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Abstract. The continued loss of sea ice in the Northern Hemisphere due to global warming poses a threat on biota and human

activities, evidencing the necessity of efficient sea ice monitoring tools. Aiming at the creation of an improved European sea

ice extent indicator , the IceMap250
:::::::
covering

:::
the

::::::::
European

:::::::
regional

:::::
seas,

:::
the

::::
new

::::::::::
IceMap500 algorithm has been reworked

to generate improved sea ice extent maps at
::::::::
developed

::
to

:::::::
classify

:::
sea

:::
ice

::::
and

:::::
water

::
at

::
a
::::::::
resolution

:::
of

:
500 m resolution at

nadir. Changes in the classification approach
:::::::::
IceMap500

:::::::
features

:
a
::::::::::::

classification
:::::::
strategy

::::
built

:::::
upon

:::::::
previous

:::::::
MODIS

::::
sea5

::
ice

::::::
extent

:::::::::
algorithms

:
and a new method to correct artefacts arising

::::::::
reclassify

:::::
areas

:::::::
affected

::
by

:::::::::::::::::
resolution-breaking

:::::::
features

:::::::
inherited

:
from the MODIS cloud maskallow the enlargement of the

:
.
::::
This

::::::::
approach

::::::
results

::
in

::
an

::::::::::
enlargement

:::
of mapped area,

the
:
a
:
reduction of potential error sources and a qualitative improvement of the resulting maps, while

:::::
better

:::::::::
delineation

:::
of

::
the

::::
sea

:::
ice

::::
edge,

:::::
while

::::
still

:
systematically achieving accuracies above 90 . Monthly sea ice extent

::
%,

::
as

::::::::
obtained

::
by

:::::::
manual

::::::::
validation.

::::::
Swath

:
maps have been derived using a new synthesis method which acts

:::::::::
aggregated

::
at

:
a
:::::::
monthly

:::::
scale

::
to

::::::
obtain10

:::
sea

:::
ice

:::::
extent

::::
with

::
a
:::::::
method

:::
that

::
is
::::::::

sensitive
::
to

::::::::::::::
spatio-temporal

::::::::
variations

::
of
::::

the
:::
sea

:::
ice

:::::
cover

::::
and

:::
that

::::
can

::
be

:::::
used as an

additional error filter. Our results
:::
The

:::::::
resulting

::::::
dataset, covering the months of maximum (March) and minimum (September)

:::
and

::::::::
minimum

:
sea ice extent

:::
(i.e.

::::::
March

:::
and

::::::::::
September) during two decades (from 2000 to 2019), are a proof of

:::::::::::
demonstrates

the algorithm’s applicability as
:
a
::::::::::
monitoring

:::
tool

::::
and

::
as

:
an indicator, illustrating the sea ice decline in the European regional

seas. We observed no significant trends in the Baltic (-2.75±2.05×103 ) although, on the contrary, the European Arctic
:
at

::
a15

:::::::
regional

::::
scale.

::::
The

::::::::
European

:::
sea

:::::::
regions

::::::
located

::
in

:::
the

::::::
Arctic,

:::
NE

:::::::
Atlantic

:::
and

:::::::
Barents seas display clear negative trends both

in March (-27.98±6.01×103 km2yr−1) and September (-16.47±5.66×103 km2yr−1). Such trends indicate that the sea ice

cover in March and September is shrinking at a rate of ∼9
:
%

:
and ∼13

:
%

:
per decade, respectively, even though the sea ice

extent loss is comparatively ∼70
::
% greater in March. Therefore, according to the trends and without taking into account the

variability of the sea ice cover, the loss of sea ice extent over two decades in the study area would be comparable to the area of20

continental France in the case of the March maximum, and to that of Finland in the case of the September minimum.
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1 Introduction

The Arctic sea ice cover has been changing rapidly over the last decades, with its overall extent declining steadily since the first

satellite observations in the late 1970s (Serreze et al., 2007; Comiso et al., 2008; Cavalieri and Parkinson, 2012; Massonnet et al., 2012; Meier et al., 2014)25

, shrinking at a rate of about 10 per decade in the last years (Comiso et al., 2008) and
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Cavalieri and Parkinson, 2012; Massonnet et al., 2012; Meier et al., 2014; Parkinson, 2014; Serreze and Stroeve, 2015; Comiso et al., 2017)

:
, reaching its historical minimum on September 2012 (NSIDC). Moreover,

:::::
2012.

:::
The

:::::
same

:::::::::
decreasing

:::::
trends

:::
are

:::
also

:::::::::
evidenced

::
by

:::::
other

:::::::::
parameters

:::::
such

::
as

:
sea ice thickness

::::::::::::::::::::::::
(Kwok, 2018; Liu et al., 2020)

:
,
::::::
which has decreased as much as 65

:
%

:
in the

period extending from 1975 to 2012 (Lindsay and Schweiger, 2015). This massive loss of ice is unprecedented in the last

few thousand years (Polyak et al., 2010). Although it
:
,
::::
and is attributed both to climatic variability and to external forc-30

ing caused by an
::
the

:
anthropogenic release of greenhouse gases (Serreze et al., 2007; Stroeve et al., 2007; Myhre et al., 2013)

, nowadays human influences have driven climate to exceed the bounds of natural variability (Karl and Trenberth, 2003)

:::::::::::::::::::::::::::::::::::::::
(e.g. Myhre et al., 2013; Stroeve and Notz, 2018). All projection models agree that Arctic sea ice will continue shrinking and

thinning, eventually leading to ice-free summers in the following decades (Massonnet et al., 2012; Stroeve et al., 2012; Collins et al., 2013; Notz and Stroeve, 2016)

::::::::
upcoming

:::::::
decades

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Massonnet et al., 2012; Stroeve et al., 2012; Collins et al., 2013; Notz and Stroeve, 2016; Stroeve and Notz, 2018)35

and even as soon as in the late 2030s (AMAP, 2017).

The dynamism of the sea ice and the role it plays on the
:::::
effect

::
it

:::
has

:::
on climate, biota and on human activities makes

necessary its monitoring. Due to the difficulty of acquiring in situ observations, nowadays satellite imagery is the main tool to

monitor sea ice at a global scale (?). Several sea ice variables are continuously obtained and distributed by institutions such40

as the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF) or the National Snow and Ice Data Center

(NSIDC), commonly at resolutions between 10
:::
the

::::::
regular

::::::::::
monitoring

::
of

::
its

:::::::::
properties

::::
(e.g.

::::::
extent,

::::::::::::
concentration,

:::::::::
thickness)

::::::::
necessary.

:::
Sea

:::
ice

::::
data

::
is

::::::::
nowadays

:::::::::::
continuously

:::::::
obtained

::::
from

::::::
several

::::::::::::
satellite-borne

::::::::::
instruments

:::::::::::::::::::::::
(e.g. Spreen and Kern, 2016)

:
,
:::::
among

::::::
which

:::::::::
microwave

::::::
sensors

:::::
stand

:::
out

:::
for

::::
their

::::::
ability

::
to

::::::
acquire

::::
data

::
in

::::::::
disregard

::
of

:::
the

::::::
lighting

::::
and

::::::
weather

::::::::::
conditions.

::::::
Passive

:::::::::
microwave

::::::
sensors

::::::::
typically

:::::::
provide

:::
data

::
at
::::::::::
resolutions

:::::
above

::
15 km

:
,
::::::::
hindering

::::
their

:::
use

:::
for

:::::
local

:::
and

:::::::
regional

:::
sea

:::
ice45

::::::
studies.

:::
On

:::
the

:::::
other

:::::
hand,

:::::
active

:::::::::
microwave

::::
and

::::::::::::
visible-infrared

:::::::
sensors

:::
can

:::::::
acquire

::::
data

:
at
:::::

much
::::::

higher
::::::
spatial

::::::::::
resolutions.

:::
For

:::::::
instance,

::::::
ESA’s

::::::::
satellites

::::::::
Sentinel-1

:::::::::
(synthetic

:::::::
aperture

::::::
radar) and 25

::::::::
Sentinel-2

::::::::::::::
(visible-infrared)

:::::::
achieve

:::::::::
resolutions

:::
of

:::::
5-100 .

In 2016, the European Environment Agency (EEA) published a sea ice extent indicator (?) aiming at the monitoring of sea

ice trends both in the Arctic Ocean and the Baltic Seam
:
in
:::
the

::::
first

::::
case,

:::
and

:::::
10-60

:
m

::
in

::
the

:::::
latter. However, observations in both50

regions are not directly comparable, as sea ice extent in the Arctic was derived from the OSI-SAF passive microwave satellite

data at 10 km resolution, while data for the Baltic came from several sources, including in situ observations and air temperature

proxies. Therefore,
:::
such

:::::::::::::
high-resolution

::::::
sensors

::::::
render

::::
data

::::
with

:::::
sparse

::::::
spatial

:::
and

::::::::
temporal

:::::::
coverage

::::
due

::
to

::::
their

:::::
small

:::::
swath

:::
size

:::
and

::::
long

::::::
revisit

:::::
times,

::::::::
although

:::
this

:::::
effect

::
is

:::::::::
minimized

::
at

:::
the

:::::
poles.

::::::
Instead,

:::::::
MODIS

::::::
visible

::::
and

::::::
infrared

:::::::
imagery

:::::
offers

::
a

:::::::
balanced

::::::::
trade-off

:::::::
between

:::::::
temporal

::::
and

:::::
spatial

::::::::
coverage.

:::::::
MODIS

::
is
:::
an

:::::::
imaging

:::::
sensor

:::
on

:::::
board

::
of

:::::::
NASA’s

::::::::::::::
sun-synchronous55

:::::::
satellites

:::::
Terra

:::
and

:::::
Aqua,

::::::::
launched

::
in

:::::
1999

:::
and

:::::
2002,

:::::::::::
respectively.

:
It
::::::::
acquires

:::
data

:
in order to homogenize data acquisition in

2



both regions, we tested the IceMap250 algorithm (Gignac et al., 2017), which produces sea ice extent maps at
::
36

::::::
spectral

::::::
bands,

::::::
ranging

::::
from

:::
the

::::::
visible

::::::::
spectrum

::
to

:::
the

::::::
thermal

:::::::
infrared.

::::::
Spatial

:::::::::
resolution

::
at

::::
nadir

:::::
varies

:::::
from 250 m thanks to a downscaling

technique by Trishchenko et al. (2006). Testing revealed that IceMap250 may be severely affected by resolution-breaking

artefacts found in the MODIS cloud mask, as happens with MODIS sea ice products
:::::
(bands

::
1

:::
and

::
2)

::
to

::::
500 m

::::::
(bands

:::
3-7)

::::
and60

:
1 km

:::::
(bands

:::::
8-36),

:::
and

::::
has

:
a
::::
large

:::::
swath

:::::
width

::
of

:::::
2330 km.

::::
The

:::::::
MODIS

::::
Terra

::::
and

:::::
Aqua MOD29 and MYD29 . We also found

that the mechanisms to avoid water and ice false positives are not optimal when one of those surfaces is absent. Additionally,

Xiong et al. (2006) and Khlopenkov and Trishchenko (2008) argue that the band to band misregistration of MODIS Aqua may

exceed the resolution achieved with the downscaling. Thus, as the usefulness of
::::::
datasets

::::::::::::::::::
(Hall et al., 2015a,b)

::::::
provide

:::::
daily

:::::
global

:::
sea

:::
ice

:::::
extent

::::::::
coverage

::
at

::
1 km,

:::
but

:::::::::
frequently

:::
fail

::
to
::::

map
:::

the
::::

sea
::
ice

:::::
edge

::
at

:::
this

:::::
level

::
of

:::::
detail.

::::
This

::
is
::::::
caused

:::
by

:::
the65

::::::
MODIS

:::::::::::
MOD35_L2

:::::
cloud

::::
mask

:::::::
product

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ackerman et al., 2010; MODIS Atmosphere Science Team, 2017),

:
the downscaling

for sea ice detection was already demonstrated in Gignac et al. (2017), we keep the standard 500 resolution to reduce processing

time and to allow the use of both the instruments in Terra and Aqua
:::::::
accuracy

::
of

::::::
which

:::::::
depends

::
on

:::
the

::::::
correct

::::::::::::
identification

::
of

:::::::::
background

::::
sea

::
ice

::
at
:::

25
:
km

::::::::
resolution

:::::::::::::::::::
(Riggs and Hall, 2015).

:::::::::
Therefore,

:::
sea

:::
ice

:::::::
beyond

:::
this

::::::::::
background

::
is
::::::
finally

:::::::
labelled

::
as

:::::
cloud

::::::
instead

::
of

:::::
clear,

:::::::::
eventually

:::::::::
preventing

:::
the

::::::::
products

:::::
which

::::
rely

::
on

::::
this

:::::
cloud

:::::
mask

::::
from

:::::::::
accurately

::::::::
mapping

:::
the

:::
sea70

::
ice

:::::
cover.

Therefore, the present work has two main objectives: 1) to develop an improved
::
In

::::
this

:::::::
context,

:
a
::::
new

:
500 m resolution

::::::
MODIS

:
sea ice detection algorithm (IceMap500) based on

:::
was

::::::::::
developed,

::::::
aiming

::
at

:::
the

:::::::::::
improvement

:::
of

::::::
existing

:::::::::
European

:::
sea

::
ice

::::::
extent

::::::::
indicators

:::::
based

:::
on

::::::
passive

:::::::::
microwave

:::::::::::
observations

:::::::::::
(EEA, 2020)

::
by

:::::::::
providing

::::::::
additional

::::
and

:::::
higher

:::::::::
resolution75

::::
data.

