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Abstract. A generalized damage parameterization is developed for the Maxwell Elasto-Brittle (MEB) rheology that reduces

the growth of residual errors associated with the correction of super-critical stresses. In the generalized parameterization, a

decohesive stress tensor is used to bring the super-critical stresses back on the yield curve based on any correction path. The

sensitivity of the simulated material behaviour to the magnitude of the decohesive stress tensor is investigated in uniaxial

compression simulations. Results show that while the decohesive stress tensor influences the short-term fracture deformation5

and orientation, the long-term post-fracture behaviour remains unchanged. Divergence first occurs when the elastic response

is dominant followed by post-fracture shear and convergence when the viscous response dominates – contrary to laboratory

experiment of granular flow and satellite imagery in the Arctic. The post-fracture deformations are shown to be dissociated

from the fracture process itself, an important difference with classical Viscous Plastic (VP) models. Using the generalized

damage parameterization together with a stress correction path normal to the yield curve brings the simulated fracture angles10

closer to observations (from 40− 50◦ to 35− 45◦, compared to 20− 30◦ in observations) and reduces the growth of errors

sufficiently for the production of longer-term simulations.

1 Introduction

Sea ice is a thin layer of solid material that insulates the polar oceans from the cold atmosphere. When sea ice fractures15

and a lead (or Linear Kinematic Features, LKFs) opens, large heat and moisture fluxes take place between the ocean and

the atmosphere, significantly affecting the polar meteorology on short time-scales and the climate system on long time-scales

(Maykut, 1982; Ledley, 1988; Lüpkes et al., 2008; Li et al., 2020). The refreezing of leads significantly contributes to the

sea ice mass balance (Wilchinsky et al., 2015; Itkin et al., 2018), and the associated brine rejection drives the thermohaline

ocean circulation in the Arctic and vertical eddies in the ocean mixed layer (Kozo, 1983; Matsumura and Hasumi, 2008). As20

such, the production of accurate seasonal-to-decadal projections using coupled models requires an accurate representation of

sea ice leads. Furthermore, the presence and deformations along LKFs can influence the pressure on ships and increase the

risk of besetting (Mussells et al., 2017; Lemieux et al., 2020). The increased navigation through the Arctic passages (Pizzolato
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et al., 2016; Aksenov et al., 2017) thus calls for the development of high-resolution sea ice forecast products that capture the

finer-scale lead structures (Jung et al., 2016).25

As sea ice models are moving to higher spatial resolutions, they become increasingly capable of resolving LKFs (Hutter

et al., 2019; Bouchat and Tremblay, 2020). The simulation of the ice fractures yet represents a challenge. To this day, most

sea ice models simulate the motion of sea ice using plastic rheologies or modifications thereof (Hibler, 1979; Hunke, 2001).

While several improvements were made on the numerics and efficiency of the methods used to solve the highly non-linear

momentum equation (Hunke, 2001; Lemieux et al., 2008, 2014; Kimmritz et al., 2016; Koldunov et al., 2019), the physics30

governing the ice fracture remains mostly the same. A number of rheologies have however been developed over the years in an

attempt to simulate the observed sea-ice deformations (Tremblay and Mysak, 1997; Wilchinsky and Feltham, 2004; Schreyer

et al., 2006; Sulsky and Peterson, 2011; Rampal et al., 2016; Dansereau et al., 2016; Damsgaard et al., 2018). Among these new

approaches, a damage parameterization derived for rock mechanics and seismology models (Amitrano et al., 1999; Amitrano

and Helmstetter, 2006) was adapted for the large scale modelling of sea ice (Girard et al., 2011; Bouillon and Rampal, 2015).35

This parameterization uses a damage parameter to represent the changes in material properties associated with fractures. While

still based on the continuum assumption, it allows for fractures to propagate on short time-scales in the sea-ice cover. It is used

in the Elasto-Brittle (EB Bouillon and Rampal, 2015; Rampal et al., 2016) and Maxwell Elasto-Brittle (MEB Dansereau et al.,

2016) rheologies, implemented in the large scale sea-ice Finite Element model neXtSIM (Rampal et al., 2019) and, recently,

in the Finite Difference McGill sea ice model (Plante et al., 2020).40

The damage parameterization is relatively new, and it remains unclear to what extent differences in material behaviour are

associated with the damage or to other rheological parameters. One known difference is the fracture development associated

with local damage, stress concentration and damage propagation, rather than prescribed by an associative normal flow rule as in

the standard VP models. The fracture angle simulated by the MEB and standard VP models are nonetheless in the same range

(θ = 35− 55◦, Dansereau et al., 2019; Hutter et al., 2020), which is larger than those derived from high-resolution satellite45

observations (θ = 20− 45◦ Hutter et al., 2019) and in-situ observations (θ = 20− 30◦ Marko and Thomson, 1977; Schulson,

2004). In the standard VP model, modifications of the mechanical strength parameters (compressive and shear) and the use

of non-associated flow rules lead to smaller fracture angles that are more in line with observations (Ringeisen et al., 2019,

2020). In the MEB rheology, the fracture angles can be reduced by increasing the angle of internal friction or the Poisson ratio

(Dansereau et al., 2019). These sensitivities suggest that modifications to the damage parameterization could be used to bring50

the simulated fracture angles closer to observations, but has not yet been tested.

