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Technical Note: 
 

A demonstration of the existence and importance of “hand-to-hand” vapor transport 
 as it relates to the effective vapor diffusion coefficient in low-density snow 

 
Symbols 
 
𝐷 diffusion coefficient 
j mass flux 
k thermal conductivity 
q energy flux  
𝑢#$ latent heat of sublimation of ice 
𝑣& water vapor diffusion velocity 
x macroscale coordinate 
 
x microscale coordinate 
𝛾& density of vapor component 
q absolute temperature 
𝜙) volume fraction of constituent a 
 

Superscript 
eff effective 
* apparent 
 
 Subscripts 
f fluctuation 
i ice constituent 
ha humid air constituent 
p pore microstructure 
v vapor component within humid air 
v-a water vapor in air 
s snow 
 
Abstract 

This technical note addresses the physical significance of “hand-to-hand” vapor transport 
as it applies to its influence on the effective vapor diffusion coefficient of a layered ice/humid air 
microstructure in the presence of a temperature gradient. Understanding the mass diffusion 
process related to this microstructure is a critical feature to understanding how this phenomenon 
relates to mass transfer and the effective diffusion coefficient in low-density snow.  

 
Two important results from this note are: 1) the hand-to-hand diffusion mechanism is a 

critical contributor to enhanced diffusion in the layered microstructure compared to vapor 
diffusion in humid air alone, and 2) the layered microstructure showing enhanced diffusion 
provides a reasonable estimate of vapor diffusion in low-density snow.  
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A good deal of the confusion in computing the diffusion coefficient of water vapor in an 
ice/humid air mixture stems from calculations made using volume averaging techniques for a 
Representative Volume Element (RVE). In that spirit, we also seek to clarify the continuum 
definition of velocity of water vapor as it relates to volume averaging within an RVE of a layered 
ice/humid air microstructure.  
 
 

1. Introduction 
 
Controversy abounds regarding the value of the effective diffusion coefficient for snow—

a material property essential for studying macroscale heat and mass transfer in a snowpack. Let 
𝐷&*+ represent the binary diffusion coefficient of water vapor in air. In the case of snow, the 
effective diffusion coefficient is influenced by several competing features of mass diffusion that 
may either enhance or impede mass diffusion compared to vapor diffusion in humid air only. 
While there is little debate about some factors affecting vapor diffusion, there are notably 
differing views on the influence of “hand to hand” diffusion as described by Yosida (1955).  To 
be clear, there is no question as to the existence of hand-to-hand diffusion of water vapor in 
snow. Rather, the debate centers on the relation of this mass transfer mechanism to the effective 
diffusion coefficient of snow needed for the governing field equations of the macroscale 
snowpack.  Without initially taking a position in this matter, we write the effective diffusion 
coefficient for snow as 𝐷#,--. 

One view of mass transfer in snow is that the effective diffusion coefficient is a linear 
response of water vapor and ice transport to a thermal driving force. Since the phase transitions 
that take place at the microscale serve as a temporal storage of vapor, i.e., ice, they should, in 
principle, reduce the effective transport, and therefore reduce the effective diffusion coefficient. 
The work of Giddings and LaChapelle (1962), Calonne et al. (2014), and Fourteau et al. (2020) 
follow this line of reasoning. In brief, they adopt the view 

𝐷#,-- < 	𝐷&*+    . 

An alternate perspective of mass transfer in snow is that hand-to-hand vapor transport 
resulting from sublimation and deposition of water vapor is a physical mechanism contributing to 
an “apparent diffusion coefficient” and, further, this apparent diffusion coefficient is precisely 
the effective diffusion coefficient, 𝐷#,--, needed in the governing macroscale equations of heat 
and mass transfer in a continuum formulation. In this context, the ice phase is viewed as a near 
instantaneous source/sink of water vapor transport, thereby shortening diffusion paths through 
the humid air and enhancing diffusion rates. The key attribute of this reasoning is that water 
vapor molecules are indistinguishable from one another. Water vapor condensing on the bottom 
of an ice grain is identical, in form, to water vapor sublimating off the top of an ice grain. Hence, 
the apparent diffusion coefficient takes into account phase changes that are not really based on 
diffusion processes, but consider phase change as contributing to the overall diffusion. Prior 
research advocating this position may be found in Yosida (1955), Sommerfeld (1982), Colbeck 
(1993), and Hansen (2019). 
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The hand-to-hand diffusion mechanism is manifest through an apparent (intrinsic) 
diffusion velocity that accounts for the instantaneous source/sink phenomenon of ice in vapor 
transport. The purpose of this technical note is to demonstrate that the effect of this apparent 
velocity is both real and necessary to model the macroscale continuum level effective diffusion 
coefficient in ice/humid air mixtures such as snow. The hand-to-hand diffusion mechanism 
enhances diffusion and generally leads to the result 

𝐷#,-- 	> 𝐷&*+    , 

at least for low to moderate density snow. 

