subdomain time240

series, and new maxima are introduced for the alternative subdomain. Next, the separation line between the two subdomains

is manifested in the analysis as a new, shared open boundary. Hence, the shapes of the subdomain distributions may to some

degree deviate from the full domain distribution. We note that for the present analysis, the result is that the distribution peak in

ranks 4 and 5 from the full domain case disappears in the resulting rank frequencies for the subdomains.

The average ranks of the model displacements corresponding to the largest observed displacements are 3.95 and 4.13 in245

the western and eastern subdomain, respectively. The ranges spanned between the 0.5th and 99.5th percentiles for random

distributions become [3.06,3.94] and [3.11,3.89] for the western (179 days) and eastern (224 days) subdomain, respectively.
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4 Concluding remarks

In this study we present a new algorithm for examination of the displacement of the edge (or the front) of a binary field.

From this algorithm we can compute properties for displacement distances. Next, methods that compare such properties are250

introduced in order for the quality of edge displacement results from a model to be quantified. These methods are e.g. relevant

when assessing the quality of forecasted displacements of the edge. The results from these methods expand on existing vali-

dation metrics such as e.g. the Integrated Ice-Edge Error (Goessling et al., 2016) and the various ice edge metrics considered

by Melsom et al. (2019): The methods presented here provide summary statistics for the quality of model results for ice edge

displacements in the presence of an expanding sea ice cover, as exemplified by Fig. 6 and Fig. 7, that are not provided with255

existing metrics. Such quality assessments are of high relevance for planned or ongoing site specific activities in regions which

can potentially become ice infested.

The present study has been framed in the context of results for displacements of the sea ice edge. Thus, the investigation in

Sect. 3 was based on data for the sea ice edge from satellite observations, and simulation results from a coupled ocean – sea

ice model. However, the algorithm that was introduced in Sect. 2 can be applied to the displacement of the perimeter of any260

property that can be represented by a continuous binary field. Stratiform precipitation is an example of another property for

which the methods presented here are relevant.

Note that we have used the term displacement rather than advection. The reason for this is that displacements need not be

purely of an advective nature. In the case of sea ice, the displacement of the initial edge will generally be affected by freezing

or melting along the perimeter of the sea ice extent. Analogously, displacement of the area affected by stratiform precipitation265

can be affected by new condensation or partial depletion of the cloud.

As demonstrated in the example depicted in Fig. 5, the original algorithm described in Sect. 2.1 and 2.2 may yield results

that represent other aspects than true displacements. Here, we have amended situations in which the sea ice enters a limited

area domain across an open model domain boundary, and situations where freezing takes place next to a physical boundary

(the coast). Modifications of the algorithm which include distances from ice edges to coasts and open boundaries are described270

in Sect. 3.2 and detailed in Appendix B. This approach eliminates unphysical edge displacement distance values, as revealed

from the sample situation in Fig. 5.

However, there may be other issues that can distort results that are produced by the analysis presented here. One example is

cases where features are seen to arise seemingly spontaneous from one time of analysis to another: The algorithm in Sect. 2

can e.g., if applied to precipitation data, give rise to unrealistic results for displacements when convective precipitation cells275

develop.

Results from the algorithms that are introduced in the present study give valuable information regarding the changing extent

of sea ice, and how well the displacements of the observed and modeled sea ice edges agree. These algorithms have proven

to provide simple, yet robust and informative assessments for the quality of ice edge forecasts both with respect to the largest

displacements from one time to another as well as with respect to the reproduction of the geographical position where the280

largest displacement occurs.

13



Code and data availability. The idealized distributions of concentrations that are depicted in Fig. 1, and source code for computing results

displayed in Fig. 2 and Fig. 3, are available from https://doi.org/10.5281/zenodo.4545686 (Melsom, 2021). Model results that were analyzed

in Sect. 3 are available from https://archive.norstore.no/pages/public/datasetDetail.jsf?id=10.11582/2015.00014 (SVIM, 2015), while the

observations are available from https://thredds.met.no/thredds/catalog/arcticdata/met.no/iceChartSat/catalog.html.285

Appendix A: Decorrelation length of displacements

Assume that a we have a set of N edge grid cells en (i.e. satisfying Eq. (1)) that form a curve

L= {e1,e2, . . . ,eN} (A1)

where L is continuous in the sense that grid cells en and en+1 are neighbors. Furthermore, associate displacement distances dn

to each en as defined in Sect. 2.1. Then, the spatial autocorrelation of displacements can be estimated using a sample Pearson290

correlation coefficient approach:

r(η) =

N−η∑
n=1

[(dn− dn)(dn+η − dn+η)]
/ [

N−η∑
n=1

(dn− dn)2

N−η∑
n=1

(dn+η − dn+η)2

]1/2

(A2)

We have r(0) = 1 and we define the decorrelation length of the displacements, ∆n, as

∆n= min
∀η

(η | r(η)< 1/e ) (A3)

where e is Euler’s number. If, for a given time, the ice edge is discontinuous, each continuous curve segment is treated sepa-295

rately, and the weighted mean value of the results for ∆n from each segment is used. In that case, weights are applied according

to the number of edge grid cells in each curve segment.

