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Abstract. Heat transport in snowpacks is understood to occur through the two processes of heat conduction and latent heat

transport carried by water vapor, which are generally treated as decoupled from one another. This paper investigates the cou-

pling between both these processes in snow, with an emphasis on the impacts of the kinetics of the sublimation and deposition

of water vapor onto ice. In the case where kinetics is fast, latent heat exchanges at ice surfaces modify their temperature, and

therefore the thermal gradient within ice crystals and the heat conduction through the entire microstructure. Furthermore, in this5

case, the effective thermal conductivity of snow can be expressed by a purely conductive term complemented by a term directly

proportional to the effective diffusion coefficient of water vapor in snow, which illustrates the inextricable coupling between

heat conduction and water vapor transport. Numerical simulations on measured three-dimensional snow microstructures reveal

that the effective thermal conductivity of snow can be significantly larger, by up to about 50% for low-density snow, than if

water vapor transport is neglected. Comparison of our numerical simulations with literature data suggests that the fast kinetics10

hypothesis could be a reasonable assumption for modeling heat and mass transport in snow. Lastly, we demonstrate that under

the fast kinetics hypothesis the effective diffusion coefficient of water vapor is related to the effective thermal conductivity by

a simple linear relationship. Under such condition, the effective diffusion coefficient of water vapor is expected to lie in the

narrow 100% to about 80% range of the value of the diffusion coefficient of water vapor in air for most seasonal snows. This

may greatly facilitate the parameterization of water vapor diffusion of snow in models.15

1 Introduction

Thermal conductivity is one of the major physical properties of snow. It governs the magnitude of the thermal energy flux

through the snowpack when subjected to a thermal gradient, and thus plays an integral role in the energy budgets of the ground

(Zhang et al., 1996), ice caps and glaciers (Gilbert et al., 2012), sea ice (Lecomte et al., 2013), as well as in the temperature

of the snow surface and therefore in meteorology (Domine et al., 2019). Moreover, variations of thermal conductivity between20

snow layers impact the temperature gradients at the layer scale, and thus in part govern snow metamorphism (Vionnet et al.,

2012). In light of its importance for the understanding of snow and environmental physics, snow thermal conductivity has been
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actively studied and measured for several decades (Yosida et al., 1955; Jaafar and Picot, 1970; Sturm and Johnson, 1992; Morin

et al., 2010; Calonne et al., 2011; Riche and Schneebeli, 2013; Domine et al., 2015).

One of the peculiarities of snow is that energy transport does not solely occur through heat conduction. Indeed, when a snow-25

pack is subjected to a thermal gradient, a macroscopic water vapor flux is also present (Sturm and Benson, 1997; Pinzer

et al., 2012). This vapor flux carries latent heat, in parallel to heat conduction. Several studies have investigated the influ-

ence of vapor transport on the total energy flux through snow under a thermal gradient. Among others, Sturm and Johnson

(1992) report that the heat transport in snow is characterized by an effective thermal conductivity Keff encompassing both

the effects of heat conduction and vapor transport. In their framework, one can decompose the effective thermal conductivity30

as Keff = Kcond +Kvap, where Kcond is "the hypothetical conductivity in the absence of any vapor transport" (Sturm and

Johnson, 1992) and Kvap corresponds to the latent heat transported with water vapor. In opposition to the idea of merging

conduction and vapor tansport in a single effective thermal conductivity, Calonne et al. (2011) "recommend purely conductive

effects (i.e. conduction through ice and interstitial air) to be considered separately from non-conductive processes", therefore

treating heat conduction as decoupled from vapor transport.35

The aim of this article is to provide a simplified analysis of the contribution of latent heat to the thermal energy flux in snow, and

notably to notably to quantify the coupling between these processes at the macroscopic scale. For this we focus on two limiting

cases, considering the kinetics of deposition and sublimation of water vapor to be either very fast or very slow. We start by

providing theoretical considerations on the relationship between water vapor transport and the effective thermal conductivity.

We then perform numerical simulations to quantify the contribution of latent heat to the effective thermal conductivity.40

2 Theory

Let us consider a snow sample of volume V , subjected to a macroscopic thermal gradient denoted ∇TM (potentially accom-

panied by a macroscopic vapor concentration gradient∇CM). We also make the simplifying assumption that convection in the

pore space does not occur or can be neglected (similarly to Riche and Schneebeli, 2013; Calonne et al., 2014). Furthermore, let

us assume that the sample is taken large enough to be larger than its Representative Elementary Volume (REV; Auriault et al.,45

2010; Calonne et al., 2014). Moreover, we assume that the sample is small enough that it does not span several snow layers, and

that the macroscopic thermal and water vapor gradients can be considered constant over the sample. Under these conditions,

the volume V of snow is representative of the entire snow layer, and both share the same physical properties. The existence

of this intermediate size between the microscopic and macroscopic scales is guaranteed by the separation of scales between

the microscopic and macroscopic descriptions, which is a necessary condition to treat snow as an equivalent homogeneous50

medium with well defined physical properties (Auriault, 1991; Auriault et al., 2010). An illustration of the microscopic and

macroscopic points of view and of the separation of scale between them is given in Figure 1.

The effective thermal conductivity Keff of snow relates the macroscopic heat flux Q, transporting thermal energy at the

macroscopic scale, to the thermal gradient ∇TM with Q=−Keff∇TM (e.g. Yosida et al., 1955; Sturm and Johnson, 1992;55
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Table 1. Symbols and definitions of the major variables used in this article. The convention followed is that a tensorial variable is denoted

with a bold capitalized letter, and its scalar components with the non-bold capitalized letter.