::::::::::
IceMap500

::
is

::::::
heavily

:::::::::
influenced

:::
by

:::
the

:::::
cloud

:::::::
masking

::::
and

:::::::::::
classification

:::::::::
approaches

:::
of

:::
the

:::::::
previous

:
IceMap250 , and

2) to prove the utility
:::::::
algorithm

:::::::::::::::::
(Gignac et al., 2017)

:
,
::::::
which

::::::::::
nonetheless

::
is

:::
still

::::::::::
vulnerable

::
to

:::
the

:::::::::::
MOD35_L2

::::::::::
background

::::::
effects.

:::
The

::::
new

::::::::
algorithm

::
is
:::::::::
optimized

::
to

::::::::
minimize

:::::::::::
classification

:::::
errors,

::::
and

::::::::
improves

:::
the

::::::
quality

::
of

:::
the

:::::
maps

::
by

::::::::::
introducing

:
a
:::::::
five-step

::::::::
workflow

::
to

:::::::
prevent

::::::::::
MOD35_L2

:::::
from

:::::::
breaking

:::
the

:::
500

:
m

:::::::::
resolution.

80

::
To

:::
test

:::
the

:::::::::
usefulness

:
of IceMap500 as a new European sea ice extent indicator by analysing

:::
we

::::::
analyse

:
the sea ice trends

in the European regional seas from 2000 to 2019.
::::
2019

:::::
using

:::::::
MODIS

:::::
Terra

::::
data.

:
The analysis covers the northernmost Euro-

pean sea regions defined by the European Union’s Marine Strategy Framework Directive (MSFD) where sea ice might occur

::::::::::
(EEA, 2018), and is restricted to the months when the maximum and minimum sea ice extent is reached in the Northern Hemi-

sphere, that is, March and September, respectively.85
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2 Materials and methods

2.1 Study area

This work focuses on the European regional seas established by the MSFD
:::::::::::
(EEA, 2018). As sea ice only occurs in the northern-

most oceanic sea regions or in enclosed, low-salinity water bodies such as the Baltic Sea, spatial coverage has been significantly90

reduced to avoid the processing of uninformative data. Therefore, the final indicator
:::
The

::::
final

:::::
study

::::
area

:
extends over the sea

regions belonging to the Arctic, North-East Atlantic Ocean and the Baltic Sea, as is shown in Fig. ??
:
1, covering an area roughly

4×106 km2. With the inclusion of a 400 km buffer to coherently join all the target regional seas in a single study region, the

totality of the processed area ascends
::::
sums

:
up to approximately 8×106 km2.

95

Figure 1. Northern European regional seas, as defined by the MSDF
:::::
MSFD: 1) Iceland Sea, 2) Norwegian Sea, 3) Barents Sea, 4) White Sea,

5) Baltic Sea, 6) Greater North Sea, and 7) Celtic Seas. In medium blue are shown the target sea regions, whereas in light blue is represented

the generated buffer, whose external limit corresponds to the total processed area.
::
All

:::::
maps

::
in

:::
this

::::
work

:::
are

:::::
shown

::
in

::::
North

::::
Pole

:::::::
Lambert

::::::::
Azimuthal

::::
Equal

:::::
Area.

Oceanic sea ice in the Northern Hemisphere has both a perennial and a seasonal fraction. Typically, maximum and min-

imum sea ice extent are reached in March and September (Stroeve et al., 2008)
::::::::::::::::::::
(e.g. Stroeve et al., 2008), respectively, with

the perennial fraction being mostly enclosed in the Arctic basin (Comiso, 2009). According to NSIDC’s Sea Ice Index

(Fetterer et al., 2017), sea ice is present during the Arctic winter months in some of the European sea regions (i.e. the Barents

4



Sea, the White Sea, and the northernmost areas of the Norwegian Sea). As sea ice is also found along the eastern coast of100

Greenland, it may occasionally reach the Iceland Sea or the waters surrounding the Jan Mayen island.

The ice cover in the Baltic Sea, which
:::::::
however,

:
has no perennial fraction ,

:::
and

:
can be highly variable due to the milder

climate, often resulting in different freezing and melting periods during the same winter (Granskog et al., 2006). The sea ice

season usually lasts for six to eight months, starting in October or November in the Bothnian Bay and the Gulf of Finland.

Maximum extent is
::::
also normally reached in March (Haapala et al., 2015).

::::::::
Therefore,

:::::
given

:::
the

::::::::
particular

::::::::::::
characteristics

:::
of105

::
the

::::::
Baltic

::::
sea,

:::
the

:::
sea

:::
ice

:::::
extent

:::::::
analysis

::
is
:::::

done
:::
by

:::::::
splitting

:::
the

:::::
study

::::
area

::
in

::::
two

:::::::
regions:

:::
the

:::
NE

::::::::::::::
Atlantic-Barents

::::::
region

::::::::::
(completely

::::::::
including

:::
the

::::::
Iceland,

::::::::::
Norwegian,

:::::::
Barents

:::
and

::::::
White

::::
seas)

::::
and

:::
the

:::::
Baltic

::::::
region.

2.2 Selected data

Due to its balance between temporal and spatial coverage, we use MODIS visible and infrared imagery to generate sea ice110

extent maps at 500 resolution at nadir. MODIS is on board of NASA’s sun-synchronous satellites Terra and Aqua, launched

in 1999 and 2002, respectively. It acquires data in 36 spectral bands, ranging from the visible spectrum to the thermal

infrared.Spatial resolution at nadir varies from 250 (bands 1 and 2) to 500 (bands 3-7) and 1 (bands 8-36) . MODIS has a

large swath width of 2330 , allowing a revisit time of 1 to 2 days. Although MODIS is severely affected by weather and

lighting conditions, its resolution is much higher than that of passive microwave sensors: widely used microwave radiometers115

such as SSM/I-SSMIS provide data at 25 cell size. Moreover, its swath width is greater than that of the synthetic-aperture radar

and other sensors operating in the visible-infrared spectrum such as those carried by the Landsat series and Sentinel-2, which

nonetheless acquire data at even higher spatial resolutions (30 to 10 ). Thus, we use the data shown in Table 1, consisting of

MODIS Terra level
::::
Data

::::
used

:::
in

:::
this

:::::
work

:::::::
consists

::
of

:::::::
MODIS

:::::
Terra

::::
level

:
1B Top-of-Atmosphere (TOA) radiance products

::::::::::::::::
Top-of-Atmosphere

:::::
(ToA)

:::::::
radiance

::::::::
products

:::::::::::
MOD021KM

::::::::::::::::::::::::::
(MODIS Science Team, 2017a), MOD02HKM , MOD021KM, and120

the
::::::::::::::::::::::::::
(MODIS Science Team, 2017b)

:::
and

:::
the

:
MOD35_L2 cloud mask

::::
cloud

:::::
mask

:::::::::::::::::::::::::::::::::::
(MODIS Atmosphere Science Team, 2017)

:
,

::
as

::::::::::
summarized

::
in

:::::
Table

:
1.
::::::
Swath

::::
data

:
is
:::::::::
resampled

::
to

:::
500

:
m

::::::::
resolution

:
if
:::::::::
necessary,

::::::::
converted

::
to

::::::::
GeoTIFF

::::::
format

:::
and

::::::::
projected

::
to

:::::
North

::::
Pole

:::::::
Lambert

:::::::::
Azimuthal

:::::
Equal

::::
Area

:::::
using

:::::::::
HDF-EOS

:::
To

::::::::
GeoTIFF

:::::::::
Conversion

::::
Tool

::::::
(HEG)

:::::
v2.15

::::::::::::
(NASA, 2019)

:
.
:::
No

:::::::
stitching

::
is

:::::::
applied,

::
as

::::
each

:::::
scene

::
is

::::::::
processed

:::::::::::
individually.

::::::::
However,

::::::
scenes

:::
are

::::::
clipped

::::::::
according

:::
to

:::
the

:::::::
selected

::::
study

:::::
area.

:::::::::
IceMap500

::::
uses

::::
ToA

:::::::
radiance

::
as

:::::
input

::::
data

:::::
which

::
is

::::
later

::::::::
converted

::
to

::::
ToA

:::::::::
reflectance

::
or

::::
ToA

:::::::::
brightness

::::::::::
temperature,

::
so

:::::
there125

:
is
:::
no

::::::::::
atmospheric

:::::::::
correction.

:::::
Note

:::
that

:::
the

::::::::
objective

::
of

:::
the

:::::::::
algorithm

::
is

::
to

::::
map

:::
sea

:::
ice

:::::::
presence

::::::
rather

::::
than

:::::
using

:::::::::
reflectance

::
as

:
a
::::::

proxy
::
to

:::
get

:::::
other

:::::::
physical

::::::::
variables

:::::
such

::
as

:::
sea

:::
ice

::::::::::::
concentration,

:::
so

:::
the

:::::::
absence

:::
of

::::::::::
atmospheric

:::::::::
correction

:::::::
reduces

:::::::::
processing

::::
time,

::::::::
facilitates

:::
the

::::::::::
algorithm’s

::::::::::
replicability

:::
and

:::::::
ensures

:::
the

::::::::::
consistency

::
of

:::
the

::::::
dataset.

The algorithm uses TOA radiance as input data, which is converted to TOA reflectance as in previous sea ice detection130

works (Hall et al., 2001; Gignac et al., 2017). Therefore, the threshold values used in the classification are higher than if surface

reflectance was used due to the contribution of the atmosphere. Although TOA data does not reflect the physical properties

of sea ice and water, it avoids extensive processing due to atmospheric correction, facilitates the algorithm’s replicability and

5



Table 1. MODIS Terra swath data used in this work. Accessible at the NASA’s Level-1 and Atmosphere Archive (https://ladsweb.modaps.

eosdis.nasa.gov.)

Band Bandwidth Spectrum region
::::
Code

MOD02HKM (bands 1-7 at 500 m resolution)

2 841-876 nm NIR
::::::::::
Near-infrared

::::
(NIR)

: ::
B2

4 545-565 nm G
::::
Green

:::
(G)

: ::
B4

7 2.105-2.155 µm SWIR
:::::::::::::
Short-wavelength

::::::
infrared

::::::
(SWIR)

: ::
B7

MOD021KM (bands 8-36 at 1 km resolution)

20 3.660-3.840 µm MWIR
::::::::::::
Mid-wavelength

::::::
infrared

::::::
(MWIR)

: :::
B20

32 11.770-12.270 µm TIR
::::::

Thermal
::::::
infrared

::::
(TIR)

: :::
B32

MOD35_L2 (cloud mask product)

ensures the consistency of the dataset.Note that the objective of the algorithm is to map sea icepresence rather than using

reflectance as a proxy to get other physical variables such135

2.3
::::::::

Overview
::
of

::::::::
previous

:::::::
MODIS

:::
sea

:::
ice

::::::
extent

:::::::::
algorithms

:::::::::
IceMap500

::
is

::::::::::::
fundamentally

:::::
based

::
on

:::
the

:::::::
previous

:::::::
IceMap

::::::::::::::::::::::::::::::
(Riggs et al., 1999; Hall et al., 2001)

:::
and

:::::::::
IceMap250

::::::::::::::::::
(Gignac et al., 2017)

:::::::::
algorithms

:::
and

:::::::
inherits

:::::
many

::
of

::::
their

::::::::
features.

::::
Both

:::::::::
algorithms

:::::::
feature

:
a
:::::::::::
classification

:::::::
strategy

:::::
based

:::
on

::::::::
threshold

:::::
tests,

:::
but

::::
differ

:::
on

:::
the

:::::
cloud

:::::::
masking

::::::::
approach.

:::::::
IceMap

::::
uses

:::
the

:::::::::
Normalized

:::::::::
Difference

:::::
Snow

:::::
Index

:::::::
(NDSI,

:::
Eq.

::
1)

::
as

:::
the

::::
main

::::::::
criterion

::
to

::::::
classify

:::
sea

::::
ice,

:::::::
followed

:::
by

:
a
::::
ToA

::::::::
threshold

:::
test

:::::
using

:::::::
MODIS

:::
B4

::::::::
(545-565 nm

:
).

::
To

:::::::
prevent

::::::::::::::
misclassification

::
of

::::::
clouds as140

sea iceconcentration. In addition, it must be considered that the use of data at higher resolutions than MODIS would cause the

processing to be computationally very demanding, especially if covering large areas, as is the case of the present study. It would

also render data with sparse spatial and temporal coverage as higher-resolution sensors typically have smaller swath sizes and

longer revisit times. This would be especially problematic for areas located at mid-latitudes, although this effect is minimized

at the poles.,
:::
this

:::::::::
algorithm

::::
uses

:::
the

::::::::::
MOD35_L2

:::::
cloud

:::::
mask

::
as

::
an

:::::
input,

::::
and

::::::
outputs

:::
sea

:::
ice

:::::
extent

::
at
::
1 km

::::::::
resolution.

:
145

2.4 IceMap500: challenges and improvements

NDSI =
B4−B6

B4+B6
::::::::::::::::

(1)

The IceMap250 algorithm relies on
:::::::
Instead,

:::::::::
IceMap250

::::
uses

:::
the

::::::::::
Normalized

::::::::::
Difference

:::::
Snow

:::
and

:::
Ice

:::::
Index

::
2
:::::::::
(NDSII-2,

:::
Eq.

::
2)

:::::::::::::::::
(Keshri et al., 2009)

:
,
::
as

::::
well

:::
as

:::
the

:::::
same

::::
ToA

::::::::::
reflectance

::::::::
threshold

::
at
::::::::

545-565
:
nm

::
to

:::::::
classify

:::
sea

:::
ice

::::
and

::::::
water.

