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Hansen’s comments on the authors’ response to the Technical Note titled: 
 
 

A demonstration of the existence and importance of “hand-to-hand” vapor transport 
 as it relates to the effective vapor diffusion coefficient in low-density snow 

 
Symbols 
 
𝐷 diffusion coefficient 
k thermal conductivity 
q energy flux  
𝑢#$ latent heat of sublimation of ice 
𝑣& water vapor diffusion velocity 
x macroscale coordinate 
 
x microscale coordinate 
𝛾& density of vapor component 
q absolute temperature 
𝜙) volume fraction of constituent a 
 

Superscript 
cond conduction 
eff effective 
 
 Subscript 
i ice constituent 
ha humid air constituent 
v vapor component within humid air 
v-a water vapor in air 
 
 
 The authors’ defense to the entire Technical Note of Hansen is summarized in their 
concluding remarks given below. 

“In conclusion: 
The arguments put forward by Andrew Hansen rely on two main errors:  

• An invalid derivation of the mass flux in the layered structure by Hansen and Folsien (2015). 
• The reliance on the hand-to-hand mechanism that instantly transports water molecules through 

the ice phase, which is not a real physical phenomenon. “ 

Let us dispense with the second comment first as it requires only a brief response. The 
authors wish to argue that the instant transport of water vapor through the ice is non-physical, 
yet, they do not dispute that hand-to-hand diffusion is a real mechanism associated with mass 
transfer.  
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At the risk of repetitive arguments, mass transfer in a continuum is based on water vapor 
moving across a surface. The surface does not care where the molecules of water came from, 
either around an ice grain or through a hand-to-hand mechanism. All the surface knows is that 
vapor is moving across it.  It defies logic to acknowledge hand to hand diffusion as an important 
mass transfer mechanism and then neglect this mechanism in the accompanying mathematical 
development of mass transfer at the macroscale. 

Now let us address in detail the first comment which is really the sole basis for their 
arguments of rejecting the conclusion of the Technical Note. The authors assert that I have 
produced an invalid derivation of the mass flux and that they have corrected the derivation of 
mass flux in Appendix C of Fourteau (2021). Their claim that my derivation is “invalid” is 
patently false. In what follows, I clearly lay out the differences in the approach I put forth as well 
as that of the authors. The results are fascinating and, further, clearly show the approach of 
Hansen leads to a far more appealing and correct final conclusion. I also identify where the 
authors’ formulation has gone awry. 

We address the competing views articulated in the Technical Note and the authors 
response to the note by studying mass transfer in a layered ice/humid air microstructure in the 
presence of a temperature gradient as shown in Figure 1.  The layered microstructure is an ideal 
test case of the two approaches in that an analytical solution exists—a solution based only on 
one-dimensional heat and mass transfer principles with a long history of supporting 
development.   

 

 

 

 

 

 

 

Figure 1. (a) Layered microstructure of ice and humid air in the presence of a vertical 
temperature gradient. (b) The homogenized continuum point possessing macroscale 
continuum properties representative of the ice/humid air mixture. 
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We begin by making a statement that both the approach of Hansen and the authors agree 
on.  The energy flux of the homogenized continuum is 

 	𝑞 = −.
/01/234	5673		89:	

;<6
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A challenge is met immediately in that the above equation does not permit a clean 
decomposition into terms involving only thermal conductivity and only diffusion.  Hansen and 
Foslien (2015) introduced definitions of thermal conductivity and the diffusion coefficient given 
by 

	𝑘 = . /0/23
?0@/234	89:56731

;	<6
;	= >A4	?23/0	

B   ,    (2) 

and 

	𝐷 = . /05673
?0@/234	89:56731

;	<6
;	= >A4	?23/0	

B   .    (3)     

This approach essentially involves splitting the numerator of Eq. (1) into two terms and 
identifying the diffusion coefficient with the term involving		𝑢#$ in the numerator. Quoting 
Fourteau (2021): 

“We however argue that Eq. (C.4) (Eq.1 above) is only one way among many to rewrite 𝑞GHI  

under the form A∇T+𝐿	𝐷L 	
MN93O
MP

 B∇T and thus that the identification of the latent-heat flux with the 
second term of the decomposition is arbitrary.” 