The MEB rheology also presents some numerical challenges associated with the growth of residual errors associated with the

damage parameterization at the grid scale (Plante et al., 2020). These errors can be attributed to the stress correction scheme,

a numerical tool used to define the growth of damage and to bring the super-critical stresses back to the yield curve. Other

progressive damage models instead represent the damage parameter as a discrete function of the number of failure cycles55

(Main, 2000; Amitrano and Helmstetter, 2006; Carrier et al., 2015). In continuum damage mechanics, a damage potential

derived from thermodynamic laws (Murakami, 2012) is used to simulate the material fatigue. In the Elastic-Decohesive (ED)
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rheology, material damage is not parameterized but a decohesive strain rate explicitly represents the material discontinuity

associated with the ice fracture and reduces the material strength of sea-ice (Schreyer et al., 2006; Sulsky and Peterson, 2011).

In this paper, we present a generalization of the damage parameterization that reduces the growth of the residual errors asso-60

ciated with the stress correction and brings the simulated fracture angle of sea ice in simple uniaxial loading experiments closer

to observations. Inspired by the work of Schreyer et al. (2006) and (Sulsky and Peterson, 2011), we introduce a decohesive

stress associated with the fracture of sea ice and test its influence on the simulated sea-ice fracture and deformations in uniaxial

loading experiments.

The paper is organised as follows. In section 2, we present the MEB rheology and governing equations. The generalized65

stress correction scheme is described in section 3. The uniaxial loading experimental set-up is presented in section 4 along with

the definition of diagnostics used to quantify the growth of damage and the growth of residual errors. Results are presented in

section 5, with a focus on the material behaviour in uniaxial compression experiments and its response to the changes in the

damage parameterization. In section 6, we discuss the influence of the stress correction and seeded heterogeneity. Conclusions

are summarized in section 7.70

2 Model

2.1 Momentum and continuity equations

The simulations are run using the MEB model implemented on a Eulerian Arakawa C-grid in the McGill Sea Ice Model

Version 5 (McGill SIM5, Tremblay and Mysak, 1997; Lemieux et al., 2008; Plante et al., 2020). The vertically integrated

2D momentum equation for sea ice, forced with surface friction only (i.e. ignoring the sea surface tilt, the coriolis and the ice75

grounding terms), can be written as:

ρih
∂u

∂t
=∇ ·σ+ τ , (1)

where ρi is the ice density, h is the mean ice thickness, u (= uî+ vĵ) is the ice velocity vector, σ is the vertically integrated

internal stress tensor and τ is the net external surface stress from winds and ocean currents. This simplified formulation is

appropriate for short term uniaxial loading experiments but can result in small errors in ice velocity when using a realistic80

model domain and forcing (Turnbull et al., 2017). Following (Plante et al., 2020), we define the uniaxial loading by a surface

wind stress τ a and prescribe an ocean at rest below the ice:

τ ≈ τ a− ρwCdw|u|u, (2)

where ρw is the water density, Cdw is the water drag coefficient and u is the sea ice velocity (see values in Table 1).

The prognostic equations for the mean ice thickness h (volume per grid cell area) and concentration A are written as:85

∂h

∂t
+∇ · (hu) = 0, (3)
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∂A

∂t
+∇ · (Au) = 0, (4)

where the thermodynamic source an sink terms are ignored.

2.2 Maxwell Elasto Brittle Rheology90

In the MEB rheology, the ice behaves as a visco-elastic material with a fast elastic response and a viscous response over a

longer-time scale. The governing equation for this visco-elastic material can be written as (Dansereau et al., 2016, 2017; Plante

et al., 2020):

∂σ

∂t
+

1
λ
σ = EC : ε̇, (5)

where E is the elastic stiffness defined as the vertically integrated Young Modulus of sea ice, λ is the viscous relaxation time-95

scale, C is the elastic tensor (fourth order), “:” denotes the inner double tensor product and ε̇ is the strain rate tensor. The elastic

tensor C and strain rate tensor ε̇ can be written is matrix form as:

C =
1

1− ν2




1 ν 0

ν 1 0

0 0 1− ν


 , (6)




ε̇11

ε̇22

ε̇12


=




∂u
∂x

∂v
∂y

1
2

(
∂u
∂y + ∂v

∂x

)


 (7)100

where ν (= 0.33) is the Poisson ratio, which defines the relative amount of deformation on the plane parallel to the loading.

