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Abstract 

Glacial lakes in the Hindu-Kush Karakoram Himalaya Nyainqentanglha (HKKHN) have grown rapidly in number and area in 

past decades, and some dozens have drained in catastrophic glacial lake outburst floods (GLOFs). Estimating hazard from 10 

glacial lakes has largely relied on qualitative assessments and expert judgment, thus motivating a more systematic and 

quantitative appraisal. Before the backdrop of current climate-change projections and the potential of elevation-dependent 

warming, an objective and regionally consistent assessment is urgently needed. We use a comprehensive inventory of 3,390 

moraine-dammed lakes and their documented outburst history in the past four decades to test whether elevation, lake area and 

its rate of change, glacier-mass balance, and monsoonality are useful inputs to a probabilistic classification model. We use 15 

these candidate predictors in four Bayesian multi-level logistic regression models to estimate the posterior susceptibility to 

GLOFs. We find that mostly larger lakes have been more prone to GLOFs in the past four decades, largely regardless of 

elevation band in which they occurred. We also find that including the regional average glacier-mass balance improves the 

model classification. In contrast, changes in lake area and monsoonality play ambiguous roles. Our study provides first 

quantitative evidence that GLOF susceptibility in the HKKHN scales with lake area, though less so with its dynamics. Our 20 

probabilistic prognoses offer some improvement with respect to a random classification based on average GLOF frequency. 

Yet they also reveal some major uncertainties that have remained largely unquantified previously and that challenge the 

applicability of single models. Ensembles of multiple models could be a viable alternative for more accurately classifying the 

susceptibility of moraine-dammed lakes to GLOFs. 

1 Introduction  25 

Glacial lake outburst floods (GLOFs) involve the sudden release and downstream propagation of water and sediment from 

naturally impounded meltwater lakes (Costa and Schuster, 1987; Emmer, 2017). About one third of the 25,000 glacial lakes 

in the Hindu-Kush Karakoram Himalaya Nyainqentanglha (HKKHN) are dammed by potentially unstable moraines (Maharjan 

et al., 2018). Some of this impounded meltwater can overtop or incise dams rapidly, with catastrophic consequences 

downstream (Costa and Schuster, 1987; Evans and Clague, 1994). High Mountain Asian countries are among the most affected 30 

by these abrupt floods, if considering both damage and fatalities (Carrivick and Tweed, 2016). For example, in June 2013, a 

GLOF from Chorabari Lake in the Indian state of Uttarakhand, caused >6,000 deaths in what is known as the “Kedarnath 

disaster” (Allen et al., 2016). The peak discharges of GLOFs can be orders of magnitude higher than those of seasonal floods. 

GLOFs can move large amounts of sediment, widen mountain channels, undermine hillslopes, and thus increase the hazard to 

local communities (Cenderelli and Wohl, 2003). Still, GLOFs in the HKKHN are rare and have occurred at an unchanged rate 35 

of about 1.3 per year in the past four decades (Veh et al., 2019). Ice avalanches and glacier calving are the most frequently 

reported triggers of GLOFs in the HKKHN. Most outbursts with known date (mostly June to October) might be also linked to 
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high lake levels fed by monsoonal precipitation and summer ablation of glaciers (Richardson and Reynolds, 2000). The 

Kedarnath GLOF is the only case attributed to a rain-on-snow event early in the monsoon season (Allen et al., 2016). This 

particularly destructive GLOF underlines the need for understanding better how and why meltwater lakes can be susceptible 40 

to sudden outburst triggered by rainstorms, especially given projected impacts of atmospheric warming on the high-mountain 

cryosphere.  

Current scenarios entail that atmospheric warming may change the susceptibility of HKKHN glacial lakes to sudden outburst 

floods: IPCC’s most recent prognoses link the decay of low-lying glaciers and permafrost to commensurate increases in lake 

number and area because of rising air temperatures, more frequent rain-on-snow events at higher elevations, and changes in 45 

precipitation seasonality (Hock et al., 2019). Air surface temperature in the HKKHN rose by about 0.1 °C per decade from 

1901 to 2014 (Krishnan et al., 2019), likely having reduced snowfall, altered permafrost distribution, and accelerated glacier 

melt at lower elevations (Hock et al., 2019). Ice loss in the Himalayas has significantly increased in the past four decades, from 

−0.22 ± 0.13 m w.e. y−1 (meters of water equivalent per year) between 1975 and 2000 to −0.43 ± 0.14 m w.e. y-1 between 2000 

and 2016 (Maurer et al., 2019). Parts of this meltwater have been trapped in glacial lakes that have expanded by approximately 50 

14.1% between 1990 and 2015 (Nie et al., 2017). The notion of elevation-dependent warming (EDW) posits that increases in 

air temperature are most pronounced at higher elevations (Hock et al., 2019; Pepin et al., 2015), and that EDW has affected 

cold temperature metrics, including the number of frost days and minima of near-surface air temperature in the HKKHN in 

the past decades (Krishnan et al., 2019; Palazzi et al., 2017). Essentially, all scenarios of atmospheric warming concern aspects 

of elevation, glacier-lake size and dynamics, and local climatic variability. Yet whether and how these aspects affect GLOF 55 

hazard still awaits more quantitative support. 