 
Fourteau et al. (2021) then go on to propose their own decomposition of the thermal 

conductivity and diffusion coefficient. Let us follow both paths and distil the debate down to just a 
few basic equations, affording simple comparisons and concrete conclusions. 

 
To begin, let us start with Equation (1) which is not in dispute and repeated below as: 

𝑞 = −.
/01/234	5673		89:	
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Now rearrange Eq. (4) by dividing numerator and denominator by 𝑘Q, leading to: 

 	𝑞 = −

⎝

⎜
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The value of the thermal conductivity of ice is on the order of 100 times that of the 
thermal conductivity of humid air. Therefore, neglecting the terms in square brackets in the 
above equation leads to 

 

𝑞	 = −	^1 /23
?23	

> +	15673
?23	

> 𝑢#$
M	 6̀
M	D
a	CD

CE
    .    (6) 

 
The authors did not seem to want to touch on this simplification in the Technical 

Note, so let’s make some comparisons of the normalized energy flux between the exact 
form in Eq. (1) and the approximate form of Eq. (6). 
 

Let us use needed numerical values from Appendix A of the Technical Note. 
Further let’s assume a temperature of 271.15 K (-2oC) as high temperatures are where 
diffusion is greatest (Hansen and Foslien, 2015, Fourteau, 2020). A brief table of 
differences between the exact and approximate forms of the normalized energy flux is 
shown below. 
 
   Eq. 1 b𝑞 CD

CE
	⁄ b  Eq.6 b𝑞 CD

CE
	⁄ b 

 
𝜙d = 0.2      0.056701      0.05699  
 
𝜙d = 0.3      0.064567      0.065131  
 

The results are remarkably close (errors less than 1 %) which should come as no 
surprise. Figure 2 shows a plot of the exact normalized energy flux of Eq. (1) and the 
approximate energy flux of Eq. (6). The results show the two are in excellent agreement 
for ice volume fractions below 0.7.  In what follows, let us restrict the discussion to ice 
volume fractions below 0.7 as it opens a window of clarity on the competing views.  

I’ll briefly remark that restricting ice volume fractions to be below 0.7 is hardly a 
constraint when it comes to studying snow. Diffusion is only a meaningful form of heat transfer 
for low densities (typically less than 0.5 ice volume fraction) and high temperatures, a result 
confirmed by Hansen and Foslien (2015) and the present paper of Fourteau. 

The macroscale energy flux for the continuum mixture may be written as  

𝑞	 = −1𝑘hii 	+ 𝐷hii	𝑢#$
M j̀
MD
	>	CD

CE
   .     (7) 

 
where 𝑘hii and 𝐷hii represent the effective themal conductivity and the effective 
diffusion coefficient of the mixture. 
 

Comparing Eqs. (6) and (7) leads to the relations 
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Figure 2. A comparison of the normalized energy flux of the layered microstructure using Eqs. 

(1 & 6), respectively. Note that the exact energy flux converges to the known energy 
flux for the case of solid ice. 

 
 

𝑘hii = 	 1/23
?23

>  ,       (8) 
 
and  
 

 𝐷hii = 		 15673
?23

>			 .       (9) 

The authors apparently wish to argue the above results are “invalid” owing to the claimed 
“arbitrary” nature of the decomposition of Eq. (1). However, by performing the order of 
magnitude analysis on Eq. (1) first, and restricting the discussion to ice volume fractions below 
0.7, there is no ambiguity in the decomposition of thermal conductivity and the diffusion 
coefficient. The decomposition is rigorously correct and the identification of terms is crystal 
clear when comparing Eqs. (6 & 7).   As for the word “arbitrary” used by the authors to describe 
the decomposition, we shall see that their approach is the one that appears to utilize an arbitrary 
decomposition to arrive at a non-physical result. 