:::
The

::::::::
threshold

:::::
value

:::
of

:::
the

:::::::
NDSII-2

::
is
::::::::::
determined

:::
by

:::::::
splitting

::::
data

::
in

::::
two

::::::
groups

::::
with

::
a
:::::
Jenks

::::::
natural

::::::
breaks

:::::::::::
optimization150

:::::::::::
(Jenks, 1967),

::::::
which

:::::::::
maximizes

:::::::::
inter-class

::::::::
variance

::::
and

:::::::::
minimizes

:::::::::
intra-class

::::::::
variance.

::::
This

:::::::::
algorithm

:::::::
features

:
a hybrid

6
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cloud masking approach designed to minimize error while maximizing the mapped area, using the MODIS MOD35cloud

mask and
:::
_L2

:::::
cloud

:::::
mask

:::::::::
alongside an additional visibility (VIS) mask, both at a 1 km resolution. Threshold tests based on

the Normalized Difference Snow and Ice Index 2 (NDSII-2) (Keshri et al., 2009) and the TOA reflectance at 545-565 are used

to classify155

NDSII − 2 =
B4−B2

B4+B2
::::::::::::::::::::

(2)

:::
The

::::
VIS

::::
mask

::
in
::::::::::
IceMap250

::
is

:::::::
intended

::
to

:::::::
identify

::::
areas

::::::
where

:::::::
visibility

::
is

::::::::
sufficient

::
to

:::::::
perform

:
a
:::::::::::
classification,

:::
for

:::
the

::::
sole

:::
goal

:::
of

:::::::
detecting

:::::
open

:::::
water.

::
It

::::
uses

:::
the

:::::::::
normalized

:::::::::
difference

:::::::
between

:::
the

:::::::
MODIS

::::::
thermal

::::::
bands

:::
B20

::::
and

::::
B32

::
as

::
in

:::
Eq.

::
3.

:

R(B20/B32) =
B20−B32

B20+B32
:::::::::::::::::::::

(3)

:::
The

:::::::
standard

:::::
score

::
of
:::::::::::
R(B20/B32) :

is
::::
then

::::::::::
calculated,

::
as

::::
seen

::
in

:::
Eq.

::
4,
::::::

where
::
µ

:::
and

::
σ

:::
are

:::
the

:::::
mean

:::
and

::::::::
standard

::::::::
deviation160

::
of

::::::::::
R(B20/B32) ::

of
:::
the

:::::
swath

::::
data

::
to

::
be

:::::::::
classified.

:::::
Pixels

::::::
where

::::
VIS

:
<
:::
0.5

:::
are

::::::
tagged

::
as

::::::
having

:::::::
enough

::::::::
visibility.

:::
The

::::::::
masking

:::::::
produces

:::
the

::::::::
MOD35

:::
and

:::
the

::::
VIS

::::::::
datasets,

:::::
which

:::
are

::::::::
classified

:::::::::
separately

::::
and

::::
later

::::::::
combined

:::::::::
following

:::
the

:::
set

::
of

:::::
rules

::
in

::::
Table

::
2.
:

V IS =
R(B20/B32) −µ

σ
:::::::::::::::::::

(4)

::::::::
Although

:::::::
masking

::
in

:::::::::
IceMap250

::
is

::::
done

::
at

:
a
:::::::::
resolution

::
of

:
1
:
km

:
,
:::
the

::::::::
algorithm

::::
maps

:
sea ice and water in the masked datasets.165

However, this classification process faces some challenging potential errors. One of the most notable classification errors
::
at

:::
250

:
m

:::::
within

:::
the

::::::
masked

:::::
area.

::::
This

::
is

:::::::::::
accomplished

:::
by

:::::
means

::
of

::
a
::::::::::
downscaling

:::::::::
technique

::
by

:::::::::::::::::::::
Trishchenko et al. (2006).

2.4
::::::::::

IceMap500:
:::::::::
challenges

::::
and

::::::::::::
improvements

::::
Both

:::::::
IceMap

:::
and

::::::::::
IceMap250

::::
face

::::
some

::::::::::
challenging

:::::::::
limitations

::::::
which

:::::::::
IceMap500

:::::
tries

::
to

:::::::
address.

:::
The

:::::
most

::::::::
important

:::::
issue170

:::::
arises

::::
from

:::
the

::::::::::
MOD35_L2

:::::
cloud

::::::
mask,

::
as

::
it

::::::::::
occasionally

:::::::
features

::::::::::::::::
resolution-breaking

::::::
square

:::::::
artefacts

:::
of

::
25

:
km

:::
side

::::::
length

::::
along

:::
the

:::
ice

::::
edge

:::::
(Fig.

::
2)

:::
that

:::::::
prevent

::
its

:::::::
accurate

::::::::
mapping.

:::::
Such

:::::::
artefacts

:::::::
originate

::
in
:::
the

::::::
setting

::
of

:::
the

::::::::
snow/ice

::::::::::
background

:::
flag

::::::
during

:::
the

:::::::::
production

::::::
process

::
of

:::
the

:::::
mask

:::::::::::::::::::
(Riggs and Hall, 2015),

::
in
::::::
which

::::::::
NSIDC’s

::::::::::::
Near-real-time

:::
Ice

:::
and

:::::
Snow

::::::
Extent

::::::
(NISE)

::::::
product

:::::::::::::::::::::::
(Brodzik and Stewart, 2016)

:
,
:::::
based

::
on

::::::::::::
SSM/I-SSMIS

:::::::
passive

:::::::::
microwave

::::
data

::::
with

:
a
:::
cell

::::
size

::
of

::
25

:
km

:
,
::
is

::::
used

::
to

::::::::
determine

:::
the

:::::
flag’s

:::::
state.

:::::::::
Therefore,

::
as

:::
the

::::::
cloud

:::::::
detection

:::::::::
algorithm

:::::
takes

:::::::
different

:::::
paths

:::::::::
depending

:::
on

:::
the

::::::::::
background175

::::
flag,

::::
sea

::
ice

::::::
falling

::::::
outside

:::
the

::::::::
footprint

::
of

:::
the

:::::
NISE

:::::::::::
classification

::
is

:::::::::
ultimately

:::::
tagged

:::
as

:::::
cloud

::
in

:::::::::::
MOD35_L2.

:::::
These

::
25

:
km

:::::::
artefacts

:::
can

::::::
occupy

::::::::
extensive

:::::
areas

::
in

:::::
some

::::::
scenes,

::::::
causing

:::
the

::::
loss

::
of

:::::
many

:::::::::
cloud-free

:::::::::
classifiable

::::::
pixels.
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Table 2.
:::::::::
IceMap250

::::::
possible

::::::::::
combinations

::
of

:::
the

:::::::
classified

::::
maps

:::
and

:::::::::::
corresponding

::::::
outputs

:::::::::::::::
(Gignac et al., 2017).

::::::
MOD35

::::
map

:::
VIS

::::
map

::::::::
Composite

::::
map

::
ice

::
ice

: ::
ice

::
ice

::::
water

: ::::
water

::
ice

:::::
NoData

: :::::
NoData

:

::::
water

::
ice

: :::::
NoData

:

::::
water

::::
water

: ::::
water

::::
water

:::::
NoData

: :::::
NoData

:

::::::
NoData

::
ice

: :::::
NoData

:

::::::
NoData

::::
water

: ::::
water

Figure 2.
:::::
Pixels

:::::
tagged

::
as

:::::::
confident

::::
clear

::
in

::
the

::::::::::
MOD35_L2

::::
cloud

:::::
mask,

:::::
shown

::
in

:::
red,

::::::::
overlaying

::::::
MODIS

:::
B4

::::
swath

::::
data

::::
from

:::::
March

::::
2012

::::::
(Barents

::::
sea).

:::
The

:::::::
footprint

:::
left

::
by

::::
NISE

:::
on

::
the

:::::
cloud

::::
mask

:::
can

::
be

:::::
clearly

::::
seen

:::::
along

::
the

:::
ice

::::
edge.

:::::::
Another

::::::
notable

::::::
source

::
of

:::::::::::
classification

::::::
errors,

:::
this

:::::
time

::::
only

::
in

::::::::::
IceMap250,

:
arises from the NDSII-2 test, which uses the

Jenks natural breaks optimization (Jenks, 1967) to split pixels in two groups, regardless of the surface classes present in a180

scene. When batch processing MODIS data it may be likely to run into scenes lacking either ocean water or sea ice and, con-

sequently, the Jenks optimization splits pixels into both surface classes erroneously. Clouds which
:::
that are undetected by the

MOD35
:::
_L2 cloud mask algorithm (Ackerman et al., 2010) and sun glint over ocean water may also be common error sources

due to the similar reflectance characteristics to sea ice,
::::
both

:::
in

::::::
IceMap

::::
and

::::::::::
IceMap250. Additionally, as already discussed

8



:::::
stated in Gignac et al. (2017), bare ice and melt ponds may also fail the classification tests due to the similarity with ocean185

water.

Nevertheless, the most important issue concerning the quality of the classification arises from the
::
To

:::::::
mitigate

::::
those

::::::::
potential

::::::::::
classification

::::::
errors,

::::::::::
IceMap500

:::::::
features

:::::::
changes

:::
in

:::
the

::::
data

:::::::
masking

::::
and

:::
the

:::::::::::
classification

:::::
rules.

::::
The

::::
new

:::::::::
algorithm

::::
uses

::
the

::::
dual

::::::::
masking

::::::::
approach

:::
and

:::
the

::::::::
NDSII-2

:::
and

:::
B4

::::
ToA

::::::::::
reflectance

::::
tests

::
as

::::::::::
IceMap250,

::::
but

:::::::
increases

:::
the

::::::::::::
restrictiveness

:::
of190

::
the

::::::::
masking

:::
and

::::
the

:::::::::::
classification.

::
It

::::
also

:::::::::
introduces

::
an

:::::::::
additional

::::
Sea

::::::
Surface

:::::::::::
Temperature

:::::
(SST)

::::
test,

::::
and

:
a
::::

new
:

MOD35

cloud mask. It features resolution-breaking square artefacts of 25 side length along the ice edge (Fig. ??) that originate in the

setting of the snow/ice background flag during the production process of the mask (Riggs and Hall, 2015). The source of the

artefacts is NSIDC’s Near-real-time Ice and Snow Extent (NISE) product, based on SSM/I-SSMIS passive microwave data at

25
::::::::
correction

::::::::
workflow

::
to
::::::::
minimize

:::
the

::::::
effect

::
of

:::
the

:::::
NISE

:::::::
footprint

::::
and

::::::
enlarge

:::
the

:::::::
mapped

::::
area

::::
(see

:::
the

:::::::
structure

::
in

::::
Fig.

:::
3).195

:::
The

:::::::::::
downscaling

::::::::
technique

::::
used

::
in
::::::::::
IceMap250

::
is

:::
not

:::::::
applied

::
for

:::::::
various

:::::::
reasons:

::
I)

:::::::::
simplicity,

::
II)

:::::::
reduced

:::::::::
processing

::::::
times,

:::
III)

:::::::
MODIS

::::
Aqua

:::::
band

::
to

::::
band

::::::::::
registration

:::::
errors

:::::
which

::::
may

:::
be

::::
even

:::::
larger

::::
than

:::
the

::::
250 resolution, that is used to determine

the flag’s state. Such artefacts propagate from one product to another, and can also be seen in MODIS sea ice products MOD29

and MYD29. They can occupy extensive areas in some scenes, causing the loss of many cloud-free classifiable pixels and

preventing the detection of the ice edge.200

Pixels tagged as confident clear (no clouds) in the MOD35_L2 cloud mask, shown in red, overlaying a scene taken in March

2012 covering the Russian coast (band 4). Artefacts are visible along the ice edge.

To mitigate those potential classification errors, m
:::
cell

::::
size

::::
itself

::::::::::::::::::::::::::::::::::::::::::::::
(Xiong et al., 2006; Khlopenkov and Trishchenko, 2008)

:
,

:::
and

:::
IV)

:::::::
spectral

:::::::
integrity

:::
of

:::
the

:::::::
imagery

:::::
(since

:::
no

::::::::::
downscaling

::
is
::::::::
applied). IceMap500 features changes in the data masking

and the classification rules, additional threshold tests, a smaller artefact correction algorithm and a new monthly map synthesis205

approach (see the structure in Fig. ??)
::::
swath

:::::
maps

::::
can

::
be

::::::::::
aggregated

::
at

:::
any

:::::::
desired

::::
time

:::::
scale.

::::
We

:::
use

:
a
:::::

map
::::::::::
aggregation

:::::::
approach

::::::
which

::
is

::::::::
sensitive

::
to

:::::::::::::
spatio-temporal

:::::::::
variations

::
of

::::
sea

:::
ice

:::
and

::::::
which

:::
can

:::
be

::::
used

:::
to

::::
filter

::::
out

::::::::
unreliable

::::
sea

:::
ice

::::::::::::
classifications.

:::
The

::::
next

:::::::
sections

::::
give

:
a
:::::
more

:::::::
in-depth

::::::::::
explanation

::
of

:::
the

::::::::::
IceMap500

::::::::
workflow.

2.4.1 The masking

IceMap500 uses the same hybrid cloud masking approach as IceMap250.
:::
The

::::
VIS

::::
mask

::
is

::::
used

:::
and

:::::::::
calculated

::
as

::
in

::::::::::
IceMap250,210

::::
using

:::
the

:::::
same

:::
VIS

::
<

:::
0.5

::::::::
threshold

:::::
value.