Previous work on GLOF hazard in the region focused on identifying or classifying potentially unstable glacial lakes, including 

local case studies largely informed by fieldwork, dam-breach models (Koike and Takenaka, 2012; Somos-Valenzuela et al., 

2012, 2014), and basin-wide assessments (Bolch et al., 2011; Mool et al., 2011; Rounce et al., 2016; Wang et al., 2011). GLOF 

hazard appraisals for the entire HKKHN, however, remain rare (Veh et al., 2020). Most basin-wide studies proposed qualitative 60 

to semi-quantitative decision schemes using selective lists of presumed GLOF predictors (Table 1; Rounce et al., 2016). Yet 

researchers have used subjective rules to choose these variables and associated thresholds, leading to diverging hazard 

estimates (Rounce et al., 2016). Expert knowledge has thus been essential in GLOF hazard appraisals, despite an increasing 

amount of freely available climatic, topographic, and glaciological data. Statistical models can help to estimate the occurrence 

probability of GLOFs, and thus reduce the inherent subjective bias (Emmer and Vilímek, 2013). For example, Wang et al. 65 

(2011) classified the outburst potential of moraine-dammed lakes on the southeastern Tibetan Plateau by applying a fuzzy 

consistent matrix method. They used as inputs the size of the parent glacier, the distance and slope between lake and glacier 

snout, and the mean steepness of the moraine dam and the glacier snout to come up with different nominal hazard categories. 
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This and many similar qualitative ranking schemes are accessible to a broader audience and policy makers, but are difficult to 

compare and potentially oversimplify uncertainties. 70 

One way to deal with these uncertainties in a more objective way involves a Bayesian approach. Here, we used this probabilistic 

reasoning utilising fully data-driven models. Specifically, we tested how well some of the more widely used diagnostics of 

GLOF susceptibility fare as predictors in a multi-level logistic regression that is informed more by data than by expert opinion. 

We checked whether this approach can identify glacial lakes in the HKKHN that had released GLOFs in the past four decades. 

We discuss what we can learn about how these historic GLOFs were linked to readily available measures of topography, 75 

monsoonality, and glaciological changes. 

2 Study area, data, and methods 

2.1 Study area and data 

We studied glacial lakes of the Hindu-Kush Karakoram Himalaya Nyainqentanglha (HKKHN) region that we defined here as 

the Asian mountain ranges between 16º to 39ºN and 61º to 105ºE, i.e. from Afghanistan to Myanmar (Fig. 1; Bajracharya and 80 

Shrestha, 2011). Following the outlines of glacier regions in High Mountain Asia used in the Randolph Glacier Inventory 

(RGI, Pfeffer et al., 2014) with slight modifications, we subdivided our study area into the following seven mountain ranges: 

the Hindu Kush, the Karakoram, the Western Himalaya, the Central Himalaya, the Eastern Himalaya, the Nyainqentanglha, 

and the Hengduan Shan. Meltwater from the HKKHN’s extensive snow and ice cover, often referred to as “Third Pole”, feeds 

ten major river systems to provide water for some 1.3 billion people (Molden et al., 2014). There, glaciers have had an overall 85 

negative mass balance historically, having lost 150 ± 110 kg m-2 yr-1 on average from 2006 to 2015, with slightly, but 

exceptional, positive trends in the Karakoram and Western Himalaya (Hock et al., 2019). Since the 1970s, some Karakoram 

glaciers also accelerated in flow, whereas glaciers stalled elsewhere in the HKKHN (Dehecq et al., 2019). In the RCP8.5 

scenario the HKKHN glaciers lose 64 ± 5% of their total mass until 2100 compared to 1995 to 2015 (Kraaijenbrink et al., 

2017). How much of this melting of glaciers is due to EDW remains debated (Palazzi et al., 2017; Rangwala and Miller, 2012; 90 

Tudoroiu et al., 2016). Snowfall at lower elevations is also likely to decrease (Hock et al., 2019; Terzago et al., 2014), judging 

from snowfall and glacier-mass balances of past decades (Kapnick et al., 2014; King et al., 2019). Monsoon precipitation is 

likely to become more episodic and intensive (Palazzi et al., 2013).  
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Figure 1: Overview map of the Hindu-Kush Karakoram Himalaya Nyainqentanglha (HKKHN) mountains showing distribution of 

moraine-dammed lakes (blue bubbles scaled by area), their elevation (expressed as quantiles coded by arrows; see inset for elevation 

distribution); and average monsoonality (colour coded; see inset for monsoonality distribution), defined here as the fraction of total 

annual precipitation falling in the summer months. Triangles indicate reported glacial lake outburst floods (GLOFs) in the study 

area since 1935 (Veh et al., 2019). The topographic map was created with Global 30 Arc-Second Elevation data (GTOPO30, 100 
https://doi.org/10.5066/F7DF6PQS).  

 

Guided by these projections, we selected several widely used diagnostics of GLOF potential (Table 1). We used lake elevation 

as a proxy for the standard lapse rate of tropospheric air temperature (Rolland, 2003; Yang and Smith, 1985). This elevation-

dependent thermal gradient is also a major control on the distribution of alpine permafrost (Etzelmüller and Frauenfelder, 105 

2009) and precipitation. Mean annual rainfall along the Himalayan front can exceed 4,000 mm at elevations some 4,000 m 

high, where c. 25% of all glacial lakes occur (Fig. 1; Bookhagen and Burbank, 2010). Lake elevation should also represent to 

first order topographic effects of EDW. For example, the stability of low-lying moraine dams may be compromised by the loss 

of permafrost and commensurate increases in permeability in the moraine barrier and adjacent valley slopes (Haeberli et al., 

2017). Glacial lake area and its rate of change are another common diagnostic in GLOF studies (Allen et al., 2019; Bolch et 110 

al., 2011; Prakash and Nagarajan, 2017; see Table 1 for full list of references) that we considered here. Lake area is a proxy 

for lake volume (Huggel et al. 2002), and growing lakes increase the hydrostatic pressure acting on moraine dams, thus raising 
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the potential of failure (Rounce et al., 2016). Since 1990, lake areas have grown largest in the Central Himalayas (+23%), and 

lowest in the northwest Himalayas (+5.0%) (Nie et al., 2017), and many studies have emphasised the role of growing lakes on 

GLOF hazard (Bolch et al., 2011; Prakash and Nagarajan, 2017; Rounce et al., 2016) Yet to our best knowledge few, if any, 115 

studies offered tests of whether and how this change increased the susceptibility to sudden outburst. Similarly, glacier dynamics 

often find mention in GLOF studies, but are hardly quantified or used in quantitative models (Bolch et al., 2011; Ives et al., 

2010). This motivated us to consider average changes in regional glacier-mass balances from 2000 to 2016 by Brun et al. 

