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Abstract.

This work deals with reconstructing firn layer thicknesses at the deposition time from its observed thickness in ice cores,

thus reconstructing the annual accumulation, yielding a time scale and an ice-core chronology. We employed a dynamic time

warping algorithm to find an optimal, non-linear alignment between an H2O2 concentration data series from 98m worth of ice

cores of a borehole on the central ice divide of Detroit Plateau, Antarctic Peninsula, and an estimated local temperature time5

series. The viability and the physical reliability of the procedure are rooted in the robustness of the seasonal marker H2O2 in

a high accumulation context, which brought the entire borehole to within the operational life span of four Antarctic stations

around the Antarctic Peninsula. The process was heavily based on numerical optimisation, producing a mathematically sound

match between the two series to estimate the annual layering efficiently on the entire data section at once, being disposition-

free. The results herein confirm a high annual accumulation rate of aN = 2.8mweq/y, which is of the same order of magnitude10

and highly correlated with Bruce Plateau’s and twice as large as Gomez’s, 300km and 1200km further South, respectively.

1 Introduction

Ice cores provide a continuous record of climatic and environmental data series based on ice’s physical and chemical properties,

reflecting past atmospheric composition and climatic variability, (e.g. Masson-Delmotte et al., 2006). Snow is deposited on the

ice surface is gradually compressed into firn and ice, having the ability to preserve a very reliable climate record, with a low15

risk of missing years, provided that the accumulation rate is sufficiently high. A vital issue in the paleoclimatic reconstruction

is dating the stratigraphic sequence through different techniques, including 1-D to 3-D flow models (Nye, 1952; Dansgaard

and Johnsen, 1969; Gillet-Chaulet et al., 2012; Passalacqua et al., 2016). The counting cycles of seasonally varying quantities,

reference horizons, most commonly layers of high concentrations of sulphuric acid related to volcanic events (Vinther et al.,

2006), and layer identification through peaks of radioactive isotopes (Vinther et al., 2006; Cuffey and Paterson, 2010). Often20

those techniques are combined, e.g., incorporating stable water isotope δ18Oatm to an ice flow model (Capron et al., 2010).
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The Hydrogen peroxide H2O2 is produced by photochemical reactions in natural waters exposed to solar irradiation, surficial

and atmospheric. It is the most stable of the reactive oxygen species created in the atmosphere through a chemical reaction

requiring ultraviolet light. A kinetic model explained 76.7% of the variation in H2O2 concentrations is due to solar irradiance

and temperature variation only (Sigg and Neftel, 1988). In particular that production in Antarctica has a pronounced regular25

seasonality resulting from cycles of complete darkness in midwinter to 24h daylight in midsummer. This gives a phenomeno-

logical basis for a quasi-sinusoidal variability in H2O2 atmospheric concentration with maxima occurring during the sunlit

summer (Steig et al., 2005; Frey et al., 2006). The H2O2 is an exceptionally robust marker for ice cores at high accumula-

tion sites in Antarctica where post-depositional losses are minimised, resulting in excellent preservation of the records, with

summer-to-winter ratios over five (Sigg and Neftel, 1988; Hutterli et al., 2003; Frey et al., 2006).30

The H2O2 concentration data comes from ice cores extracted from borehole DP-07-1 drilled in December 2007 at the ice

divide of Detroit Plateau (DP), at 64◦05′07′′S, 59◦38′42′′W , 1930m above sea level. DP-07-1 reveals well-resolved seasonal

cycles of H2O2 concentration data on a context of a very high deposition rate (Potocki et al., 2016). We take advantage of the

observed strong seasonality in the H2O2 record to estimate a core time scale spanning the entire firn horizon. That is done by

synchronising the concentration data to an estimated temperature time series at the borehole location.35

The maxima of H2O2 production and surficial atmospheric temperature occur during the sunlit months of the austral summer,

allowing us to seek a correlation between their respective maxima. They do not necessarily coincide, but they both occur

during summertime; the time difference between them is a fraction of a year. A temperature record at the borehole location

on DP may be estimated by interpolating the historical temperature recordings from six Antarctic stations not too far from