:::::::::
Therefore,

:::::::::
IceMap500

::::
also

::::::::
generates

:::
the

:::::::
MOD35

:::
and

:::
the

:::
VIS

::::::::
datasets. Nevertheless,

the MOD35 mask includes additional constraints so not only cloud cover is considered, but also the lighting conditions, sun

glint and the presence of land. This information is contained within the MODIS product MOD35_L2, which provides multiple

quality assessment flags , as is summarized in the product’s user’s guide (Strabala, 2004)
::::::::::::::::::::::::::::::::
(Strabala, 2004; Ackerman et al., 2010)

. We use the following flag states:215

1. Unobstructed FOV, selecting only pixels identified as confident clear. This flag is the cloud mask already used in

IceMap250
:
,
::::
with

:
a
:::::::::
confidence

::
of

:::
99

::
%

::::::::::::::::::::
(Ackerman et al., 2010).
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Figure 3. Structure
::::::::
Simplified

::::::
structure

:
of the IceMap500algorithm taking IceMap250 (Gignac et al., 2017) as reference. Common steps are

shown in solid blue, while steps that are modified and new additions are shown in solid red.

2. Day/Night, selecting only pixels identified as day. This flag is of special importance during the winter months, when the

polar twilight zone reaches the lowest latitudes and, therefore, the available daytime area becomes scarcer.

3. Sun glint, selecting only pixels identified as no sun glint. This way, areas with sun glint caused by the reflection angle of220

the sun being between 0◦ and 36◦ are discarded. It is important to emphasize that other
::::
Other

::::::::
potential sun glint sources

are not considered (Ackerman et al., 2010).

4. Land/Water, selecting only pixels identified as water. Land masking is crucial to ensure the quality of the resulting

classification because, as already pointed out in Gignac et al. (2017), an incorrect masking may generate sea ice false

positives due to the reflectance contrast of land with water.225

The VIS mask is used and calculated as in IceMap250. This mask is intended to identify areas where visibility is sufficient

to perform a classification, for the sole goal of detecting open water. It uses the normalized difference between the MODIS

thermal bands 20 and 32 as in Eq. (3).

R(B20/B32) =
B20−B32

B20+B32

10



Threshold values are obtained by calculating the standard score of R(B20/B32), as seen in Eq. (4), where µ and σ are the230

mean and standard deviation of R(B20/B32), respectively. Pixels where VIS < 0.5 are tagged as having enough visibility.

V IS =
R(B20/B32) −µ

σ

The masking produces the MOD35 and the VIS datasets, which are later classified separately. Note that while masking is

done at 1 resolution, the classification uses data at 500 , so sea ice and water are mapped at 500 within the mask limits.

2.4.2 The classification tests235

The original thresholding method used in IceMap250 classifies as sea ice all pixels that pass any of the following two threshold

tests
::
In

:::::::::
IceMap500

:::::
three

:::::::
different

::::::::
threshold

::::
tests

:::
are

:::::::
included:

1. NDSII-2 threshold test (tndsii2).
::::
Same

:::
as

::
in

::::::::::
IceMap250.

:
The threshold value k is determined by slicing the NDSII-2

, shown in Eq.(2) , into two classes
::::
(Eq.

::
2) with the Jenks natural breaks optimization(Jenks, 1967), which maximizes

inter-class variance and minimizes intra-class variance. Pixels in the first group (i.e. below k
::::::::::
NDSII-2< k) are classified240

as sea ice.

NDSII2 =
Green−NIR

Green+NIR

::::
This

:::
test

:::
was

::::::
shown

::
to

:::::::::::
discriminate

::::::
96-100

::
%

::
of

:::
sea

:::
ice

::::
even

::::::
during

:::
the

::::::
melting

:::::::
periods

::
in

::::::::::::::::
Gignac et al. (2017)

:
.

2. Green TOA reflectance threshold
::::
ToA

:::::::::
reflectance test (tb4).

:::::
Same

::
as

::
in

::::
both

:::::::
IceMap

:::
and

::::::::::
IceMap250.

:
A pixel is tagged

as sea ice if its reflectance is >17
::
% at 545-565 nm (band 4

::
B4). This threshold is based on the contrast in reflectance245

between ice and water at visible wavelengthsas suggested by Riggs et al. (1999) and validated by Gignac et al. (2017).

However, in IceMap500 a new threshold test is introduced: ,
:::
and

::::
was

:::
first

:::::
used

:
in
::::::::::::::::
Riggs et al. (1999)

:::
and

::::
later

::::::::
validated

::
in

::::::::::::::::
Gignac et al. (2017).

:::::::::::::::::
Gignac et al. (2017)

:::::::::::
demonstrated

::::
that

:
a
::::::
B4>17

::
%

::::::::
threshold

::::::
resides

::::::
slightly

::::
into

:::
the

:::::
upper

:::::::
standard

:::::::
deviation

:::
of

::
the

:::::
water

:::::
class

:::::::::
reflectance,

:::
so

:::
the

:::
risk

::
of

::::::::::::
misclassifying

::::
melt

::::::
ponds,

:::::
leads,

::::::::
polynyas

:::
and

::::::::::
low-albedo

:::
sea

:::
ice

:
is
::::
low.

:
250

3. Mid-range infrared temperature test (tb20). This new threshold is based on the Sea Surface Temperature (SST) using

band 20
:::
B20

:
(3.660-3.840 µm). It is always used in conjunction with tb4, but only during

:::::::
although

::::
only

:::
in the MOD35

dataset classification. Therefore, sea ice is classified only when both B4 >17 % and SST <1 ◦C. The goal of tb20 is to

reduce potential sea ice false positives due to sun glint, as not all sources are considered in the MOD35 mask (see ). This

threshold intends to include melt ponds, leads, and water close to the ice edge to prevent breaking the 500 resolution.255

The SST test relies on a simple atmospheric correction described
::
test

::
is
:::::
used

::
as

:
a
::::
sort

::
of

:::::
mask

::
to

:::::::
confirm

::::
that

:
a
:::::
pixel
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:::::
tagged

:::
as

:::
sea

::
ice

::::::
really

::::::
belongs

::
to
:::
sea

::::
ice,

::
as

:::::::::
unmasked

:::
sun

:::::
glint,

:::::
turbid

:::::
water

:::
and

:::::::
aerosols

::::
may

:::::
raise

:::::
water

:::::::::
reflectance

:::
past

:::
the

:::
tb4::::::::

threshold.
:::
To

:::::::
perform

:::
this

::::
test

:::
B20

::
is
::::::::::
temporarily

:::::::::::::
atmospherically

::::::::
corrected

::::
with

::
a

::::::::::::
straightforward

::::::::
equation

::::
used in the MODIS SST algorithm theoretical basis document (Brown and Minnett, 1999) for mid-range infrared SST

derivation , as in (Eq. 5):260

SST = 1.01342+1.04948·TB20 (5)

where TB20 is the brightness temperature of MODIS band 20. Mid-range infrared has been selected instead of thermal

infrared because the atmospheric correction is straightforward and may be affected by reflected solar radiation, making

easier the exclusion of sun glint as a result of the temperature increase
:::
B20. The 1 ◦C threshold is selected so melt ponds

and pixels around the ice edge are included (see ? for a detailed discussion on the temperature of melt ponds )
:::::::
designed265

::
to

::::::
include

:::::
leads,

::::
cold

::::::
water,

::::
new

:::
sea

:::
ice

:::
and

:::::
melt

:::::
ponds

::::::
(which

:::::::::
according

::
to

::::::::::::::::
Zhang et al. (2017)

:::::::
typically

::::
stay

::::::
below

:::
0.3 ◦C)

::
to
:::::::

prevent
::::::::
breaking

:::
the

::::
500 m

::::::::
resolution, while still leaving out most water in the study area susceptible of

being affected by sun glint
::::::::
discarding

:::::
most

::::
open

:::::
water (refer, for instance, to global SST products by the NOAA).

::::
such

::
as

::::::
NOAA

::::
High

::::::::::
Resolution

:::
SST

:::
by

::::::::::::::::
NOAA/OAR/ESRL

:::::
PSL,

:::::::
Boulder,

::::::::
Colorado,

:::::
USA,

::::::::
available

::
at

:
https://psl.noaa.gov/

data/gridded/data.noaa.oisst.v2.highres.html
::
).

::::::::
Moreover,

::::
B20

::::
may

::
be

::::::::::::
contaminated

::
by

::::::::
reflected

::::
solar

::::::::
radiation,

:::::::
causing270

::::
TB20::

to
:::::::
increase

::::
and

:::::::
therefore

:::::::
making

:::::
easier

:::
the

::::::::
exclusion

::
of

::::
sun

::::
glint.

:

In addition, in IceMap500 a more restrictive classification approach is adopted
::::::
features

:::::::::
restrictive

:::::::::::
classification

::::
rules

:
to

compensate the output of tndsii2 in scenes with a single surface class, as the Jenks optimization will still split data in two

groups. The classification rules are dataset-dependent. Nevertheless, due to the merging of
::::::
depend

::
on

:::
the

::::::
dataset

::::
that

::
is

:::::
being

::::::::
classified,

::
as

:::::
when

:::::::
merging

:
the MOD35 and VIS maps , changes in a single dataset classification ultimately affect the whole275

outcome. The IceMap500 classification rules are shown in Table 2
:
3: sea ice is only mapped in the MOD35 dataset when there

is consensus between the tests, while in the VIS dataset it is mapped whenever tb4 is positive. A downside of this method is

that it may leave some melt ponds as NoData, since in the most advanced melting states they tend to show NDSII-2 values

similar to water (Gignac et al., 2017).
::::
Note

::::
that

:::::
while

:::::::
masking

::
is

::::
done

::
at

::
1 km

:::::::::
resolution,

:::
the

:::::
swath

::::
data

:::
that

::
is

::::::::
classified

::
is

::
at

:::
500

:
m

:
,
::
so

:::
sea

:::
ice

:::
and

:::::
water

:::
are

:::::::
mapped

::
at

:::
500

:
m

:::::
within

:::
the

:::::
mask

:::::
limits.280

2.4.3 MOD35 correction

Once the MOD35 map is created, an additional set of tests is introduced to attenuate the effects of the NISE artefacts or

blocks
:::::::
footprint present in the MOD35

:::
_L2

:
mask, which propagate to the MOD35 classification and ultimately to the monthly

extent maps, that may be extensively affected
:::::::::
composite

::::
maps. Although the inclusion of this correction increases the chances285

of classification errors, it greatly improves the quality of the maps
:::
sea

:::
ice

::::
edge

::::::::::
delineation and increases the classified area.

It is intended to affect only cloud-free areas set as NoData that are close enough to
::::
The

:::::::
MOD35

:::::::::
correction

::
is

:::::::
designed

:::
to

12
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Table 3. Classification outcomes based on the threshold tests in IceMap500.

MOD35 dataset VIS dataset

tndsii2 < k
tb4 > 17 %

MOD35 map tndsii2 < k tb4 > 17 % VIS map
tb20 < 1 ◦C

yes yes ice yes yes ice

yes no NoData yes no NoData

no yes NoData no yes ice

no no water no no water

::::::::
reclassify

::::::
NoData

::::::
pixels

:::::
within

::
a

:::::
buffer

::::
zone

::::::::::
surrounding

:::::::
clusters

::
of sea ice.

:::::
Within

::::
this

:::::
buffer

:::
the

::::::::::
MOD35_L2

:::::
cloud

:::::
mask

::
is

::::::
ignored

::::::
during

:::
the

::::::::::::
classification.

:::::::
Instead,

:::::::
MODIS

:::
B7

:::::::::::
(2.105-2.155

:
µm

:
)
::
is

::::
used

::
to

::::::
detect

:::::
clear

::::
areas

:::
by

::::::
taking

:::::::::
advantage

::
of

:::
the

::::
very

::::
low

::::::::::
reflectance

::::::
values

::::
that

:::::
water,

:::::
snow

::::
and

:::
ice

:::::::
display

::
at
:::::

such
:::::::::::
wavelengths,

::::::::
allowing

:::::
cloud

:::::::::::::
discrimination290

::::::::::::::::::::::::::::::::::::::::
(e.g. Platnick et al., 2001; Thompson et al., 2015).

:
To avoid error amplification, sea ice clusters below 100 pixels are deleted

before the correction: if those clusters are found far from the ice edge it is likely that they originate from sun glint or unmasked

clouds, while those found close to large clusters of sea ice will be
::
are

:::::::::
ultimately

:
classified again as such. The MOD35 correc-

tion includes five tests, as illustrated in Fig. ??.
:
4.

295

Figure 4. MOD35 block correction structure and possible test outcomes.
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1. NoData test. NoData pixels pass the test, while classified areas remain the same. All pixels set as NoData during the

MOD35 classification also undergo the tests, and may be finally labelled as sea ice or water.

2. Euclidean distance test. NoData pixels found at 35 km or closer to a cluster of sea ice pass the test; those found above

this threshold are left
::::::::
otherwise

:::
are

:::
set

:
as NoData. This distance is roughly equal to the diagonal of NISE’s 25 km

artefacts
:::
cells, and is used to reduce the chances of misclassifying clouds as sea ice by setting a buffer along the ice edge.300

3. Band 7 TOA
::::::::::::::
Short-wavelength

:::::::
infrared

::::
ToA

:
reflectance test (tb7). Pixels below 3.5 TOA

::
%

::::
ToA reflectance at 2.105-

2.155 µm
::::
(B7) pass the test, otherwise they are left

::
are

:::
set

:
as NoData. This threshold is based on the low reflectance that

water, snow, and ice display around 2 µm: spectral signatures in Fig. ??
:
5 indicate a maximum reflectance of ∼10

::
% for

ice within the selected
:::
B7 bandwidth, while the reflectance of snow and water is always below 5

::
%. This test is used as

a cloud filter, as it is expected that clouds show higher reflectance values. Fig. ??
:
5
:
also shows the threshold includes305

only 45.3
::
% of clear areas according to our sampling, although most excluded pixels

::
of

:::
the

:::::::::
remaining

:::::::
samples belong

to sea ice far from the ice edge which is of no interest in the MOD35 correction. However, by setting a low reflectance

::::
such

:
a
:::::::::
restrictive threshold only a tiny

:::::
small fraction of clouds are included (1.5

::
%), which is preferable

::::::::
preferred over

including all sea ice while increasing significantly sea ice false positives due the presence of clouds
::
to

:::
the

:::::
cloud

:::::
cover.