Symbol Definition

Keff Effective thermal conductivity of snow

Keff
xy Horizontal component of the effective thermal conductivity of snow

Keff
z Vertical component of the effective thermal conductivity of snow

Keff Scalar component of the effective thermal conductivity of snow (either horizontal or vertical)

Kcond Purely conductive part of the thermal conductivity of snow

Kvap Vapor transport part of the thermal conductivity of snow

Kair Contribution of air heat conduction to the vertical effective thermal conductivity of snow (Equation 16)

K ice Contribution of ice heat conduction to the vertical effective thermal conductivity of snow (Equation 16)

Deff Effective diffusion coefficient of water vapor in snow

Deff
xy Horizontal component of the effective diffusion coefficient of water vapor in snow

Deff
z Vertical component of the effective diffusion coefficient of water vapor in snow

Deff Scalar component of the effective diffusion coefficient of water vapor in snow (either horizontal or vertical)

Dnorm Normalized effective diffusion coefficient of water vapor in snow

D0 Diffusion coefficient of water vapor in air

· slow Subscript pertaining to the slow kinetics hypothesis

· fast Subscript pertaining to the fast kinetics hypothesis

β Derivative of the saturated water vapor concentration with respect to temperature, β = dcsat
dT

L Latent heat of sublimation of ice

ki Thermal conductivity of ice

ka Thermal conductivity of air

kv Apparent thermal conductivity of air, kv = ka +βLD0

Riche and Schneebeli, 2013). Similarly, an effective vapor diffusion coefficient Deff can be defined, which relates the macro-

scopic vapor flux F to the macroscopic concentration gradient ∇CM with F =−Deff∇CM (e.g. Shertzer and Adams, 2018;

Fourteau et al., 2021). In snow sciences, it is usually expected that the effective thermal conductivity and vapor diffusion co-
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Figure 1. Illustration of the microscopic and macroscopic points of view of snow. At the microscopic scale, snow is composed of an ice space

(Ωi) and a pore space (Ωa), separated by a boundary (Γ). Heat conduction occurs through the ice and pore spaces, while vapor diffusion

is limited to the pore space. At the macroscopic scale, snow is treated as an equivalent homogeneous medium, with an effective thermal

conductivity Keff and an effective water vapor diffusion coefficient Deff , and is subjected to a macroscopic thermal gradient∇TM.

efficient depends only on the snow microstructure and on the physical properties of the underlying materials (the ice and the

air), but not on the macroscopic thermal and water vapor concentration gradients (Yosida et al., 1955; Jaafar and Picot, 1970;60

Sturm and Johnson, 1992; Colbeck, 1993; Morin et al., 2010; Calonne et al., 2011; Riche and Schneebeli, 2013; Domine et al.,

2015). One should however keep in mind that it might not necessarily be true, depending on the nature of the mechanisms at

play at the microscopic scale (for instance in the case of a dependence of the sticking coefficient of water molecules onto ice

on the local saturation of water vapor, as discussed in Fourteau et al., 2021).

Finally, the effective thermal conductivity is represented by a 3× 3 tensor. However, snow can be considered as a transverse65

isotropic material (Löwe et al., 2013), and this tensor is thus fully characterized by two scalar values, namely the vertical and

horizontal thermal conductivities. These scalar values are respectively denoted Keff
z and Keff

xy in this article, to differentiate

them from the tensor. Similarly, Deff is represented by a 3× 3 tensor, but for snow it reduces to vertical and a horizontal

components. Again, these scalar components are respectively denoted Deff
z and Deff

xy . We define the normalized effective dif-

fusion coefficient Dnorm as Dnorm = Deff/D0, where D0 is the diffusion coefficient of water vapor in air. The definitions and70

symbols of the variables used for this work are summarized in Table 1.
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In this article, the effective thermal conductivity of snow will be obtained starting from the physics at the microscopic scale.

The relevant microscopic physical mechanisms for heat transport are (i) heat conduction in the ice, (ii) heat conduction in

the air, (iii) vapor diffusion in the air (iv) vapor deposition/sublimation at ice surfaces (Calonne et al., 2014). Moreover, we75

assume that the physics at the microscopic scale can be treated in a steady state. From our understanding this is justified as the

time scale governing the microscopic scale is much shorter than the macroscopic time scale, at which snow observations are

made. Indeed, Hansen and Foslien (2015) report that the characteristic times at the macroscopic and microscopic scales differ

by a factor of 106. Consistent with this, Calonne et al. (2014) report that when expressed in a non-dimensional form, the time

derivatives in the heat and mass equations are negligible compared to the flux terms. The microscopic equations governing80

energy and vapor transport are thus



div(−ki∇Ti) = 0 (Ωi)

div(−ka∇Ta) = 0 (Ωa)

div(−D0∇c) = 0 (Ωa)

Ti = Ta (Γ)

−ki∇Ti ·n =−ka∇Ta ·n−LD0∇c ·n (Γ)

−D0∇c ·n = αvkin(c− csat) (Γ)

(1)

where Ωi, Ωa, Γ, and n represent the ice space, the pore space, the ice/pore interface, and the normal vector to Γ pointing

toward the ice, respectively. The geometry of the microscopic problem is exemplified in Figure 1. ki and ka are the thermal85

conductivities of ice and air, Ti and Ta are the ice and air temperatures, D0 is the diffusion coefficient of vapor in the air,

c is the concentration of vapor in the pores, csat is the saturation concentration of vapor at the ice interface, L is the latent

heat of sublimation of ice, vkin =
√

(kT )/(2πm) is referred to as the kinetic velocity and is related to the velocity of water

molecules in the gas phase (with k the Boltzmann’s constant and m the mass of a water molecule), and α is a coefficient

less than or equal to unity referred to as the sticking coefficient (or sometimes the accommodation coefficient) of water vapor90

molecules on ice surfaces. The last equation of the system is referred to as the Hertz-Knudsen equation and governs the sub-

limation and deposition of water molecules on the ice surfaces (Saito, 1996). The penultimate equation, represents the impact

of vapor sublimation/deposition on the continuity of the heat flux at the ice/pore interface. Finally, when a sufficiently large

thermal gradient is imposed on a snow sample, the variations of csat due to differences in curvature of the ice surface become

negligible compared to variations due to temperature differences (Colbeck, 1983). This large temperature gradient condition,95

corresponds to the regime of Temperature Gradient metamorphism, usually observed for thermal gradients of 10K m−1 and

above (Sommerfeld and LaChapelle, 1970; Colbeck, 1982). In this case, the saturation concentration of vapor can be treated

as a function of the ice surface temperature only.
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The system of Equations 1 shows that there exists a two-way coupling between heat and vapor transport in snow. Indeed, the100