I’ll dispense with some of the details of the authors’ development and refer the reader to 
Appendix C in Fourteau et al. (2021). Begin by noting Eq. (C.4) of Fourteau (2021) is precisely 
Eq. (1) of this response. Next, a critical equation in their development arises in the statement 
below 
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“The heat flux 𝑞kLlm through the sole process of conduction is thus given by” 
 

𝑞kLlm = (1 − ∅)𝑘d∇𝑇d + 	∅𝑘H∇𝑇H	 	 	 	 (10)	

or written in terms of the notation used herein 

 𝑞kLlm = 𝜙d𝑘d∇𝜃d +	𝜙H𝑘tH∇𝜃H   .    (11) 

From this point on, it is merely an exercise in algebra for the authors to arrive at their 
results for thermal conductivity and the effective diffusion coefficient given by 

𝑘hii = .
/01/234	5673	?0	89:	

;<6
;= >
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;	= >A4	?23/0	

B      ,    (12) 

and 

𝐷hii = . /0?235673	

?0@/234	89:56731
;	<6
;	= >A4	?23/0	

B     .     (13) 

The above results are consistent with Fourteau (2021), Appendix C, Eq. (C.7) and accompanying 
discussion.  

In their present form, the complexity of Eqs. (12 &13) and those of Foslien (1994) make 
comparisons difficult. However, we can proceed with the same order of magnitude analysis and 
follow up by restricting the discussion to ice volume fractions below 0.7.  

 Begin by dividing numerator and denominator of Eqs. (12 & 13) by 𝑘d leading to 

𝑘hii =

⎝

⎜
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𝐷hii =
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⎜
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Neglecting the terms in square brackets by following the identical arguments used 
previously for the approach of Hansen leads to 

𝑘hii = ^
1/234	?05673		89:	

;<6
;= >

?23	
a            (16) 
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𝐷hii = 𝐷&uH              (17) 

We are now in a position to bring remarkable clarity to comparisons of the two 
approaches. To begin, the energy flux of the macroscale mixture is given by Eq. (7) repeated 
below as: 

𝑞	 = −1𝑘hii 	+ 𝐷hii	𝑢#$
M j̀
MD
	>	CD

CE
   .     (18) 

The energy flux of Foslien (1994) is given by Eq. (6), repeated below as: 

𝑞	 = −	^1 /23
?23	

> +	15673
?23	

> 𝑢#$
M	 6̀
M	D
a	CD

CE
        (19) 

 
where 𝑘hii = 1 /23

?23	
>  and  𝐷hii = 15673

?23	
>. 

 
Hence, in this case, the thermal conductivity depends only on the humid air thermal 
conductivity and the diffusion coefficient depends only on the binary diffusion 
coefficient of water vapor in air. 

The energy flux of Fourteau is given by 

𝑞 = −v^
1/234?0	5673		89:	

;<6
;= >

?23	
a + 𝜙tH 	1

5673
?23	

> 		𝑢#$ 	
M 6̀
MD
				w CD

CE
 (20) 

where Fourteau identifies 

𝑘hii = ^
1/234?0	5673		89:	

;<6
;= >

?23	
a  and  𝐷hii = 𝐷&uH  . 

Note that, upon careful inspection, the energy fluxes of Hansen and Fourteau (Eqs. 19 & 
20) are identical—a comforting result for both approaches. The difference in the two approaches 
is in the decomposition to thermal conductivity and the effective diffusion coefficient. In 
Foslien’s model, the thermal conductivity and the diffusion coefficient separate cleanly, whereas 
the Fourteau approach apportions part of mass diffusion to the thermal conductivity and part of 
the mass diffusion to the diffusion coefficient. Without addressing the root cause just yet, I’ll 
simply note the result of Fourteau is neither mathematically or physically appealing. 

 Now let us briefly revisit how these two results came about. 