(2017). Meteorological drivers entered previous qualitative GLOF hazard appraisals mostly as (the probability of) extreme 

precipitation events (Huggel et al., 2004; Prakash and Nagarajan, 2017). In the absence of suitable data we used a synoptic 120 

measure of monsoonality instead in terms of the annual proportion of summer precipitation. This proportion is highest in the 

southeast HKKHN, where it is linked to monsoonal low-pressure systems (Krishnan et al., 2019). Different precipitation 

regimes and climatic preconditions may influence mechanisms of moraine dam failure (Wang et al., 2012). 

 

Table 1: Frequently used diagnostics of GLOF hazard in the HKKHN. Units and data sources refer to parameters used in this study.  125 

Diagnostic 

groups 

GLOF diagnostic 

parameters 

Used in 

this 

study 

Unit Description Data source Reference  

Lake 

characteristics 

and dynamics 

Glacial lake 

elevation 

 m asl  SRTM DEM Mergili and Schneider, 2011 

Catchment area  m²  SRTM DEM Allen et al., 2019 

Glacial lake area  m²  SRTM DEM Aggarwal et al., 2016; Allen et al., 2019; 

Bolch et al., 2011; Ives et al., 2010; Mergili 

and Schneider, 2011; Prakash and 

Nagarajan, 2017; Wang et al., 2012  

Lake-area change 

(growth and 

shrinkage, 

absolute change) 

 %  Wang et al., 2020 Aggarwal et al., 2016; Bolch et al., 2011; 

Ives et al., 2010; Mergili and Schneider, 

2011; Prakash and Nagarajan, 2017; 

Rounce et al., 2016; Wang et al., 2012 

Potential 

downstream 

impact 

Lake volume -    Aggarwal et al., 2016; Bolch et al., 2011; 

Kougkoulos et al., 2018; Mergili and 

Schneider, 2011  

Moraine 

stability 

Moraine-wall 

steepness 

-    Allen et al., 2019; Bolch et al., 2011; Ives et 

al., 2010; Prakash and Nagarajan, 2017; 

Rounce et al., 2016; Wang et al., 2011; 

Worni et al., 2013 

Width-to-height 

ratio 

-    Aggarwal et al., 2016; Bolch et al., 2011; 

Ives et al., 2010; Prakash and Nagarajan, 

2017; Worni et al., 2013 

Lake freeboard -    Bolch et al., 2011; Kougkoulos et al., 2018; 

Mergili and Schneider, 2011; Prakash and 

Nagarajan, 2017; Worni et al., 2013 
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Existence of a 

buried ice core 

-    Bolch et al., 2011; Ives et al., 2010; Rounce 

et al., 2016 

Dam type -    Kougkoulos et al., 2018; Mergili and 

Schneider, 2011; Wang et al., 2012; Worni 

et al., 2013 

Potential 

triggering 

mechanisms 

(geomorphic) 

Seismic activity -    Ives et al., 2010; Kougkoulos et al., 2018; 

Mergili and Schneider, 2011; Prakash and 

Nagarajan, 2017 

Distance from 

parent glacier 

snout 

-    Aggarwal et al., 2016; Ives et al., 2010; 

Kougkoulos et al., 2018; Prakash and 

Nagarajan, 2017; Wang et al., 2011, 2012 

Steepness parent 

glacier snout 

-    Bolch et al., 2011; Ives et al., 2010; 

Kougkoulos et al., 2018; Prakash and 

Nagarajan, 2017; Wang et al., 2011 

Regional or 

parent glacier-

mass balance 

 m w.e. 

(water 

equivalent) 

yr-1 

 Brun et al., 2017 Bolch et al., 2011; Ives et al., 2010 

Mass movements 

(traces, 

trajectories, 

probabilities) 

-    Allen et al., 2019; Bolch et al., 2011; Ives et 

al., 2010; Mergili and Schneider, 2011; 

Prakash and Nagarajan, 2017; Rounce et 

al., 2016; Worni et al., 2013 

Potential 

triggering 

events 

(climatic) 

Annual mean 

temperature 

- °C  CHELSA  Liu et al., 2014 (station data, Tibetan 

Plateau); Wang et al., 2008 (single station 

data) 

Temperature 

seasonality 

- - Standard 

deviation of 

monthly mean 

temperature 

CHELSA Kougkoulos et al., 2018  

Wet-season 

temperature 

- °C Mean 

temperature of 

wettest annual 

quarter 

CHELSA -  

Dry-season 

temperature 

- °C Mean 

temperature of 

driest annual 

quarter 

CHELSA -  

Annual 

precipitation 

- mm  CHELSA Wang et al., 2008, 2012 (station data) 

Precipitation 

seasonality 

- - Coefficient of 

variation in 

monthly 

precipitation  

CHELSA Kougkoulos et al., 2018  

Summer 

precipitation 

 mm Precipitation of 

warmest annual 

quarter 

CHELSA -  
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Winter 

precipitation 

- mm Precipitation of 

coldest annual 

quarter 

CHELSA -  

 

We extracted information on these characteristics for glacial lakes recorded in two inventories. First, we used a database of 

25,614 lakes manually mapped from Landsat imagery acquired in 2005 (± two years) (Maharjan et al. 2018), from which we 

extracted 7,284 lakes dammed mostly by lateral and end moraines. Second, we identified from an independent regional GLOF 

inventory (Veh et al. 2019) 31 lakes that had at least one outburst between 1981 and 2017. We focused on lakes >10,000 m² 130 

to ensure comparability between the two inventories, thus acquiring a final sample size of 3,390 lakes. Given the sparse 

network of weather stations in the HKKHN, we computed the monsoonality averaged for each lake from the 1-km resolution 

CHELSA data (Karger et al., 2017). We extracted topographic data from the void-free 30-m resolution SRTM (Shuttle Radar 

Topographic Mission of 2000) DEM, and use approximate lake-area changes for two intervals (1990 to 2005 and 2005 to 

2018) by Wang et al. (2020). We discarded newer, higher resolved DEMs to minimise data gaps and artefacts. Overall, we 135 

considered six topographic, synoptic, and glaciological predictors (Fig. 2, Table 1). The interpolation method underlying the 

CHELSA data introduces correlation between climate (especially temperature) and elevation data so that we limited our models 

to those with poorly correlated predictors at the expense of possible other predictors such as mean annual temperature, annual 

precipitation totals, or their variability. 

