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Abstract. Negative glacier mass balances in most of Earth’s glacierized regions contribute roughly one quarter to currently

observed rates of sea-level rise, and have likely contributed an even larger fraction during the 20th century. The distant past and

future of glaciers’ mass balances, and hence their contribution to sea-level rise, can only be estimated using numerical models.

Since independent of complexity, models always rely on some form of parameterizations and a choice of boundary conditions,

a need for optimization arises. In this work, a model for computing monthly mass balances of glaciers on the global scale was5

forced with nine different data sets of near-surface air temperature and precipitation anomalies, as well as with their mean and

median, leading to a total of eleven different forcing data sets. The goal is to better constrain the glaciers’ 20th century sea-level

budget contribution and its uncertainty. Therefor, five global parameters of the model’s mass balance equations were varied

systematically, within physically plausible ranges, for each forcing data set. We then identified optimal parameter combinations

by cross-validating the model results against in-situ annual specific mass balance observations, using three criteria: model bias,10

temporal correlation, and the ratio between the observed and modeled temporal standard deviation of specific mass balances.

We find that the disagreement between the different optimized model setups (i.e., ensemble members) is often larger than the

uncertainties obtained via cross-validation, particularly in times and places where few or no validation data are available, such

as the first half of the 20th century. We show that the reason for this is that in regions where mass balance observations are

abundant, the meteorological data is also better constrained, such that the cross-validation procedure does only partly capture15

the uncertainty of the glacier model. For this reason, ensemble spread is introduced as an additional estimate of reconstruction

uncertainty, increasing the total uncertainty compared to the model uncertainty merely obtained by the cross-validation. Our

ensemble mean estimate indicates a sea-level contribution by global glaciers (outside of the ice sheets; including Greenland

periphery, but excluding Antarctic periphery) for 1901 - 2018 of 69.2 ± 24.3 mm sea-level equivalent (SLE), or 0.59 ± 0.21

mm SLE yr−1. While our estimates lie within the uncertainty range to most of the previously published global estimates, they20

agree less with those derived from GRACE data.

1 Introduction

Glacier mass loss across most of the world constitutes a major part of the contemporary and projected 21st century sea-level

rise (e.g., Slangen et al., 2017; Oppenheimer et al., 2019). Moreover, glaciers are important freshwater reservoirs for some
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regions of the world, and the vanishing of glaciers is thus likely to induce seasonal water scarcity in regions depending on25

those reservoirs (Cruz et al., 2007; Huss and Hock, 2018; Wijngaard et al., 2018; Kaser et al., 2010; Small and J. Nicholls,

2003).

Changes of a glacier’s mass are often referred to in terms of surface mass balance: the difference between snow/ice accu-

mulation and snow/ice loss (ablation) - mostly due to melting - over the glacier’s surface. Dividing this value by the glacier’s30

surface area yields the specific mass balance, which is an important variable in attempts to quantify glacier mass changes.

Specific mass balances are a function of meteorological conditions at glacier locations and glacier-specific characteristics. The

future evolution of the global glacier mass is usually estimated using numerical models (Hock et al., 2019; Marzeion et al.,

2020). This is the case for the last century or even more distant past as well (e.g., Goosse et al., 2018; Parkes and Goosse,

2020), since satellites able to observe Earth’s surface did not yet exist for a large portion of the 20th century. Glaciers also35

lack comprehensive in-situ mass balance measurements, at least before 1950, since they are mostly situated in remote locations

(see Figs. 2.6 and 2.7 in WGMS, 2020). It is therefore important to assess and improve glacier mass balance models used to

reconstruct or project glacier mass evolution. An ensemble-based, long-term reconstruction can add to our understanding of

the uncertainties in glacier modeling, which might in turn enhance our ability to make more robust projections of glacier mass

change (Hock et al., 2019; Marzeion et al., 2020). Marzeion et al. (2020) have shown that ca. 25 % of global mass change40

uncertainty in 21st century projections of a glacier model ensemble can be attributed to differences in the output of climate

models. About 50 % of the uncertainty in 2020, declining to ca. 25 % in 2100, was attributed to differences between individual

glacier models. In this work we show that differences in meteorological reanalysis data add considerably to the uncertainty of

an individual glacier model’s reconstruction as well. The modeling approaches to establishing global estimates for the glaciers’

mass balances mostly make use of temperature-index melt models to represent the energy available for melting solid precip-45

itation (i.e. snow) and ice (e.g., Huss and Hock, 2015; Radić and Hock, 2011; Hirabayashi et al., 2013). As a glacier’s mass

balance is interrelated with its geometric and hypsometric properties, some kind of length-area-volume scaling relation is often

incorporated to account for changes in these properties in the models (Bahr et al., 2015) in order to avoid the computational cost

of modeling physical processes involved in glacier dynamics. This is especially relevant for an approach like ours, for which

we need to run the model oftentimes. The initialization of models resolving ice dynamics, e.g. flowline models, for times prior50

to recorded glacier areas was also just recently explored (Eis et al., 2019, 2021). The model used in this work additionally

includes a response time scaling to account for the glacier geometries’ response lagging climatic forcing, but lacks an explicit

representation of ice dynamic processes such as deformation, sliding, or calving/frontal ablation (Marzeion et al., 2012).

Although there are approaches based on solving the energy balance at the ice surface, the models used for this are either lack-55

ing ice dynamics or geometric scaling (Shannon et al., 2019), can only be applied to a small number of glaciers and depend on

upscaling to obtain global numbers (Giesen and Oerlemans, 2013), or do not perform significantly better than a similar model

without energy balance implementation (Huss and Hock, 2015). Another difficulty for models resolving the energy balance is

the introduction of additional parameters that have to be constrained, which in turn adds complexity to the model optimization.
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This indicates that implementing ice dynamics and the energy balance simultaneously is a difficult task and therefore not yet60

done routinely.

As mentioned above, for computational limitations, models solving the full equations of motion and thermodynamics in-

dividually for each glacier are generally not applied at the global scale. However, the Open Global Glacier Model (OGGM,

Maussion et al., 2019) has been applied to compute ice velocity and thickness for each glacier based on a flowline approach,65

but is not yet able to routinely reconstruct glacier changes for such long time periods as in this work.

None of the models resolving the energy balance or explicitly calculating ice dynamics have been applied to globally recon-

struct the glacier mass change on a century time scale. This implies that a comprehensive analysis determining which modeling

approach might be most appropriate is not yet possible. The need for a robust model evaluation, which can also be used to70

better understand the glacier model contribution to projection uncertainty (Marzeion et al., 2020), is obvious.

Models of (parts of) the Earth system are typically evaluated using observations and/or proxy data, usually with the objective

to minimize the model’s deviation from observations, e.g. by minimizing the root mean squared error (RMSE, Gleckler et al.,

2008; Taylor, 2001). Although in the case of glaciers, direct in-situ specific mass balance measurements are sparse and very75

heterogeneously distributed in space and time, they are essential in assessing the uncertainty, i.e. validation, of mass balance

models. Nevertheless, other evaluation methods exist, e.g. by calibration with a combination of satellite gravimetry, altime-

try and glaciological measurement data (Huss and Hock, 2015). Such combined calibration data usually are not available for

individual glaciers, and/or do not have the temporal resolution required to assess the model’s ability to capture interannual

variability, making them impractical for our calibration and validation approach.80

Uncertainties of numerical models are caused by (i) uncertain boundary and initial conditions, (ii) approximations of the

model’s equations, and (iii) lack of knowledge about parameters involved in the model set-up (Hourdin et al., 2017). There-

fore, optimization of parameters and/or input data is a standard procedure in glacier modeling (Huss and Hock, 2015; Radić

and Hock, 2011; Marzeion et al., 2012). Often, a single metric is chosen to be minimized (e.g., the model’s RMSE with respect85

to observed in-situ mass balances). Rye et al. (2012) suggested multi-objective optimization for a (regional) glacier model,

striving for ’Pareto optimality’ (Marler and Arora, 2004), to constrain parameters more robustly.