ice and air temperatures are impacted by the phase change of water vapor and the release/absorption of latent heat, while the

water vapor concentration in the pores is impacted by temperature through the value of csat at the ice surfaces. This implies

that the heat flux through a snow sample depends on the sublimation and deposition processes happening in the snow, and

that the magnitude of the coupling between the heat flux and the vapor transport depends on the kinetics of the adsorption

and desorption of water molecules. This kinetics is encapsulated in the parameter α of the Hertz-Knudsen equation. A general105

treatment of the system of Equations 1 in the case of an arbitrary α is however out of the scope of this article. In this work,

we limit ourselves to two limiting cases, namely very slow (small α) and very fast (large α) surface kinetics. Moreover, we

only focus on quantifying the energy and water vapor fluxes and their associated effective thermal conductivity and effective

diffusion coefficient of vapor, without deriving the complete macroscopic temperature and vapor equations (contrary to the

work of Calonne et al., 2014, for instance). Finally, note that the notion of slow and fast kinetics is related to the notion of110

kinetics-limited (small α) and diffusion-limited (large α) metamorphism in snow (e.g. Krol and Löwe, 2016).

2.1 The slow kinetics case

In the slow kinetics case, we consider that α is sufficiently small that the sublimation/deposition of water vapor does not

strongly impact the temperature field in the snow microstructure. In this case, the coupling between heat and water vapor can

be neglected, and snow can be viewed as an inert medium for heat conduction. This slow kinetics case has been treated in detail115

by Calonne et al. (2011) and the case 3 of Calonne et al. (2014). Here, the snow sample is characterized by an effective thermal

conductivity Keff
slow that only accounts for the heat conduction through the ice and the air, as if the snow medium were inert for

water vapor. The subscript slow, used in Keff
slow and elsewhere in the paper, is used to emphasize the slow kinetics assumption.

Calonne et al. (2011) showed that the effective thermal conductivity depends on the snow microstructure and on the ice and air

thermal conductivities, but not on the macroscopic thermal gradient. It can be obtained with microscale numerical simulations120

of heat conduction, which do not include vapor transport (e.g. Calonne et al., 2011; Riche and Schneebeli, 2013). Following

a similar decomposition of the effective conductivity as that reported by Sturm and Johnson (1992), one has Keff
slow = Kcond

slow

and Kvap
slow = 0. Note that the fact that Kvap

slow = 0 does not imply that the vapor flux in snow is null. A macroscopic vapor flux

might be present, but there is simply not enough mass that changes phase and release/absorption of latent heat to meaningfully

impact the heat flux in the snow.125

2.2 The fast kinetics case

In the fast kinetics case, α is sufficiently large that the adsorption/desorption of water molecules is fast enough to impose

vapor saturation at the ice/air interface. Mathematically, this case can be treated by letting α→∞. While this mathetimatically

treatment is purely theoretical (as α≤ 1), it helps in apprehending the effect of fast kinetics. This case corresponds to the

diffusion-limited case, and the Hertz-Knudsen equation is replaced by the saturation of vapor at the ice/air interface. Moreover,130

it can be shown that in this case the vapor concentration equals its saturation value not only at the ice surface, but also throughout
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the entire pore space (see Yosida et al. (1955) or Fourteau et al. (2021) for demonstrations). The system of Equations 1 can

therefore be rewritten as



div(−ki∇Ti) = 0 (Ωi)

div(−ka∇Ta) = 0 (Ωa)

div(−D0∇csat) = 0 (Ωa)

Ti = Ta (Γ)

−ki∇Ti ·n =−ka∇Ta ·n−LD0∇csat ·n (Γ)

(2)

Using the chain rule one has∇csat = β∇Ta, where β = dcsat
dT . Re-injecting this equality in Equations 2 yields135



div(−ki∇Ti) = 0 (Ωi)

div(−ka∇Ta) = 0 (Ωa)

div(−βD0∇Ta) = 0 (Ωa)

Ti = Ta (Γ)

−ki∇Ti ·n =−ka∇Ta ·n−βLD0∇Ta ·n (Γ)

(3)

Multiplying the third line by L and summing with the second line, one finally gets



div(−ki∇Ti) = 0 (Ωi)

div(−(ka +βLD0)∇Ta) = 0 (Ωa)

Ti = Ta (Γ)

−ki∇Ti ·n =−(ka +βLD0)∇Ta ·n (Γ)

(4)

which is the system of equations governing the temperature and heat conduction in a microstructure without any explicit

vapor transport and where the conductivity of the air has been replaced by an apparent conductivity kv, defined as140

kv = ka +βLD0 (5)

An equivalent demonstration of this result was proposed by Yosida et al. (1955). A similar result was also derived by Moyne

et al. (1988) for a tri-phasic medium, composed of water vapor, liquid water, and an inert solid phase, and is consistent with

the effective thermal conducitivty model of soil proposed by De Vries (1958) and De Vries (1987).

145
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As this system of Equations is equivalent to the one of an inert medium with an increased air thermal conductivity, one can

show using methods of homogenization (e.g. Auriault et al., 2010; Calonne et al., 2011) that at the macroscopic scale snow

can be treated as an equivalent medium with a well-defined tensorial thermal conductivity Keff
fast. This effective thermal con-

ductivity depends on the snow microstructure and on the physical properties of ice, air, and vapor (through ki, ka, and βLD0),

but not on the macroscopic thermal gradient. Again, the subscript fast is used to stress out that we are working under the fast150

kinetics assumption.