4. tndsii2. Pixels below the Jenks threshold
:::::
Same

::
as

::
in

:::
the

:::::::
MOD35

:::::::::::
classification.

::::::
Pixels

:::::
where

:::::::::::
NDSII-2< k pass the test,310

while the rest are left
::::::::
otherwise

:::
are

::
set

:
as NoData. In this case, the Jenks optimisation is not performed using all the clear

pixels in the scene, but rather only those included in the Euclidean distance test and
::::::
within

::
the

:::
35 km

:::::
buffer

::::
zone

:::
set

::
as

::::
clear

::
by

:
tb7.

5. tb4& tb20. As in the previous
:::::
Same

::
as

::
in

:::
the MOD35 classification, pixels

:
.
:::::
Pixels where B4 >17 % and SST <1 ◦C are

classified as sea ice, otherwise are left
::
set

:
as NoData.315

Finally, the MOD35 map and the result of the MOD35 block correction are joined together in a single map, which is
::::::
merged

:::
and

:
later combined with the VIS map according to the compositing rules in Table 3.

:
2.

::
A
::::::
visual

:::::::
example

::
of

:::
the

:::::::::
workflow

::
in

:::::::::
IceMap500

::
is

:::::
given

::
in

::::
Fig.

::
6,

:::::::::
illustrating

::::
each

::::::::::
intermediate

:::::
result

::
of
:::
the

:::::::::
algorithm.

2.4.4 Monthly map synthesis
::::
Map

:::::::::::
aggregation and

:::::::::
calculation

:::
of

:::
sea

:::
ice extentderivation320

The corrected MOD35 and VIS maps created for each scene are combined to take advantage of the strengths of both the

MOD35 and the VIS classification methods, following the criteria seen in Table 3
:
2. The extensive cloud cover found in most

scenes and the restrictiveness of the classification implies little area is finally mapped, although the new correction reduces the

impact of the cloud mask. In any case, many scenes are required to map large expanses of the sea ice cover. In IceMap250

weekly maps are derived using a majority filter, with every pixel classified as sea ice assumed to be equally reliable. Here, a325

new monthly map synthesis method is proposed
:::::::::
IceMap500

:
a
::::
map

::::::::::
aggregation

:::::::
method based on the number of coincident sea

ice classifications achieved in each pixel
:
is

::::
used, meaning that pixels classified as sea ice in a large number of scenes will have

14



Figure 5.
::::
Left:

::::::
spectral

:::::::
signatures

::
of

::::::
several

::::::
surfaces

:::::::
obtained

:::
from

:::
the

:::::
USGS

::::::
spectral

:::::
library

::::::::::::::::
(Kokaly et al., 2017),

:::::::
including

:::
ice

:::::
(frost),

:::
sea

::::
water

:::::::
(oceanic

:::
and

::::::
coastal),

:::
and

:::::::::
snow-slush

::
at

::::::
different

::::::
melting

:::::
states

:::::::
(indicated

:::
by

:::::
roman

::::::::
numerals);

::::::
MODIS

::::
band

::
7
::::::::
bandwidth

::
is

:::::
shown

:
in
::::::
yellow.

:::::
Right:

::::::::
histograms

:::
for

::::
pixels

::::::::
identified

::
as

:::::::
confident

::::
clear

:::
and

::::
other

:::::::
(probably

:::::
clear,

:::::::
uncertain

::::
clear,

:::
and

::::::
cloudy)

::
in

::
the

::::::::::
MOD35_L2

::::::
product,

::::
from

::::
8000

::::::::
randomly

::::::
sampled

:::::
points

::
on

::::
five

::::::
different

::::::
scenes.

:::::::::
Percentages

::::::
indicate

:::
the

::::::::
proportion

::
of
:::::

pixels
:::::
inside

::::
each

::::
filled

::::
area

::::
using

:
a
:::
3.5

::
%

:::
ToA

:::::::::
reflectance

:::::::
threshold.

higher reliability. The synthesis
:::::::::
aggregated maps are generated by calculating the sum of composite maps where ice = 1 and

water = 0, and later normalizing the results according to the maximum number of coincident sea ice observations achieved.

::::
With

:::::::
MODIS

:::::
Terra

:::
the

:::::::::
maximum

::::::
number

:::
of

::::::::::
observations

::::::::
typically

:::::::
reaches

::::
∼50

::
in

::::::
March

:::
and

:::::
∼60

::
in

:::::::::
September,

:::
so

:::::
using330

::::
both

::::
Terra

::::
and

:::::
Aqua

:::
this

:::::::
number

:::::
could

::::::
double

:::
and

:::::::::::
significantly

:::::::
increase

:::
the

:::::::::
usefulness

::
of

::::
this

:::::::
method. The output provides

information about where is sea ice more likely to be foundaccording to the processed MODIS scenes, thus we appropriately

refer to the resulting maps as sea ice presence likelihood maps (Fig. ??).

Possible map combinations and composite outcomes (Gignac et al., 2017). MOD35 map VIS map Composite mapice ice

ice ice water water iceNoData NoData water ice NoData water water water water NoData NoData NoData ice NoData NoData335

water water
::
7).

:::::
This

::::::::
approach

::::::
allows

::::
users

:::
to

:::::
detect

:::
the

::::::
places

::::::
where

:::
sea

:::
ice

:::
has

:::::
been

:::::
more

:::::::
unstable

::::::
during

:
a
:::::

given
:::::

time

::::::
period,

::
as

:::
the

:::
sea

:::
ice

:::::::
presence

:::::::::
likelihood

::::
will

::::
drop

::
in

::::
such

::::::
cases.

:::::::::
Likelihood

:::::
maps

:::::
allow

::::
even

::
to

:::::
detect

::::::
cracks

::
in

:::
the

:::
sea

::::
ice,

:::
and

::
of

::::::
course

:
if
::::
sea

::
ice

::::
has

:::::
moved

:::::::::::
significantly

:::
the

:::
sea

:::
ice

:::::::
presence

:::::::::
likelihood

:::
will

:::
be

:::::
lower.

Pixels below a selected thresholdvalue in the
:::
Sea

:::
ice

:::::
extent

::
is

:::::::
obtained

:::::
from

:::
the

:::::::::
likelihood

::::
maps

:::
by

::::::::
selecting

:
a
:::::::::
likelihood340

::::::::
threshold,

::
in

::::
this

::::
case

:::
10

:::
%.

:::::
Then,

:::::
pixels

::::::
where

:
sea ice presence likelihood maps can be discarded to get rid of the least

reliable observations, acting as an additional post-classification filter. In our case,
::
is

::
>0

:::
%

:::
and

::::
<10

:::
%

::
(0

:::
%

::
is

::::::
water)

:::
are

::::::::
discarded

:::::::
because

::::
such

:::::::::::
observations

:::::
might

:::
not

:::
be

::::::
reliable

:::::::
enough.

:::
By

::::::::::
eliminating

::::
such

:::::::::::
observations

:
a
:::::

small
:::::::

NoData
::::::
buffer

::::
zone

:::::
along

:::
the

::
ice

:::::
edge

:
is
:::::::::
generated.

::::::::::
IceMap500

::::
then

::::
takes

:::::::::
advantage

::
of

:::
the

:::::
pixels

::
set

:::
as

::::
water

::::
and

:::
fills

:::
the

:::::::
NoData

::::
gaps

:::::
using

::
an

:::::::::
Euclidean

:::::::
distance

::::::::
allocation

:::::::
method.

::::
This

::::
way

::
a
::::::
clearer

:::
and

:::::::::
smoother

:::
sea

:::
ice

::::
edge

::
is

::::::::
obtained,

:::::
which

::::::::::
nonetheless

:::::
does345
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Figure 6. Left: spectral signatures of several surfaces obtained from the USGS spectral library (Kokaly et al., 2017), including ice (frost),

sea water (oceanic and coastal),
:::::::::
Intermediate

:
and snow-slush at different melting states (indicated by roman numerals); MODIS band 7

bandwidth is shown in yellow
:::
final

:::::::
products

::
of

:::::::::
IceMap500. Right: histograms for pixels identified as confident clear and other (probably

clear, uncertain clear, and cloudy) in
:::
The

:::::
effect

::
of

:
the MOD35 _L2 product, from 8000 randomly sampled points

::::::::
correction

:
is
::::

best
::::
seen

on five different scenes. Percentages in white indicate the proportion
::::
upper

::::
right

:::::
corner of pixels inside each filled area using the selected

3.5 TOA reflectance threshold
:::
maps.

:::
not

:::::
ignore

:::
the

::::::::::
information

::::::
carried

:::
by

:::::
pixels

::::::
where

::::::::
likelihood

::::
falls

::::::
below the selected thresholdis >10 %, which represents a

balanced compromise between error filtering and area mapped. This synthesis approach generates
:
.
::::
This

::::::::
procedure

::::
acts

::
as

:::
an

::::::::
additional

:::::::::::::::
post-classification

::::
error

:::::
filter

:::
and

::::::::
produces

:
a sea ice extent maps

:::
map, as the constant motion of the ice tends to hide

the presence of features such as leads, cracks, polynyas and ice floes.Finally, the euclidean distance from both sea ice and water

is calculated, and is later used to fill NoData gaps by setting as sea ice those pixels closer to sea ice than to water, smoothing350

the ice edge and generating a continuous sea ice extent map for the given month.
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:
It
::
is
:::::
worth

::::::
noting

::::
that

:::
the

::::::::::
aggregation

:::::::::
procedure

:::::::::
eventually

:::
sets

:::::
either

:::
as

:::
sea

:::
ice

::
or

:::::
water

:::::::
NoData

::::::
pixels

:::
that

:::::
were

:::::
never

:::::
really

:::::::
classified

:::
by

:::
the

::::::::
algorithm

::::::
during

:::
the

:::::
entire

::::
time

::::::
period.

::::::::
Although

::
the

::::
dual

::::::::
masking

:::::::
approach

::::
and

:::
the

:::
use

::
of

:::
the

:::::::
MOD35

::::::::
correction

::::::
greatly

:::::::
improve

:::
the

::::
final

::::::::
classified

::::
area,

:::::::
NoData

::::
gaps

:::
still

::::
tend

::
to

:::::
appear

::
in
:::
the

:::::::
regions

:::::
closer

::
to

::
the

::::
pole

::
in

:::
the

::::::
March355

:::::::
monthly

::::
maps

::
as
::
a
::::::::::
consequence

:::
of

:::
the

::::
poor

::::::
lighting

::::::::::
conditions.

:::::::::
Obviously,

:::
this

::::
also

:::::
makes

:::
sea

:::
ice

::::::::
presence

::::::::
likelihood

::
to

:::::
drop.

:::::::::
September

:::
has

:::
no

::::
such

:::::::
lighting

::::::::::
limitations,

::
so

:::::::
NoData

:::::
gaps

::::::
appear

:::::
more

::::::::
randomly.

:::::::::::
Fortunately,

:::
the

:::::::
average

:::::::
NoData

::::
area

::::::
fraction

::
of

::::
our

:::::::
monthly

::::
time

:::::
series

::::
only

::::::
reaches

:::
1.0

:::
%

::
in

:::::
March

::::
and

:::
0.7

::
%

::
in

:::::::::
September.

Figure 7. Comparison between
::::::::
Clockwise

:::
from

:::::
upper

:::
left:

:::::::
example

::
of monthly sea ice presence likelihood maps for March 2012 over

:
in

:
the

Russian coast: left,
:::::
Baltic

:::
sea;

:::::
buffer

:::
zone

::::::::
generated

::::
when

::::::
setting

:
a
::
10

::
%

::::::::
likelihood

::::::::
threshold;

::::::
monthly

:::
sea

::
ice

::::::::
likelihood

:
without MOD35

correction; right,
::::::
monthly

:::
sea

:::
ice

:::::::
likelihood

:
with MOD35 correction.For representation purposes, pixels equal to 5 or below have been set as

water.
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3 Results360

:::
We

:::
use

:::
the

::::
new

::::::::::
IceMap500

:::::::::
algorithm

::
to

::::::
obtain

:::::
swath

::::
and

::::
daily

:::::
maps

::::::
during

:::
the

:::::::
months

::
of

::::::
March

::::
and

:::::::::
September

:::
of

:::
the

:::::::::
2000-2019

::::::
period,

:::::
using

::::
only

:::::::
MODIS

:::::
Terra

::::
data.

::::
The

::::::::
resulting

::::
maps

:::::
have

::::
been

:::::::::
aggregated

:::
at

:
a
:::::::
monthly

:::::
scale

::
to

::::::
obtain

:::
the

::::
time

:::::
series

::
of

::::
sea

:::
ice

::::::
extent,

::::
from

::::::
which

:::
sea

:::
ice

::::::
extent

::::::
trends

::::
have

:::::
been

:::::::::
calculated.

::::
The

:::::::::::
performance

::
of

:::
the

:::::::::
algorithm

::
is

:::::::
assessed

::::
with

::::::::
confusion

:::::::
matrices

:::
by

::::::::
manually

::::::::
validating

::::::
swath

:::::
maps.