The relative importance of the elastic and viscous components (first and second terms on the left hand side in Eq. 5) are

determined by the magnitude of the elastic modulus E and viscous relaxation time-scale λ. E and λ are functions of the ice

thickness, concentration and damage resulting in dominant elastic component for small deformations (undamaged ice) and

dominant viscous component for large deformations (heavily fractured ice). The elastic modulus E and viscous relaxation105

time-scale λ are written as:

E = Y he−a(1−A)(1− d), (8)

λ= λ0(1− d)α−1, (9)

where Y (= 1 GPa) is the Young Modulus of undeformed sea ice, d is the damage parameter (0< d < 1), a (= 20) is the

standard parameter ruling the dependency of the material strength properties on sea-ice concentration (Hibler, 1979; Rampal110

et al., 2016), λ0 (= 105s, ≈1 day) is the viscous relaxation time scale for undamaged sea ice and α is a parameter ruling the

post-fracture transition to the viscous regime.
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2.3 Yield criterion

Damage (or fracture) occurs when the internal stress state exceeds the Mohr-Coulomb failure criterion,

F (σ) = σII +µσI − c < 0, (10)115

where σI is the isotropic normal stress invariant (compression defined as negative), σII is the maximum shear stress invariant,

µ (= sinφ) is the coefficient of internal friction of ice, φ (= 45◦) is the angle of internal friction, and c is the vertically integrated

cohesion, defined as:

c= c0he
−a(1−A), (11)

where c0 (= 10 kN m−2) is the cohesion of sea ice derived from observations (Sodhi, 1997; Tremblay and Hakakian, 2006;120

Plante et al., 2020) or laboratory experiments (Timco and Weeks, 2010). No compressive or tensile strength cut-off are used in

this analysis. The reader is referred to Table 1 for a list of default model parameters.

2.4 Damage parameterization

The prognostic equation for the damage parameter d in the standard MEB rheology is parameterized using a relaxation term

with time scale Td (= 1 s) as:125

∂d

∂t
=

(1−Ψ)(1− d)
Td

, (12)

where

Ψ =
σc
σ′

= min
(
1,

c

σ′II +µσ′I

)
(13)

is a damage factor (0<Ψ< 1), σc is the critical stress lying on the yield curve and σ′ is the uncorrected stress state lying

outside of the yield curve. Thermodynamic healing and advection are neglected as we are focusing on the ice fracture.130

When the ice fractures, the damage factor Ψ is used to scale the super-critical stresses back towards the yield curve. The

prognostic equation for the temporal evolution of the super-critical stress tensor σ′ is written as a relaxation equation of the

same form as in Eq. 12:

∂σ′

∂t
=− (1−Ψ)σ′

Td
. (14)

3 Generalized stress correction135

We propose a generalized damage parameterization where the super-critical stresses are corrected back to the yield curve along

a line oriented at any angle γ from the y-axis in the stress invariant space (see Fig. 1). To this end, we chose to define the

damage factor in terms of the shear stress invariant only, as:

Ψ =
σIIc
σ′II

, (15)
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where the critical shear stress invariant σIIc is defined by the intersection point between the correction path and the yield curve140

(see Fig 1). After some algebra, we obtain:

σIIc =
c+µtan(γ)σ′II −µσ′I

1 +µtan(γ)
. (16)

The damage factor can then be written in terms of the super-critical stress state invariants (σ′I ,σ′II ), the correction path angle γ

and the coefficient of internal friction µ, as:

Ψ =
c+µtan(γ)σ′II −µσ′I

(1 +µtan(γ))σ′II
. (17)145

In this manner, the correction of super-critical stresses can follow any line in the stress invariant space provided that the damage

increases when ice fractures (Ψ< 1, or γ < 90◦). The generalized formulation now allows for the use of a yield curve without

cohesion (c= 0 kN m−1), something that is not possible in the standard parameterization otherwise Ψ is identically equal to 0

(see Eq. 13).

Note that using a stress correction path other than the standard path to the origin means that the corrected normal stress150

differs from the scaled super-critical stress Ψσ′I . We define this difference as the decohesive stress tensor needed to for the

corrected stress to follow the stress correction path γ (see Fig. 1). The stress correction equation (Eq. 14) then becomes:

∂σ′

∂t
=− (1−Ψ)σ′+σD

Td
. (18)

The invariants of the decohesive stress tensor (σID,σIID) are therefore written as:

σID = σIc−Ψσ′I =
c−Ψ(σ′II −µσ′I)

µ
, (19)155

σIID = 0, (by definition). (20)

When tanγ = σ′I/σ
′
II and σID = σIID = 0, we obtain the standard damage parameterization of Dansereau et al. (2016) as a

special case where the stress correction path depends on the super-critical stress state. Note that the decohesive stress tensor

used in this parameterization has a similar role as the decohesive strain rates used in the Elastic-Decohesive model Schreyer

et al. (2006), in that they both determine the change in stress state associated with the development of a fracture. In the present160

scheme, σD is derived from the stress correction path, while the decohesive strain rate in Schreyer et al. (2006) is derived from

the opening of a lead based on granular theory.