To avoid a confusion of the terms optimization, calibration, and validation, we briefly state our notions of these. Validation

means calculating metrics that relate model outputs to observed values in a certain variable and that quantify the estimated90

model uncertainty. Optimization refers to choosing the best global parameter set with respect to the aims one sets regarding the

validation. With calibration, we mean the deduction of glacier-specific model parameters from observational data.
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Here, we apply a multi-objective optimization, concerning the five global parameters most relevant in the applied model, for

each of nine meteorological forcing data sets (see Table 1), their mean and their median. The term global parameter here refers95

to parameters that are used in the model formulation (see section 2.2.1 and not varied for each glacier, but applied globally.

Since the model is able to hindcast glacier evolution, the aim of this work is to (i) optimize the global model parameters in

order to obtain model setups that reproduce in-situ mass balance observations as closely as possible, and (ii) to more robustly

estimate model uncertainty, taking into account ensemble spread at times and in regions where observations are sparse. We use

the model of Marzeion et al. (2012), but introduce changes to the mass balance calibration routine (see 2.2.2). Additionally,100

we incorporate newer boundary and initial conditions as well as reference data, against which the model is validated. We show

that the ensemble approach to the reconstruction produces more robust estimates of model uncertainty than taking into account

results from a cross-validation alone.

2 Data and Methods

In this section we introduce the data and the modeling as well as optimization chain we applied in this work. In order to make105

the whole section more accessible to the reader, we point to the flowchart (Fig. 1), which illustrates how the individual steps

described in the text are connected.

2.1 Data

2.1.1 Meteorological Data

We conducted the search for an optimal parameter set for the version 4.03 of the CRU TS data (corresponding to an update110

of Marzeion et al., 2012) and additionally eight reanalysis data sets, as well as the mean and the median of all the data sets

(see Table 1). The five of the eleven data sets not extending back to 1901 (see Table 1) were filled with CRU TS 4.03 data,

exclusively for the purpose of initialization of glacier areas; the results are only shown (and evaluated) during time periods for

which we have forcing data from the respective data set.

115

Anomalies of temperature and precipitation were calculated with respect to the 1961 to 1990 reference period used in CRU

CL 2.0. For those data sets not covering the period 1961 to 1991, these anomalies were obtained by calculating the difference

between the 1961 to 1990 and the 1981 - 2010 periods in the CRU TS 4.03 data set, and subsequently subtracting this value

from the respective data set’s 1981 - 2010 mean.

2.1.2 Glacier Data120

The glacier model requires information about location, area, terminus and maximum elevation of each glacier at some point

in time within the modeled time interval (1901 - 2018), which were taken from the most recent version of the Randolph

Glacier Inventory (RGI v6.0, RGI (2017)). The RGI relies mostly on Landsat and other satellite imagery. Distinction of indi-
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vidual glaciers within glacier complexes was realized mostly by semi-automatic algorithms for detecting watershed divides.

It includes Greenland’s peripheral glacier with a high connectivity level ’CL2 (strongly connected)’ (RGI, 2017), which we125

exclude from the model results we present. Note that we neglect missing or disappeared glaciers that are not recorded in the

RGI. This might lead to an underestimation of global mass changes, especially in the early 20th century (Parkes and Marzeion,

2018). The majority of recorded glacier areas date back to the years between 2000 and 2010, while there are a few early records

between 1970 and 1980. The exact distribution is given in Fig. 2 of RGI (2017).

130

To be able to cross-validate the modeled annual specific mass balances, we use in-situ (glaciological) observations of annual

specific glacier mass balances collected by the World Glacier Monitoring Service (WGMS, 2018). For the sake of simplicity

and because observational errors of in-situ specific mass balance measurements are not always known, we ignore any uncertain-

ties of these observations (Cogley, 2009) and treat them as the ‘true’ annual specific mass balance of a glacier in the recorded

year. As stated in the introduction, our validation approach is based on a decomposition of the RMSE into the three statistical135

measures correlation, interannual variability ratio, and bias. Due to the lack of a comprehensive data set for geodetic measure-

ments comparable to that of the WGMS for in-situ measurements, i.e. with the temporal and spatial resolution necessary for

the calculation of the aforementioned metrics, it is unfortunately not yet possible to use those in the validation framework we

established. Since the calculation of correlations and interannual variabilities requires a time series of data, we only take into

account glaciers for which at least three years of in-situ mass balance were recorded. Those are 299 glaciers with a total of140

5977 annual specific mass balance measurements. Before 1950, only 110 annual records of 14 glaciers are contained in this

data set. Of those 14 glaciers, 12 are situated in Central Europe and Scandinavia, and one in Alaska and Iceland each.

2.2 The global glacier mass balance model

2.2.1 Basic equations and parameters

In this section, those features of the mass balance model that are relevant to the optimization procedure are described. A more145

thorough description is given in Marzeion et al. (2012).

The annual specific mass balance B(t) of each glacier is computed as:

B(t) =

[ 12∑
i=1

[P solidi (t)−µ∗ ·max(T terminusi (t)−Tmelt,0)]
]
−β∗ (1)

where B is the annual modeled mass balance for an individual glacier in year t, P solidi the amount of solid precipitation in

month i, µ∗ a glacier-specific temperature sensitivity parameter, T terminusi the mean temperature in month i at the glacier’s150

terminus elevation, Tmelt a global threshold temperature for snow and ice melt at the glacier surface, and β∗ a calibration bias

correction parameter. Terminus elevation temperature is calculated as:

T terminusi (t) = TCRUclimi + γtemp · (zterminus(t)− zCRUclim)+T anomi (t) (2)
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where TCRUclimi is the climatological temperature in month i taken from the grid point of the CRU CL 2.0 data set (New et al.,

2002) closest to the respective glacier, T anomi (t) is the monthly temperature anomaly deduced from the forcing data set, γtemp155

is an empirically derived temperature lapse rate, zterminus is the elevation of the glacier’s terminus, zCRUclim is the elevation

of the grid point in the CRU CL 2.0 data set. Values for µ∗ and β∗ can theoretically be obtained by assuming an equilibrium

state of the glacier in present-day geometry during a 31-year period centered around year t∗ when annual specific mass balance

measurements are available for that glacier. In contrast to the initial publication of the model, we objectify the selection of t∗:

while Marzeion et al. (2012) argue that t∗ is a function of the regional climatological history, it also depends on the glacier’s160

response time scale, as discussed in Roe et al. (2020, submitted), for which there is no reason to assume spatial coherence.

This means that we now do not spatially interpolate t∗ as in Marzeion et al. (2012), but introduce it as an additional global

parameter. In section 2.2.2, we elaborate further on this point.

The inference of the glacier-specific parameters (µ∗ and β∗; see section 2.2.2) is assessed in a leave-one-glacier-out cross-165

validation procedure to determine the out-of-sample uncertainty, which should theoretically be done every time the model setup

(i.e. parameter set and/or forcing data) is changed. Leave-one-glacier-out cross-validation means we run the model once for

each validation glacier, i.e. those with at least three recorded annual specific mass balances, treating the respective glacier as

if we did not have in-situ mass balance measurements available. In other words, β(t∗) is spatially interpolated in an inverse-

distance weighted manner from the ten closest glaciers for the computation of annual specific mass balances of that glacier.170

The modeled mass balances of the individual validation glaciers obtained like this are then compared against the in-situ mea-

surements in the optimization procedure (see section 2.3). Hence, we obtain an estimate of the model’s uncertainty attached

to the calibration procedure (see section 2.2.2). While values for µ∗ can be computed for each individual glacier based on

t∗, those for β∗ are spatially interpolated from the ten closest validation glaciers, using inverse-distance weighting. This will

certainly work better in regions with high measurement densities and thus be a major part of our estimates’ inaccuracy due175

to the previously mentioned heterogeneous distribution of in-situ mass balance measurements. Also, it is sensitive to errors or

biases in the in-situ observations we use.