3.1 Sea ice
:::::
extent

::::::::
evolution

::::
and

:
trends365

Monthly sea ice extent maps have been used to determine the sea ice extent trends between 2000 and 2019 in the European

Arctic
::
NE

::::::::::::::
Atlantic-Barents

::::::
region

:
and the Baltic Sea

::::::::
separately. Both March and September trends have been obtained for

the Arctic
:::
NE

:::::::::::::
Atlantic-Barents, that is, the trends of the maximum and minimum sea ice cover, respectively. Since there is no

perennial sea ice fraction in the Baltic Sea, only the March trend is available in this case, also corresponding to the maximum

sea ice cover. The resulting trend lines, represented in Fig. ??
:
8, have been obtained via least-squares linear regression.370

Figure 8. Monthly sea ice extent
:::::::
evolution and trend linesobtained in

:
,
:::::::
alongside

:
the European Arctic

:::::::
numerical

:::::
results

::
of

:::
the

::
sea

:::
ice

:::::
trends

and the Baltic Sea
::::::

standard
::::
error

::
of

:::
the

::::
slope.

::::
Two

::::::::
goodness

::
of

::
fit

::::::::
estimators

:::
are

:::::
given:

::
the

:::::::::
coefficient

::
of

::::::::::
determination

::::
and

::
the

:::::::
p-value.

::::::
P-values

:::
are

::::::
obtained

::::
from

::::::::
two-tailed

::::
Wald

::::
tests

:::
with

:::
18

::::::
degrees

::
of

::::::
freedom

:::
and

:::
null

::::::::
hypothesis

:::
that

::::
there

::
is
::
no

:::::::::
correlation

::::::
between

:::
the

:::
two

:::::::
variables,

:::
i.e.

:::
that

::
the

:::::
slope

::
of

::
the

::::
trend

:::
line

::
is
::::
zero.

All three cases display negative trends, indicating a shrinking of the sea ice cover. Table ?? shows numerically the decrease in

sea ice extent. According to the calculated trends, in the European Arctic
::::::
Results

::::::
indicate

::::
that

::
in

:::
the

:::
NE

:::::::::::::
Atlantic-Barents

::::::
region

the sea ice decline is ∼70
::
% faster in March than in September. Although September’s extent is comparatively smaller, the
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standard error of the trends is similar in both months (∼6×103 km2yr−1), indicating September displays a higher variability,375

as evidenced by the lower
:::
with

:
R2 value

::::
being

:::::
lower

::
in

:::::::::
September. Nevertheless, both trends have been found to be statistically

significant , assuming the null hypothesis (H0) that the slope of the trend lines is zero
::::
when

::::::::::
considering

:
a
::::::::::
significance

:::::
level

::
of

::
99

::
%. In particular, the March trend displays a very low p-value, indicating a significance level of ∼99.98 .

While
:::
%.

::
In

:::::::
contrast, the Baltic Sea trend line in Fig. ?? clearly shows a negative tendency , the monthly results also display

:::::::
displays

::
no

::::
clear

::::::::
tendency

::::
and

:
a large variability. This causes R2 to be very low and the standard error of the slope

::::
trend

:
to be380

almost equal to the slope itself. Moreover, this trend is not statistically significant, so
::::
trend

:::::
itself.

::
If

:::
the

::
99

::
%

::::::::::
significance

:::::
level

:::::::
criterion

::
is

:::::::
followed

::::
then

:
H0 can not be rejected . Therefore, the observed trend may reflect a real negative tendency masked

by high natural variability or may simply result from stochastic seaice extent measures independent of time
:
in

:::
the

::::::
Baltic

:::
sea.

Numerical results of the Arctic and Baltic sea ice trends and the standard error of the slope, along with two goodness of fit385

estimators: the coefficient of determination and the p-value. P-values were obtained from two-tailed tests assuming 16 degrees

of freedom and null hypothesis that there is no correlation between the two variables, i.e. that the slope of the trend line is zero.

March -27.98±6.01 0.55 0.0002September -16.47±5.66 0.32 0.0093Baltic March -2.75±2.05 0.09 0.1966

3.2 Accuracy assessment

We randomly selected eight years to perform the quality assessment, from which a total number of 32 scenes have been used,390

that is, two scenes per month to allow comparison. As a prerequisite, each validation scene must have both sea ice and water

pixels, otherwise it is discarded. Validation has been carried out with confusion matrices by generating 1500 random points per

scene over the classified areas. Those points have been manually tagged as either sea ice, water , or clouds
::
or

:::::
cloud, with the

help of the corresponding RGB composite
:::::
swath. Although no clouds are mapped in the algorithm, points found over clouds

opaque enough to avoid the identification of the Earth’s surface
:::::
surface

::::::
below

:
add to the total sea ice commission error.As395

already noted in Gignac et al. (2017), this method requires the scenes to be validated by the same analyst in order to maintain

its coherence.

Accuracy assessment results have been
:::
are summarized in Table ??

:
4. All scenes achieved overall accuracies above 90

:
%,

resulting in an average accuracy of 95.96
::::
96.0

::
%. The average kappa coefficient of 0.853

::::
0.85

:
indicates a strong agreement400

between classification and ground truth, despite being affected by scenes with few water validation points, causing the kappa

coefficient to drop due to the disproportion between classes. Individually, only 5 out of 32 computed kappa coefficients are

found below the 0.800
::::
0.80 value, while 10 are found between 0.800-0.900

::::::::
0.80-0.90

:
and 17 above 0.900

::::
0.90, indicating very

strong agreement. The primary source of error affecting the classification is sea ice commission, with its mean value alone

adding up to 7.33
::
7.3

::
%, that is, more than sea ice omission, water commission, and water omission combined.405

By analysing separately both months, mean accuracy is found to be higher in March than September, differing by 1.97
::
1.9

::
%.

Accuracy results in September are also slightly more variable, showing a σ of 2.78 versus 2.48
::
2.8

:::
%

:::::
versus

:::
2.5

::
%

:
in March.
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On the contrary, as due to the extensive sea ice cover Marchscenes are especially prone to almost lack water and, therefore,

::
the

:::::
mean

::::::
kappa

:::::::::
coefficient

::
is

:::::
lower

::
in

::::::
March

::::
than

::
in
::::::::::

September.
::::
This

::
is
::::::
linked

::
to

:::
the

:::::
much

::::::
greater

::::
sea

:::
ice

::::
area

:::::::
covered

::
in410

::::::
March,

:::::
which

:::::::::::
occasionally

:::::
causes

:::::
some

::::::
scenes

::
to

::::
have

::::
very

:::
few

:
water validation points, very low kappa values are eventually

obtained resulting in a lower mean kappa coefficient in March than in September
::::::
making

:::
the

::::::
kappa

:::::::::
coefficient

::
to

::::
drop

::::
due

::
to

::
the

::::::::
disparity

::
in

:::::::::
validation

:::::
points

::::::::
between

::::::
classes. The standard deviation of kappa greatly illustrates this issue, being 0.227

::::
0.23 in March and 0.059

::::
0.06 in September.

415

Nevertheless, the difference in accuracy between months does not arise from validation artefacts, but mainly from the dis-

parity in sea ice commission. With a mean sea ice commission error of 2.51
:::
2.5

::
%, March classifications outperform those for

September, which show a mean error of 12.15
:::
12.2

:::
%. Since there are only two classes, high water omission error should be

expected. However, it is very low in both cases, 0.34
::
0.3

::
%

:
in March and 0.04

:
%

:
in September, revealing the dominance of

sea ice commission is not caused by the misclassification of water as sea ice, but of clouds as sea ice. Instead, sea ice omission420

error is similar in both months, being 2.74
::
2.7

:::
% in March and 3.30

::
3.3

::
%

:
in September, while water commission is 2.5 and

1.87
::
%

:::
and

::::
1.9

::
%, respectively. Thus, globally, the major error contribution is due to the misclassification of clouds as sea

ice, especially in September, while misclassification of sea ice as water and water as sea ice remain lower in the first case and

minimal in the latter.

425

According to Chan and Comiso (2013), the MOD35
:::
_L2

:
cloud mask tends to underestimate the cloud cover over sea ice,

whereas over open water it is overestimated but closer to reality. Indeed, most sea ice commission error in our validation is due

to the misclassification of clouds as sea ice within the limits of the sea ice cover; in fact, despite the cloud fraction being much

larger over open ocean than over sea ice, in the first case sea ice commission errors are uncommon. Some of the clouds that are

commonly left undetected by the MOD35 cloud mask include low-level (top below 2 km), high-level (top above 6 km), and430

thin clouds less than 2 km thick (Chan and Comiso, 2013). Additionally, our validation showed some cloud shadows cast over

cloudy areas may sometimes be classified as clear
:::
that

:::::::::::
multilayered

::::::
clouds

:::
cast

::::::::
shadows

:::::
which

::::
can

::
be

::::::
finally

::::::
tagged

:::
as

:::
sea

::
ice. The rise of sea ice commission error during September may be explained by the fact that, as shown by Chan and Comiso

(2013), late summer in the Arctic is considerably cloudier than winter, as lower sea ice concentration relates to a larger cloud

fraction.435

Since sun glint issues have been mostly solved, as evidenced by the minimal impact of water omission error, and most sea

ice commission is generated within the detected sea ice cover, there are few clusters of sea ice false positives over open ocean,

most of which are deleted
:::::::
removed during the MOD35 block correctionif the cluster consists of less than 100 pixels. Thus, few

of those errors are propagated to the sea ice presence likelihood maps, allowing the selection of low threshold values to obtain440

sea ice extent.
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Table 4. Validation results for 32 selected
::::
swath

:::::
maps.

:::
Two

::::::
results

:::
are

::::
given

:::
per

::::::
month,

::::::::::
corresponding

:::
to

::::::
different

:
scenes. Commission

:::::
(com.) and omission

::::
(om.)

:
errors correspond to

::::::
represent

:
the four-scene

::::::
monthly

:
mean. Median kappa coefficient and accuracy are given as

an evidence that mean results are greatly affected by extreme values in the validation. Kappa coefficients corresponding to scenes in which

water validation points respresent
::
are less than 5

:
%

:
from the total are shown in italics. The average coefficient if those values are left out is

0.911
::::
kappa

::::::
statistic

::::
rates

:::
the

::::::::
agreement

::::::
between

::::::::::
classification

:::
and

::::::
ground

::::
truth,

:::::::
although

:::::::::
considering

:::
that

::::::::
agreement

:::
may

:::::
occur

::
by

:::::
chance.

Accuracy (%) Kappa coefficient Sea ice com./om. (%) Water com./om. (%)

Year March September March September
:::::
March

::::::::
September

:::::
March

::::::::
September

2003
99.34; 97.93

::::
99.3,

:::
97.9

:

93.99; 91.07

::::
94.0,

:::
91.1

:

0.664
:::
0.66;

0.881 ,
::::
0.88 0.881; 0.836

::::
0.88,

:::
0.84

:

08.54
:::
00.7

:
/

:::
09.5

:

04.75
:::
16.4

:
/

:::
00.0

:

00.55
:::
01.1

:
/

:::
00.0

:

00.02
:::
00.0

::
/

:::
00.0

2005
95.31; 92.66

::::
95.3,

:::
92.7

:

95.53; 99.07

::::
95.5,

:::
99.1

:

0.953; 0.927

::::
0.95,

:::
0.93

:

0.881; 0.965

::::
0.88,

:::
0.97

:

05.10
:::
00.0

:
/

:::
06.2

:

04.16
:::
10.2

:
/

:::
02.1

:

02.92
:::
05.4

:
/

:::
00.0

:

00.00
:::
00.4

::
/

:::
00.0

2006
98.07; 98.60

::::
98.1,

:::
98.6

:

94.07; 92.07

::::
94.1,

:::
92.1

:

0.956; 0.966

::::
0.96,

:::
0.97

:

0.884; 0.816

::::
0.88,

:::
0.82

:

06.99
:::
02.5

:
/

:::
01.6

:

05.28
:::
11.5

:
/

:::
09.0

:

04.01
:::
02.4

:
/

:::
00.1

:

00.11
:::
05.6

::
/

:::
00.1

2008
97.40; 97.87

::::
97.4,

:::
97.9

:

95.80; 98.00

::::
95.8,

:::
98.0

:

0.943; 0.904

::::
0.94,

:::
0.90

:

0.882; 0.953

::::
0.88,

:::
0.95

:

06.90
:::
02.2

:
/

:::
01.0

:

01.17
:::
11.6

:
/

:::
01.3

:

01.59
:::
02.8

:
/

:::
00.0

:

00.02
:::
00.4

::
/

:::
00.0

2010
91.73; 97.80

::::
91.7,

:::
97.8

:

90.80; 91.53

::::
90.8,

:::
91.5

:

0.319
:::
0.32;

0.956 ,
::::
0.96 0.828; 0.778

::::
0.83,

:::
0.78

:

12.54
:::
05.5

:
/

:::
00.6

:

05.05
:::
19.6

:
/

:::
09.5

:

02.20
:::
00.9

:
/

:::
00.4

:

00.24
:::
03.5

::
/

:::
00.1

2011
98.27; 98.26

::::
98.3,

:::
98.3

:

95.73; 98.60

::::
95.7,

:::
98.6

:

0.959; 0.958

::::
0.96,

:::
0.96

:

0.914; 0.967

::::
0.91,

:::
0.97

:

02.16
:::
00.4

:
/

:::
02.0

:

02.07
:::
03.9

:
/

:::
02.1

:

03.85
:::
04.8

:
/

:::
00.1

:

00.10
:::
02.9

::
/

:::
00.1

2014
98.73; 99.13

::::
98.7,

:::
99.1

:

92.40; 94.73

::::
92.4,

:::
94.7

:

0.925; 0.981

::::
0.93,

:::
0.98

:

0.841; 0.852

::::
0.84,

:::
0.85

:

11.62
:::
01.0

:
/

:::
00.9

:

00.93
:::
22.2

:
/

:::
00.9

:

01.10
:::
01.9

:
/

:::
00.0

:

00.00
:::
00.3

::
/

:::
00.0

2016
93.67; 91.20

::::
93.7,

:::
91.2

:

97.00; 99.20

::::
97.0,

:::
99.2

:

0.316
:::
0.32; ,

0.497
:::
0.50 0.937; 0.984

::::
0.94,

:::
0.98

:

04.80
:::
07.8

:
/

:::
00.0

:

00.76
:::
01.8

:
/

:::
01.5

:

01.27
:::
00.7

:
/

:::
02.1

:

01.04
:::
01.9

::
/

:::
00.0

Mean 96.94
:::
96.9 94.97

:::
95.0

0.819
:::

0.82 0.887
:::

0.89 07.33
:::
02.5

:
/

:::
02.7

03.02
:::
12.2

:
/

:::
03.3

02.19
:::
02.5

:
/

:::
00.3

00.19
:::
01.9

::
/

:::
00.0

::::
Total

:::::
Mean 96.0 0.85 07.3 / 03.0 02.1 / 00.2

::::::
Median 97.2 0.91 04.7 / 01.5 01.9 / 00.0
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3.3 Agreement with NSIDC’s Sea Ice Index

3.2.1
:::::::::
Agreement

:::::
with

::::::::
NSIDC’s

:::
Sea

:::
Ice

::::::
Index

The Sea Ice Index (Fetterer et al., 2017)
:::::::::::::::::::::
(SII, Fetterer et al., 2017) is a widely used global sea ice extent and concentration

product distributed by the NSIDC, which is derived from satellite passive microwave data at 25 km spatial resolution. It covers445

from 1978 to the present, being updated on a daily basis, and provides monthly median sea ice extent maps. In
:::
the

::::
SSI,

:::::
extent

::
is

::::::
derived

::::
from

:::
sea

:::
ice

:::::::::::
concentration

:::
by

:::::
setting

:::
as

:::
sea

::
ice

:::::
pixels

::::::
where

:::::::::::
concentration

::
is

::
15

::
%

::
or

::::::
above.