 140 
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Figure 2: Data sources and workflow; EDW = elevation-dependent warming.  

 

2.2 Bayesian multi-level logistic regression  

We used logistic regression to learn the probability of whether a given lake in the HKKHN had a reported GLOF in the past 145 

four decades. This method was pioneered for moraine-dammed lakes in British Columbia (McKillop and Clague, 2007). 
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Logistic regression estimates a binary outcome y from the optimal linear combination of p weighted predictors x = {x1, …, 

xp}. The probability y = PGLOF that lake i had released a GLOF is expressed as: 

 

 𝑦𝑖  ~ Bernoulli(𝜇𝑖)         (1) 150 

 𝜇𝑖 = S(𝛼0 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝)       (2) 

where           

 S(𝑥) =
1

1+exp(−𝑥)
          (3) 

 

Here α0 is the intercept and 𝛃 = {𝛽1, … , 𝛽𝑝}T
 are the p predictor weights (Gelman and Hill, 2007). The logit function S–1(x) 155 

describes the odds on a logarithmic scale (the log-odds ratio) such that a unit increase in predictor xm raises the log-odds ratio 

by an amount of 𝛽𝑚, with all other predictors fixed. We used standardised data to ensure that the weights measure the relative 

contributions of their predictors to the classification, whereas the intercept expresses the base case for average predictor values. 

Our strategy was to explore commonly reported diagnostics of GLOFs as candidate predictors (Fig. 2, Table 1). We further 

acknowledged that data on moraine-dammed lakes in the HKKHN are structured, reflecting, for example, the variance in 160 

topography and synoptic regime such as the summer monsoon in the eastern HKKHN and westerlies in the western HKKHN. 

Different data sources, collection methods, and resolutions also add structure. This structure is routinely acknowledged, often 

raised as a caveat, but rarely treated, in GLOF studies. Ignoring such structure can lead to incorrect inference by bloating the 

statistical significance of irrelevant or inappropriate parameter estimates (Austin et al., 2003). To explicitly address this issue, 

we chose a multi-level logistic regression as a compromise between a single pooled model and individual models for each 165 

group in the data ( Fig. 3; Gelman and Hill, 2007; Shor et al., 2007). s 

 

 

Figure 3: Schematic comparison of global vs. multi-level logistic regression models. 

 170 

We recast Eq. (2) using a group index j: 

 

 𝜇𝑖 = S(𝛼𝑗 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝)       (4) 
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 𝛼𝑗  ~ N(𝜇𝛼 , 𝜎𝛼),          (5) 

 175 

where µα is the mean, and σα is the standard deviation, of the group-level intercepts αj that are learned from all data and inform 

each other via the model hierarchy. We used a Bayesian framework (Kruschke and Liddell, 2018) by combining the likelihood 

of observing the data with prior knowledge from previous GLOF studies (Fischer et al., 2020). We used the statistical 

programming language R with the package brms, which estimates joint posterior distributions using a Hamiltonian Monte 

Carlo algorithm and a No-U-Turn Sampler (NUTS) (Bürkner, 2017). We ran four chains of 1500 samples after 500 warm-up 180 

runs each, and checked for numerical divergences or other pathological issues. We only considered models with all values of 

Ȓ <1.01, a measure of numerical convergence of sampling chains, to avoid unbiased posterior distributions (Nalborczyk et al., 

2019). 

Unless stated otherwise, we used a weakly informative half Student-t distribution with three degrees of freedom and a scale 

parameter of 10 for the standard deviations of group-level effects (Table 2; Bürkner, 2017; Gelman, 2006). At the population 185 

level, we chose weakly informative priors for the intercept and coefficients for which we had no other prior knowledge. We 

encoded this lack of knowledge with a prior Cauchy distribution centred at zero and with scale 2.5, following the 

recommendation by Gelman et al. (2008). Rapidly growing moraine-dammed lakes are a widely used diagnostic of high GLOF 

potential (Aggarwal et al., 2016; Allen et al., 2019; Bolch et al., 2011; Ives et al., 2010; Mergili and Schneider, 2011; Prakash 

and Nagarajan, 2017). We encoded this notion in a prior Gaussian distribution with one unit mean and standard deviation, 190 

hence shifting more probability mass towards positive regression weights without excluding the possibility of negative weight 

estimates (Table 2).  

 

Table 2: Prior distributions for group- and population-level effects. 

Level Model coefficient Prior PDF 

Group-level effects Standard deviation σ of group model variables  𝜎𝛼  ~ 𝐻𝑎𝑙𝑓𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑇(3,10) 

Population-level effects Intercept  𝛼𝑗  ~ 𝐶𝑎𝑢𝑐ℎ𝑦(0,2.5) 

Weight of predictors with weak prior knowledge 𝛽𝑝 ~ 𝐶𝑎𝑢𝑐ℎ𝑦(0,2.5) 

Weight of predictor lake area βA 𝛽𝐴 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(1,2) 

 195 

We estimated the predictive performance of all models with leave-one-out (LOO) cross-validation as part of the brms package 

(Bürkner, 2017). LOO values like the expected log predictive density (ELPD) summarise the predictive error of Bayesian 

models, similar to the Akaike Information Criterion or related metrics of model selection (Vehtari et al., 2017). They are based 

on the log-likelihood of the posterior simulations of parameter values (Vehtari et al., 2017). 
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3 Results 200 

Elevation-dependent warming model 

Our first model addresses the notion of elevation-dependent warming (EDW) by considering lake elevation as a grouping 

structure in the data. The model further assumes that the GLOF history of a given lake is a function of its area A and net change 

ΔA. This dependence differs up to a constant, i.e. the varying model intercept, across elevation bands z that we define here in 

five quantile grouping levels (Fig. 1). The model intercept may vary across these elevation bands, whereas lake area (in 2005) 205 

and its net change remain fixed predictors. In essence, this varying-intercept model acknowledges that glacial lakes in the same 

elevation band might have a common susceptibility to GLOFs in the past four decades. The indicator variable ΔA records 

whether a given lake had a net growth or shrinkage between 1990 and 2018: 

 

 𝜇𝑖 = S(𝛼𝑧 + 𝛽𝐴𝐴𝑖 + 𝛽∆𝐴∆𝐴𝑖)        (6) 210 

 𝛼𝑧 ~ N(𝜇𝑧, 𝜎𝑧),          (7) 

 

where index z identifies the elevation band.  