We address the competing views articulated above by studying mass transfer in a layered 
ice/humid air microstructure in the presence of a temperature gradient as shown in Figure 1.  The 
layered microstructure is an ideal test case of the two approaches in that an analytical solution 
exists—a solution based only on one-dimensional heat and mass transfer principles with a long 
history of supporting development.  The analytical solution leads to a clear interpretation of the 
existence and importance of hand-to hand diffusion, leading to an enhanced diffusion coefficient 
of the continuum mixture—a critical feature of understanding diffusion of water vapor in snow. 

 

 

 

 

 

 

 

Figure 1. (a) Layered microstructure of ice and humid air in the presence of a vertical 
temperature gradient. (b) The homogenized continuum point possessing macroscale 
continuum properties representative of the ice/humid air mixture. 

 
2. Preliminaries 

 
In order to bring clarity to the diffusion process in an ice/humid air mixture, we first lay 

out a continuum definition of the mass flux.  Consider an arbitrary part P of a continuum body B 
showing a mass flux vector, j, emanating from a differential surface, dS, with an associated 
outward normal vector of n, Figure 2.  Physically, the inner product 𝒋 ⋅ 𝒏	represents the mass per 
unit area per unit of time that is passing through the surface, dS.  
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The mass flux, j, is computed as the product of the density times the velocity of a 
continuum point as it crosses the surface, dS.  When the continuum is viewed as a mixture of ice 
and humid air undergoing diffusion, the density of interest in the mass flux is the density of 
water vapor in humid air. There is no question as to the value of this parameter. A much more 
vexing aspect of the mass flux is an understanding of the velocity of the humid air from a 
macroscale continuum perspective.  We will refer to this continuum velocity as the apparent 
velocity of the water vapor. A lack of a clear interpretation of the apparent velocity of water 
vapor is the source of some 60 years of confusion surrounding the effective vapor diffusion 
coefficient in snow. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Arbitrary part P of a continuum body showing mass flux and associated unit normal 
acting on a differential surface, dS. 

 
 

We often refer to snow in the present note as a means of properly framing the mass 
transfer problem of interest in the layered ice/humid air microstructure. To begin, let us address 
some physical and mathematical features associated with a microscale analysis of an RVE.  In 
the case of a layered microstructure, the RVE may be simplified to a single repeating unit cell 
consisting of one layer of ice and one layer of humid air. 

 
 The first point of interest is clarity related to the scale of the microscale and macroscale 

problems. In the context of snow, a typical macroscale for an alpine snowpack is on the order of 
tens of centimeters to meters of snow depth. In contrast, if one is interested in studying an RVE 
for heat and mass transfer that is representative of a continuum point for the snowpack, the scale 
of the RVE is on the order of millimeters. For example, Calonne et al. (2011) studied thermal 
conductivity using numerical analysis of snow samples with lineal dimensions of the RVE 
ranging from 2.5-5.5 mm.  The connection between the microscale of the RVE and the 
macroscale of an alpine snowpack represents a classic multiscale analysis. 

 
For discussion purposes, consider a snowpack of depth 1 meter and suppose we have a 

macroscale temperature gradient of 40	K	m*8. A very cold alpine evening might make this a 
reasonable situation. Choosing an RVE with a lineal dimension of 4 mm in the direction of the 
temperature gradient, a 40	K	m*8 temperature gradient is simulated with a temperature 
differential across the RVE of 0.16 K.  This small temperature differential across an RVE is 

j

n
dS
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important as, in the development that follows, we will assume that the following variables within 
the RVE are constant: 

 
i) 𝐷&*+  the binary diffusion coefficient of water vapor in humid air 
ii) 𝛾&  the saturated vapor density of humid air 
iii) 9:;<

:=
>  the derivative of the saturated density of humid air with respect to  

  temperature 
iv) 	𝑢#$  the latent heat of sublimation 
 
At  −2AC, the greatest difference in the above parameters for a temperature change of 

−0.16AC is approximately 1.3%. Appendix A provides specific formulae for computing the 
above parameters. 
 