::
In

:
spite of the difference in

spatial resolution between the Sea Ice Index and our results
::
SII

::::
and

:::::::::
IceMap500, measuring the agreement

:
or
:::::::::
similarity between

both datasets acts
:::
can

:::
act as an estimator of the quality and consistency of the algorithm

:::::::::
IceMap500’s monthly composites.

Agreement
:::::::::
aggregates.

:::::
Thus,

:::
SII

:::::
maps

::::
have

::::
been

::::::::::
reprojected

::
to
::::::

North
::::
Pole

:::::::
Lambert

:::::::::
Azimuthal

::::::
Equal

::::
Area

::::
and

:::::::::
resampled450

::::
down

:::
to

:
a
::::
500 m

:::
cell

::::
size.

:::::
Then

:::::::::
agreement

:
has been calculated as the coincident sea ice area fraction between both datasets,

as compared to the total sea ice extent including coincident and non-coincident area
::::
(Eq.

:::
6).

Agreement=
A
⋂
B

A
⋃
B

::::::::::::::::::

(6)

:::::
where

::
A

::
is

::
an

:::::::::
IceMap500

:::::::
monthly

:::::::::
aggregate

:::
and

::
B

:::
the

::::::::::::
corresponding

:::
SII. Fig. ??

:
9 illustrates the agreement both for March

and September from 2000 to 2019.455

Agreement between NSIDC’s Sea Ice Index and the obtained monthly sea ice extent maps for all analysed years.

Mean agreement in March is 89.46
:::
89.5

::
%

:
with a standard deviation of 1.08

::
1.1

:::
%, whereas in September mean agree-

ment is lower, 85.53
::::
85.5

::
%, and displays higher variability, with a standard deviation of 3.07

::
3.1

::
%. Only in a single case

does the agreement fall below 80
:
%, corresponding to September 2013 : this particular case will be further discussed in

section ??
::::
(74.7

::::
%).460

::
An

::::::::
example

::
of

::::
both

:::::::
datasets

::
is

::::::
shown

::
in

::::
Fig.

::
10

:::
for

::::::
visual

::::::::::
comparison:

::::
even

:::::::
though

:::
the

::::::::
difference

::
in
::::::
spatial

:::::::::
resolution

::
is

:::
not

:::::::::::
compensated,

::::
both

:::::::::
numerical

:::
and

::::::
visual

:::::::
analysis

::::::
suggest

::::
that

::::::::::
IceMap500

:::::::
monthly

:::::::::
aggregates

:::
are

::::::::
coherent

::::
with

:::::::
existing

:::
data

:::::
even

:::::::::
considering

:::
the

::::::::
different

:::
sea

:::
ice

:::::
extent

:::::::::
calculation

::::::::
approach.

4 Discussion465

4.1
:::

Sea
::
ice

::::::
trends

Sea ice trends obtained from our monthly extent maps in the European Arctic
:::
NE

::::::::::::::
Atlantic-Barents

::::::
region are consistent

with previous observations and both are statistically significant
::::
when

::::::::::
considering

::
a

::::::::::
significance

::::
level

:::
of

::
99

:::
%.

::::
The

::::::
trends

:::::::
obtained

::
in

::::
this

:::::
study

:::
are

:::::::
regional

::::
and

::::::::
therefore

:::
do

:::
not

::::::
reflect

:::
the

::::::
overall

::::::
Arctic

:::
sea

:::
ice

::::::
extent

::::::::::
tendencies,

::::::::
although

::::
they

:::
can

::
be

:::::::::
compared

::
to

::::::
studies

:::
in

:::::
which

:::::::
regional

::::::
trends

:::
are

::::
also

::::::::
analysed. In Cavalieri and Parkinson (2012) ,

::
the

::::::::::
summation470
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Figure 9.
::::::::
Agreement

:::::::
between

:::::::
NSIDC’s

:::
Sea

:::
Ice

::::
Index

:::
and

:::
the

::::::
obtained

:::::::
monthly

:::
sea

::
ice

:::::
extent

::::
maps

:::
for

::
all

:::::::
analysed

::::
years.

Figure 10.
:::::::::
Comparison

::::::
between

::::::::
NSIDC’s

:::
Sea

::
Ice

:::::
Index

::::
(left)

:::
and

:::
sea

::
ice

:::::
extent

::::
map

::::::
obtained

:::
for

:::::
March

::::
2012

:::::
(right).

::
of sea ice trends are shown by region: our study area approximately matches what the authors call Greenland Sea and Kara

and Barents Seas. Data from 1979 to 2010 reveals in the Greenland Sea a trend of -9.5
::::::::::
(1979-2010)

::
in

:::
the

:::::::::
Greenland

::::
sea

:::
and

:::
the

::::::::::::
Barents-Kara

::::
seas,

:::::::
roughly

::::::::::::
corresponding

:::
to

:::
our

:::::
study

:::::
area,

::::::
shows

:
a
::::::
greater

::::
loss

:::
of

:::
sea

:::
ice

::::::
extent

::::::
during

::::::
winter

:::::
(-21.7±1.9×103

:::::::
3.1×103 km2yr−1in winter and -4.8)

:::::
than

::::::
during

:::::::
summer

::::::
(-18.6±1.6×103

:::::::
3.2×103 km2yr−1in summer,

showing a larger sea ice loss during winter as in the present study. Trends in the Kara and Barents Seas are similar in475
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winter and summer, being -12.2
:
).
:::::

This
::
is

::
in

::::::::::
accordance

::::
with

:::
our

:::::::
results,

:::
and

:::::
both

:::::
trends

:::
are

::::::
within

:::
the

:::::
error

:::::
range

:::
of

:::
the

::::
trend

:::::
lines

::
in

::::
Fig.

::
8.
:::::::::

Similarly,
:::
the

::::::::::
summation

::
of

::::
the

::::::::::::::::::::
Greenland-Barents-Kara

::::::
trends

::
in

:::::::::::::::::::
Peng and Meier (2017)

:
,
::::::::
covering

::::
from

:::::
1979

::
to

:::::
2015,

::::::::
indicates

::
a
:::::
trend

::
of

:::::
-19.0±2.4×103

:::::::
4.4×103 km2yr−1 and -13.8

::
for

:::
the

:::::::::
maximum

:::
sea

:::
ice

::::::
extent

::::
and

::::
-14.9±2.8×103

:::::::
5.7×103 km2yr−1 respectively. However, our regional trends may not reflect the overall sea ice extent tendencies.

This may be exemplified by the fact that in the Northern Hemisphere as a whole
:::
for

:::
the

:::::::::
minimum.

::::
This

:::::::::
behaviour

::
is

::::
also480

:::::::
reported

::
in

:::
the

:::::::
Barents

:::
sea

:::
in

::::::::::::::::
Kumar et al. (2021)

:
,
::::::::
spanning

:::
the

:::::::::
1979-2018

:::::::
period.

:::::::::::
Nevertheless,

:
the sea ice loss is more

pronounced in summer than in winter, and that in our case the minimum sea ice extent does not correspond to September2012

(EEA, 2017; Cavalieri and Parkinson, 2012; Stroeve et al., 2007)
:::::
extent

:::
loss

::
is

::::::::::::
proportionally

::::::
smaller

::
in

::::::
winter

:::
than

::
in

::::::::
summer:

::
in

:::
our

:::::
study

::::
area

:::
the

::::::
decadal

:::
sea

:::
ice

::::
loss

::
is

::::::::::::
approximately

::
of

::
9
::
%

::
in
::::::
March

::::
and

::
13

::
%
:::

in
:::::::::
September.

::::::::::::::::::::
Peng and Meier (2017)

:::::
report

:::
sea

:::
ice

:::::
losses

::
of

::::
10.1

::
%

:::
and

::::
10.8

::
%

:::
per

::::::
decade

::
in

:::
the

:::::::::
Greenland

:::
and

:::::::
Barents

::::
seas

::
in

:::::
winter,

:::::::
closely

:::::::
matching

::::
our

:::::
results.485

In the case of the Baltic Sea, no statistically significant trend can be inferred due to high interannual variability and the

limited lifespan of MODIS. This, however, does not imply that H0 (i.e. that the Baltic ice cover is stable) is true: previous

research (Jevrejeva et al., 2004) based on data from coastal observatories covering years 1900 to 2000 reveals a significant

decreasing trend in sea ice occurrence probability in the southern Baltic Sea, while in the northern half ice occurs every win-490

ter. Moreover, it shows a shortening of the sea ice season and an advance in the date of break-up, especially in the northern

areas. More recent analyses (Vihma and Haapala, 2009; Haapala et al., 2015) also indicate that over the last century the sea ice

season has shortened and the occurrence of severe winters has fallen. According to ?,
:::::
Thus,

::::::::
although

:::::::::
IceMap500

::::
may

:::
not

:::
be

::::::
suitable

:::
for Baltic sea ice extent trends are affected by large interannual variabilitycaused by the North Atlantic Oscillation that

prevents them from being statistically significant.
:::::::::
monitoring

::
at

:
a
:::::::
monthly

:::::
scale

:::
due

::
to

:::
the

::::
large

:::::::::
variability,

::::
both

:::::::::
interannual

::::
and495

:::::
within

:
a
:::::
same

:::::::
freezing

:::::
period

:::::::::::::::::::
(Granskog et al., 2006)

:
,
:
it
::::
can

::
be

:::::
useful

:::
for

:::::::
detailed

:::
sea

::
ice

::::::
studies

::::::::
spanning

::::::
shorter

::::
time

:::::::
periods.

The low water omission error obtained in the quality assessment reflects that most sun glint issues have been solved, both

by the sun glint mask provided in MOD35_L2 and the more restrictive classification approach. Nonetheless, while sea ice

omission and water commission are still low, they play a much more important role on the overall accuracy.The500

4.2
:::::::::::

Applicability
::
of

::::::::::
IceMap500

::::::::
Accuracy

:::::::::
assessment

:::::
shows

::::
that

:::
the major source of error , according to the validation, are clouds not detected by the MOD35

mask. Additional thresholds could be introduced to reduce unmasked cloud cover as much as possible, at the expense of

increasing the running time of the algorithm which is already enlarged by the MOD35 block correction. As a result of

its application, the area loss caused by the adopted restrictive classification approach is counteracted, as evidenced by
::
in505

:::::::::
IceMap500

::
is

:::
sea

:::
ice

::::::::::
commission,

::::::
mostly

::::::
caused

::
by

::::::::::
undetected

::::::
clouds.

::::
This

::
is

::::::::
especially

::::
true

::
in

:::::::::
September

:::
due

::
to

:::
the

:::::::
cloudier

::::::::::
atmospheric

:::::::::
conditions

::::::
during

:::
the

:::::
Arctic

::::::::
summer.

::::
This

:::::
issue

::
is

::::
also

:::::::
reflected

::
in
::::

the
:::::::::
agreement

::::
with

::::::::
NSIDC’s

:::
SII,

:::::
with

:::
the

:::::::::
September

::::::::
agreement

:::::
being

:::::
lower

::::
than

::
in

::::::
March

::
in

::
all

:::
but

::::
two

::::
years

::::
and

::::::::::
occasionally

::::::
falling

:::::
down

::
to

::
75

::
%

::::::::::
(September

::::::
2013).

:::
The

:::::
larger

:::::::
number

::
of

::::::
scenes

::::::::
available

::::::
during

:::
that

::::::
month

::::::::
alongside

:::
the

::::::
larger

:::
sea

:::
ice

::::::::::
commission

:::::
error

::::
make

::::
the

:::::::::
September
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:::::::
monthly

:::::::::
aggregates

::
to

::
be

::::::::::
potentially

:::::::
affected

::
by

:::
sea

:::
ice

:::::
false

:::::::
positives

::
to

::
a
::::::
greater

::::::
extent,

::
so

::
a
:::::::
possible

::::
way

::
of

:::::::
dealing

::::
with510

:::
this

:::::::
situation

::
is
:::

to
:::::::
increase

:
the sea ice presence likelihood maps (see previous

::::::::
threshold.