We obtain posterior estimates of βA = 0.79+0.27/–0.27 and βΔA = 0.48+0.73/–0.72 (95% highest density interval, HDI) that indicate 

that larger lakes are more likely classified as having had a GLOF, whereas net growth or shrinkage has ambivalent weight as 215 

its HDI includes zero (Fig. 4, Fig. 5, Table 3). On the population level, the low spread of intercepts (σz = 0.29+0.68/–0.28) estimated 

for each of the five elevation bands shows that elevation effects modulate the pooled model only minutely. These posterior 

effects are positive for the lower elevation bands, but negative for the higher elevation bands. Thus, the mean posterior 

probability of a GLOF history, PGLOF, under this model increases slightly for lakes in lower elevations and with larger surface 

area in 2005. We also observe that PGLOF <0.5 regardless of reported lake elevation, and that the associated uncertainties are 220 

highest for largest lakes. 
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Figure 4: Posterior pooled and group-level intercepts for the four models considered; EDW = elevation-dependent warming; see Fig. 

1 for a summary of the quantiles of elevation and monsoonality. Black horizontal lines delimit 95% HDI, red circles indicate 225 
posterior medians. Vertical continuous (dashed) grey lines are posterior means (95% HDI) of the pooled intercept of each model. 

Intercepts are standardised and thus refer to lakes with average predictor values. 
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Figure 5: Elevation-dependent warming model: posterior probabilities PGLOF as a function of standardised lake area (in 2005) and 230 
the sign of standardised lake-area change ΔA (i.e. net growth or shrinkage), grouped by quantiles of elevation (defined in Fig. 1). 

Black dots are lake data with (no) reported GLOF records. Thick coloured lines are mean fits, and colour shades encompass the 

associated 95% HDIs. 

 

Forecasting model  235 

Our second model refines our approach by including only relative changes in lake area before the reported GLOFs happened. 

We can use this model to fore- or hindcast historic GLOFs in our inventory. Here we use lake area A (in 2005) and its relative 

change A* from 1990 to 2005 as predictors of eleven GLOFs that occurred between 2005 and 2018 across the five elevation 

bands. We assume that larger and deeper lakes are more robust to relative size changes and thus also include a multiplicative 

interaction term between lake area and its change: 240 

 

 𝜇𝑖 = S(𝛼𝑧 + 𝛽𝐴𝐴𝑖 + 𝛽𝐴∗𝐴𝑖
∗ + 𝛽𝐴×𝐴∗𝐴𝑖 × 𝐴𝑖

∗)       (8) 

 

We find that lake area has a credible positive posterior weight of βA = 0.86+0.44/–0.43, hence greater lakes are more likely to 

having had a GLOF between 2005 and 2018. The weight of relative lake-area change in the 15 years before is ambiguous (β*A 245 

= –0.04+0.76/–0.67) and so is the interaction (𝛽𝐴×𝐴∗  = –0.16+0.41/–0.51). On average, however, relative increases in lake area between 

1990 and 2005 slightly decrease PGLOF. Unlike in the elevation-dependent warming model, the effects of elevation bands are 

less clear, while the uncertainties are more pronounced and highest for larger and shrinking lakes (Fig. 4, Fig. 6).  
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 250 

Figure 6: Forecasting model: posterior probabilities PGLOF as a function of standardised lake area (in 2005) and standardised lake-

area change ΔA between 1990 and 2005, grouped by quantiles of elevation (defined in Fig. 1). Black dots are lake data with (no) 

reported GLOF records for the interval 2005 to 2018. Thick coloured lines are mean fits, and colour shades encompass the associated 

95% HDIs. 

 255 

Glacier-mass balance model 

Besides elevation, our third model considers the average historic glacier-mass balances across the HKKHN. The model 

assumes that mean ice losses ∆𝑚 add a distinctly regional structure to the susceptibility to GLOFs in the past four decades, 

given that accelerated glacier melt may raise GLOF potential (Emmer, 2017; Richardson and Reynolds, 2000). We use the 

seven RGI regions as defined by Brun et al. (2017) as group-levels r and their average glacier-mass balance as a group-level 260 

predictor Δmr. Our pooled predictors are the relative change of lake area A* from 2005 to 2018 (to ensure a comparable time 

interval) and the catchment area C upstream of each lake. We replace lake area by its upstream catchment area, which is less 

prone to change, but well correlated to lake area. 

 

 𝜇𝑖 = S(𝛼𝑧 + 𝛼𝑟 + 𝛽𝐴∗𝐴𝑖
∗ + 𝛽𝐶𝐶𝑖),        (9) 265 

 𝛼𝑟 ~ N(𝜇𝑟 + 𝛾𝑟∆𝑚𝑟 , 𝜎𝑟).         (10) 
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This model returns a positive weight for catchment area (βC = 0.85+0.50/–0.50) and a negative weight for relative lake-area changes 

(βA* = –0.69+0.64/–0.61), whereas the effect of the mean glacier-mass balance remains inconclusive (γr = –2.98+4.87/–6.70). On the 

basis of higher standard deviations, we learn that effects of glaciological regions vary more than those of elevation bands (σr 270 

= 0.81+1.60/–0.78 and σz = 0.48+1.19/–0.47). This is also reflected in the posterior distributions across the glacier-mass balance regions 

(Fig. 4) as well as the calculated group-level effects. This model has the highest values of PGLOF for average lakes in the 

Nyainqentanglha Mountains and the Eastern Himalaya (Fig. 4). In contrast to the forecasting model, we observe that increases 

in lake area now credibly depress PGLOF (Fig. 7).  