DP: Bellingshausen, Esperanza, Faraday, Marambio, O’Higgins and Rothera, which have almost continuous meteorological40

observations from the late 1950s. We have discarded Bellingshausen and O’Higgins, the first for being heavily biased by

maritime conditions. The second is a relatively short record with a sizable gap in it, leaving us with four stations forming the

vertices of a polygon having DP within its perimeter. Only Marambio lies on the eastern side, which may imply some unknown

bias towards the western temperature regime of the Antarctic Peninsula. Figure 1 shows the locations of the Antarctic stations

on an outline of the Northern Antarctica Peninsula.45

The synchronisation of the concentration data to a temperature series is warranted here due to the local accumulation rate,

high enough to bring the entire firn horizon deposition period within reach of the four stations operational span. Both data series

independently follow the same seasonal variation, the passing of the years, nevertheless in their particular manners; the H2O2

concentration displays a frequency scaling with depth, a result from the accumulated vertical strain, whereas the temperature

series has a uniform frequency behaviour. The frequency scaling reflects the gradual thinning of the annual firn layers, which50

manifests itself as a frequency chirp in the H2O2 concentration series.

We have allowed for the frequency scaling of the peroxide concentration series concerning the uniform frequency temper-

ature content by resorting to dynamic time warping (DWT). The DWT is a fast and efficient algorithm for finding an optimal

alignment between two sequences through a non-linear warping of one onto the other along the time/depth axis (Rabiner et al.,

1978; Sakoe and Chiba, 1978). We have worked with standardised versions of the peroxide and temperature series, using the55
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Figure 1. The four Antarctic Stations, Esperanza (ES), Marambio (MA), Faraday-Vernadsky (FV) and Rothera (RO), and the borehole at

DP, on the Northern Antarctica Peninsula. The white arrow in the right lower corner inset shows the location of DP on the Peninsula. Both

maps were modified from a pan-sharpened scene (RGBREF_x−2550000y + 1350000) of the Landsat Image Mosaic of Antarctica (LIMA)

by USGS https://lima.usgs.gov/

.

distance between them as a measure for their resemblance (Rabiner et al., 1978; Sakoe and Chiba, 1978). Once this is optimally

found, the peroxide series becomes warped onto the temperature series, allowing for the observed frequency scaling.

Notwithstanding DTW has begun associated with speech recognition (Rabiner et al., 1978; Sakoe and Chiba, 1978; Gilbert

et al., 2010) it has proved to be useful in several other applications. They encompass handwriting recognition (Kolhe et al.,

2009), image and shape matching (Wang et al., 1997; Latecki et al., 2007), analysis and classification the land cover of remotely60

sensed images (Verbesselt et al., 2010; Xue et al., 2014), gene expression and protein structure (Criel and Tsiporkova, 2005;

Legrand et al., 2008) and even brain activity (Chaovalitwongse and Pardalos, 2008). Speech recognition has been used to detect

layers in Greenland deep ice cores, using a Hidden Markov Model (Winstrup and Svensson, 2010).

This work shows that DTW is also particularly fit for compensating the peroxide frequency scaling with depth, realigning

it to a temperature data time series and, at the same time, quantifying their dissimilarities. We have used the constant spectral65
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content of the temperature data series as a reference in the pairing transformation through mathematical optimisation, thus

yielding an estimate of a relation of depth to time without human intervention. Moreover, the procedure has also confirmed a

very high deposition rate for the entire firn horizon at DP.

2 The Data Sets

We deal with two independent data sets, a H2O2 concentration from the 133m deep borehole and a temperature time series70

estimated at DP. We have also collected a record of the stable water isotope deuterium, which was not used due to its poor

seasonal variability (Potocki et al., 2016). The borehole yielded intact ice cores down to z = 109.3± 0.5m, from where brittle

ice began. The borehole temperature was fairly stable at−14.2±0.1◦C at a depth of 10m. Depths in the borehole are measured

with the origin at the surface and the vertical z-axis pointing downwards.

The temperature time series at borehole location was estimated through an interpolation procedure on a data set of continuous75

temperature readings since January 1st, 1970, at four Antarctic stations in Antarctic Peninsula. We will show below that the

entire firn layer was accumulated in a shorter period than the > 45y of estimated temperature time series.

2.1 The H2O2 Concentration Data

The H2O2 concentration data was retrieved from the first 98m of ice cores with high-resolution sampling, with an average of

36 samples/year. It is a robust seasonal signal, well preserved for the entire depth range of ice cores (Potocki et al., 2016). As80

for other ice cores at high accumulation sites across West Antarctica, it is possible to establish a time scale for the core through

straightforward counting of the annual cycles (Sigg and Neftel, 1988; Frey et al., 2006).