One global parameter (Tmelt) was introduced in Eq. 1, but three additional ones are associated with the calculation of the

monthly solid precipitation P solidi (t):180

P solidi (t) = (a ·PCRUclimi +P anomi (t)) · (1+ γprecip · (zmean− zCRUclim)) · fsolidi (t) (3)

where a is a precipitation correction factor, PCRUclimi is the monthly climatological precipitation sum taken from the grid

point of the CRU CL 2.0 data set closest to the respective glacier in month i, P anomi (t) is the monthly total precipitation
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anomaly deduced from the forcing data set, γprecip is a global precipitation lapse rate, zmean is the mean elevation of the

glacier, and fsolidi (t) is the fraction of solid precipitation:185

fsolidi (t) =



1 if T terminusi (t)≤ Tprec solid

0 if T zmax
i ≥ Tprec solid, with T zmax

i (t) = T terminusi (t)+ γtemp · (zmax− zterminus(t)),

1+
Tprec solid−T terminus

i (t)
γtemp·(zmax−zterminus(t))

otherwise


(4)

where Tprec solid is a global threshold temperature for solid precipitation, and zmax the maximum glacier elevation. The

amount of solid precipitation a glacier receives is hence estimated by applying an empirical negative temperature lapse rate,190

and a parameterized positive precipitation lapse rate. The assumption of increasing precipitation with height might not hold for

some glaciers that are located on the downwind side of a mountain or for ones with very high maximum elevations, but this

should be accounted for by treating it as a global parameter subject to optimization.

The four global parameters (Tmelt, a, γprecip, and Tprec solid) introduced in Eq. 1 - 4 are at the core of the model’s mass bal-195

ance computations and hence subject to the optimization presented here. Marzeion et al. (2012) used the CRU TS 3.0 data set

to obtain T terminusi (t) and P anomi (t). Here, we include additional meteorological data sets as well as their mean and median

values in the optimization (see section 2.1.1).

The monthly mass balances are subsequently translated into volume, area and length changes by geometric scaling and200

relaxation. The geometric scalings by means of a power law, reviewed in Bahr et al. (2015), are currently the only option for

estimating geometric changes from mass changes without having to resolve actual physical processes as in a flowline or higher

order model. From the theory discussed in Bahr et al. (2015) it follows that the exponent in these power law scalings is a

constant and the scale factor is a random variable. In the model, we applied the constant exponents for mountain/valley glaciers

and ice caps given from that theory and scale factors empirically derived in Bahr (1997) and Bahr et al. (1997). Since there are205

uncertainties attached to the scale factor, we estimate a 40 % error in the volume-area and a 100 % error in the volume-length

scaling for the model’s error propagation. Theoretically, the scale factors could be treated as global parameters as well, but it is

not clear whether an optimization of those would benefit the overall (global) model accuracy, while it would increase the efforts

in computation and evaluation. Concerning the relaxation, a response time scale of the volume-length change is estimated by

assuming that smaller glaciers and those with higher mass turnover will react faster to volume changes (details in Marzeion210

et al., 2012).

Initial values for the area of each individual glacier at the start of the model run (e.g., beginning of the 20th century) are

found using an iterative approach that minimizes the difference in area between modeled glacier and the RGI record in the year
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of the respective observation. If this iterative procedure is not successful, the glacier is not included in the reconstruction. For215

these glaciers, a simple upscaling is applied in the computation of regional and global results. The optimized CRU TS 4.03

model setup was able to initialize glaciers accounting for 98 % of the glacier area recorded in the RGI. This value is roughly

the same for the optimized model setups that performed well according to our validation procedure, although it is slightly

lower for those forced with the mean/median of the meteorological data ensemble (see Table 2). A failure of the initialization

for an individual glacier might occur when, for example, the calibration (see section 2.2.2) results in a very high temperature220

sensitivity for that glacier and the iterative search of an initial area is not able to capture the very large starting area necessary

for the implicated strong mass change. The largest fractions of area not successfully modeled with the optimized CRU TS 4.03

model setup are located in the Greenland periphery (ca. 9 %) and Russian Arctic (ca. 5 %).

Note that since the CRU CL 2.0 data set used to obtain PCRUclimi and TCRUclimi does not cover Antarctica, we do not225

consider glaciers in the periphery of Antarctica and subantarctic glaciers here (labeled region 19 in RGI, 2017).

2.2.2 mass balance calibration

As explained above, we treat the parameter t∗ as a global one, opposed to a glacier-specific estimation in Marzeion et al. (2012).

In order to illustrate the reasoning, we need to discuss the mass balance calibration for an individual glacier in the model in

more detail. The calibration is based on the idea of inferring a glacier’s temperature sensitivity µ∗ by finding a climatological230

time period in the forcing data set (centered around t∗) which would result in a zero specific annual mass balance of the glacier

in present-day geometry. Thus, for each center year t̃ of a 31-year period, we can calculate µ(t̃) by requiring:

B(t̃) =

12∑
i=1

[P solidi,clim(t̃)−µ(t̃) ·max(T terminusi,clim (t̃)−Tmelt,0)] = 0 (5)

where P solidi,clim(t̃), and T terminusi,clim (t̃) are climatological averages of P solidi (t̃) and T terminusi (t̃). Note that the calculation is

based on a smaller number of years when t̃ < 1916 or t̃ > 2003. For each of the 299 glaciers that have at least three years of235

in-situ mass balance observations, we calculate the modeled annual specific mass balance (based on Eq. 1) for each t̃. Then,

the associated calibration bias of an individual validation glacier is calculated as

BM −Bo = β(t̃) (6)

where BM is the mean modeled specific annual mass balance of the validation glacier, with µ∗ equal to µ(t̃) in equation 1,

for the years of available mass balance measurements, and Bo the mean observed mass balance. Hence, a negative (positive)240

β(t̃) means that the glacier with its present-day geometry would have presumably gained (lost) mass during the climate period

around t̃, applying the inferred µ(t̃). Therefore, the glacier would be too (in)sensitive to changes in the forcing and the appli-

cation of β(t̃) is required to balance this in Eq. 1. The general problem here is to infer t∗ for glaciers without available annual

in-situ mass balance measurements. Marzeion et al. (2012) chose t∗ to be that t̃, for which |β(t̃)| was minimal; µ∗ was then
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calculated from equation 5 applied to t∗, and β∗ taken as β(t∗). For glaciers without in-situ observations of mass balances,245

t∗ and β∗ were interpolated from the ten closest glaciers with observations, using an inverse-distance weighting. Using this

method, Marzeion et al. (2012) were able to identify a suitable parameter set in the leave-one-glacier-out cross-validation pro-

cedure that did not show a large bias against in-situ measurements, applying CRU TS 3.0 as atmospheric boundary conditions,

a previous version of the RGI, and other mass balance validation data. However, this is not generally the case for the data sets

applied here, and there is a conceptual shortcoming in the spatial interpolation of t∗, which we will illustrate for one exemplary250

model setup.