 275 

 

Figure 7: Glacier-mass balance model: posterior probabilities PGLOF as a function of standardised catchment area and standardised 

lake-area change ΔA between 2005 and 2018, grouped by regions of average glacier-mass balance (see Fig. 1). Black dots are lake 

data with (no) reported GLOF records for the interval 2005 to 2018. Thick coloured lines are mean fits, and colour shades encompass 

the associated 95% HDIs. 280 

 

Monsoonality model 

Our last model explores a synoptic influence on GLOF susceptibility by grouping the data by the summer proportion of mean 

annual precipitation and thus by approximate monsoonal contribution. We defined five monsoonality levels based on quantiles 

of the annual proportions of summer precipitation (Fig. 1). We use relative lake-area change A* between 1990 and 2018, and 285 

catchment area C as population-level predictors, as well as the additional grouping by regional glacier-mass balance:  
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 𝜇𝑖 = S(𝛼𝑀 + 𝛼𝑟 + 𝛽𝐴∗𝐴𝑖
∗ + 𝛽𝐶𝐶𝑖),        (11) 

 𝛼𝑀 ~ N(𝜇𝑀, 𝜎𝑀),          (12) 

 290 

where index M identifies the monsoonality group. We find that larger catchment areas (βC = 0.82+0.46/–0.48) and lakes with 

relative shrinkage (βA* = –0.63+0.59/–0.59) credibly raise PGLOF (Fig. 4, Fig. 8). Higher standard deviations show that regional 

effects vary more for the mean glacial-mass balance than for monsoonality (σr  = 0.79+1.59/–0.76 and σM  = 0.40+1.04/–0.39), although 

both hardly change the pooled model trend. 

 295 

 

Figure 8: Monsoonality model: posterior probabilities PGLOF as a function of standardised catchment area and standardised lake-

area change ΔA between 1990 and 2018, grouped by quantiles of the annual proportion of precipitation falling during summer 

(defined in Fig. 1). Black dots are lake data with (no) reported GLOF records for the interval 1990 to 2018. Thick coloured lines are 

mean fits, and colour shades encompass the associated 95% HDIs. 300 

 

 

 

 

 305 
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Table 3: Summary of the results of our four models.  

Model Model parameter Estimate Estimation error Lower 95% CI boundary Upper 95% CI 

boundary 

Elevation-

dependent 

warming model 

αz -5.22 0.36 -5.96 -4.56 

βA  0.79 0.14 0.52 1.06 

βΔA (1990 to 2018) 0.49 0.38 -0.28 1.24 

σz 0.28 0.27 0.01 0.99 

Forecasting model  αz  -6.23 0.54 -7.39  -5.26 

βA 0.87 0.22 0.44 1.31 

βA* (1990 to 2005) -0.04 0.38 -0.71  0.73 

βAxA* -0.16 0.24 -0.67 0.26 

σz  0.43 0.41 0.01 1.49 

Glacier-mass 

balance model 

αz,r -7.31 1.26 -10.15 -5.19 

βA* (2005 to 2018) -0.69 0.32 -1.31 -0.06 

βC 0.85 0.26 0.35 1.36 

γr -2.90 2.80 -9.27 1.80 

σz 0.47 0.44 0.01 1.61 

σr 0.83 0.66 0.03 2.47 

Monsoonality 

model  

αM,r -6.14 0.70 -7.70 -4.91 

βA* (1990 to 2018) -0.63 0.31 -1.23 -0.02 

βC 0.82 0.24 0.34 1.28 

σM 0.40 0.42 0.01 1.49 

σr 0.78 0.62 0.03 2.31 

 

Model performance and validation 

We estimate the performance of our models in terms of the posterior improvement of our prior chance of finding a lake with 

known outburst in the past four decades in our inventory by pure chance. We compare the posterior predictive mean PGLOF 310 

with a mean prior probability that we estimate from the ~1% proportion of lakes with known GLOFs in our training data. We 

measure what we have learned from each model in terms of the log-odds ratio that readily translates into probabilities using 

Eq. (3). A positive (negative) log-odds ratio means that we obtain a higher (lower) posterior probability of attributing a historic 

GLOF to a given lake compared to a random draw. Based on this metric, all models have higher true positive than true negative 

rates. For a prior probability informed by the historic frequency of GLOFs, the models have at least about 80% true positives, 315 

and at least 70% true negatives on average (Fig. 9, Table 4).  

The values of the LOO cross-validation of the predictive capabilities show that the EDW model formally has the least 

favourable, i.e. higher, values for both LOO metrics (Table 4). This is potentially due to the different true positives counts in 
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the training data sets. However, the range of estimated ELPD values between the remaining three models is small (ΔELPD = 

1.9). 320 

 

 

Figure 9: Average posterior log-odds ratios for true positives TP (negatives, TN), i.e. lakes with (without) a GLOF in the past four 

decades (on the x axis) for the four different models. The log-odds ratios describe here the ratio of the mean posterior over the mean 

prior probability of classifying a given lake as having had a GLOF. We estimate the mean prior probability from the relative 325 
frequency of GLOFs in the datasets; EDW = elevation-dependent warming model. 

 

Table 4: Overview of model validation measures for the predictive capabilities of our models.  