We now investigate the individual contributions of conduction and vapor transport to Keff
fast. The macroscopic heat flux Q,

which equals the volume average of the microscopic heat flux (Batchelor and Brien, 1977), can be decomposed as

155

Q=− 1

V
(

∫
Vi

ki∇TidV +

∫
Va

kv∇TadV )

=−(1−φ)
1

Vi

∫
Vi

ki∇TidV −φ
1

Va

∫
Va

ka∇TadV −φ 1

Va

∫
Va

βLD0∇TadV

=−(1−φ)ki <∇Ti >−φka <∇Ta >−φβLD0 <∇Ta > (6)

where Vi and Va are the ice and air volumes in the snow, φ is the porosity, and <∇Ti > and <∇Ta > stand for the

spatial averages of the thermal gradients in the individual ice and air spaces. Note that the average thermal gradient in the ice

(respectively the air) is defined by performing the volume average in the ice space only (respectively the air space only), and

not in the entire snow volume. The first two terms of the last line of Equation 6 respectively correspond to the contribution160

of ice and air heat conduction to the energy flux, while the last term corresponds to an additional contribution of latent heat

transported with water vapor. Moreover, recalling that with fast kinetics ∇c=∇csat = β∇Ta, the contribution of water vapor

is given by

φβLD0 <∇Ta >= L
1

V

∫
Va

βD0∇Ta dV

= L
1

V

∫
Va

D0∇cdV

= LF (7)

where F = 1
V

∫
Va
D0∇cdV is the macroscopic vapor flux (Shertzer and Adams, 2018; Fourteau et al., 2021) which is linked to165

the macroscopic vapor gradient ∇CM through an effective diffusion coefficient Deff
fast, such that F =−Deff

fast∇CM (Calonne

et al., 2014; Fourteau et al., 2021). Since in the fast kinetics case vapor is at saturation throughout the pore space, the macro-
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scopic vapor gradient is related to the macroscopic temperature gradient∇TM by∇CM = β∇TM. Therefore, the macroscopic

vapor flux is given by

F =−βDeff
fast∇TM (8)170

The effective thermal conductivity of snow can thus be decomposed in

Keff
fast = Kcond

fast +βLDeff
fast (9)

where Kcond
fast is the contribution due to heat conduction in the ice and air, and βLDeff

fast = Kvap
fast is the contribution of latent

heat transported with water vapor. Contrary to the slow kinetics case, we now find that latent heat impacts the thermal properties

of snow, and that the vapor flux directly contributes to the effective thermal conductivity. A similar version of Equation 9, with175

the contribution of vapor transport being βLDeff
fast, has notably been reported by Jordan (1991) or Sturm and Johnson (1992),

by directly considering energy balance and transport at the macroscopic scale and pre-supposing the existence of well-defined

(i.e. independent of the macroscopic thermal gradient) Kcond and Deff .

It is important to note that Kcond
fast in Equation 9 is different from the thermal conductivity when latent heat effects are180

neglected, i.e. Kcond
fast 6= Kcond

slow (Moyne et al., 1988). Indeed, the heat conduction in the microstructure is determined by the

distribution of the local thermal gradients in the two phases, and latent heat modifies the microscopic thermal gradients com-

pared to the case without latent heat, and thus modifies the heat conduction. The presence of latent heat increases the apparent

thermal conductivity of the pore space, and thus reduces the thermal conductivity contrast between the two phases. In turn,

this reduced thermal contrast increases the average temperature gradient of the ice phase (the highly conducting phase) and185

decreases the average temperature gradient of the gas phase (the poorly conducting phase). The increase of heat conduction in

the ice is larger than the decrease in the air, and the contribution of heat conduction alone is therefore greater with the presence

of latent heat than without. Such an effect is illustrated and quantified with numerical simulations in Section 3.1.

Finally, we want to point out that in the fast kinetics case, the effective thermal conductivity and the effective water vapor190

diffusion coefficient are linearly related. Indeed, starting from the fact that the effective diffusion coefficient is given by the

ratio of the magnitude of the vapor flux over the magnitude of the vapor concentration gradient, one has

Deff
fast =

‖ 1
V

∫
Va
D0∇cdV ‖
‖∇C‖

=
‖D0β

1
V

∫
Va
∇Ta dV ‖

‖β∇TM‖
=D0

Va

V

‖ 1
Va

∫
Va
∇Ta dV ‖

‖∇TM‖
=D0φ

‖<∇Ta > ‖
‖∇TM‖

(10)

where we used the facts that∇c= β∇Ta and∇CM = β∇TM, and where Deff
fast either stands for the vertical or for the hori-

zontal effective diffusion coefficient depending on the orientation of the macroscopic thermal gradient. The ratio of the average195
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thermal gradient in the pore space over the macroscopic thermal gradient is governed by the effective thermal conductivity and

the thermal conductivity of the ice and the air. Indeed, we have

Keff
fast∇TM = (1−φ)ki <∇Ti >+φkv <∇Ta > (11)

and

∇TM = (1−φ)<∇Ti >+φ <∇Ta > (12)200

where similarly Keff
fast either stands for the vertical or for the horizontal effective thermal conductivity depending on the

orientation of the macroscopic thermal gradient. Equation 11 follows from the definition of the macroscopic energy flux

(Batchelor and Brien, 1977), and Equation 12 follows from the application of Stokes theorem and has notably been previously

reported by Hansen and Foslien (2015). Combining Equations 11 and 12 we have that

φ <∇Ta >=
ki−Keff

fast

ki− kv
∇TM (13)205

Finally, injecting Equation 13 in Equation 10 we have that

Deff
fast =D0

ki−Keff
fast

ki− kv
(14)

Since the effective thermal conductivity is larger than the conductivity of the least conducting phase, i.e. Keff
fast > kv, one

finds that Deff
fast ≤D0, as reported by Giddings and LaChapelle (1962) and Fourteau et al. (2021). The linear relationship be-

tween the effective thermal conductivity and the normalized effective water vapor diffusion coefficient at 263 K is displayed210

in Figure 2, for effective thermal conductivities Keff
fast ranging from kv = 0.0336 W K−1 m−1 to 0.5 W K−1 m−1, as typically

encountered with seasonal snow (e.g. Sturm et al., 1997; Calonne et al., 2011; Riche and Schneebeli, 2013, and the numerical

values computed in Section 3.2 of this paper). Application of Equation 14 in Figure 2 reveals that the normalized effective

diffusion coefficient ranges from 1 to about 0.8 for most seasonal snow. Moreover, as the macroscopic vapor flux decreases

with slower kinetics (Pinzer et al., 2012; Fourteau et al., 2021), this curve represents an upper limit for the effective diffusion215

coefficient.