Part (a) of Fig. 2 shows the global average of β(t̃), weighted by the length of each glacier’s in-situ mass balance measure-

ment time series (henceforth, all mentioned averages over different glaciers imply such a weighting), using CRU TS 4.03 as

boundary condition, applying the optimal parameter set (see section 2.3).255

Figure 2b shows that the distribution of t∗ estimated directly is bi-modal, with frequent values either at the beginning or

end of the considered period, but the spatial interpolation leads to a more even distribution. This in turn means that, generally

speaking, the spatial interpolation moves t∗ towards the middle of the considered time period, thereby increasing the value of

β∗ for glaciers with an early t∗, and decreasing it for those with a late t∗. Figure 2b also shows that there are more glaciers260

with t∗ at the beginning of the 20th century than at the end of the 20th century or the beginning of the 21st century.

Furthermore, those glaciers with t∗ at the beginning of the 20th century tend to have a positive β∗, implying that even with

present-day geometry, those glaciers would have lost mass under climatic conditions of the early 20th century applying µ(t∗).

The zero-crossing of the global average β(t̃) is thus found at a period when positively and negatively biased glaciers cancel265

each other. Since moving the median of t∗ towards the middle of the of the modeled period generally goes along with an

increase of the globally averaged calibration bias β(t∗), using the spatial interpolation of t∗ tends to lead to a positively biased

model setup, which then becomes apparent in the leave-one-glacier-out cross-validation.

In order to avoid this effect, and taking into account that neighboring glaciers will have different response times, such that270

even if they experience a very similar evolution of climate anomalies we cannot expect a close spatial coherence of t∗, we do

not spatially interpolate t∗ as was done by Marzeion et al. (2012), but treat it as a fifth global parameter instead. Note that µ∗

is still a glacier-specific parameter following Eq. 5, and that β(t∗) is still interpolated from the ten closest glaciers in an in-

verse distance weighted manner. Although retaining the interpolation of β(t∗) seems to contradict the argument about regional

climatology made above, it is the only way to handle the calibration bias for glaciers without validation data, and we expect275

biases caused by this approach on the scale of an individual glacier to cancel out globally. Ultimately, the leave-one-glacier-out

cross-validation will reveal any potential new model errors introduced through this change.
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At this point we recapitulate the reasoning behind our changes to the calibration procedure compared to previous studies

that applied the same model, since it is an important point of this work: In contrast to Marzeion et al. (2012), we do not280

rely on the assumption of a steady state for every single glacier using present-day geometry and climate conditions during a

glacier-specific period around t∗, but rather on a global-mean steady state of glaciers in their present-day geometry with climate

conditions during a (globally equal) period around t∗. This means that while some glaciers with present-day geometry would

gain mass when exposed to the climate around the global t∗, others would lose mass. Figure 2a shows the mean bias of glaciers

for which glacier-specific values of t∗ can directly be obtained based on in-situ observations; once for glaciers with t∗ before285

1920 and, and once with t∗ after 1998. It can be seen that the (global) calibration bias (β(t̃)) is a function of the center year

of the climatology (t̃) we assume glaciers (with present-day geometry) to be in equilibrium with globally. For glaciers with an

early t∗, the calibration bias will be increasingly positive as we depart from the climatology of its t∗ to warmer climate periods

(i.e., later t̃). This is because µ will be underestimated using a warmer climate for calibration (see Eq. 5). If there are glaciers

with early and late individual t∗ in close proximity of each other, the β(t̃) we interpolate to a glacier with early individual t∗290

will often be too low, while it will be too high on glaciers with a late individual t∗. Because there are more glaciers with an

early individual t∗ (before 1920) than a later year (after 1998, see Fig. 2b), this then results in an overall positive bias in the

global cross-validation result. Interpolating t∗ has a similar effect.

Overall, the cross-validation shows that this method is able to yield unbiased model setups (disregarding possible biases in

the validation data; see section 3.1).295

2.3 Parameter optimization strategy

For the identification of an optimal parameter set, we applied a ‘brute-force’ approach. This means that we varied each param-

eter other than t∗ (see above) using the following ranges, which are similar to those used in Marzeion et al. (2012):

- threshold temperature for snow/ice melt (Tmelt) [◦C]: {-2, -1, 0, 1, 2}300

- threshold temperature for solid phase precipitation (Tprec. solid) [◦C]: {-1, 0, 1, 2, 3, 4}

- precipitation lapse rate (γprecip) [%/100 m]: {0, 1, 2, 3, 4, 5}

- precipitation correction factor (a): {1, 1.5, 2, 2.5, 3}

We did so for each meteorological data set and performed a leave-one-glacier-out cross-validation for each of the 900 pa-305

rameter combinations possible within these ranges. This resulted in 9900 validation runs (900 times eleven forcing data sets),

which we used to identify parameter combinations/sets that yield a zero-crossing of the global average β(t̃) in a first step. For

all forcing data sets except 20CRV3, those zero-crossings were found with t̃ < 1920 (applying 20CRV3, some were found in

1962 and 1976). We then performed additional cross-validations with the twenty best-performing parameter sets yielding a

zero-crossing of the global average β(t̃) to fine-tune t∗, applying the range 1901 to 1920, except for 20CRV3 where we applied310

the ranges 1909 - 1918, 1960 - 1964, and 1974 - 1978. Hence, we performed 400 (4400) additional cross-validation runs per
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data set (in total).

From those cross-validations, three characteristic statistical measures of model performance were computed: model bias

(i.e., mean model error) with respect to observations, the temporal correlation with observations, and the ratio of standard315

deviations of interannual variability between modeled and observed mass balances. We do not include the mean squared error

(MSE) as a performance measure, since it is simply a (weighted) combination of the three performance measures:

MSE = σ2
M +σ2

o − 2σMσoR+(M −O)2 (7)

where σM is the standard deviation of modeled mass balances, σo the standard deviation of observed mass balances, R the

Pearson correlation coefficient, M the mean of modeled mass balances, and O the mean of observed mass balances (thus, the320

last term corresponds to the squared bias).

From Eq. 7 it can be inferred that a minimum MSE occurs for a model setup in which the standard deviation ratio equals the

correlation coefficient. Hence, in a model setup that is not perfectly (positively) correlated with the observations (i.e., 0 < R <

1), a more realistic standard deviation ratio (e.g. 1 ≥ σM

σo
> R) will result in a higher MSE. However, a correlation coefficient325

equal to one is generally not achievable in models such as the one used in this work. Therefore, minimizing the MSE will lead

to preference of parameter sets that underestimate variance. This is problematic, since a correct representation of variance is

indicative of correct model sensitivity to changes in the forcing. For example, it is possible to imagine to apply a model setup

that yields a low bias and good correlation, but largely underestimates the interannual variation of mass balances. It is therefore

beneficial to not only minimize the MSE, but rather to minimize the three statistical coefficients it comprises individually, in330

order to not trade a realistic model sensitivity for a smaller MSE.

All three performance measures were calculated for each validated glacier, and then averaged over all these glaciers,

weighted by the number of available mass balance observations per glacier. This was done for every cross-validation run

in order to be able to identify the overall best performing model setups.335

Standard deviation ratios were brought to represent the deviation from an optimum value (i.e. one) by:

SR=
σM
σo
− 1 (8)

To determine for each meteorological data set a model parameter set that, on average, shows the highest skill to represent

the behavior of observed glaciers, we normalize the performance measures introduced above such that the individual scores s340

range from 0 for the worst to 1 for the best validation result by the following equations:

si,bias =
max(|bias|)− |biasi|

max(|bias|)−min(|bias|)
,si,SR =

max(|SR|)− |SRi|
max(|SR|)−min(|SRi|)

,si,R =
|Ri| −min(|R|)

max(|R|)−min(|R|)
(9)

where i is the individual model setup the score is calculated for. These scores were then added up to identify the ‘optimal’ model

setup as the one with the maximum overall score. If a model setup obtained the single best result for all three performance
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measures individually, it would thus yield a score of three. Note that the three (or potentially other) performance measures345

might be weighted differently, based on the objective of the model application. However, as shown below, we do not find

substantial trade-offs between the three performance measures, such that any potential weighting would have a very limited

influence on the results.