The H2O2 concentration record, C (z) has a considerable noise content throughout, which has to be minimised, making its

seasonal signal conspicuous. We produce a smooth data series C (z) by robust fitting on C (z) through a loess nonparametric

method (Cleveland and Grosse, 1991). The Figure 2 shows both C (z) and C (z) in micro molar (µM) concentration. It is easy85

to see the seasonal signal in C (z) as well as the effect of the accumulated vertical strain with depth on the annual firn layers.

The latter manifests itself as a gradual thinning of the annual firn layers.

Notwithstanding some residual noise left on C (z), straightforward counting of its peaks and troughs suggests the first 98m

were probably accumulated in its entirety from the beginning of the ’80s. Direct division of the total depth span by the number

of peaks indicates a very high deposition rate at DP, which we will address below.90

2.2 Estimating a Temperature Time Series at Detroit Plateau

The four stations shown in Figure 1 have distinct sampling on temperature, varying from 1 to 8readings/day. We set the beginning

of the estimated temperature record to January 1st, 1970; from this date onward, all four stations have continuous temperature

readings. The end of the record is set on December 29th, 2010, three years after the core was drilled at DP. These limits yield a

period wide enough to encompass the entire deposition period of the firn horizon safely.95
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Figure 2. The grey dots are the raw data C (z); the solid line is their smoothed version C (z), both expressed in µM. For the sake of

visualization, we have omitted just two data points with concentration C (z)> 20µM at depths ≈ 5m.

We interpolated the daily temperature time series from the four stations shown in Figure 1 through Delaunay triangulation,

having the DP borehole sea-level projection inside the convex hull formed by the station set. That is a linear interpolation

weighted by the inverse of the horizontal distance between a given station to the borehole projection. It is noteworthy all

stations but Marambio are located on the occidental part of the Peninsula, but it shares the most significant weights with

Esperanza. Some bias towards the western climate regime somewhat compensated by Marambio is thus expected, a fact we100

have to live with anyway.

Only the maximum daily temperature reading at each station was used in the interpolation process. The sea-level interpolated

time series at DP, T (t), is further corrected to the height of DP at 1930m asl, with a lapse rate in temperature with altitude of

−0.55◦C/100m (Rolland, 2003). Even taking care to obtain the best temperature estimates from the interpolation process at

DP, the accuracy of a particular temperature estimate is not crucial to our results. We use only the location in time of a given105

summertime peak temperatures for synchronisation.
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Figure 3. The grey dots are the interpolated and decimated temperature time series T (t). The solid curve is its smoothed and gained

counterpart T (t).

We alleviated aliasing due to the temperature sampling by applying a two-day low-pass filter to T (t), a series with 14973

data points, far more than the 985 data points of C (z). We made the number of data points in T (t) similar to those in C (z)

by decimating the former by 15×. Again we avoided aliasing and conspicuously reduced noise in T (t) by low-pass filtering

the decimated data series, using an eight order Chebyshev filter. We compensated the amplitude losses incurred throughout110

the conditioning process by a constant multiplicative gain, bringing the amplitudes of the filtered temperature time series

somewhat back to the original levels of the unfiltered T (t). The multiplicative factor is estimated in successive time windows

as the quotient of the envelope of the original T (t) by an envelope of the not gained version of T (t). From now on T (t) will

refer to the accumulated temperature time series.

Figure 3 shows the decimated T (t) and T (t), spanning over 41 years. The time series T (t) is quite noisy as one would115

have expected it to be, but the T (t) proves to be a powerful depiction of the annual summer-winter cycles. It has a smaller

amplitude than that of T (t), which is hardly an issue here as we are not looking for individual temperature figures but rather a

reliable counter on the passing of the years.

3 Results

3.1 Warping H2O2 concentration data onto the Temperature Series120

Figures 2 and 3 conspicuously show that the C (z) and T (t) data series record the passing of the years through their annual

cycles of peaks and troughs, summer to winter respectively. Nevertheless the two data series record the annual cycles in

distinct manners, the former against depth and the latter against time, their similar shapes suggesting we could employ a

simple mapping procedure from depth to year of deposition to a standard variable related to time.