3.1 Projected error

The error δΨ on the damage factor Ψ(σ′I ,σ
′
II) can be written as:

δΨ =

√( ∂Ψ
∂σ′I

)2

δσ′2I +
( ∂Ψ
∂σ′II

)2

δσ′2II , (21)165
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where (δσ′I ,δσ′II ) are the errors on the calculated stress invariants. Expanding the derivative terms (using Eq. 18) and re-writing

δσ′I and δσ′II in terms of the relative error ε (i.e., δσ′I = εσ′I , δσ′II = εσ′II ), we obtain:

δΨ =

√
µ2

(1 +µtan(γ))2σ′2
II

ε2σ
′2
I +

(c−µσ′I)2
(1 +µtan(γ))2σ′4

II

ε2σ
′2
II , (22)

= Ψε

√
µ2σ

′2
I + (c−µσ′I)2

(c+µtan(γ)σ′II −µσ′I)2
, = ΨεR (23)

where R is the error amplification ratio.170

Assuming that the uncorrected stress is close to the yield criterion (i.e. σ′II +µσ′I − c∼ 0), this relation indicates that the

error amplification ratio R goes to infinity if:

tan(γ) =−1/µ, (24)

which corresponds to a path that runs parallel to the yield curve. This result is consistent with the instabilities in the standard

stress correction scheme during ridging reported in Plante et al. (2020), given that a line passing through the origin is nearly175

parallel to the Mohr Coulomb yield curve for large compressive stresses. In contrast, the path that maximizes the denominator

(smallest error growth) has γ = 90◦. This path, however, correspond to Ψ = 1 and does not create damage. The possible stress

correction path angles γ thus lie in the range arctan(−1/µ)< θ < 90◦.

Note that the error amplification ratio R is small for σI < 0, but becomes infinitely large at the yield curve tip when σ′II
approaches 0 (see Eq. 22). This behaviour is opposite to that of the standard stress correction scheme, which has smallR values180

in tension and large values in compression (Plante et al., 2020). To minimize the errors for all stress states, we blend the two

schemes (i.e. Eq. 17 in compression and Eq. 13 in tension, see Fig. 1b). We set the transition between the two schemes at the

points where they are both equal (i.e., at σ′I/σ
′
II = tanγ, see green line in Fig 1b). The damage factor is then defined as:

Ψ =





c+µγσ′
II−µσ′

I

(1+µγ)σ′
II

, if σ′I < σ′II tanγ,
c

σ′
II+µσ′

I
, otherwise.

(25)

4 Methods185

4.1 Numerical approaches

The MEB model is implemented in the McGill Sea Ice Model Version 5 (McGill SIM5) using an Eulerian, 2nd order finite

difference numerical scheme (Tremblay and Mysak, 1997; Lemieux et al., 2014; Plante et al., 2020). The equations are dis-

cretized in space using an Arakawa C-grid and in time using a semi-implicit backward Euler scheme (Plante et al., 2020).

A solution to the non-linear momentum and constitutive equations (Eqs. 1 and 5) is found using a Picard solver. The Picard190

solver uses an outer loop in which the equations are linearized and solved at each iteration using a preconditioned Flexible

General Minimum RESidual method (FGMRES, Lemieux et al., 2008). The non-linear terms are then updated and the linear

problem solved again until the residual error εres, defined as the L2-norm of the solution vector, is lower than 10−8 N/m2. The
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prognostic equations for the tracers (Eq. 3, 4 and 12) are updated within the outer loop iteration using an IMplicit-EXplicit

(IMEX) approach (Lemieux et al., 2014). The reader is referred to Plante et al. (2020) for more details.195

4.2 Experiment setup

Following Ringeisen et al. (2019); Dansereau et al. (2019); Herman (2016), we present results from idealized uniaxial loading

experiments and test the sensitivity of the residual error growth on the correction path angle γ in the generalized stress correc-

tion scheme. The model domain is 250 x 100 km (with 1km resolution), with sea ice of 1m thickness and 100% concentration

in the middle 60 km of the domain and two narrow bands of open water (20 km width) on each sides (Fig. 2). A solid Dirichlet200

boundary condition (u= v = 0) is used at the bottom, and open Neumann boundary conditions (∂u/∂n= 0) are used on the

top and sides. In all experiments, the forcing is specified by a surface stress τa (see Eq. 2). This differs from Ringeisen et al.

(2019) and Dansereau et al. (2016) where the upper boundary is represented by a moving wall acting as external forcing. The

forcing τa is ramped up from 0 to 0.60 N/m2 (corresponding to ∼20 m/s winds or ∼0.33 m/s surface currents) in a 2h period,

and then remains constant.205

4.3 Diagnostics definitions

4.3.1 Field asymmetry

We monitor the growth of the residual error in the simulations using a normalised domain-integrated asymmetry factor (εasym)

in the maximum shear stress invariant field (σII ), defined as:

εasym =

∑b
i=a

∑ny
j=1 |σII(i, j)−σII(nx− i, j)|∑b
i=a

∑ny
j=1 |σII(i, j)|

, (26)210

where (i,j) are the x-y grid indices respectively, (nx,ny) are the number of grid cells in the x and y-directions and (a,b) are the

indices of the first and last ice-covered grid cells on the x-axis.