3 Cross-validation and uncertainty assessment

3.1 Performance measures350

Table 2 shows the values obtained for performance measures and optimal global parameters. We differentiate between the mean

and median of the forcing data input used as individual boundary conditions (mean/median input) and the mean and median

of the ensemble output values (mean/median output). For more than half of the optimized model setups, the global mean bias

of the optimal parameter set is smaller than 10 mm w.e. yr−1, and the correlation is larger than 0.6, while the amplitude of the

interannual variability is estimated correctly within a small range (ca. 5 %). RMSEs lie roughly between 700 and 800 mm w.e.355

yr−1 for most optimized model setups. Only 20CRV3 shows a significantly higher RMSE, caused by some large outliers. Note

that the number of glaciers that cannot be initialized also depends on the meteorological data set used as boundary condition.

CERA20C, e.g., not only performs the worst (obtaining an overall score of 1.38 using the optimal parameter set), but leads to

only 274 of 299 validation glaciers being initialized in the cross-validation, and 180,799 of the 212,795 glaciers in the global

reconstruction run, representing 84 % of today’s global glacier area. In contrast, the best performing model setup that covers360

the whole model period (CRU TS 4.03) is able to initialize 298 validation glaciers and 201,004 glaciers in the global recon-

struction run, representing ca. 98 % of the global glacier area. Following our scoring system, we find that the statistically best

performing single data set covering the whole model period is CRU TS 4.03, and the overall best performing data set, but only

covering 1979 - 2018, is ERA5. Our best estimate for the whole model period is the mean model output.

365

Independent of the time period considered, the mean output of the ensemble shows the best performance, exceeding not

only the best individual ensemble member, but also the result obtained by the mean and median input. The statistically best-

performing individual ensemble members vary with the time periods that are covered by the meteorological data sets. For

example, during the period 1958 - 2018, JRA55 leads to the best performance; from 1979 onward, it is ERA5. Table 2 also

shows that the performance measures attain better values if the averages are weighted by the length of the observation time370

series than with the non-weighted average, illustrating the need for long-term observations for reliable model validation.

In order to assess the consistency of validation results among the ensemble members, two-sample Kolmogorov-Smirnov-

Tests for the similarity of distributions were conducted for all 55 possible unique pairs of the eleven optimized model setups.

This was done for modeled annual specific mass balance and model deviation distributions. Model deviation here refers to375

the differences between each modeled and observed annual specific mass balance value in the cross-validation procedure; its

average thus corresponds to the average of the bias weighted by the number of available mass balance observations per valida-
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tion glacier. The confidence level we require for rejecting the similarity of distributions is at 95 %. Regarding the distributions

of modeled mass balances, only 10 (18 %) of the tested pairs are not significantly different; all involving the six best-scored

model setups (see Table 2). Model deviation distribution pairs do not significantly differ in 27 (49 %) cases, of which only 1 (2380

%) involved 20CRV3, CERA20C, or ERA20C. We conducted Welch’s t-test for the similarity of means in the same manner.

Here, only the three lowest-scored model setups’ means of modeled mass balances are significantly distinguishable from other

ensemble members. Concerning the mean model deviation, only that of CERA20C significantly differs from the others. Hence,

the similarity tests indicate that the results of model setups with higher scores (see Table 2) tend to be more consistent among

each other and to differ from lower scored ones statistically. Model deviation distributions significantly different from those385

of other ensemble members are to a large degree produced by low-scored model setups, while the mean is only significantly

different for CERA20C. The significantly high bias and low score of CERA20C indicate particular issues with this forcing data

set and lead us to exclude it from the following ensemble calculations. In the subsequent section we will explore where these

issues stem from. In doing so, we try to explain why the temporal and spatial constraints of the validation data hinder us to

make assertions over which individual model setup is the most reliable one over the whole temporal and spatial model domain.390

3.2 Spread of the ensemble inconsistent with model uncertainty from cross-validation

The leave-one-glacier-out cross-validation procedure applied here is designed to estimate the uncertainty of model results for

glaciers that have no in-situ mass balance observations, and for times where there are no in-situ observations. Therefore, in

principle, the results of the individual ensemble members should agree within their corresponding uncertainty estimates. How-

ever, there is a strong spatial bias in in-situ mass balance observations towards certain RGI regions; mostly locations where395

also the past state of the atmosphere is well constrained, since both atmospheric and glaciological observations are denser in

easily accessible regions. The majority of glaciers, though, is situated in remote locations where observations of the state of

the atmosphere were very sparse, particularly in the first half of the 20th century. Thus, the cross-validation is biased towards

times and places where the state of the atmosphere, i.e., the boundary conditions of the glacier model, can be assumed to be

exceptionally well constrained.400

Figure 3 shows that 66% of the validation data originate from only four RGI regions: Western Canada and USA, Scandi-

navia, Central Europe, and Central Asia. Panel (b) shows the fraction of mean annual ensemble variance of global mass change

rates in the modeled period attributable to each RGI region. Most of the ensemble spread is due to disagreement in sparsely

observed regions that contain much glacier ice. Of the mean annual global ensemble spread, nearly 60 % can be attributed to405

the disagreement in estimates for the regions Alaska, Arctic Canada North, and Greenland periphery. The value for the Green-

land periphery increases from 21 to 36 % if we included CERA20C in the calculation. This indicates that peripheral glaciers

in Greenland are responsible for a considerable amount of the ensemble spread as well as for most of the large divergence of

CERA20C from the other ensemble members. The only region that shows a large spread among ensemble members but does

not contain as much glacier ice as the previously mentioned ones, are the Southern Andes.410
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In Fig. 4a, the issue of temporally biased validation data (all are from the second half of the 20th century or the beginning

of the 21st) can be recognized. Mean mass loss rates calculated with forcing data sets that have complete data coverage over

the whole model period for the four previously mentioned well-observed regions are shown. Comparing results for the four

best-observed regions to global results Fig. 4b and d), it can be seen that the disagreement on the global scale is larger than in415

the well-observed regions, and that the global reconstruction forced by CERA20C is far off the three other ensemble members

while it is not so in the well-observed regions. This behavior can be explained by the much more pronounced warming of

glacier locations at the global scale in CERA20C until ca. 1960 (4d): during the calibration, lower temperatures at t∗ will lead

to higher temperature sensitivities (see Eq. 5). Similarly, the greater increase of temperature will result in higher mass loss rates.

420

Concerning these issues with CERA20C, it is striking that in spite of its large positive specific mass balance bias in the

cross-validation, global mass change estimates obtained with it are much larger than those of the other ensemble members.

This underlines the fact that even though the cross-validation is crucial in the optimization process, we cannot entirely rely

on it for assessing global and long-term reconstruction performance of individual data sets. Therefore, and because, as stated

in the previous section, the best-performing data sets do produce statistically quite similar results for the validation glaciers,425

we will only use estimates based on the ensemble – i.e., not individual members – in the following. We exclude the results

of model runs forced with the mean and median input from our ensemble calculations in order not to bias them towards the

central value and also because they contain the problematic values of the CERA20C data. If a full ensemble approach as done

in this study is not feasible (e.g. due to computational constraints) we still recommend to use a mean/median input data set

as the meteorological forcing for reconstructions outside the spatial and temporal domain of validation data, since a single430

best-performing data set can not be identified conclusively.

In both the well-observed regions (Fig. 4a) and the global scale (Fig. 4b), the different model setups disagree stronger in the

first half of the 20th century, reflecting that uncertainty in the atmospheric conditions during that time is also greater.