Model  Prior vs. posterior knowledge: 

X% true positives / X% true negatives 

correctly identified 

ELPD  

 

LOOIC  

 

Elevation-dependent warming model  79% / 74% -144.2 288.3 

Forecasting model 82% / 75% -66.5 132.9 

Glacier-mass balance model 91% / 73% -64.6 129.1 

Monsoonality model 82% / 72% -65.6 131.2 
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4 Discussion 330 

4.1 Topographic and climatic predictors of GLOFs 

We used Bayesian multi-level logistic regression to test whether several widely advocated diagnostics of GLOFs are credible 

predictors of at least one outburst in the past four decades. All four models that we considered identify lake area and 

catchment area as predictors with weights that credibly differ from zero with 95% probability. Our model results 

quantitatively support qualitative notions of several basin-wide studies in the HKKHN (Bolch et al., 2011; Ives et al., 2010; 335 

Mergili and Schneider, 2011) and elsewhere (McKillop and Clague, 2007), which proposed that larger moraine-dammed lakes 

have a higher potential for releasing GLOFs.  

We also found that changes in lake area have partly inconclusive influences in the models. Two exceptions are the negative 

weight of lake-area changes βA* in the glacier-mass balance model and in the monsoonality model, regardless of the differing 

intervals that these changes were determined for (Table 3). While this result formally indicates that shrinking lakes are more 340 

likely to be classified as having had a historic GLOF, the period over which these lake-area changes are valid (2005 to 2018) 

overlaps with the timing of eleven recorded GLOFs (Eq. 9). In other words, the lake shrinkage could be a direct consequence 

of these GLOFs instead of vice versa. Nonetheless, our results indicate that lake-area changes, either absolute or directional, 

are somewhat inconclusive in informing us whether a given lake has a recent GLOF history. This result contradicts the 

assumptions made in many previous studies that assumed that rapidly growing lakes are the most prone to sudden outburst 345 

(Aggarwal et al., 2016; Bolch et al., 2011; Ives et al., 2010; Mergili and Schneider, 2011; Prakash and Nagarajan, 2017; Rounce 

et al., 2016; Wang et al., 2012). One advantage of the Bayesian approach, however, is that we can express the role of lake-area 

changes in GLOF susceptibility by choosing different highest density intervals. For example, if we adopted a narrower (80%) 

HDI for ΔA, we could be 80% certain that net lake-area growth increased PGLOF under the elevation-dependent warming model 

(Eq. 6). In the forecasting model, however, the influence of lake-area change remains negligible even for <50% HDIs. 350 

The role of elevation in GLOF predictions is also less pronounced than that of lake or catchment area, at least as a group level. 

The weights of the elevation-dependent warming model indicate that lower (higher) lakes are slightly more (less) likely to 

have had a historic GLOF (Fig. 4), but hardly warrant any better model performance compared to the pooled (or elevation-

independent) model. In the forecasting model, however, the contributions of lake elevation to PGLOF are devoid of any 

systematic pattern and likely reflect several, potentially combined, drivers (Fig. 4). This model was trained on fewer GLOFs 355 

and thus suffers from greater uncertainties in terms of the 95% HDIs. Clearly, the role of elevation may need more future 

investigation. In terms of elevation bands, it hardly seems to aid GLOF detection with the models used here. Similarly, Emmer 

et al. (2016) reported that lake elevation was hardly affecting GLOF hazard in the Cordillera Blanca, Peru.  

Judging from the regionally averaged glacier-mass balances, our models predict the highest GLOF probabilities in the 

Nyainqentanglha Mountains and the Eastern Himalaya, which have had the highest historic GLOF counts (Fig. 1). The timing 360 
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and seasonality of snowfall affects how glaciers respond to rising air temperatures. Observed frequencies and predicted 

probabilities of historic GLOFs are lowest for several glaciers with positive mass balance in the Karakoram and Western 

Himalayas (Fig. 1, Fig. 10). Most moraine-dammed lakes in the HKKHN, however, are fed by glaciers with negative mass 

balances that likely help to elevate GLOF potential through increased meltwater input and glacier-tongue calving rates 

(Emmer, 2017; Richardson and Reynolds, 2000). More than 70% of all lakes that burst out in the past four decades were in 365 

contact to their parent glaciers (Veh et al., 2019). Given that the regional glacier-mass balance is linked to synoptic precipitation 

patterns (Kapnick et al., 2014; King et al., 2019; Krishnan et al., 2019), our glacier-mass balance model highlights that the 

regional ice loss outweighs the role of monsoonality in terms of higher changes to the group-level intercepts for comparable 

mean PGLOF and associated uncertainties (Fig. 4, Fig. 7, Fig. 8). 

Our results offer insights into the links between historic GLOFs and the synoptic precipitation patterns. Richardson and 370 

Reynolds (2000) presumed that seasonal floods and GLOFs are both caused by high monsoonal precipitation and summer 

ablation. In contrast, our results indicate that the fraction of summer precipitation changes the predictive probabilities of 

historic GLOFs only marginally, at least at the group level, so that deviations from a pooled model for the HKKHN are minute. 

In essence, our results underline the need for exploring more the interactions of both precipitation and temperature as potential 

GLOF triggers. It may well be that seasonal timing of heavy precipitation events and type (rain or snow) at a given lake may 375 

be more meaningful to GLOF susceptibility than annual totals or averages. Whether our finding that glacier-mass balances 

driven by superimposed synoptic regimes credibly influence regional GLOF susceptibility in the HKKHN is applicable to 

other regions, for example the Cordillera Blanca in the South American Andes (Emmer et al., 2016; Emmer and Vilímek, 

2014; Iturrizaga, 2011), also needs further investigation. 