Two issues to consider here: (i) C (z) and T (t) have their respective zeniths at a given summer on different dates, as they125

are distinct phenomena, and (ii) the shape of the two data series conspicuously differ from each other in terms of their spectral

characteristics as quickly seen comparing Figures 2 and 3. The first issue is efficiently dealt with as peaks will differ from each
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other within a fraction of a given summertime, a noise source one just needs to be aware of. The second point is more involved

as T (t) is a function of time with a nearly constant frequency content throughout, whereas C (z) has a frequency scaling with

depth, a chirp behaviour easily seen in Figure 2. The latter results from the gradual thinning of the firn layers due to the weight130

of the overburden.

The two data series C (z) and T (t) are not directly comparable, being functions of depth and time. We can make them

comparable, though by using a standardising mapping procedure,

Ci 7−→ Ĉi = 1
σ(Ci)

(
Ci−C

)
Ti 7−→ T̂i = 1

σ(Ti)
(
Ti−T

)
,

(1)

where Ci ≡ C (z) and Ti ≡ T (t), i= 1, . . . ,N . The C and T are averages and σ (Ci) and σ (Ti) are standard deviations.135

The two standardised series, Ĉ and T̂ , have the same number of data points and are zero-mean with unit standard deviation.

The standardisation process minimises eventual y−axis discrepancies between the two series, dwindling the possibility of

misalignment by the DTW algorithm. The mapping (1) is invertible, allowing to go back to the original values whenever

needed.

Warp the series Ĉ, call it the sample, onto the reference series, T̂ , allowing for layer thinning with depth in the sample. In140

applying DTW we construct a warp path W = (w1,w2, . . . ,wK) between sample and reference, where each path element wk

is linked to the two series indexes (i, i′), for the N elements in Ĉ and T̂ , respectively. The warp path length W is bounded to

N ≤K ≤ 2N − 1 and subject to the criteria below.

– Boundary conditions: The warp path start and end at the first and the last elements of the two sequences, w1 = (1,1) and

wK = (N,N), all elements considered.145

– Continuity: The warping procedure preserves the ordering of the two aligned sequences.

wk (i, i′)→ wk+1

(̂
i, î′
)
⇒ i≤ î≤ (i+ 1) and i′ ≤ î′ ≤ (i′+ 1) ,

– Monotonicity: The elements of W are monotonically spaced in the independent variable, thus preventing big jumps.

wk (i, i′)→ wk+1

(̂
i, î′
)
⇒
(
i− î

)
≥ 0 and

(
i′− î′

)
≥ 0.

The process of warping the sample onto the reference series is done by seeking the path W , which yields the minimum150

distance,

DW =
1

2N
min

{
K∑
k=1

d(wk,wk+1)

}
, (2)

where d(wk,wk+1) is the distance between two contiguous elements. DW should attain its minimum when the sample is

corrected warped onto the reference signal (Sakoe and Chiba, 1978). We do the DTW through an algorithm using a correlation
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optimised warping, or COW, which aligns the sample onto the reference by piecewise linear stretching and compression of the155

warping segments with variable lengths l (Nielsen et al., 1998; Pravdova et al., 2002; Tomasi et al., 2004). An integer slack

parameter limits the range of possible segments l, initially set to unity, s = 1. The reconstructed sample is obtained by retaining

only the highest values obtained for the cumulative correlation coefficient,

ξ
(
T̂ , Ĉ

)
=

∑
l

(
T̂i′ − T̂

)(
Ĉi− Ĉ

)
(M − 1) σ

(
T̂i′
)
σ
(
Ĉi
) , (3)

where the summation is performed for each segment l withM points, T̂ and Ĉ are averages, and σ
(
T̂i′
)

and σ
(
Ĉi
)

are stan-160

dard deviations. The problem is solved by applying the COW algorithm on all N/l segments through dynamic programming

(Nielsen et al., 1998; Pravdova et al., 2002; Tomasi et al., 2004). A complete description of the DTW and COW algorithms is

well beyond the scope of this work; the reader is kindly referred to the literature cited herein.