All in all, we find that the ensemble spread tends to be larger than uncertainty estimates obtained via the cross-validation,435

and that this is caused by the majority of glacier observations coming from places and times where the uncertainty of the

state of the atmosphere is smaller than what can typically be expected in glacierized regions. Furthermore, we assume that the

individual glaciers’ error estimates are uncorrelated with each other and random, i.e. independent, as we do not have direct

model error estimates for every glacier and can thus not account for correlations of individual glaciers’ errors. However, the

ensemble approach allows to explore if, and to which degree, the cross-validation underestimates the true uncertainty of the440

reconstruction.
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3.3 Combining model and ensemble uncertainty

To account for both the model error, as calculated in the cross-validation procedure (RMSE), and for the ensemble spread, the

total uncertainty of the ensemble average is calculated as follows. First, we calculate the model error of the ensemble average

solely determined by the means of the cross-validation error:445

εmodel(t) =

√
n∑
i

εi(t)2

n
(10)

where εi(t) is the model uncertainty computed in the cross-validation procedure for an individual ensemble member i for

year t. Then we add the ensemble spread as a further uncertainty measure to the model error of the ensemble average:

εensemble(t) =
√
εmodel(t)2 +σ(t)2 (11)

where σ(t) is the ensemble standard deviation in year t. Here, we treat the individual model setups’ errors, obtained from the450

cross-validation procedure, to be independent from each other and the model error of the ensemble average to be independent

from the ensemble spread. This might lead to an underestimation of total uncertainty, since there might be correlations of the

individual sources of uncertainty for which we cannot account. Because we model 200,000 glaciers and assume their errors to

be independent as well, i.e. we assume that their errors partly cancel each other out, the ’true’ uncertainty is probably higher

than our estimate. However, we do account for interannual covariances of the ensemble when estimating the uncertainty of455

mean values over periods longer than one year.

Figure 5 shows the temporal evolution of total uncertainty (εensemble) as well as the aggregated model uncertainty (εmodel)

and ensemble spread (σensemble) of the ensemble mean mass change rate estimate. The total uncertainty of the ensemble mean

estimate is high in earlier years, with a sharp decrease after the first twenty years. This is due to the decrease in the model error460

of the ensemble average, especially in the first decade of the 20th century, which is produced by very high mass losses of a few

glaciers in some model setups during that period. The ensemble spread is also greater during the first half of the 20th century

compared to later years, which can be attributed to less agreement between meteorological data sets in earlier years. Note that

the further back in time we go, the fewer meteorological data sets are available, since not all reanalysis products provide data

for the whole period.465

4 Global glacier mass loss

In the following we present our modeled estimates of global glacier mass change. Note that we express those in units of sea-

level contribution. This means positive values indicate a contribution to sea-level rise and thus a mass loss of the glaciers.
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Figure 6 shows the temporally accumulated mass change estimates, relative to 1980 (the year from which onward all meteo-

rological data sets have data coverage), and their uncertainties. The part (a) shows the estimates for each individual ensemble470

member as well as their model uncertainties εmodel. Especially in the first half of the 20th century, ensemble members diverge,

with CRU TS 4.03 showing the lowest and ERA20C, next to CERA20C, the highest mass loss during that period. The ensem-

ble average mass change estimate over the whole model period is 69.2 ± 24.3 mm SLE, which translates to an average mass

change rate of 0.59 ± 0.21 mm SLE yr−1, and a mass loss of 18 % relative to 1901.

475

Table 3 displays the regional and global mass loss rates for different reference periods. Mass change rates estimates for more

recent periods are increasing across most regions, reaching 0.90± 0.12 mm SLE yr−1 accumulated globally in the most recent

period (2006 - 2018). The only time and region for which an increase in glacier mass is estimated are the Southern Andes

during 1901 - 1990, although with a relatively high uncertainty due to ensemble spread (see Fig. 3).

480

To explore the period of decelerated mass loss between roughly 1940 and 1980 shown in Fig. 7, the periods 1901 to 1940

and 1941 to 1980 are shown in Table 3. For most regions, the mass change rate estimates are substantially smaller in the latter

period; only New Zealand exhibits a significantly larger mass loss. Regarding the global estimate, most of the mass loss de-

celeration took place in the Greenland periphery and the North American continent (i.e. regions 1 to 5). Thus, after increasing

mass loss rates until around 1930 (see Fig. 7), glaciers started to lose less mass until around 1980, possibly caused by atmo-485

spheric cooling induced by increasing aerosol concentrations (Ohmura, 2006; Ohmura et al., 2007; Wild, 2012). From then

on, the glaciers’ contribution to sea-level rise accelerated again until the end of the modeled period (2018). Figure 8 shows

the drivers of this behavior: the global ensemble mean temperature (lower panel) and precipitation anomalies as well as total

amount of solid precipitation (upper panel; see Eq. 3 and 4; all weighted by glacier area). From ca. 1980 on, heat available for

ice and snow melt, i.e. the temperature anomaly, increased monotonously. While precipitation at the glacier locations tended490

to increase over time, the amount of solid precipitation at glacier locations decreases from roughly 1980, implying that not

only ablation increased, but also accumulation decreased. In contrast to that, the increase in precipitation between ca. 1930 to

1950 was accompanied by a similar increase in solid precipitation, indicating that the warm anomaly at the same period was

too weak to reduce accumulation. In order to get an impression of the relative importance of precipitation and temperature

anomalies, we ran the model with the optimized median input model setup; once holding precipitation constant at the clima-495

tology around t∗, and once holding temperature constant in the same way (Fig. A1). Initialization and calibration were done

with the full forcing in order to enable meaningful comparisons with the regular model run. Holding the temperature constant

resulted in a mass change decrease of 65 %, while the constant lower precipitation increased the glacier mass change by 5 %.

This indicates that the temperature increase plays a much larger role for glacier mass change than increased precipitation. This

is expected, because increased temperatures do, as mentioned above, not only increase the melt of a glacier’s ice mass, but500

also decrease the amount of solid precipitation it receives. The finding that precipitation changes play a minor role in glacier

mass change is consistent with the literature (Van de Wal and Wild, 2001; Leclercq et al., 2011). Moreover, the interannual

variability is larger with varying temperatures compared to only varying precipitation (see Fig. A1). Our results also indicate
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that the glaciers’ retreat acted as a negative feedback on glacier mass loss in more recent times. This is based on the observation

that although the global average temperature anomalies at glacier locations were considerably higher after 2000 than around505

1930, and the amount of solid precipitation was lower, the global glacier sea-level contribution rates are not higher according

to our model results (see Figs. 8 and 7). However, this result might have been influenced by the applied scaling and relaxation

laws, as they control the geometric response to mass changes in our model. Another feedback that plays a role here, but cannot

be resolved by our model, is the positive ice-elevation feedback: as a glacier loses mass, it’s thickness, and thereby surface

elevation decreases, causing it to experience higher temperatures. Since our model is calibrated and validated with data from510

more recent years, it could be argued that mass change was actually lower in earlier years due to higher surface elevations of

glaciers (Huss et al., 2012).

Concerning uncertainty estimates, Table 3 shows that most of the uncertainty stems from the regions Alaska, Arctic Canada

(North), and the Greenland periphery in more recent periods (e.g. 1993 - 2018). In the earliest period (1901 - 1940), the515

Russian Arctic region exhibits the highest uncertainty, which is more than double the value of the central regional estimate for

that period, indicating that the large model error in the early 20th century (see Fig. 5) is mostly produced in this region, and in

the Greenland periphery.