4.3.2 Damage activity

We define the damage activity D as the total damage integrated over the original ice domain in a 1 minute interval:

D =
b∑

i=a

ny∑

j=1

d(i, j)t+30s− d(i, j)t−30s

60s
. (27)215

This parameter is analog to the damage rate in (Dansereau et al., 2016, 2017). Note that this definition of damage activity (or

damage rate) emphasizes activity in undamaged ice and is not sensitive to activity in already heavily damaged ice.

4.3.3 Fracture angle

When loaded in uniaxial compression, a granular material fails in diamond-shaped shear fractures (e.g. see Marko and Thom-

son, 1977; Ringeisen et al., 2019). We define the fracture angle θ as the angle between the y-axis and the fracture lines (see220
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Fig. 2). The orientation of these fracture lines have been measured in laboratory using in uniaxial loading experiments. Several

theories were developed to relate the fracture angle in terms of material parameters. The most common is the Mohr-Coulomb

theory (Coulomb, 1773; Mohr, 1900), where the fracture angle is related to the angle of internal friction as:

θ =
π

4
− φ

2
. (28)

This theory tends to underestimate the fracture angle of granular materials in laboratory experiments (Bardet, 1991). In the225

Roscoe (1970) theory, the fracture angle is defined instead in terms of the angle of dilatancy (δ) of the granular material:

θ =
π

4
− δ

2
. (29)

If δ = φ, the two theories give the same fracture angle θ. In general, the fracture angle falls between values predicted by the

Mohr-Coulomb and Roscoe theories with zero dilatancy (δ = 0) (Arthur et al., 1977; Bardet, 1991).

In our experiment, the fracture angle is calculated graphically for each individual simulation. We define the uncertainty as230

±tan(W/L)∼±2◦, where W is the fracture width (typically a few grid cells wide in our results, or ∼ 2-5 km) and L is the

fracture length (∼ 45 km). This error increases to ±6◦ for the few cases where the fracture is not well defined.

5 Results

5.1 Control simulation: standard damage parameterization

In the control simulation, a pair of conjugate fracture lines first appear when the surface forcing τa = 0.29 N/m, along with235

secondary fracture lines that are the results of interactions between the ice floe and the solid boundary that extends across the

full width of the domain at the base (Fig. 3). All fracture lines are oriented at 39◦ from the y-axis, smaller than reported by

Dansereau et al. (2019) using a Finite Element implementation of the same model (θ =∼ 43◦) and in the high range seen in

observations (θ = ∼20-40◦ Marko and Thomson, 1977; Hibler III and Schulson, 2000; Schulson, 2004; Hutter et al., 2020).

This orientation also falls in between that predicted by the Mohr-Coulomb (θ = 22.5◦) and Roscoe theories (θ = 45◦ when240

δ = 0), in accord with the common observation that both the angle of internal friction and the dilatancy (δ) are important in

defining the fracture (Arthur et al., 1977; Vardoulakis, 1980; Balendran and Nemat-Nasser, 1993).

When the ice fractures, the initial response is mostly elastic with divergence along the fracture line. The resulting stress con-

centration influences the propagation of the fracture in space over short time-scales (seconds) governed by the elastic waves

speed. The sea-ice deformation continues to occur post-fracture in the damaged ice and, over time, the response transitions245

from elastic to viscous-dominated as the Maxwell viscosity dissipates the elastic stresses and creates permanent viscous de-

formations. This transition is clearly seen in the development of a linear dependence between stress and strain-rate invariants

scaled by (1− d)3, where the slope corresponds to the viscosity (see for instance 4 c,f,i). The simulation reaches steady state

with deformations that are fully viscous and localized in the heaviest damage areas (Fig. 4g-i). This causes a predominance of

shear and convergence deformation along the fracture line throughout the simulation.250
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The asymmetries in the solution are very small at the beginning of the simulation (t ≤ 57min), and do not grow until

fractures occur (Fig. 5a-b). As the fractures develop, small errors grow rapidly with εasym increasing in large steps crossing

multiple orders of magnitude. Note that the model is always iterated to convergence with a strict residual error tolerance

(εres = 10−6Nm−2). The growth in εasym are associated with large values of damage error amplification ratio R (reaching

∼20, Fig. 5b). Since εasym is a domain-integrated quantity, it increases in time following large local error growths R. This255

illustrates the long-range and long-term influence of residual errors, which act on the development of the future fractures. Note

that εasym saturates when the σII field is no longer symmetric, and becomes insensitive to additional error growth. We assess

the precision of the solution using the maximum error amplification ratio Rmax, which indicate the level of amplification of

residual errors in the simulations, at times by more than one order of magnitude locally (Rmax > 10).