2.3 Intermediate cases

Numerous works indicate that α depends on temperature, the local vapor saturation, and the crystallographic properties of

the underlying ice surface (e.g. Saito, 1996; Libbrecht and Rickerby, 2013), but for snow it remains unclear what value or220

expression should be used for α in the Hertz-Knudsen Equation (Legagneux and Domine, 2005). However, a recent study
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Figure 2. Normalized effective water vapor diffusion coefficient as a function of the effective thermal conductivity, under the fast kinetics

hypothesis at 263 K. The shaded area cover the typical range of thermal conductivity values (from kv up to 0.5 W K−1 m−1) and the

corresponding range of the normalized effective diffusion coefficient of water vapor (from 1 to about 0.8). At 263 K, kv = ka +βLD0 =

0.0336 W K−1 m−1.

suggests that the very slow kinetics and fast surface kinetics cases correspond to the minimum and maximum macroscopic

vapor diffusion in snow, respectively (Fourteau et al., 2021). We can therefore expect the energy flux Q to be maximal in the

fast kinetics case, since this corresponds to the situation with maximal vapor flux and the fastest adsorption and desorption of

water molecules onto the ice surface. Similarly, the energy flux is minimal in the slow kinetics case as latent heat effects are225

absent in this case. The energy flux in snow Q can thus be bounded by the slow kinetics and the fast kinetics cases:

Keff
slow‖∇TM‖ ≤Q≤Keff

fast‖∇TM‖ (15)

where this inequality applies both for the vertical and horizontal components of the effective thermal conductivities, depend-

ing on the orientation of the macroscopic thermal gradient.

3 Numerical Simulations230

To exemplify and quantify the points raised in Section 2, we performed Finite Element simulations of steady-state thermal

conduction through several snow microstructures obtained experimentally with computed microtomography. The simulations

were performed using the open source ElmerFEM software (Malinen and Råback, 2013), and the readily available solver for
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the heat equation.

235

In each simulation, the temperatures of two opposite sides of the microstructure were imposed in order to obtain a thermal

gradient of 50 K m−1, with adiabatic conditions on the remaining sides. Similarly to Riche and Schneebeli (2013), the effective

thermal conductivities are estimated by computing the ratio of the macroscopic heat flux Q to the macroscopic thermal gradi-

ent ∇TM. The macroscopic heat flux Q is computed as the volume average of the microscopic heat fluxes using the Paraview

software. Note that the chosen value of 50 K m−1 for the imposed gradient is purely arbitrary and does not impact our results,240

as the resulting effective thermal conductivity does not depend on the magnitude of the gradient.

In order to test the influence of temperature on the effective thermal conductivity of snow, the simulations were run for different

mean temperatures, ranging from 223 to 273 K. The temperature dependence of the thermal conductivities of ice and air (ki

and ka) were respectively taken from Lide (2006) (based on Slack, 1980) and Kadoya et al. (1985). The parameter β = dcsat
dT

was obtained by assuming that water vapor follows the Clausius-Clapeyron and ideal gas laws (Eq. 11 of Fourteau et al., 2021).245

We set the diffusion coefficient of water vapor in air to D0 = 2× 10−5 m2 s−1 (Calonne et al., 2014) and the latent heat of

sublimation of ice L= 28× 105 J kg−1 (Lide, 2006), independently of temperature. Finally, we assume that the density of ice

ρice is constant with temperature and equal to 917 kg m−3 (Calonne et al., 2014). The density of the samples reported in this

article are computed using ρice and the ice volume fraction deduced from the tomography images.

For the different microstructures and mean temperatures, two types of simulations were performed. One where we assumed250

no impact of latent heat on the heat conduction (thus obtaining Keff
slow), the other where we increased the apparent thermal

conductivity of air by a βLD0 term (thus obtaining Keff
fast). Moreover, as seen in Section 2.2 with Equation 14, under the fast

kinetics assumption the effective diffusion coefficient of water vapor Deff
fast can be directly obtained from the effective thermal

conductivity. Finally, we recall that the normalized effective diffusion coefficient is defined as the ratio of the effective diffusion

coefficient with the diffusion coefficient of water vapor in free air, i.e. Dnorm = Deff/D0.255

In total we used 34 measured snow microstructures, covering several types of seasonal snow. The particular snow types used

are, according to the terminology of Fierz et al. (2009), precipitation particles (PP), decomposing and fragmented precipitation

particles (DF), rounded grains (RG), faceted crystals (FC), depth hoar (DH), and melt forms (MF). We used sample sizes

larger than the REV sizes reported by Calonne et al. (2011). The tetrahedral meshes used in the Finite Element simulations260

were produced using the CGAL library, and contains between 20 and 90 million elements. The samples are described in the

Supplementary Material, and includes both previously published snow samples (from Hagenmuller et al., 2016, 2019; Peinke

et al., 2020) and new snow samples.

3.1 Effect of temperature on the effective thermal conductivity

In this section we analyze the influence of the mean temperature on the effective thermal conductivity. For simplicity, we limit265

ourselves to vertical temperature gradients, and thus only deal with vertical effective thermal conductivities and vertical dif-

fusion coefficients of water vapor. As all scalar components are vertical, we do not use the subscript z, in order to lighten the
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notation.

The temperature dependence ofKeff is due to the temperature dependence of the underlying materials. Indeed, an increasing270

temperature results in the decrease of the ice thermal conductivity ki and the increase of the apparent thermal conductivity of

the air kv due to both the increase of the intrinsic thermal conductivity of air ka and the increase of the contribution of water

vapor latent heat βLD0, all displayed in Figure 3.

Furthermore, we define for our analysis275

K ice = (1−φ)ki
‖<∇Ti > ‖
‖∇T‖

Kair = φka
‖<∇Ta > ‖
‖∇T‖ (16)

K ice (not to be mistaken with ki, see Table 1) corresponds to the contribution of the ice heat conduction to the total effec-

tive thermal conductivity, and Kair (not to be mistaken with ka) to the contribution of the air heat conduction. We have by

construction

Kcond =K ice +Kair (17)280

where Kcond is the vertical component of Kcond. With our simulations, the values of Kcond, K ice, Kair are computed

directly from Keff , ki, ka, and kv, and using Equations 11 and 12.