In the case of Foslien: 

i. First principles of heat and mass transfer were used to derive Eq. (1), a result 
that is actually used by Fourteau. 
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An important equation utilized in the derivation of the macroscale energy flux is the 
volume average of the constituent temperature gradients given by 
 
CD
CE
= 𝜙d 1

CD
Cx
	>
d
	+	𝜙tH 1

CD
Cx
	>
tH
	 	 	 	 	 	 (21)	

 
This equation is discussed in depth in the Technical Note and is derived by O= zdemir	
et	al.	(2008)—a	very	important	paper.	
 

ii. An order of magnitude analysis is used to simplify the exact form of Eq. (1). The 
authors may be tempted to challenge the order of magnitude analysis but I have 
clearly demonstrated the exact and approximate solutions are in excellent 
agreement for ice volume fractions below 0.7. 
 

iii. The result of (i and ii) is an energy flux equation with two terms and no room for 
an “arbitrary” interpretation of the decomposition to thermal conductivity and the 
diffusion coefficient. 
 

In the case of Fourteau: 

i. Appendix C, Eq. (C.4) of Fourteau (2021) is Eq. (1) of this response—the same 
as developed by Foslien. 
 

ii. Fourteau then invokes the statement “The heat flux 𝑞kLlm  through the sole 
process of conduction is thus given by” (using my notation) 

𝑞kLlm = 𝜙d𝑘d 1
CD
Cx
	>
d
 + 𝜙tH𝑘tH 1

CD
Cx
	>
tH

    (22) 

The diffusion coefficient is then developed by recognizing the latent heat flux contribution is 
given by 𝑞 − 𝑞kLlm. 

iii. The	remainder	of	the	development	is	an	algebra	exercise.	

At first blush, there seemingly appear to be two correct approaches, yielding different 
results for the diffusion coefficient.  However, there is a fundamental problem with the approach 
of Fourteau. In particular, the volume averaging technique of Eq. (22) is not valid for a diffusing 
mixture of ice and humid air—a profound statement. 

Let’s develop the arguments in detail. Following Özdemir et al. (2008), the volume 
average heat flux, (for our problem it is the energy flux), defines the energy flux of the mixture 
as 

𝑞 = 𝜙d𝑞d + 𝜙tH𝑞tH.       (23) 
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Now, if one wishes to determine only the thermal conductivity of the mixture, we set the 
diffusion terms to zero, or neglect them if that is your preference, and we invoke Eq. (23). This 
process leads identically to Eq. (22), under the condition that diffusion is neglected. For ice 
volume fractions less than 0.7, this process will produce a thermal conductivity given by 

 𝑘hii = 1 /23
?23	

>   .       (24) 

Although such an approach is not necessary, I’ll note that the approach outlined to achieve the 
thermal conductivity of snow is precisely that used by Calonne (2011) and Riche and Schneebeli 
(2013).  For example, Calonne et al. (2011) state: “Neglecting convection, phase change and 
under steady state conditions, heat transfers at the microscopic scale are described by…” Riche 
and Schneebeli state: “No phase change is implemented in the model.”  

 Next, we seek to add diffusion into the problem. Again, the correct statement for volume 
averaging of the mixture is that the volume averaged energy flux is given by Eq. (23). This 
equation is developed in detail by Özdemir et al. (2008) from thermodynamics and an entropy 
consistency between scales. There is no such similar justification for the use of Eq. (22) as done 
by the authors. By using Eq. (23), one is immediately led to the energy flux of the mixture given 
by Eq. (19), the same form produced by Foslien (1994). 

Eq. (23) is firmly grounded in thermodynamic principles. In contrast, Eq. (22), while 
seemingly straight forward, is simply haphazardly postulated. As a result, the thermal 
conductivity developed by the authors depends on the diffusion coefficient. Indeed, the authors’ 
decomposition, and not the one of Foslien, is the one that appears “arbitrary.” I won’t use the 
powerful term of “invalid” used by the authors, but I believe non-physical is an appropriate 
description of their result. 