5.2 Generalized stress correction260

The generalized damage parameterization reduces the growth of residual errors, with decreasing error amplification ratioRmax

for increasing path angle γ (Fig. 6a). This results in an overall reduction of the asymmetry factor εasym (Fig. 6b), allowing for

the production of longer-term simulations that include post-fracture deformations. This improvement is only significant when

using γ > 0. For γ < 0, the maximum error amplification ratio Rmax remains important with periods when the residual error

increases by up to two orders of magnitude locally.265

Results show that the fracture angle is sensitive to the decohesive stress tensor, with decreasing fracture angle θ for increasing

stress correction path angle γ (Fig. 7). This finding is in line with results from Dansereau et al. (2019), where the fracture angle

was related to the far-field stress associated with the collective damage. In the MEB model, the far-field stresses directly

depends on corrected stress state, including σD in the generalized damage parameterization. Increasing the correction path

angle γ reduces the fracture angles in better agreement to observations.270

Along the fracture lines, the correction path angle γ influences the time-integration required to reach the same damage

and deformation rates (Fig. 8). This due to the fact that increasing the angle γ reduces the amount of damage for the same

super-critical stress state because the stress correction path approaches the horizontal and Ψ is closer to 1. The simulated ice

deformations are otherwise mostly insensitive to the correction path angle; i.e. all simulations have divergence during the initial

elastic response when the ice fractures followed by a transition to viscous deformations where shear and convergence defor-275

mations are predominant (Fig. 8a). In contrast with results from the VP model and from typical granular material behaviour,

divergent post-fracture deformation is only present when tensile stresses develop, e.g. at the intersection between conjugate

lines of fracture.

5.3 Sensitivity to φ and ν

Repeating the experiment using different angles of internal friction (φ) shows that the fracture angle decreases with increasing280

φ. The simulated fracture angles fall within the envelope from the Mohr-Coulomb and Roscoe theories, except for small angles

of internal friction (φ < 20◦), a value that is rarely observed for granular materials (Fig. 9). Note that the sensitivity of the

fracture angle to the coefficient of internal friction also disappears for small angles of internal friction (φ < 20◦) when using
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a large correction path angle (γ = 60◦ in Fig. 7). When both the stress correction path and the yield criterion approaches the

horizontal, fracture yields large stress corrections but small damage increases (i.e., Ψ = 1), such that the angle of fracture is285

governed by the stress correction and is weakly sensitive other model parameters. Based on these results, we suggest the use

of a correction path that is normal to the yield criterion (γ = arctanµ, see black points in Fig. 9).

Decreasing the angle of internal friction reduces the shear strength of sea ice for a given normal stress, such that the fracture

develops earlier in the simulation (i.e. under smaller surface forcing, Fig. 10). It also reduces the divergence associated with

the elastic response when ice fractures and increase the convergence in the post-fracture viscous regime. This result is typical290

for granular material, with smaller fracture angles associated with larger angles of dilatancy and divergence during the fracture

development.

The fracture angle is not sensitive to the Poisson ratio when the generalized stress correction scheme is used with a fixed

stress correction path angle γ (Fig 11). This is in contrast with simulations using the standard stress correction scheme, where

the fracture angle decreases with increasing ν (see blue points in Fig. 11, and also in Dansereau et al., 2019). Note that the295

Poisson ratio also affects the amount of shear and normal stress concentration associated with a local discontinuity in material

properties (Karimi and Barrat, 2018). The fact that the fracture angle is not affected by the changes in Poisson ratio thus

indicates that the stress concentration and propagation of the fracture in space is mainly controlled by the stress correction

rather than by the relaxation of material properties with damage. We speculate that the sensitivity of the fracture angle to the

Poisson ratio in the standard stress correction scheme stems from the dependency of the stress correction path angle to the300

super-critical stress state (i.e. γ = tan−1(σ′I/σ
′
II)).

6 Discussion

The results presented above show that the generalized stress correction scheme reduces the growth of the residual error as-

sociated with the damage parameterization. Despite the improvement, some asymmetries are still present in the simulations

(εasym < 10−2). This is due to the memory in the damage parameter (i.e. an integrated quantity) where residual errors accu-305

mulate and influence the temporal evolution of the solution. In regions of heavily damaged ice, the accumulated errors in the

damage parameter result in large errors in the stress state due to the cubic dependence of the Maxwell viscosity η on d (Eq. 9).

Future work includes replacing this formulation with a function that decreases the sensitivity of the Maxwell viscosity η for

small changes in d around d= 1.