We first focus on only two snow samples, a low-density sample and a high-density sample. The low-density sample is com-

posed of decomposing and fragmented precipitation particles (DF), with a density of 125 kg m−3 and a specific surface area of285

40 m2 kg−1. The high-density sample is composed of melt forms (MF), with a density of 380 kg m−3 and a specific surface area

of 5 m2 kg−1. The 3D microstructures of both samples are displayed in Figure 4. The results of the Finite Element simulations

for these two samples are reported in Figure 5.

We start by analyzing the low-density sample (left column of Figure 5). Under the fast kinetics hypothesis, the effective290

thermal conductivity of the low-density sample shows an exponential-like increase with increasing temperature. This increase

of Keff is due to the combined effects of (i) an increase of Kvap, the vertical component of the contribution of latent heat

transport and (ii) an increase of Kcond, the heat conduction through the ice and air spaces. The increase of Kcond is principally

due to the increase of K ice, the heat conduction in the ice. With increasing temperature, the increase of the apparent thermal

conductivity of air reduces the contrast between the two phases and the average ice thermal gradient increases. This increase295

more than offsets the decrease of the ice thermal conductivity ki, and the net effect is an increase of K ice. Under the slow
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Figure 3. Temperature dependence of the thermal conductivity of ice (ki in blue), of the thermal conductivity of air (ka in orange), of the

contribution of latent heat to the apparent thermal conductivity of the air (βLD0 in green), and of the apparent thermal conductivity of air

including latent heat effect (kv = ka +βLD0 in black). Note the break in the y-axis.

kinetics hypothesis however, the effective thermal conductivity only barely decreases over the range of temperature studied,

consistent with the results of Calonne et al. (2011). In this case, the increase of the thermal conductivity of the air is not as

pronounced, and the increase of the thermal gradient in the ice does not compensate for the decrease of the ice thermal con-

ductivity. Overall K ice decreases with temperature in the slow kinetics case.300

Contrary to the low-density sample, the high-density sample (right column of Figure 5) shows a decrease of the effective

thermal conductivity in the fast kinetics case. The increase of Kvap with temperature does not counter the decrease of Kcond.

This decrease of Kcond can be attributed to the decrease of K ice with temperature. Here, the increase of the ice thermal gra-

dient is not large enough to offset the decrease of the ice thermal conductivity ki, and overall K ice decreases. Under the slow305

kinetics hypothesis, the effective thermal conductivity of the high-density sample decreases with temperature slightly more

rapidly than in the fast kinetics case.

For both samples, the difference between Keff
slow and Keff

fast is maximal near the melting point, where it reaches more than

50% for low-density snow. Moreover, neglecting the effect of water vapor transport on heat conduction under the fast kinetics310

case can lead to an underestimation of about 20% of the conduction contribution. Thus in the fast kinetics case, the effect of

latent heat can only reasonably be neglected for low temperatures or high-density samples.

In order to better quantify the difference between the fast and slow kinetics cases, we computed the vertical effective thermal

conductivity for the totality of our 34 snow samples under both hypotheses, at 248 and 273 K. The ratios of the effective thermal315
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Figure 4. Tetrahedral meshes (ice phase only) of the low-density DF sample (panel a) and high-density MF sample (panel b).

Figure 5. Vertical effective thermal conductivity (Keff ), with the contributions of ice heat conduction (K ice), air heat conduction (Kair) and

vapor transport (Kvap) for a low-density snow sample (left column) and a high-density snow sample (right column), and in the fast (upper

line) and slow kinetics (lower line) cases. Kcond stands for the purely conductive part of Keff and is given by Kcond =K ice +Kair.

conductivity in the fast kinetics case over the slow kinetics case are displayed in Figure 6. They confirm that the relative dif-

ference is more important for low-density snow and for higher temperatures. Near the melting point (panel b), the fast kinetics

effective thermal conductivity is between 10 to 50% higher than in the slow kinetics case. For colder snow at 248 K (panel a),
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Figure 6. Ratio of the fast kinetics over the slow kinetics vertical effective thermal conductivity for various snow samples as a function of

density. Computations performed at 248 K in panel a, and 273 K in panel b. Note the different y-scales in both panels.

the relative difference is less marked and ranges from 1 to 10%. When expressed in absolute terms, however, the difference

between the fast and slow kinetics thermal conductivity is more marked for high-density snow.320

Finally, Figure 7 shows the variation of the vertical normalized effective diffusion coefficient of water vapor with tempera-

ture, under the fast kinetics hypothesis and for the low and high-density samples shown in Figure 4. The numerical values are

consistent with the recent study of Fourteau et al. (2021), who obtained effective diffusion coefficients using Finite Element

simulations explicitly representing vapor diffusion in the pores. Figure 7 reveals a slight decrease of the effective diffusion325

coefficient with temperature, for both low and high-density snow. This can be explained by the decrease of the air thermal gra-

dient, as the apparent conductivity of air increases with temperature. A lower air temperature gradient leads to a lower vapor

concentration gradient in the pores and thus to a lower vapor flux and a lower Dnorm
fast .
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Figure 7. Vertical normalized effective diffusion coefficient Dnorm
fast of a low-density snow sample (blue) and a high-density snow sample

(orange) as a function of temperature and under the hypothesis of fast kinetics. Note the break in the y-axis.

3.2 Effective thermal conductivity and diffusion coefficient as a function of snow density330

The slow kinetics effective thermal conductivities of snow samples covering a broad range of densities and microstructures

have been reported by Calonne et al. (2011) and Riche and Schneebeli (2013). Similarly, numerical values of the effective dif-

fusion coefficient of water vapor in snow under limited kinetics have been provided by Calonne et al. (2014). Here, we provide

numerical estimates of the effective thermal conductivities and effective diffusion coefficients of a broad range of snow sam-

ples, this time under the fast kinetics hypothesis. For each sample we computed the vertical and horizontal effective thermal335

conductivities and water vapor effective diffusion coefficients, at 5 different temperatures (223, 248, 263, 268, and 273 K). The

thermal conductivities and diffusion coefficients of each simulated sample are available in the Supplementary Material.