4.2 Model Assessment 380 

We consider our quantitative and data-driven approach as complementary to existing qualitative and basin-wide GLOF hazard 

appraisals. Our models cannot replace field observations that deliver local details on GLOF-disposing factors such as moraine 

or adjacent rock-slope stability, presence of ice cores, glacier calving rates, or surges. Our selection of predictors is a 

compromise between widely used diagnostics of GLOFs and their availability as data covering the entire HKKHN. To this 

end, we used lake (or catchment) area and lake-area changes as predictors, and elevation, regional glacier-mass balance, and 385 

monsoonality as group levels of past GLOF activity of several thousand moraine-dammed lakes in the HKKHN. Among the 

many possible combinations of predictors and group levels we focused on those few combinations with minimal correlation 

among the input variables. We minimised the potential for misclassification by using a purely remote-sensing-based inventory 

of GLOFs, which reduces reporting bias for GLOFs too small to be noticed or happening in unpopulated areas: more 

destructive GLOFs are recorded more often than smaller GLOFs in remote areas (Veh et al., 2018, 2019). We are thus confident 390 

that we trained our models on lakes with a confirmed GLOF history at the expense of discarding known outbursts predating 
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the onset of Landsat satellite coverage in 1981. We acknowledge that climate products such as precipitation can have large 

biases because of orographic effects or climate circulation patterns and interpolation using topography (Karger et al., 2017; 

Mukul et al., 2017). Cross-validation of CHELSA precipitation estimates with station data has a global mean coefficient of 

determination R2 of 0.77, with regional variations between 0.53 and 0.90 (Karger et al., 2017). By accounting for orographic 395 

wind effects, CHELSA products outperform previous global datasets such as the WorldClim (Hijmans et al., 2005), especially 

in the rugged HKKHN topography. We stress that we therefore used all climatic data as aggregated group-level variables to 

avoid spurious model results. At the level of individual lakes, we thus resorted only to size, elevation, and upstream catchment 

area as more robust predictors. 

Due to strong imbalance in our training data, we opted for prior vs. posterior log-odd comparison instead of commonly applied 400 

Receiver Operating Characteristics (ROC) in estimating the predictive capabilities of our models (Saito and Rehmsmeier, 

2015). In our models, only few posterior estimates of PGLOF are >0.5 and they, thus, offer very conservative estimates of a 

GLOF history (Fig. 10). All models have wide 95% HDIs that attest a high level of uncertainty. This observation may be 

sobering, but nevertheless documents objectively the minimum amount of accuracy that these simple models afford for 

objectively detecting historic outbursts. 405 

The low fraction of lakes with a GLOF history (~1%) curtails a traditional logistic regression model and favours instead a 

Bayesian multi-level approach that can handle imbalanced training data and collinear predictors (Gelman and Hill, 2007; Hille 

Ris Lambers et al., 2006; Shor et al., 2007). We prefer the straight-forward interpretation of posterior regression weights to 

random forest classifiers, neural networks or support vector machines (Caniani et al., 2008; Falah et al., 2019; Kalantar et al., 

2018; Taalab et al., 2018). While these methods may perform better, they disclose little about the relationship between model 410 

inputs and outputs (Blöthe et al., 2019; Dinov, 2018); much of their higher accuracy is also linked to the overwhelming number 

of true negatives. Yet so far, multi-criteria decision analysis or decision-making trees have been the method of choice in GLOF 

hazard assessments, both in High Mountain Asia (Bolch et al., 2011; Prakash and Nagarajan, 2017; Rounce et al., 2016; Wang 

et al., 2012) and elsewhere (Emmer et al., 2016; Emmer and Vilímek, 2014; Huggel et al., 2002; Kougkoulos et al., 2018). 

While these methods strongly rely on expert judgement (Allen et al., 2019), a Bayesian logistic regression encodes any prior 415 

knowledge or constraints explicitly and reproducibly as probability distributions. Still, inconsiderate or inappropriate prior 

choices can introduce bias (Van Dongen, 2006; Kruschke and Liddell, 2018). Therefore, we carefully considered our choice 

of weakly informative priors for predictors with limited prior knowledge, following the guidelines concerning regression 

models by Gelman (2006) and Gelman et al. (2008). We also cross-checked our results when applying varying prior choices 

and found negligible differences in the resulting posterior distributions. 420 

To summarise, our simple classification models hardly support the notion that elevation or changes in lake area are 

straightforward predictors of a GLOF history, at least for the moraine-dammed lakes that we studied in the HKKHN. Lake 

size and regional differences in glacier-mass balance are items that future studies of GLOF susceptibility may wish to consider 
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further. The performance of these models is moderate to good if compared to a random classification, yet associated with high 

uncertainties in terms of wide highest density intervals. We underline that these uncertainties have rarely been addressed, let 425 

alone quantified, in previous work. One way forward may be to create ensembles of such models to improve their predictive 

capability instead of relying on any single model. 
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Figure 10: Mean posterior probabilities of HKKHN glacial lakes for having a GLOF history (PGLOF) in the past four decades as 

estimated in the (a) elevation-dependent warming model, (b) forecasting model, (c) glacier-mass balance model, and (d) monsoonality 430 
model. Size and colours of bubbles are scaled by posterior probabilities (e).  
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5 Conclusions 

We quantitatively investigated the susceptibility of moraine-dammed lakes to GLOFs in major mountain regions of High Asia. 

We used a systematically compiled and comprehensive inventory of moraine-dammed lakes with documented GLOFs in the 

past four decades to test how elevation, lake area and its rate of change, glacier-mass balance, and monsoonality perform as 435 

predictors and group levels in a Bayesian multi-level logistic regression. Our results show that larger lakes in larger catchments 

have been more prone to sudden outburst floods, as have those lakes in regions with pronounced negative glacier-mass balance. 

While elevation-dependent warming (EDW) may control a number of processes conducive to GLOFs, grouping our 

classification by elevation bands adds little to a pooled model for the entire HKKHN. Historic changes in lake area, both in 

absolute and relative values, have an ambiguous role in these models. We observed that shrinking lakes favour the classification 440 

as GLOF-prone, although this may arise from overlapping measurement intervals such that the reduction in lake size arises 

from outburst rather than vice versa. In any case, the widely adapted notion that (rapid) lake growth may be a diagnostic of 

impending outburst remains poorly supported by our model results. Our Bayesian approach allows explicit probabilistic 

prognoses of the role of these widely cited controls on GLOF susceptibility, but also attests to previously hardly quantified 

uncertainties, especially for the larger lakes in our study area. While individual models offer some improvement with respect 445 

to a random classification based on average GLOF frequency, we recommend considering ensemble models for obtaining 

more accurate and flexible predictions of outbursts from moraine-dammed lakes. 
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