 Next, we turn our attention to volume averaging concepts for an RVE and the relation 
between the volume average of a microscale quantity and its associated macroscale quantity.  Of 
particular interest are volume average relations for the temperature gradient and the energy flux. 
Here, we follow the excellent discussion provided by Özdemir et al. (2008). 
 

Consider the RVE (unit cell) for the ice/humid air microstructure shown in Figure 3. We 
identify the boundary of the unit cell by G. The four corner locations are identified numerically 
from 1-4. Following Özdemir, the microscale temperature field may be decomposed into a 
spatially linear macroscopic field and a fluctuation field 𝜃-(𝝃) as  

 
𝜃(𝝃) = 	𝜃8 + 𝛁𝜃 ∙ (𝝃 − 𝝃8) + 𝜃-(𝝃)    ,    (1)   

 
where the superscript “1” denotes the lower-left corner of the RVE. The local temperature field 
is distinguished from the macroscale temperature field by explicitly writing the spatial 
dependence, x.  The volume averaged microscale temperature gradient may be expressed as  
 

8
N ∫ 𝛁P

	
N 𝜃(𝝃)	𝑑𝑉 = 	𝛁𝜃 +	 8

N ∫ 𝜃-(𝝃)
	
S 𝒏	𝑑Γ			,    (2) 

 
where the divergence theorem has been used to transform the volume integral of the fluctuation 
temperature field into a surface integral. By enforcing the condition 

 
8
N ∫ 𝜃-(𝝃)

	
S 	𝒏	𝑑Γ	 = 0		,       (3) 

 
we arrive at the condition that the volume averaged microscale temperature gradient is equal to 
the macroscale temperature gradient as 
 

	𝛁𝜃 = 8
N ∫ 𝛁P

	
N 	𝜃(𝝃)𝑑𝑉			.      (4) 
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Figure 3.  Unit cell for ice/humid air microstructure showing boundary conditions for a coupled 

thermal and mass balance microscale analysis. 
 
 

Özdemir et al. (2008) point out that the constraint of Eq. (3) may be achieved with 
different sets of boundary conditions. One such set that we will use has insulated boundaries on 
the left and right walls and different but uniform temperatures along the top and bottom surfaces. 
This choice effectively reduces the heat and mass transfer problem to a one-dimensional analysis 
for the layered microstructure. We remark that these boundary conditions, generalized to 3-D, 
are the same as those utilized by Riche and Schneebeli (2013) in their thermal analysis of RVE’s 
of snow samples.   
 
 Özdemir et al. (2008) also show the form of the volume averaging relation for the 
temperature gradient also applies to the energy flux between the microscale and macroscale, 
leading to 
 

𝑞 = 8
N ∫ 𝑞(𝝃)	

N 𝑑𝑉   .       (5) 
 
In any discussion of an RVE for snow, or the layered microstructure, we assume the volume 
averaging conditions of Eqs. (4 & 5) hold true. 
 

Finally, in the interest of physical insight, it is useful to quantify values of several 
parameters related to mass diffusion in humid air.  Key values and the equations used to compute 
these parameters may be found in Appendix A.  

 
 

3. One-dimensional heat and mass transfer in a layered ice/humid air microstructure: 
An analytical solution 
 
Consider the ice/humid air microstructure of Figure 1 subjected to a negative temperature 

gradient.  We assume: 
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i. Infinitely fast surface kinetics for deposition and sublimation of water vapor 
ii. The humid air is saturated 

iii. Convection is neglected 

Our objective is to homogenize the microstructure shown in Figure 1(a) into a single 
continuum, Figure1(b), with the proper macroscale heat and mass transfer properties. The results 
presented below were originally developed by de Quervain (1963) in an effort to gain insight into 
constructive metamorphism of snow. Although the microstructure is very simple in form, it 
provides amazing insight into the heat and mass transfer in ice/humid air mixtures in general and, 
remarkably, provides energy flux results that are strikingly similar to those found in very low-
density snow.  