The thermal conductivities computed at 263 K are displayed in Figure 8 as a function of density. Similarly to the work of

Calonne et al. (2011) and Riche and Schneebeli (2013) we observe that density and thermal conductivity are well correlated,340

with denser snow samples presenting higher thermal conductivity values. For the low-density samples, for which the conduc-

tion of air plays a determinant role in the effective thermal conductivity, we report thermal conductivity values higher than

the polynomial fits of Calonne et al. (2011) and Riche and Schneebeli (2013), both based on the slow kinetics hypothesis.

This difference can be explained by the increased apparent thermal conductivity of the air, due to latent heat effects. At higher

density, our data lie above the reported data and polynomial fit of Calonne et al. (2011). As the relative difference between the345

fast and slow kinetics cases is small for high-density samples, one can expect the slow and fast kinetics simulations to yield

similar values for high-density samples. The scatter between our values and the study of Calonne et al. (2011) is likely due to

the inherent variability between snow samples, even for equal densities. Note that the fit proposed by Riche and Schneebeli

17



Figure 8. Effective thermal conductivity of snow as a function of density, under the fast kinetics assumption at 263 K. The horizontal bar

of a symbol marks the horizontal effective thermal conductivity value of a snow sample, while the tip of the vertical bar marks its vertical

value. Snow classification according to Fierz et al. (2009). Black dot: apparent thermal conductivity of air at 263 K. Solid black line: second

order polynomial fit of the vertical effective thermal conductivity. Dashed grey line: polynomial fit proposed by Calonne et al. (2011), under

the slow kinetics assumption at 271 K. Dotted grey line: polynomial fit proposed by Riche and Schneebeli (2013), under the slow kinetics

assumption at 253 K.

(2013) was based on faceted crystals and depth hoar snow only, and at 253 K. On the contrary the fit proposed by Calonne et al.

(2011) was based on their entire sample set at 271 K.350

We adjusted second order polynomial functions to derive parametrizations of thermal conductivity as a function of density,

and this for each of the 5 temperatures studied. Our parametrization for the vertical effective thermal conductivity at 263 K
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Figure 9. Temperature dependence of the vertical effective thermal conductivity parametrizations under the fast kinetics hypothesis.

is displayed as a solid line in Figure 8. The parametrizations of the vertical effective thermal conductivity for the 5 different

temperatures are given by355

Keff
z =



2.564
(
ρ
ρice

)2− 0.059 ρ
ρice

+ 0.0205 for T = 223 K

2.172
(
ρ
ρice

)2
+ 0.015 ρ

ρice
+ 0.0252 for T = 248 K

1.985
(
ρ
ρice

)2
+ 0.073 ρ

ρice
+ 0.0336 for T = 263 K

1.883
(
ρ
ρice

)2
+ 0.107 ρ

ρice
+ 0.0386 for T = 268 K

1.776
(
ρ
ρice

)2
+ 0.147 ρ

ρice
+ 0.0455 for T = 273 K

(18)

where ρ
ρice

is the volume fraction of ice and the constant terms in the polynomial equations correspond to kv. Similar

parametrizations for the horizontal thermal conductivity, and for the geometric mean of the vertical and horizontal thermal

conductivities are available as a Supplementary Material. This parametrization can be extended to other temperatures by first

computing the thermal conductivity at the desired density for the 5 proposed temperatures and then performing an interpolation360

to the desired temperature.

These vertical effective thermal conductivity parametrizations, displayed in Figure 9, show a decrease of the slopes of the

thermal conductivity versus density curves with increasing temperatures. This is consistent with the observations made in

Section 3.1, that the thermal conductivity of the low-density sample increases with temperature while the thermal conduc-365
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Figure 10. Normalized effective diffusion coefficient as a function of density, under the fast kinetics assumption at 263 K. Snow classification

according to Fierz et al. (2009). Solid black line: normalized effective diffusion coefficient deduced from the application of Equation 14 with

the effective thermal conductivity polynomial fit of Figure 8.

tivity of the high-density sample decreases with temperature. The transition between these two behaviors lies around 350 to

400 kg m−3. Note that Calonne et al. (2019) report that a similar transition between the low and high-density samples also

exists under limited kinetics, but occurs at a much lower density of about 100 kg m−3.

Finally, the estimated normalized effective diffusion coefficients of water vapor are displayed in Figure 10 as a function370

of density at 263 K. The normalized effective diffusion coefficients obtained by application of Equation 14 together with the

polynomial fit of the vertical effective thermal conductivity are shown as a black solid line in Figure 10. The normalized

effective diffusion coefficient decreases with density and mostly remains in the 0.98 to 0.8 range. Notably, detailed seasonal

snow models working under the fast kinetics assumption could thus make the reasonable simplifying assumption thatDnorm =

0.90, independent of snow type. This would result in a less than 10% error on the effective diffusion coefficient of water vapor.375
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4 Discussion

4.1 Does the fast kinetics hypothesis apply for heat and mass transport in snow?

This paper studied two limiting cases, considering either the kinetics of water vapor deposition/sublimation to be sufficiently

fast to impose saturated water vapor at the ice interface (very large α) or that the kinetics is sufficiently slow so that latent

heat does not impact either the temperature gradients nor the heat conduction in the snow microstructure (very small α). It380

remains however unclear if one of these two limiting cases applies for snow modeling. For example, based on the observation

of snow crystal growth with computed tomography, Krol and Löwe (2016) suggest that isothermal metamorphism is slightly

better represented by a slow kinetics, while temperature gradient metamorphism data appear consistent with fast kinetics.

As seen in Section 3.1, the effective thermal conductivity of low-density snow displays a fundamentally different dependence

on temperature, depending on whether the slow or the fast kinetics hypothesis applies. In the slow kinetics case, the effective385

thermal conductivity slightly decreases with increasing temperature, while it increases in the fast kinetics case. Using the needle

probe method, Sturm and Johnson (1992) measured the variation of the effective thermal conductivity of a low-density sample

of depth hoar with temperature. Even though recent studies have highlighted a potential bias of the needle probe method when

used with snow (Calonne et al., 2011; Riche and Schneebeli, 2013), this reported bias does not impact the trend of thermal

conductivity measured at different temperature in similar snow samples, as performed by Sturm and Johnson (1992). These390

data can thus be expected to reflect the variation of the effective thermal conductivity with temperature. These measurements,

displayed in Figure 7 of Sturm and Johnson (1992), clearly indicate an exponential-like increase of thermal conductivity with

temperature, consistent with the fast kinetics hypothesis but not with the slow kinetics hypothesis.