5 Discussion

Table 4 shows our global results compared to previously published estimates for mass loss rates over certain periods. We520

mostly find good agreement within the respective uncertainty ranges. For the periods 2003 - 2009, 2002 - 2016, and 1992 -

2016 there is a significant disagreement between literature values and our model results. The disagreeing values for 2002 -

2016 from Wouters et al. (2019) were solely derived from gravimetry (GRACE) data. Estimates for 2003 - 2009 from Gardner

et al. (2013) and for 1992 - 2016 from Bamber et al. (2018) involve GRACE data as well. Interestingly, we find that when we

compare the five pentads Bamber et al. (2018) studied during 1992 - 2016 individually to our estimates, those for the first three525

pentads (when the GRACE mission had not yet started) agree within uncertainy ranges. Another work based on GRACE data

(Jacob et al., 2012) estimated a mass change of glaciers outside of Antarctica and Greenland for the period 2003 - 2010 of 0.41

± 0.08, while our estimate for that period lies at 0.66 ± 0.08 and that of Gardner et al. (2013, for 2003 - 2009) at 0.59 ± 0.07.

Part of these disagreements might be explained by the storage of meltwater for example in glacial lakes (Shugar et al., 2020),

which because of the close proximity to the glaciers cannot be separated from the ice mass in gravimetry data. GRACE will530

therefore observe lower mass change values than in-situ or geodetic observations. Since these lower values might be closer to

the glaciers’ actual contribution to sea-level rise, the issue points to the larger problem of distinguishing between glacier mass

change, and the corresponding sea-level change, which are not exactly equal. However, Shugar et al. (2020) also point out that

glacial lake storage accounts for only about 1 % of glacier melt volume (excluding Greenland and Antarctica), which indicates

that this process is of limited relevance. Other hydrological processes like groundwater flow or human activities (e.g. build-535

ing of reservoirs) might still induce discrepancies between gravimetric and in-situ/geodetic measurements. Another potential
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source of underestimating glacier mass loss by using gravimetry data in regions with many marine-terminating glaciers is the

presence of discharged icebergs close to the glaciers that GRACE is presumably not able to separate from the actual glacier

mass.

540

Gardner et al. (2013) point to discrepancies between satellite-derived and in-situ estimates of glacier mass losses, suggesting

a negative bias in in-situ observations for regions where the density of those measurements is low. They hence only relied on

in-situ observations in regions where those have a high density. Zemp et al. (2019) addressed this issue as well by combining

glaciological and geodetic measurements. Although our model is calibrated solely using in-situ observations, its estimates are

still close to Zemp et al. (2019), in which the uncertainty for some periods is admittedly large (Table 4). Comparing our results545

to Zemp et al. (2019) in periods where we included the Greenland periphery (2003 - 2009 and 1961 - 2010) we see a slightly

lower agreement. Our estimates’ uncertainty range also overlaps more with the one of Gardner et al. (2013) for 2003 - 2009

if we exclude that region. This indicates that our mass change estimates for the Greenland periphery might be too large in

these time periods. We also included estimates from WGMS (2015) in Table 4, which are merely arithmetic averages of the

available in-situ (glaciological) and geodetic mass balance measurements to show that our estimates, although solely calibrated550

and validated with in-situ measurements, are lower than those and closer to more thorough analyses of mass change data. Our

estimates lying close to those of Marzeion et al. (2012) or Marzeion et al. (2015) can not be explained merely by the fact

that the same model was used. One reason for this is that we used newer and more validation data and a newer RGI version.

Another one is the change in calibration strategy that we applied in this work. Finally, driven with other meteorological data,

the Marzeion et al. (2015) estimates lie lower than ours when using the same model but a different calibration procedure.555

Finally, the global glacier sea-level rise contribution estimates of Frederikse et al. (2020), excluding Greenland and Antarc-

tic periphery, agree well with ours for the more recent time intervals they specify (1957 - 2018 and 1993 - 2018), while our

estimates lie at the very low end of the confidence interval given for the whole time interval they studied (1900 - 2018). This is

presumably due to the modeling approach that their estimates in early years rely on, which includes estimations of disappeared560

and missing glaciers that are not included in the RGI. The increase of global glacier mass loss estimates this causes declines

throughout the 20th century (Parkes and Marzeion, 2018) by roughly 66 %.

Regarding regional values, Table 3 shows that roughly two-thirds of our global mass loss estimate during 2006 - 2018 oc-

curred in Greenland and the North American continent. A large amount of the global uncertainty originates from these regions565

as well. Comparing our regional mass change estimates for recent years to those in the literature (Ciracì et al., 2020; Wouters

et al., 2019; Zemp et al., 2019), the most obvious discrepancy can be found in estimates for the Southern Andes, where our

ensemble mean is substantially smaller and even positive in earlier periods shown in Table 3 (e.g. 1901 - 1940) , caused mainly

by the model setup forced with 20CRV3 reanalysis data. The opposite is true for the regions Arctic Canada (North) and Sval-

bard, where our estimate is larger than those previously published. This might be caused by the relatively large portion of area570

draining into marine-terminating glaciers in those regions, since glacier-ocean interactions are not included in the model we
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applied and the calibration applying solely atmospheric forcing might thus be problematic. Moreover, our regional estimates

for the Greenland periphery and Alaska in the most recent period (2006 - 2016) are close to each other, while Alaska lost

significantly more mass according to Zemp et al. (2019) or Ciracì et al. (2020) during that time. This could be indicative of

our mass change estimates for Alaska being to small. Two regions for which our estimates are significantly larger than in the575

previously published literature are Central Asia and South Asia West. This might be caused by a negative bias of the in-situ

measurements used for calibration and validation in this region.

Another region of interest is the Russian Arctic, for which no in-situ measurements of annual specific mass balances were

available in the data we used for calibration and validation. That is either because the sparse amount of measurements for that580

region was not covering at least three years for the individual observed glaciers or we did not find a link of the glaciers to the

RGI. Also, more than half of the glacierized area in the Russian Arctic region drains into marine-terminating glaciers. For this

region we estimate an average mass change rate of 0.08 ± 0.02 mm SLE yr−1 during 2002 - 2016, while Wouters et al. (2019)

estimate 0.03 ± 0.01 and Zemp et al. (2019) 0.07 ± 0.03 mm SLE yr−1. Regarding the whole period that Zemp et al. (2019)

provide estimates for in that region (1951 - 2016), the average they find is 0.05 ± 0.02 mm SLE yr−1. Our average estimate585

for that period and region lies at 0.06 ± 0.01 mm SLE yr−1. This shows that our model results do not, as is the case globally,

agree well with GRACE-derived data in that region, but they still do with one other previously published estimate although we

did not have calibration/validation data at hand in this region.

Thus, while we find an overall good agreement of our global mass change estimates with previously published ones, besides590

those derived with GRACE data, there are still significant differences in certain regional estimates. Those require further re-

search into the causes, and hence point to potential model shortcomings as, e.g., area initialization, geometric scalings, neglect-

ing frontal ablation, debris cover and radiation, as well as into the calibration and validation procedure applied. Incorporating

frontal ablation processes of marine-terminating glaciers in the model and calibration procedure as well as distinguishing be-

tween mass loss above and below sea-level would be crucial model developments for enhancing the reliability of modeled595

global glacier sea-level rise contribution estimates. Generally speaking, the influence of ice-ocean interaction on global glacier

mass loss remains elusive, although one study that conducted global glacier mass change projections, applying a simple frontal

ablation parameterization, estimated a total of ca. 10 % global glacier mass loss caused by frontal ablation (Huss and Hock,

2015).