The analysis proceeds as follows: Begin the process of warping Ĉ onto T̂ with the two series aligned at their respective

beginnings: the borehole bottom and January 1st, 1970, respectively. Warp Ĉ and retain the value of the total distance DW .165

Discard the year 1970 on T̂ , which now begins on January 1st, 1971 and repeat the warping procedure with the entire Ĉ record;

retain the new value for the total distance DW . Continue moving forward to the beginning of the T̂ record in one-year steps,

storing the values of Dw estimated at each iteration. Continue this process of advancing the beginning of the T̂ in one-year

steps, monitoring the evolution of the estimated values of Dw.

We observed a decreasing trend in the estimates of Dw retained at each round of warping described above, which reached a170

conspicuous minimum with the beginning of the T̂ series aligned on January 1st, 1980. Further one-year steps on the starting

date of the temperature ensured an increasing trend with a faster pace. We stopped the one-year step warping process on the

increasing branch of Dw five years after reaching its minimum. Figure 4 shows both the original and warped versions of series

Ĉ, with the borehole bottom, aligned with T̂ on January 1st, 1980. The Figure also shows the behaviour of Dw for the entire

year span we have considered in our calculations.175

Once T̂ is warped onto Ĉ one can easily perform an inverse mapping to the original depths and time, i= 1, . . . ,N 7→ (t;z).

With that, depths may be mapped onto time, directly yielding a borehole time scale, z = z (t). That is is shown in the lower

panel of Figure 4 where Ĉ is plotted against deposition time in years. The conspicuous minimum onDw suggests a quantitative

error estimate of . 1year, significantly greater than any eventual difference between the time of occurrence of the peaks in Ĉ

and T̂ within a given year.180

3.2 Estimating a Borehole Time Scale and Accumulation Rate

A simple model of an ice sheet flow considers that as a year’s snowfall moves downward relative to the surface during its burial

process by subsequent deposition undergoing viscoplastic deformation, becoming progressively thinner, extending laterally

due to ice incompressibility. An increase in density does ensue with depth as the snow slowly compacts itself into firn and

from that into ice. One way to simplify the process is to express all lengths in water-equivalent units (mweq), thus allowing185

8



Figure 4. Panel (A) shows the unwrapped Ĉ and T̂ series in standardised ordinates, the index i= 0 corresponding to the mouth of the

core. Panel (B) shows the two warped series with their abscissas i mapped back to time, expressed in years beginning on January 1st, 1980:

T , C (t). In both panels, Ĉ is shown as a dotted curve and T̂ shown as a dashed curve, ordinates in arbitrary units. Panel (C) shows the

behaviour of distance Dw for the year we have performed the wrappings.

one to disregard the compaction of snow before the complete transformation to ice. Accordingly we present depths as zmweq =

z ρ(z)/ρw, where ρ(z) and ρw are the density measured in the ice cores from DP and of pure water, respectively.

We use the measured ρ(z) from the ice cores to estimate an empirical model of firn densification, which assumes the density

change with depth is proportional to the deviation relative to the density of pure glacier ice ρice = 0.91g/cm3 (Cuffey and

Paterson, 2010). The model may have two (Herron and Langway Jr, 1980) or even three (Ligtenberg et al., 2011) distinct firn190

densification stages, spanning from the surface to the zone of pore close-off. The adopted model has one densification stage

from the surface down to the last available density estimate at zρ(max) = 64.5m: ρz = 0.339z0.1853, with R2 = 0.97 (Travassos

et al., 2018). The density measurements beyond zρ(max) were accidentally lost; so we impose the density of glacier ice to

the core bottom, ρ(109m) = ρice, bridging the data gap with a straight line linking the imposed value to the last measured

density. This extrapolation will result in some inaccuracies, but as at zρ(max) = 64.5m the power law has already reached its195

slowest increase rate with depth, it may be reasonable to assume they are relatively small. On the other hand, that allows

for the transformation of length dimensions to mweq for the entire borehole. We will bring this issue back below whenever

appropriate.
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In the simplest model for an ice sheet flow, the total vertical strain of any layer is equal to the total vertical strain of the ice

beneath it,200

λ(z)

λ0
=

(1− z)
h

, (4)

of a layer of thickness λ(z) since it has been deposited at the surface as an annual layer λ0 thick and h is the total ice

thickness. The model considers a steady-state viscoplastic deformation with depth at the centre of an ice sheet, as the annual

layers are buried by subsequent deposition. From now on, all length dimensions are in mweq, unless explicitly said otherwise.