The differences between the slow and fast kinetics cases on the effective diffusion coefficient of water vapor were also studied

by Fourteau et al. (2021). While direct measurements of the effective diffusion coefficient are difficult and should therefore be395

analyzed with caution, the reported experimental values of Sokratov and Maeno (2000) reports an average normalized diffu-

sion coefficient of 0.64 for snow densities of about 475 kg m−3, while Calonne et al. (2014) report a value of about 0.35 for

limited kinetics and extrapolation of our results suggests a value of about 0.70 under the fast kinetics. Finally, the numerical

simulations of Fourteau et al. (2021) indicates that for water vapor diffusion the transition between the slow and fast kinetics

regimes occurs for sticking coefficients α around 10−3. Based on data by Libbrecht (2006), Kaempfer and Plapp (2009) reports400

that α is likely to be within the 10−3 to 10−1 range, thus within the fast kinetics regime.

All the above reasons suggest that the effective thermal conductivity and diffusion coefficient of water vapor in snow could be

well represented under the fast kinetics hypothesis, at least during temperature gradient metamorphism. Further experimental

work should be performed to confirm that the fast kinetics assumption generally applies for modeling mass and heat transport

in snow and to highlight its potential limitations. Also, the derivation of a theoretical model able to describe heat and mass405

transfer with arbitrary surface kinetics would allow to investigate intermediate kinetics, in an effort to ultimately select the best

modeling assumptions for snow. At the same time, this model could be formulated to explicitly take into account macroscopic

convection, as this phenomenon has been observed in sub-artic shallow snowpacks (Trabant and Benson, 1972; Sturm and

Johnson, 1991). Its derivation could be achieved using standard homogenization methods, such as the two-scale asymptotic

21



expansion (e.g. Municchi and Icardi, 2020) or volume averaging methods (e.g. Whitaker, 1977).410

4.2 The coupling of heat conduction with vapor transport

We showed that in the fast kinetics case, the pure conduction part Kcond of the effective thermal conductivity is influenced

by the presence of water vapor and its latent heat. Therefore, the definition of Kcond given by Sturm and Johnson (1992),

i.e. that it is"the hypothetical conductivity in the absence of any vapor transport", should be clarified to emphasize that Kcond415

corresponds to the pure conduction occurring through the ice and pore spaces, but in response to the actual microscopic thermal

gradients that are influenced by the latent heat effects. Furthermore, the dependence of the pure conduction part on temperature

is different from what would be expected from variations of the ice and air thermal conductivity only. This means that under

the fast kinetics hypothesis a strong two-way coupling exists between heat conduction and water vapor transport, and the heat

conduction process cannot be fully considered without latent heat processes. One should therefore be careful when treating heat420

conduction as decoupled from vapor transport (e.g. Calonne et al., 2011; Riche and Schneebeli, 2013). While this approxima-

tion is justified if the effects of latent heat are small, one should be aware of the potential limit of this approximation. Finally, in

such a case it is not possible to experimentally decouple the measurement of Kcond from Kvap by performing measurements

at low temperature (where Kvap ' 0). The inferred value of Kcond at low-temperature does not hold at higher temperatures,

where the effect of latent heat is no longer negligible and thus impacts Kcond. A similar conclusion was reached by Moyne425

et al. (1988) for the thermal conductivity of humid tri-phasic medium.

5 Conclusions

This paper investigates the effective thermal conductivity of snow and its relationship to the diffusion of water vapor and its

associated latent heat. Using theory, we show that the kinetics of the sublimation and deposition processes at the ice surfaces430

plays a significant role on the transport of heat in snow. In particular, if the kinetics is slow we recall that snow can be treated

as an inert medium and that heat transport only occurs through conduction in the ice and in the air. In contrast, if the kinetics

is fast vapor transport and latent heat effects become an integral part of heat transport, and the effective thermal conductivity

of snow is composed of a purely conductive term and a term proportional to the water vapor diffusivity. Moreover, we show

that under the latter hypothesis there is a simple linear relationship between the effective diffusion coefficient of water vapor in435

snow and the effective thermal conductivity. Since the effective thermal conductivity of snow rarely exceeds 0.5 W K−1 m−1,

we conclude that under fast kinetics the normalized effective diffusion coefficient of water vapor ranges between 1 to about

0.80 for most seasonal snow.

We complemented this theoretical work by Finite Elements simulations of heat conduction through snow microstructures ob-

tained with computed tomography. The simulations were performed on a total of 34 samples, covering the typical seasonal440

snow types, under both the slow and fast kinetics hypotheses, and for temperatures ranging from 223 to 273 K. The simulations
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were performed on large samples, in order to ensure the representativeness of the results.

Using this new set of numerical simulations, we show that the influence of vapor transport in the fast kinetics case can lead to

a significant increase of the effective thermal conductivity compared to the slow kinetics case, up to 50% for low-density snow

near the melting point. Moreover, we show that under the fast kinetics hypothesis the purely conductive term of the effective445

thermal conductivity is influenced by the presence of water vapor, and differs from the effective thermal conductivity in the

absence of any vapor transport. Indeed, sublimation and deposition processes modify the ice surface temperature through latent

heat effect, therefore affecting thermal gradients throughout the snow microstructure. This observation illustrates the coupled

nature of heat and water vapor transport in snow, where one cannot be fully understood and quantified without the other. We

also compared our numerical simulations to published experimental data of the dependence of the effective thermal conductiv-450

ity of snow on temperature. This suggests that the fast kinetics option might be well suited to model heat and mass transport in

snow during temperature gradient metamorphism.

Finally, we provide our new numerical values of the effective thermal conductivity and of the effective diffusion coefficient of

water vapor under the fast kinetics hypothesis, derived from snow microstructures measured with computed tomography, as

well as parametrizations with snow density. These new data and parametrizations are primarily meant to be used in detailed455

snow physics models.
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