Overall, the use of a decohesive stress tensor yields smaller simulated fracture angles, without significantly impacting the310

material deformations. Using a large correction path angle γ (> 45◦), however, significantly slows the damage production

and reduces the simulated sensitivity of the fracture angle to the mechanical strength parameters. Based on these results, we

suggest using a correction path that is normal to the yield criterion (γ = arctanµ). This value brings the simulated fracture

angles closer to observations (see black points in Fig. 9) and reduces the amplification of residual errors, while correcting the

super-critical stresses towards the closest point on the yield curve.315
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The simulation results show that in the MEB model, the damage develops at short time scales during which the elastic

component of the rheology is important, while most of the deformations occur post-fracture over a longer time scale in the

heavily damaged ice. This is in stark contrast with plastic models, in which a flow rule simultaneously dictates both the fracture

development and the relative amount of shear and normal deformations occurring in the fractures. The decoupling between

the development of damage and the post-fracture deformations in the MEB model explains that the type of deformations in320

the fracture remains similar (uniaxial convergence, i.e. ridging, contrary to observation, Stern et al., 1995) despite the use of

different stress correction path γ. This behaviour stems from the dominance of the viscous regime post-fracture: lead opening

cannot occur when the stress state is compressive and remains limited to locations where tensile stresses are present, such as at

the intersection of lines of fracture. This is contrary to granular theories, in which the distribution of contact normals determines

the amount of ridging or lead opening (i.e. dilatancy) that is occurring when forced in uniaxial compression (Balendran and325

Nemat-Nasser, 1993). This indicates that the decohesive stress tensor cannot be used to influence the deformations associated

to the fracture of ice in the MEB rheology unless other parameterizations, such as including a decohesive strain tensor during

the fractures (e.g., see Schreyer et al., 2006; Sulsky and Peterson, 2011), are added to the rheology.

The viscous dissipation timescale (λ) in our model is set based on observations (∼ 105, Tabata, 1955; Hata and Tremblay,

2015), and is one order of magnitude smaller than in other MEB implementations (Dansereau et al., 2016; Rampal et al.,330

2019). The results from the model are robust to the exact value of λ for a range 105− 107; the increase λ being compensated

by larger damage values along the fracture lines. For even larger λ values, divergence deformations persist longer in the

simulation and the transition from elastic- to viscous-dominated regime occurs later in the simulation (see Fig. 12), decreasing

the overall convergence along the fractures lines. If the transition to the viscous regime is removed (e.g. by setting α= 1),

divergence dominates throughout the simulations and reach large values as the leads open. The elastic wave are however no-335

longer dissipated in the fractures, leading to large and noisy deformation fields (divergence/convergence). These findings call

for a different viscosity-dependence on damage leading to both dissipation of elastic waves and a more realistic post-fracture

deformation field.

Note that the results presented above neglect heterogeneity in the ice cover, a factor that is responsible for much of the

brittle material behaviour in progressive damage models (Amitrano and Helmstetter, 2006). Heterogeneity was neglected in340

the analysis above to isolate the growth of the residual errors. While including heterogeneities does not change the overall

physics and sensitivity to the damage parameterization, it creates irregular sliding planes instead of the linear diamond shape

fractures (Fig. 13a), naturally creating contact points where ridging occurs with lead opening elsewhere along the fracture lines.

This results in a form of granular dilatancy typical of granular materials.

7 conclusion345

We propose a generalized stress correction scheme for the damage parameterization to reduce the growth of residual errors in

the MEB sea ice model. To this end, we scale the damage factor Ψ based on the super-critical maximum shear stress invariant

(σ′II ) only, together with a decohesive stress tensor defining the path from the super-critical stress state to the yield curve.
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The sensitivity of the fracture angles and sea-ice deformations to these changes are investigated in the context of the uniaxial

compression experiment similar to those presented in Ringeisen et al. (2019).350

Our results show that in the MEB rheology, most of the deformations occur post-fracture in heavily damaged ice, where

the viscous term is dominant. This causes a predominance of convergence (ridging) in the fractures, contrary to laboratory

experiments of granular materials and satellite observations of sea ice. The use of a decohesive stress tensor influences the

fracture angle of sea ice, but does not influence the type of deformation rates (convergence and shear), nor the simulated

dilatancy. Future work will involve the modification of the non-linear relationship between the Maxwell viscosity and the355

damage. We also show that the sensitivity of the fracture angle to the Poisson ratio, seen when using the standard damage

parameterization, disappears when using the generalizes stress correction scheme with a fixed stress correction path. This

suggests that in the MEB model, the stress concentration and fracture propagation is governed by the stress correction rather

than by the relaxation of the mechanical properties associated with the damage.

Based on our results, using the generalized damage parameterization with a stress correction path normal to the yield curve360

reduces the growth of residual errors and allows for the production of longer term simulations with post-fracture deformations.