The reader familiar with this topic may wish to skip straight to the results for the 
continuum energy flux found in Eq. (11). Otherwise, we provide a formal development in the 
interest of completeness. 

The governing equations for this 1-D heat and mass transfer problem are straight forward 
and limited in number. First, the volume fractions for the ice and humid air are space filling, 
leading to the relation 

𝜙W+ +	𝜙X = 1 .       (6) 

Fourier’s law for heat conduction in the ice phase is given by 

 𝑞X = 	−𝑘X 	9
Z=
ZP
	>
X
 .      (7) 

Note that the constituent temperature gradients, 9Z=
ZP
	>
)
, are spatially constant within each 

constituent.  

The energy flux for the humid air phase includes both conduction in the humid air and 
energy transport through diffusion. Following the classic text on Transport Phenomena (Bird et 
al., 1960), we can write the humid air energy flux as (Hansen and Foslien, 2015) 

𝑞W+ = 	− [𝑘W+ + 𝑢#$𝐷&*+ 	9
:	;<
:	=
>\ 9Z=

ZP
>
W+

 .   (8) 

The macroscale temperature gradient is related to the constituent temperature gradients as 

Z=
Z]
= 𝜙X 9

Z=
ZP
	>
X
 + 𝜙W+ 9

Z=
ZP
	>
W+

 .     (9) 

Finally, the energy flux in each constituent is identical and, as a consequence, the energy 
flux of the continuum mixture is also the same, leading to the relations 

𝑞 = 𝑞X = 𝑞W+ .       (10) 
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Equations (6-10) may be combined algebraically to show the energy flux of the 
homogenized continuum is 

 	𝑞 = −^
_`9_abc	d<eb		fgh	

ij<
ik >

l`[_abc	fghd<eb9
i	j<
i	k >\c	lab_`	

m Z=
Z]

          (11) 

We emphasize that the above equation for the energy flux is an analytical result relying 
on first principles of one-dimensional heat and mass transfer in a layered ice and saturated humid 
air microstructure. Importantly, Eq. (11) is developed without the need to introduce or discuss 
the influence of an apparent diffusion velocity.  

The energy flux of the ice/humid air continuum mixture given by Eq. (11) may be 
simplified significantly for ice volume fractions less than approximately 0.8.  To begin, for the 
temperatures of interest, one may show 	𝑘W+ and (𝑢#$𝐷&*+

:;<
:=

) are of the same order of 
magnitude—see, for example, the numerical values found in Appendix A.  Now rearrange Eq. 
(11) by dividing numerator and denominator by 𝑘n, leading to: 

 	𝑞 = −

⎝

⎜
⎛ 9_abc	d<eb		fgh	

ij<
ik >

l`	r
sabt	ughv<eb[

i	j<
i	k \

s`
wc	lab	

⎠

⎟
⎞Z=
Z]

   .       (12) 

 
The value of the thermal conductivity of ice is on the order of 100 times that of the 

thermal conductivity of humid air. Therefore, neglecting the terms in square brackets in the 
above equation leads to 

 

𝑞	 = −	{9 _ab
lab	

> +	9d<eb
lab	

> 𝑢#$
:	;<
:	=
|	Z=

Z]
    .    (13) 

The energy flux for the continuum mixture may be written as  

𝑞	 = −9𝑘,-- 	+ 𝐷,--	𝑢#$
:;}
:=
	>	Z=

Z]
   .     (14) 

 
where 𝑘,-- and 𝐷,-- represent the effective themal conductivity and the effective 
diffusion coefficient of the mixture. 
 

Comparing Eqs. (13) and (14) leads to the relations 
 
 
 𝑘,-- = 	 9_ab

lab
>  ,       (15) 

 
and  
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 𝐷,-- = 		 9d<eb
lab

>			 .       (16) 

 
Eqs. (15) and (16) generate a desirable trait in that the thermal conductivity and the 

diffusion coefficient decouple from one another. However, the additional coupling terms 
neglected in the order of magnitude analysis are important for extremely high ice volume 
fractions as they serve to keep the solution bounded and, further, generate self-consistent results 
for the known energy flux in the limiting case of solid ice. For instance, Figure 4 shows the 
normalized exact energy flux 9𝑞 Z=

Z]
	⁄ > of Eq. (11) for the layered microstructure compared to the 

normalized approximate energy flux shown by Eq. (13).  For ice volume fractions less than  
 

 
 
Figure 4. A comparison of the normalized energy flux of the layered microstructure using Eqs. 