As the ice sheet is steady, we assume that accumulation and vertical thinning are constant in time and that a layer thickness205

does not vary horizontally. If those assumptions hold the distance, an ice particle that moves downwards during one year must

be equal to the thickness of one annual layer λ(z).

As the older ice is closer to the bedrock, it is more convenient to express the vertical position of an ice particle concerning the

rock bed interface using a new vertical axis, Z = h− z. The new coordinate frame runs in the opposite direction to the one we

have been using so far, with z > 0 pointing downwards. Assuming a steady-state the distance an ice particle moves downwards210

in one year, or for that matter, the vertical particle velocity ν (Z), is a linear function on Z and therefore, the thinning rate dν/dZ

is constant. The velocity at the surface equals the accumulation rate ν (h) =−a and at the bed ν (0) = 0, the velocity being

negative in the new reference frame as it points downwards,

ν (Z) =−aZ
h
. (5)

The relation between a given depth Z to the age of the ice is provided by215

t=

Z∫
h

ν−1dZ −→ Z = hexp
(
−a
h
t
)
, (6)

known as Nye’s time scale (Nye, 1952, 1963; Cuffey and Paterson, 2010). Relation (6) provides the simplest model for

describing how a layer of thickness λ0 deposited at the surface thins to λ(Z) when it is at a distance Z from the bedrock.

Notwithstanding its simplicity, the Nye model still provides good estimates at shallow depths, close to the ones from more

complex models, such as the Dansgaard-Johnsen model (Dansgaard and Johnsen, 1969; Cuffey and Paterson, 2010).220

The warping of Ĉ onto T̂ estimates the deposition thickness λ0 from its observed thickness λ(z), therefore reconstructing

the accumulation as well as yielding a time scale z(t) spanning the entire borehole. The accumulation over the period 1980-

2008, as revealed by the warped thicknesses λ0 show wider oscillations towards later years. An 11-year moving average

on accumulation shows a fairly stable regime for the period 1980-2008, ā11y ∼= 2.5m w.e./y. The small relative increase in

accumulation from 1980-1990 to 1990-2008 seen in Figure 5 is affected by the estimated densities deeper than 64.5m used to225

transform depths. Moreover, the statistical significance of an 11-year moving average within a 28y period is limited; we use it

to compare with literature results, where the solar cycle period is often used.
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Figure 5. The solid line shows the annual accumulation rate estimates at DP and the dot-dash line gives their 11-year moving average. Use

right ordinate for the annual accumulation rate and the left ordinate for borehole depths.

Apply an exponential regression on the warped data to produce estimates for the two constants (h,a/h) in relation (6). As

the available data is confined to the firn layer, an estimate for the total thickness h is obviously beyond our reach.

Nevertheless, as the annual accumulation rate is assumed uniform, we can obtain an estimate for the 27 years before the230

coring activity, aN = 2.82mweq/y. Peak counting on Figure 2 yields an estimated accumulation of ac = 2.5m w.e./y, equals to

a figure reported elsewhere (Potocki et al., 2016). The two accumulation rate estimates, aN and ā11y differ by ≈ 10% being

reasonably compatible, considering the assumptions leading to relation (6) and providing a weak check on our numerical

procedure.

It is worthwhile to end this section by comparing our estimated annual accumulation variability with data from the three235

ice cores listed in Table 1, all South of DP in the Antarctic Peninsula. Figure 6 shows that the accumulation rates at DP and

Bruce Plateau are compatible throughout, an indication that both sites may have been subject to similar high accumulation

regimes, twice as large as Gomez’s. Figure 6 also suggests annual snow accumulation for the period 1980-2010, a stable

accumulation for all four ice cores. Nevertheless, the period spanned by our data is too short of probing multi-decadal trends; it

is reported that the Antarctic Peninsula has been experiencing an increased rate since 1900 (Thomas et al., 2017). In particular,240

the Bruce Plateau ice core suggests an increase in snow accumulation during the late twentieth century, increasing at a rate of

0.19mm w.e./y since the 1950s (Goodwin et al., 2016).

4 Conclusions

Stratigraphic dating of ice cores is rooted in the use of reference horizons and annually resolved data to count annual layers

to establish a core chronology. The latter uses outward data, e.g. volcanic events, to measure annual layers. This work has245

resorted to an independent dataset, recorded temperature series as time reference to reconstruct a given layer thickness λ0 at
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Figure 6. Annual snow accumulation in ice cores from DP (solid line), Bruce plateau (dash line), Gomez (dot-dash line) and Dyer (dot line)

for the period 1980-2010.

the deposition time from its observed thickness λ(z), thus reconstructing the annual accumulation, thereby a time scale, an

ice-core chronology z(t).