Using this stress correction path also reduces the fracture angles by ∼5◦, bringing them in the range of observations. Despite

these improvements, some error growth remains inherent to the formulation of the damage parameterization. Whether this

might be improved by removing the dependency of the damage parameters on the damage factor (and on the super-critical

stress state) will be explored in future work.365
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Table 1. Default Model Parameters

Parameter Definition Value

∆x Spatial resolution 1 km

∆t Time step 0.2 s

Td Damage time scale 1 s

Y Young Modulus 109 n m−2

ν Poisson ratio 0.33

λ0 Viscous relaxation time 105 s

α Viscous transition parameter 3

φ Angle of internal friction 45◦

c0 Cohesion 10 N m−2

σc0 Isotropic compressive strength 50N m−2

ρa Air density 1.3 kg m−3

ρi Sea ice density 9.0× 102 kg m−3

ρw Sea water density 1.026× 103 kg m−3

Cda Air drag coefficient 1.2× 10−3

Cdw Water drag coefficient 5.5× 10−3

18

https://doi.org/10.5194/tc-2020-354
Preprint. Discussion started: 2 February 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 1. a) Mohr-Coulomb yield criterion in stress invariant space. σ′ is the uncorrected super-critical stress state, σc the critical stress

state for a given correction path angle γ (red dashed line) and c is the cohesion. The decohesive stress tensor σD is defined as the difference

between σc and the scaled super-critical stress (Ψσ′). b) Proposed correction paths for various super-critical stresses σ′ that minimizes the

error amplification ratio (R), which consist of the standard parameterization for large tensile stresses (orange) and a correction path with γ =

45◦ for small tensile and compressive stresses (purple). The green line indicates the transition between the two formulations.
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Figure 2. Idealized domain for uniaxial compression simulations, with a solid boundary (Dirichlet conditions, u= v = 0) at the bottom, and

open boundaries (Neumann conditions, ∂u/∂n= 0) on the sides and top. The initial conditions are h = 1m and A = 100% in a region of 250

x 60 km in the center of the domain (white), with two 20 km wide bands of open water on each side (blue). The fracture angle (θ) is defined

as half of the angle between conjugate pairs of fracture lines (Orange lines).
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Figure 3. a) Damage (unitless), b) ice thickness (m, color) and velocity vectors (m s−1), c) mean normal strain rate invariant (ε̇I , day−1)

and d) miximum shear strain rate invariant (ε̇II , days−1), after two hours of integration in the control simulation using the standard stress

correction scheme.
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Figure 4. Stress invariants (kN m−1, left column) and normal strain rate invariant scaled by the (1− d)3 (day−1x103) as a function of the

normal stress invariant (kN m−1, right column), in the control simulation for t = 60 min (top row), t = 120 min (middle row) and t = 180 min

(bottom row).
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Figure 5. a) Temporal evolution of the damage activity D, b) the solution residual εres, asymmetry factor εasym and convergence criterion on

εres, and c) the maximum error amplification ratio Rmax, in the control simulation using the standard stress correction scheme.
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Figure 6. a) Temporal evolution of the maximum error amplification ratioRmax and b) the asymmetry factor εasym, in a sensitivity experiment

on the stress correction path angle γ, using the generalized stress correction scheme.
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Figure 7. Sensitivity of the fracture angle θ on the stress correction path angle γ (degrees) in uniaxial loading experiments using the

generalized stress correction schemes.
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Figure 8. Time evolution of the mean normal (a) and maximum shear (b) strain rate invariants integrated over the ice cover, in simulations

using the generalized damage parameterization with different stress correction path γ.
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Figure 9. Sensitivity of the fracture angles (θ, degrees) on the angle of internal friction (φ, degrees), in uniaxial loading experiments using

different correction path angle (γ). The correction path angle γ = atan(µ) implies that the stress correction path is perpendicular to the

yield curve. The theoretical fracture angle from the Mohr-Coulomb and Roscoe theories are indicated by dashed and dash-dotted lines for

reference.
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Figure 10. Time evolution of a) the mean normal strain rate invariant integrated over the ice cover (day−1) and b) the maximum shear strain

rate invariant integrated over the ice cover (day−1), when using different angles of internal friction φ, with a stress correction path normal to

the yield curve (γ = arctan(µ)).
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Figure 11. Sensitivity of the fracture angles (θ, degrees) on the Poisson ratio (ν, unitless), in uniaxial loading experiments using different

correction path angle (γ). The theoretical fracture angle from the Mohr-Coulomb and Roscoe theories are indicated by dashed and dash-dotted

lines for reference.
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Figure 12. Time evolution of the mean normal strain rate invariant integrated over the ice cover (day−1) using a stress correction path normal

to the yield curve (γ = arctan(µ)) with α= 3 (blue), α= 1, and a longer viscous dissipation time-scale (λ= 108 s).
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Figure 13. a) Damage (unitless), b) ice thickness (m, color) and velocity vectors (m s−1), c) mean normal strain rate invariant (ε̇I , day−1)

and d) maximum shear strain rate invariant (ε̇II , days−1) after two hours of integration in using the generalized stress correction scheme with

γ = 45◦ and including heterogeneity in the initial material cohesion field. The heterogeneous cohesion (c0) field is defined locally at each

grid cell by picking a random number between 7.0 and 13.0 kN m−2. The remaining initial conditions are the same as all other simulations.
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