600

Although the largest potential of reducing the global uncertainty relevant to sea-level rise estimates is in strongly glaciated

but little observed regions (e.g., Greenland periphery), reducing it in less glaciated regions (e.g. Southern Andes) could still

be valuable concerning hydrological changes and hence water availability. Future studies on mass loss reconstructions could

benefit from addressing the above mentioned processes that are neglected thus far and from expanding the validation frame-

work applied here in such a way that it would be able to include geodetic mass balance estimates as well as the uncertainties605

attached to in-situ/geodetic reference data. This is because in-situ measurements of annual specific mass balances are not only
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sparse and heterogeneously distributed, but reportedly negatively biased in some regions (Gardner et al., 2013). Since geodetic

measurements provide glacier mass change data for much larger areas than in-situ/glaciological measurements, they add con-

siderably to our understanding of glacier mass change,. Unfortunately, they are not yet standardized and readily available as

the in-situ data are, making it unpractical to use them in validation framework we applied.610

Concerning the high uncertainty of mass change estimates during the early 20th century, it would be beneficial to have a suite

of models that is able to hindcast glacier changes over that period, similar to intercomparison efforts for projections (Marzeion

et al., 2020). More reanalysis products covering that time interval and also the Antarctic periphery would certainly help to

constrain global estimates and their uncertainty more, although this might be of limited value due to the lack of historical615

validation data. In order to not only rely on reanalysis data, it would also be possible to run the model with data of climate

models’ historical experiments. A comparison with results obtained by applying reanalysis data could bring valuable insights

into how, why and where reanalysis and climate model forcings of the mass balance model differ.

Finally, the application of a robust initialization method as e.g. in Eis et al. (2019, 2021) could help to understand if and how

inaccuracies of the initialization method propagate through the modeled period.620

6 Conclusions

A multi-objective optimization of a global glacier mass balance model forced with an ensemble of meteorological data sets

was presented. We demonstrated that it is possible to find statistically well performing model setups of model parameters for

each forcing data set, but that we cannot robustly identify which model setup is the most reliable when applied outside of

the temporal and spatial domain of available in-situ mass balance validation data. However, one data set (CERA20C) can be625

identified as performing worse than the others. Disagreement between ensemble members is to a large degree attributable to

differences in the forcing data in times and at locations where few validation and calibration data are available. The differences

in the forcing data result in diverging glacier mass change estimates, especially in the first half of the 20th century. Although

our estimates lie within the uncertainty range to most of the previously published global estimates, they agree less with those

derived from GRACE data and show significant differences to the literature in individual regions. Finally, all ensemble members630

agree that around the 1930s mass loss rates from glaciers were comparable to those of today. They were followed by a phase

of mass loss deceleration roughly between 1940 and 1980, which has been accelerating since then, despite an indication of

the glaciers’ retreat to more favorable climatic conditions, i.e. higher altitudes. Our results indicate that this is partly driven by

decreasing amounts of solid precipitation at glacier locations, i.e. reduced accumulation due to atmospheric warming, from ca.

1980 on.635

Data availability. The reconstructed, optimized time series will be made available as a supplement to the publication once it is accepted. A

data file was submitted to PANGAEA and is currently under review there.
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Figure 1. Flowchart depicting the modeling and optimization chain.
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Figure 2. (a): Average calibration bias β as a function of the center year of a climatological window around t̃ for validation glaciers showing

the lowest calibration bias around the center years t∗ ≤ 1920 (red, n = 132) and ≥ 1998 (blue, n = 72) as well as the weighted average of all

validation glaciers (black, n = 297). (b): Distributions of t∗ directly estimated from Eq. 5 and Eq. 6 (green), and spatially interpolated as in

Marzeion et al. (2012, light green). Values in both panels are derived from the cross-validation procedure (see section 2.2.2 and 2.3) with the

optimized CRU TS 4.03 model setup.
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Figure 3. (a): Number of specific annual mass balance observations available for calibration and validation in each RGI region. (b): Fraction

of ensemble variance of global mean mass change rate (∆M / ∆t) in the modeled period (1901 - 2018) attributable to each RGI region. In

brackets is the number of glaciers used for calibration and validation in each region.
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Figure 4. Mass loss rate estimates for meteorological forcing data sets with whole 20th century coverage, (a) averaged over well-observed

regions (Western Canada and USA, Scandinavia, Central Europe, and Central Asia) and (b) globally. Average temperature anomalies at

glacier tongue locations in (c) well-observed regions and (d) globally, weighted by glacier area. In all graphs, 31-year moving averages are

shown for clarity.
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Figure 5. 5-year moving average of the temporal evolution of model uncertainty metrics for annual global mass change rates. εensemble is

the total uncertainty, i.e. combined model uncertainty (εmodel) and ensemble spread (σensemble; see Eq. 11).
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Figure 6. (a): Estimates of temporally accumulated global mean sea-level rise (GMSLR) contribution relative to 1980 for all forcing data

sets. Shaded areas are model uncertainties calculated for individual model setups. (b): Ensemble mean output estimate. Shaded area are the

mean model uncertainty (grey, εmodel; see Eq. 10) and total ensemble uncertainty (blue, εensemble; see Eq. 11), which are shown at the 90%

confidence level. Results of the CERA20C forcing are excluded from the ensemble mean (see section 3.1).
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Figure 7. (a): Annual glacier mass change rates expressed in GMSLR contribution rate for all forcing data sets. (b): Mean of ensemble output

mass change rates. A 5-year moving average is shown for clarity. Shaded areas are the mean model uncertainty (grey, εmodel; see Eq. 10)

and total ensemble uncertainty (blue, εensemble; see Eq. 11), which are shown at the 90% confidence level. Results of the CERA20C forcing

are excluded from the ensemble mean (see section 3.1). Note the different vertical scales of the panels.
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Figure 8. (a): global mean annual precipitation anomaly relative to 1961 - 1990 and amount of total solid precipitation. (b): global mean

annual temperature anomaly relative to 1961 - 1990. The shadings show ±1 σ, i.e. standard deviation among meteorological forcing data

sets. Values in both panels are 31-year moving averages of the ensemble mean at glacier tongue locations and weighted by glacier area,

except for the graph of solid precipitation, which is based on the mean forcing input data. Since scales of computed solid precipitation

might vary between ensemble members depending on model parameters (see Eq. 3 and 4), the computation of an average, especially with

a temporally varying number of ensemble members, is less meaningful. Values of the CERA20C forcing are excluded from the ensemble

mean (see section 3.1).
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Table 1. Resolution and time range of the meteorological data sets used as boundary conditions.

Label used in text & figures Resolution [°] Time range Publication

20CRV3 2 x 2 1871 - 2014 Slivinski et al. (2019)

CFSR 0.5 x 0.5 1979 - 2010 Saha et al. (2010)

CRU CL 2.0 10’ x 10’
1961-1991

(climatology)
New et al. (1999)

CRU TS 4.03 0.5 x 0.5 1901 - 2018 Harris and Jones (2020), Harris et al. (2014)

CERA20C 0.28 x 0.28 1900 - 2010 Laloyaux et al. (2018)

ERA5 0.5 x 0.5 1979 - 2018 Copernicus Climate Change Service (C3S) (2019)

ERA20C 1.13 x 1.13 1900 - 2010 Poli et al. (2016)

ERA-Interim ∼0.7 x 0.7 1979 - 2018 Dee et al. (2011)

JRA55 1.25 x 1.25 1958 - 2018 Kobayashi et al. (2015)

MERRA2 0.63 x 0.63 1980 - 2018 Gelaro et al. (2017)
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Figure A1. Estimated influence of temperature and precipitation anomalies on global glacier mass change. Red lines are modeled glacier

mass change with temperature held constant at the climatology around t∗. Blue lines are modeled glacier mass change with precipitation

held constant at the climatology around t∗. Black lines represent the model run with full forcing. Note that in the case of this forcing data

set we found optimal model performance with t∗ = 1901, which implies the climatology only includes 16 years. (a): Estimates of GMSLR

contribution relative to 1901. (b): Estimated annual GMSLR contribution.
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