We have demonstrated that with H2O2 concentration data series measured on 98m worth of ice cores from borehole DP-

07-1 drilled by us on the central ice divide of DP. We adopted a non-linear numerical algorithm that warped the concentration250

data onto an estimated local temperature record by aligning their respective summertime peaks, an interannual process with

a ' 0.5y time accuracy. The viability and the physical reliability of the procedure are rooted both in the robustness of H2O2

as a seasonal marker associated with the observed high accumulation rate, which brought the entire borehole to within the

operational life span of the Antarctic stations.

The considerable noise content on both series was alleviated through a nonparametric loess filter, which produced clean,255

smoothed versions of the data series albeit still retaining their complexity, as seen in Figures 2 and 3. Any time difference

between the summertime temperature and peroxide concentration peaks fall necessarily within the interannual process’ time

accuracy of ' 0.5y. The whole process was based on numerical optimisation, producing a mathematically sound match be-

tween the two series.

Table 1. Location of third party ice cores sites on the Antarctic Peninsula with their distances to DP ice core. zmax is the maximum depth,

and the period ∆T , in years, is shown between square brackets.

Name Latitude Longitude Elevation(m) zmax(m)[∆T ] Distance(km) Reference

Bruce Plateau -66.0 -64.1 1976 448[1750–2009] 302 (Goodwin et al., 2016)

Dyer Plateau -70.7 -64.9 2002 190[1504–1990] 767 (Thompson et al., 1994)

Gomez -73.6 -70.4 1400 136[1858–2006] 1137 (Thomas et al., 2008)
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The secular variation in accumulation has revealed a high annual accumulation rate of aN = 2.8mweq/y, with the large vari-260

ability seen in Figure 5. The observed high accumulation rate at DP is of the same order as the one reported for Bruce Plateau,

highly correlated throughout the observational period considered here. The DP regime shows one year earlier than at Bruce in

a couple of time sections in Figure 6, a small but detectable discrepancy, probably related to the distinct dating approaches. The

conspicuous correlation of DP and Bruce is an indication that the Northern tip of the Antarctic Peninsula has been under a high

snow accumulation regime, twice as large as Gomez’s further South. The short period reported here, is incapable of revealing265

multi-decadal trends; nevertheless, it is reasonable to suggest the DP may have been experiencing a similar increase in snow

accumulation in the late twentieth century, similar to the one reported at Bruce Plateau.

The limited-time window of the period of our data reveals a relatively stable behaviour throughout the 27 years before coring,

with an 11-year moving average on the accumulation of ā11y ∼= 2.5m w.e./y. A regularity in snow deposition preserved a

reliable climate record, minimising post-depositional losses on the concentration of H2O2. We should expect a relatively short270

temporal range for firn layer ice cores in the northern Antarctic Peninsula by the same token, turning that region into a valuable

climate record ranging through three decades before coring. The top DP layer should be now, almost 15 years after drilling,

halfway through the firn layer, if assuming a deposition rate stability.

Mathematical procedures for annual layer counting are notoriously laborious than manual counting; nevertheless, the latter

has no other intrinsic quality but its easiness; quality or effectiveness cannot be technically guaranteed. As is the case of the275

present work, the former approach is indisputably rigorous, able to efficiently estimate the annual layering on the entire data

section and is disposition-free. The layer counting on our data produced annual accumulation figures that differ from those

presented here up to 40%, being 17% on average. All that considered, the choice ultimately remains with the investigator

weighing in on an acceptable level of chronological inaccuracy to his work.

Comparison of algorithm results with simple layer counting performed on the smoothed versions of our dataset suggests280

inaccuracies are non-uniform and within ∼±1y. Notwithstanding the algorithm is potentially useful on other datasets where

manual counting is more challenging than in the present case, it is not case-specific, and it is not restricted to the dyad peroxide-

temperature either; it can deal with other kinds of annually laminated data, not necessarily of the related origin, even among

different wells. We are convinced there may be many different situations where there the need to synchronise particular datasets

where the procedure is shown here may prove helpful.285
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