In summary, the entire Appendicx C of Fourteau (2021) is algebraically correct. 
However, the mathematics and physics are inherently flawed. The irony of the development of 
the authors is that, by using Eq. (22), the authors were attempting to isolate thermal 
conductivity terms in the effective thermal conductivity of the mixture and, in doing so, they 
introduced diffusion into the thermal conductivity. In contrast, Foslien’s approach cleanly 
separates thermal conductivity and diffusion terms for ice volume fractions below 0.7 where the 
order of magnitude analysis is precise. Moreover, there is nothing arbitrary in the Foslien 
decomposition as any extraneous possibilities are eliminated in the order of magnitude analysis. 

In closing, I’ll make one final comment about Foslien’s model. Instead of initially 
focusing on the layered microstructure, let’s examine the diffusion of water vapor in humid air 
alone. The energy flux is given by (Bird, 1960) 

𝑞tH 	= −	1𝑘tH +	𝐷&uH𝑢#$
M	 6̀
M	D
>	CD
CE

    .    (25) 

After a detailed and precise analysis shown in Eqs. (1-9) of this response, we find that the 
energy flux for the ice/humid air mixture can be achieved by simply dividing the RHS of the 
above equation by 𝜙tH, leading to 
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𝑞	 = −	^1 /23
?23	

> +	15673
?23	

> 𝑢#$
M	 6̀
M	D
a	CD

CE
    .    (26) 

Note that in Eq. (26), the ice phase has the same influence on the thermal conductivity as 
it does on the latent heat. Intuition would certainly argue for this—they are both heat transfer 
terms. In brief, the solution put forth by Foslien is rigorous, elegant, clean, and in agreement with 
the expected physics. Moreover, there is nothing arbitrary in the decomposition under the 
constraint of ice volume fractions less than 0.7. 

As an aside, Equation (26) generates a desirable trait in that the thermal conductivity and 
the diffusion coefficient decouple from one another. However, the additional coupling terms 
neglected in the order of magnitude analysis are important for extremely high ice volume 
fractions as they serve to keep the solution bounded and, further, generate self-consistent results 
for the known energy flux in the limiting case of solid ice, see Figure 2. The cacophony put forth 
by the authors about Eq. (1) having multiple ways to combine terms is a whole lot of nothing 
other than in regions of exceptionally high ice volume fractions where diffusion is virtually 
nonexistent—this particular argument is simply a non-issue, yet it is the defining feature of their 
objection to my work. 

In closing, I would like to return to two quotes of the authors concerning their response to 
the Technical Note. In discussing the Note, they assert: 

• “An invalid derivation of the mass flux in the layered structure by Hansen and Folsien (2015).” 

and 

• … “the identification of the latent-heat flux with the second term 
of the decomposition is arbitrary.” 

The authors have attempted to discredit the Technical Note by making cavalier 
statements such as the above with no justification. Their assertions are patently incorrect. If they 
wish to make these claims, they have ample opportunity to support them in this detailed 
response. 

For the benefit of the reader, I would ask the authors to please: 

i. Point out explicitly where the solution outlined in Eqs. (1-9) is invalid, 
subject to the constraint of ice volume fractions below 0.7. 
 

ii. Where is the arbitrary nature of the decomposition of Eq. (6)? 

The fact that the authors are not meeting this challenge head-on is a clear indicator of the 
rigorous nature of the approach of Foslien. As I said previously, it defies logic to acknowledge 
hand to hand diffusion as an important mass transfer mechanism and then neglect this 
mechanism in the accompanying mathematical development of mass transfer at the macroscale. 
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Given the results produced in this response, the reader is encouraged to revisit the 
Technical Note.  The Note provides remarkable clarity on the mass transfer problem in a layered 
ice/humid air microstructure, producing a unified theory where the analytical solution, volume 
averaged solution, and the known surface flux developed some 50 plus years ago (de Quervain, 
1963) are all in perfect agreement. The authors are unable to match these consistent results with 
their formulation. 
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