::
In

:::
the

::::
case

:::
of

:::::::::
September

:::::
2013,

::
a

::::
small

::::::
change

:::
in

::
the

::::::::
threshold

:::::
value

:::::
(from

:::
10

::
%

::
to

::
11

:::
%)

::::::::
translates

::::
into

::
an

:::::::
increase

::
in

:::::::::::::
IceMap500-SII

:::::::::
agreement

::::
from

:::
75

::
%

::
to

::
80

::
%

::::
(see Fig. ??). Nonetheless, the potential presence of NoData gaps in the likelihood maps is an additional factor increasing

uncertainty in our monthly sea ice extent derivation. Although those gaps are filled according to the minimum euclidean

distance to sea ice or water, its classification is not based on real observations and therefore uncertainty increases.515

The resulting monthly sea ice extent maps show an agreement with NSIDC’s Sea Ice Index almost always above 80 , being

higher in March than in September. Due
::
11

:::
for

:::::
visual

:::::::::::
comparison).

::::
An

::::::::
additional

::::::
source

::
of

::::::::::::
disagreement

:::::::
between

:::
SII

::::
and

:::::::::
IceMap500

::
in
::::

the
:::::::
summer

::::::
months

::
is
::::

the
::::::
greater

::::::::::::
fragmentation

::
of

::::
the

:::
ice

:::::
cover,

:::::::
leading

::
to

:::
the

:::::::::
formation

::
of

::::
sea

:::
ice

:::::
floes,

::::::::
alongside

:::
the

:::::::
coastline

:::::::::::
discrepancy.

::::::::
However,

::::
these

::::
two

::::::
sources

:::
are

::::::::::
intrinsically

::::::
linked to the difference in spatial resolution ,

agreements close to 100
:::::::
between

::::
both

::::::::
products.

::
In

:::
the

::::
case

:::
of

:::::::::
September

:::::
2013,

:::
the

:::::::::::
fragmentation

:::
of

:::
sea

:::
ice

::::::
(notice

:::
the

:::::
water520

:::::
pixels

:::::
within

:::
the

:::
SII

::::
edge

::
in
::::
Fig.

:::
11)

::
in

:::::::::::
combination

::::
with

::::
high

:::
sea

::
ice

:::::::::::
commission

:::
due

::
to

:::::::::
unmasked

:::::
clouds

:::
led

::
to

::
an

:::::::::
unusually

:::
low

:::::::::
agreement

:::::
score.

Figure 11.
:::::::::
Comparison

::::::
between

:::::::::
IceMap500

:::
and

::
the

:::
SII

:::::::::
(September

::::
2013)

:::::
using

:::
two

::
sea

:::
ice

::::::
presence

::::::::
likelihood

::::::::
thresholds:

:::
10

:
%
::::
(left

:::::
panel)

:::
and

::
11

::
%

::::
(right

::::::
panel).

::::::
Overall,

:::::
both

:::
the

:::::::
accuracy

::::::::::
assessment

::
of

::::::::::
IceMap500

:::
and

:::
the

::::::::
generally

::::
high

:::::::::
agreement

::::::
values

::::
with

:::
the

:::
SII

::::::
suggest

::::
that

:::
the

:::
new

:::::::::
algorithm

:
is
::::
well

:::::
suited

:::
for

:::
sea

:::
ice

::::::
studies

:::
and

::::::::::
monitoring.

:::
Its

:::::::::
processing

::::
time

:::
also

::::::
allows

::::
near

::::::::
real-time

::::::::
mapping:

:
it
:::::
takes525

::::::
around

::
50

:::::::
minutes

::
to

:::::::
generate

::
a
:::
full

:::::
daily

::::
map

:::::::
covering

:::
our

:::::
study

::::
area

::::
(i.e.

::
16

:::::::
scenes)

:::::
using

:
a
:::::::
modest

:::::::
machine

::::
with

:::
an

::::
Intel
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::::
Xeon

::::::
X5550

:::::::
(4x2.67 are not possible: aside from the position of the sea ice edge, this difference also affects the coastline,

increasing error if sea ice is present. Moreover, some fjords along the coast of Greenland which are permanently covered by

glaciers are tagged as land by the Sea Ice Index, while GHz
:
)
::::::::
processor

:::
and

:::
12 GB

:::::
RAM.

:::::::::
Therefore,

:::::::::
IceMap500

::::
may

::::::::
represent

::
an

:::::::::::
improvement

:::::::
towards

:::::
local

:::
and

::::::::
regional

:::
sea

:::
ice

:::::::
studies,

:::::::::
especially

:::::
taking

::::
into

:::::::
account

:::
the

::::::::::::::
spatio-temporal

::::::::::
information530

::::::
carried

::
by

:::
the

:::
sea

:::
ice

:::::::
presence

:::::::::
likelihood

:::::
maps.

:::::::::::
Additionally,

:::
the

::::::::
inclusion

::
of

:
the MOD35 mask includes them as ocean, thus

being ultimately classified as sea ice by our algorithm.As the sea ice cover during September is considerably smaller and is

mostly found along the coast of Greenland, non-coincident sea ice between both products due to the coastline discrepancy is

proportionally larger in September, contributing to the lower agreement values. Disagreement also arises from the detection

of fragmented sea ice and ice floes, which are frequent during the Arctic summer: due to
::::::::
correction

::::::
makes

:::::::::
IceMap500

:::
to535

:::
map

:::::
more

:::::::::
accurately

:::
the

::::
sea

:::
ice

::::
edge

::::
than

:::
the

::::::::
MOD29

:::::::
product

::::
(see

:::
the

::::::::::
comparison

::
in

::::
Fig.

::::
12),

:::::
which

::
is
:::::::

visibly
:::::::
affected

::
by

:::
the

:::::
NISE

::::::::
footprint.

:::::
This

:::::::
increase

::
in

:::::::
mapped

::::
area

::
is

::::
also

:::::::::::
advantageous

:::::
when

::::::::::
aggregating

:::::
maps

::
at
::::
any

::::
time

:::::
scale,

:::
as

:::
sea

::
ice

::::::::
presence

:::::::::
likelihood

::::
rises

:::
and

:
the 25 resolution of the Sea Ice Index, some of those areas may not exceed the 15

:::::::
presence

::
of

:::::::
NoData

::::
gaps

::
is

::::::::::
minimized.

:::::::
Instead,

::
in

::::
Fig.

:::
12

:::
the

:::::::::
IceMap500

::::::
result

::
is

:::::
closer

::::
both

:::
in

:::::
terms

::
of

:::::::
mapped

::::
area

::::
and

::::::
spatial

::::::::
resolution

::
to

:::
the

::::::::::
VIIRS/NPP

:::
sea

:::
ice

:::::
cover

::::
(375 sea ice concentration threshold used to determine extent and thus are tagged as540

water. September 2013, which displays the lowest agreement value, is an example of such behaviour (see Fig. ??) .m
:
)
:::::
swath

::::::
product

::::::::::::::::::
(Tschudi et al., 2017).

::
It

::
is

:::::
worth

::::::
noting,

::::::::
however,

:::
that

::::::
VIIRS

:::::::
products

::::
may

::::
also

::
be

:::::::
affected

::
by

:::
the

::::::
VIIRS

:::::
cloud

:::::
mask

::
in

:::
the

::::
same

::::
way

::::
that

:::::::
MODIS

::
is,

:::::::
because

:::::
NISE

::
is

::::
also

::::
used

::
to

::::::
detect

::::::::::
background

:::
sea

:::
ice

::
in

:::
the

::::::
VIIRS

:::::
cloud

::::
mask

:::::::::
algorithm

::::::::::::::
(Frey et al., 2019)

:
.

545

::::
Even

::::::
though

::::::::::
IceMap500

::
is

:::::::
designed

::
to
:::::
work

::::
with

::::::::
MODIS,

:
it
:::::
could

::::
also

::
be

:::::
used

::::
with

::::
other

::::::
optical

::::
and

:::::::
infrared

:::::::
sensors,

::
as

::::
long

::
as

:::
the

:::::::
selected

:::::
sensor

::::
has

::::::::
equivalent

::::::
bands

::
to

:::::
those

::::
used

::
by

::::
this

:::::::::
algorithm.

:::::::::::
Nevertheless,

:::
the

:::::::::
application

:::
of

:::
the

:::::::
MOD35

:::::::::
correction,

:::::
which

:::::
would

:::::
have

::
to

::
be

:::::::
adapted,

:::::::
depends

:::
on

:::
the

::::::::::::
characteristics

::
of

:::
the

:::::
cloud

:::::
mask

::
to

::
be

:::::
used,

:::
and

::::
may

:::
not

::::
even

:::
be

::::::::
necessary.

::
In

:::
the

::::
case

::
of

::::::
VIIRS

::
the

:::::::
MOD35

:::::::::
correction

::::
may

::
be

:::::::::::
advantageous

::::
due

::
to

::
the

::::::::
potential

:::::
effect

::
of

:::
the

::::
NISE

:::::::::::
background,

:::
but

::::
there

::
is

::
no

:::::
direct

:::::::::
equivalent

::
to

:::::::
MODIS

::
B7

::::::
which

::
is

::::
used

::
to

::::::
identify

::::::
clouds

::::::
during

::
the

:::::::::
correction.

:::::::::
Therefore,

:::
the

::::::::
potential

::
of550

::
the

::::::
closest

::::::
match

::::::
(VIIRS

:::::
band

::::
M11,

:::::
with

:
a
::::::::
2.20-2.30

:
µm

:::::::::
bandwidth)

::
to

::::::
discern

::::::
clouds

::::
from

:::
the

:::
ice

:::::
cover

::::::
should

::
be

::::::::
assessed

::
in

:::
this

:::::::
context.

::::::::
However,

:::
the

:::::::::
application

:::
of

:::
the

:::::::::
IceMap500

:::::::::
algorithm

::::
both

::
to

::::
other

:::::::
sensors

::
or

:::::
other

:::::
study

::::::
regions

:::::
might

:::::
yield

:::::::
different

:::::::
accuracy

::::::::::
assessment

::::::
results,

::
so

:::
the

::::::::
threshold

::::
tests

::
or

:::
the

:::::::::::
classification

::::::::::::
restrictiveness

:::::
might

::::
need

::
to

::
be

:::::::
revised

::
in

::::
each

::::::::
particular

::::
case

::
to

:::::::
improve

::
its

:::::::::::
performance.

:

5 Conclusions555

:::
The

::::
new

:
IceMap500 has been shown to produce

::::::::
algorithm

:
is
::::::

shown
::
to
::::::::
generate high quality sea ice extent maps by system-

atically achieving accuracies above 90
:
%. Quality assessment revealed the most common error is sea ice commission caused

by unmasked clouds, manifesting the key role that the MOD35 cloud mask
:::::
cloud

:::::::
masking

:
plays on the overall accuracy of

the algorithm. The addition of the NISE artefact
:::::::
MOD35

:
correction substantially improves the delineation of the ice edge,
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Comparison between NSIDC’s Sea Ice Index (left) and sea ice extent map obtained for March 2012 (right).

Figure 12.
:::::::::
Comparison

:::::::
between

::::::::
IceMap500

:::::
swath

:::::::::
composite,

::::::
MOD29

:::
sea

::
ice

:::::
extent

::::
and

:::::::::
VIIRS/NPP

::
sea

:::
ice

::::
cover

:::::::
products

::::::
(March

::::
26th

:::::
2018).

:::
For

::::::
MODIS

::::
Terra

:::
the

:::::
swath

::::::::
acquisition

::::
time

::
is

::::
7:40

::::
UTC,

:::
for

:::::::::
VIIRS/NPP

::
it

:
is
::::
7:18

:::::
UTC.

::::::::::
Disagreement

:::::::
between

:::::::::
IceMap500

:::
and

::::::
MOD29

::::
along

:::
the

:::::::
shoreline

::
is

:::::::
attributed

::
to

::::
land

::::::
masking

:::::::::
differences.

preventing the propagation of such artefacts
::
the

:::::
NISE

::::::::
footprint, and increases the area mapped

::::::
mapped

::::
area, which is of capital560

importance when deriving daily and monthly maps due to the restrictiveness of the classification and the weather dependence

of MODIS visible and infrared data. However, although it has not been specifically designed to work in a single study area, its

application in other regions has not been assessed and may yield different accuracies. High agreement between our monthly

sea ice extent maps and NSIDC’s Sea Ice Indexprove
:
,
::::::::
especially

:::
in

::::::
March,

:::::::::::
demonstrates

:
the consistency of the monthly

synthesis
:::
map

::::::::::
aggregation

:
method and further exemplifies the overall good performance of the algorithm. Data produced by565
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IceMap500 has proved useful to evaluate sea ice extent trends in the European Arctic
::
NE

::::::::::::::
Atlantic-Barents

:::::
region

:
and the Baltic

Sea, exemplifying one of the potential applications it may be used for. Significant negative trends have been observed both in

March and September in the Arctic
:::
NE

:::::::::::::
Atlantic-Barents

::::::
region, while the Baltic Sea displays much more variability and no

trend can be inferred from it. Given the high accuracies achieved and the coherence with existing data, the algorithm’s sea ice

extent maps may be used as a higher-resolution European global warming indicator within the MODIS lifespan
::
we

::::
find

::::
that570

:::::::::
IceMap500

::
is

:
a
::::::
useful

:::
tool

:::
for

:::
sea

:::
ice

::::::
studies

:::
and

::::::::::
monitoring,

::::::::::
particularly

::
at

::::
local

::::
and

:::::::
regional

:::::
scales.

Code and data availability. The source code is hosted at https://github.com/Parera-Portell/IceMap500. Monthly March and September sea

ice extent maps from 2000 to 2019 are available at https://doi.org/10.5565/ddd.uab.cat/233396.
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