(11 & 13), respectively. Note that the exact energy flux converges to known energy 
flux for the case of solid ice. 

 
 
approximately 0.8, the results are nearly identical—an important feature when we turn our 
attention to heat and mass transfer at low ice volume fractions.  
 
 Equation (16) is a critical analytical result showing the effective diffusion coefficient 
for the layered ice/humid air mixture is enhanced at all ice volume fractions.  We emphasize 
that this result is obtained purely through a 1-D heat and mass transfer analysis. The result is a 
consequence of requiring the energy flux in the ice, humid air, and mixture to be equal for a 
steady state solution, Figure 5. 
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4. Interpreting	the	water	vapor	diffusion	velocity	in	an	
ice/humid	air	layered	microstructure	

 
Given the analytical result of Eq. (16) showing an enhanced diffusion coefficient for the 

layered ice/humid air mixture, a central question to be resolved is “what is the appropriate 
interpretation of the water vapor diffusion velocity that leads to this analytical result?” The 
answer is a defining step toward addressing the physical significance of hand-to-hand diffusion 
in computing an effective diffusion coefficient for snow.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Unit cell showing the energy flux through the ice and humid air are equal and, further, 

equal to the energy flux of the mixture. 
 
 

 We begin by writing the mass flux for saturated humid air in the presence of a 
temperature gradients as 
 
 𝑗& = 𝛾&𝑣& = 	−𝐷&*+ 9

:	;<
:	=
> Z=
Z]

    ,     (17) 
 
where 𝐷&*+ is the binary diffusion coefficient of water vapor in air. 
 

For a layered ice/humid air mixture, the mass flux of water vapor in the humid air 
constituent may be written as 

𝑗& = 𝛾&	𝑣& = 	−𝐷&*+ 9
:	;<
:	=
>9Z=

ZP
>
W+
		  ,    (18) 

where we note the central feature differentiating the above from the mass flux of Eq. (17) for 
humid air alone is that the temperature gradient in the humid air is elevated for the ice/humid air 
mixture.  

qha

qi qi = qha = q
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Next, consider the effective vapor diffusion coefficient for a layered ice/humid air 
mixture denoted by 𝐷,--.  We introduce the normalized value of the effective diffusion 
coefficient with respect to the binary diffusion coefficient of water vapor in air as (𝐷,--	 	𝐷&*+⁄ ). 
Note that, in the limit as the ice phase goes to zero, this quantity tends to one, i.e., 

lim
l`	→�

9 d
���

	d<eb
> = 1				.      (19) 

 
 As the ice volume fraction increases from zero, there are 3 potential factors that may 
either enhance or reduce the normalized effective diffusion coefficient. Two of these factors are 
not in dispute and may be stated as:  
 
1. The presence of the ice phase limits where vapor diffusion can occur.  Hence, the volume of 

ice where diffusion cannot occur will lower the volume average of mass transport, thereby 
impeding macroscale diffusion.  
 

2. Elevated temperature gradients in the humid air phase of the ice/humid air microstructure 
enhance diffusion. The temperature gradient effect is manifest in the transition from the 
microscale humid air temperature gradient to the macroscale temperature gradient for the 
mixture.  

There is a third factor that has the potential to influence the effective diffusion coefficient 
of the layered ice/humid air mixture. Specifically, the fundamental question to address is:  

3.  What is the appropriate macroscale diffusion velocity for the vapor component during 
diffusion? 

We consider two possibilities for the effective macroscale diffusion velocity as 
articulated by the following positions outlined previously and summarized here as: 

A. The	ice	phase	acts	as	a	temporal	storage	of	water	vapor.	Hence, the ice should, in 
principle, reduce the effective transport, and similarly, reduce the volume averaged 
macroscale diffusion velocity of water vapor.	
	

B. The ice phase should be viewed as a near instantaneous source and sink of water vapor 
transport, thereby creating an elevated apparent diffusion velocity through hand-to-hand 
diffusion mechanism that effectively enhances mass transfer.  