Appendix B: Open boundaries and coasts

As discussed by Melsom et al. (2019), open boundaries and coastlines can potentially have significant impacts on the results

for the metrics for the position of the sea ice edge. Here, we introduce a method which will give more physical meaningful300

results if ice either freezes near a coastline, or enters into a domain across an open boundary. Moreover, the method affects the

results modestly or not at all for an edge that is displaced inside of the domain.

First, set the open boundary grid lines to

LOB(t0) = {e1OB
,e2OB

, . . . ,eNOB
} , c[enOB

](t0)< cedge (B1)

where enOB
is any ocean grid cell along the boundary of the domain which was on the open ocean side of the ice edge at t= t0.305

Then L(t0) in Eq. (3) can be replaced by

L̃(t0) = L(t0)∪LOB(t0) (B2)
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Figure B1. Binary fields with values of 1 (ice) and 0 (no ice/ocean) are displayed by white and blue color shading, respectively. Land is

indicated as a black region. Light shades of blue indicate regions with a non-overlapping ice cover, as indicated by the inset color legend.

Open boundary grid cells are depicted as gray lines. Ice edges for t0 and t0 + ∆t are drawn as light red and red lines, respectively. Dashed

black lines show the edge displacements as defined in Sect. 2.1, for a selection of labeled ice edge grid cells from t0 + ∆t, marked by white

circles. Full black lines display the displacements d̃ that result from the modifications described in Appendix B, see Eq. (B8). For the set of

grid cells that are highlighted here, only en1 is unaffected by the modified definitions.

and for the corresponding distances we introduce the notation d̃, so Eq. (3) becomes

d̃n
∆t

= min ||e(t0+∆t)
n − L̃(t0)|| (B3)

where e(t0+∆t)
n is a grid cell on L(t0 + ∆t), as before. The set of grid cells e(t0+∆t)

n is not affected, so the number of displace-310

ment distances considered in Eq. (5), N(t0 + ∆t), is unchanged. Note that here, the additional curve LOB is only added to

L(t0). Otherwise, if it was also added to L(t0 + ∆t), the trivial score from perfect metching segements of edge curves would

significantly impact the resuls as they are e.g. displayed in Fig. 2 and 3.
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A sample grid cell to which the displacement distance is significantly affected by this modification, is displayed as en3 in

Fig. B1. It must be noted that if the ice is imported into the domain, the distances d̃ associated with such a displacement will be315

underestimated, since the real position of the ice edge outside of the analysis domain at t0 is unknown. Moreover, for regular

displacement of ice inside the domain, results will be affected slightly when occurring in the vicinity of the open boundary

(e.g. en2 in Fig. B1).

Similarly, there can be cases where freezing of ice occurs along the coastline, e.g. as an effect of colder air in the vicinity of

continents, or less salty water masses close to the coastline. This is another case where the algorithm above can yield grossly320

exaggerated displacement distances. Again, the problem can be alleviated by including additional grid lines.

Set the coastal grid lines as

LC(t0) = {e1C
,e2C

, . . . ,eNC
} , c[enC

](t0)< cedge (B4)

where enC
is any ocean grid cell along the coastline which was ice free or had a sea ice concentration below cedge at t= t0.

Then L(t0) can be replaced by325

L(t0) = L(t0)∪LC(t0) (B5)

Here, Eq. (3) will be replaced by

dn
∆t

= min ||e(t0+∆t)
n −L(t0)|| (B6)

and the computation of the displacement distance to grid cell en4 in Fig. B1 is severely affected.

For a regional model, the typical situation is that there are both open boundaries and coastlines. In that case, we may combine330

the above modifications of the algorithm by adopting

L̃(t0) = L(t0)∪LOB(t0)∪LC(t0) (B7)

and Eq. (3) can be written

d̃n
∆t

= min ||e(t0+∆t)
n − L̃(t0)|| (B8)
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