 
Position A:  

 Position A may be characterized in a physically straight forward manner by stating the 
diffusion velocity of water vapor in the ice constituent is zero. The motion of water vapor is then 
attributed entirely to the local (microscale) diffusion velocity of the humid air—at first blush, an 
admittedly natural perspective. Hence, we restate Eq. (18) as 
 

	𝑗& = 	𝛾&	𝑣& = 	−		𝐷&*+ 9
:	;<
:	=
>9Z=

ZP
>
W+
		.    (20) 
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 Next, we address the influence of the elevated temperature gradients in the humid air 
phase compared to the macroscale temperature gradient. Following the RVE boundary 
conditions set forth by Özdemir (2008), the macroscale constituent temperature gradients and the 
temperature gradient of the continuum mixture are related as 
 
 Z=

Z]
	= 	𝜙W+ 9

Z=
ZP
	>
W+
+		𝜙X 9

Z=
ZP
	>
X
	   .     (21)  

 
 A straight forward algebraic exercise reveals an exact solution for the humid air 
temperature gradient is given by 
 

9Z=
ZP
>
W+
=

⎝

⎜
⎛ 8

l`r
sabt	ughv<eb[

i	j<
i	k \

s`
wc	lab	

⎠

⎟
⎞
	Z=
Z]

   .    (22) 

 
Because the thermal conductivity of ice is approximately 100 times larger than that of 

humid air, we invoke the same approximation as done in Section 3 and neglect the term in square 
brackets in Eq. (22), leading to 
 
   9Z=

ZP
	>
W+
= 	 9 8

lab
>	Z=
Z]
	   .      (23) 

 
The approximate form of the humid air temperature gradient defined by Eq. (23) 

produces near exact results for ice volume fractions below 0.7. Noting this fact as well as the 
similar approximations of the energy flux shown in Figure 4, we restrict our subsequent 
discussions to ice volume fractions below 0.7. 
 

Equation (23) allows us to write the mass flux of the humid air constituent within the 
layered microstructure defined by Eq. (20) as 
 

		𝑗& = 	𝛾&	𝑣& = 	−
		d<eb
lab

9:	;<
:	=
> Z=
Z]
			.     (24)  

 
Finally, to obtain the mass flux for the continuum mixture, the relation for the humid air 

defined above must be volume averaged for the entire unit cell leading to 
 
 𝑗 =	 𝜙W+	𝛾&	𝑣& = 	−𝐷&*+ 9

:	;<
:	=
> Z=
Z]
	     (25) 

 
   = −𝐷,-- 9:	;<

:	=
> Z=
Z]

   , 
 
where the ice phase is recognized as a volume where diffusion does not occur. 
 

The mass flux of Eq. (25) produces an undisputed dilemma in that 
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𝐷,-- = 		𝐷&*+   .       (26) 
 
In particular, the effective diffusion coefficient predicted by Eq. (26) does not agree with the 
analytical solution given in Eq. (16).  
 

The inconsistency of the predicted diffusion coefficient with the analytical solution is 
enough to invalidate the diffusion perspective advocated in Position A.  Moreover, from pure 
physical intuition, it is troubling that, as the ice volume fraction increases, the effective diffusion 
coefficient for the macroscale ice/humid air mixture is constant—surely the ice phase impacts 
diffusion of water vapor! 
     
    

Position B: Hand to hand diffusion results in an apparent diffusion velocity: 	𝑣&∗ 
 

To develop the mass transfer for this approach, the ice is treated as an instantaneous 
source/sink of water vapor transport.  Water vapor undergoing deposition on one side of an ice 
layer occurs as water vapor is simultaneous sublimating off the opposite side of the ice. Since 
water molecules are indistinguishable from either side, the net effect is that the ice acts as a 
diffusing medium with an infinite diffusion velocity for water vapor. The difference from 
Position A could not be more striking—in one case we assume the vapor velocity in the ice is 
zero while in the latter case, we assume the vapor velocity through the ice is infinite! 

 
Now consider particle dynamics for rectilinear motion with two velocities, say 𝑣8 and 𝑣�  

occurring over two different non-dimensional distances, 𝜙8 and 𝜙�, Figure 6 
 
 
 
 
 
 
 
 
 

 
 
Figure 6. Rectilinear motion for a particle with different velocities covering two different 

dimensionless distances.  
 
 
One can readily show the average velocity denoted by 𝑣∗ may be expressed as 
 
𝑣∗ = 	 ��		��

��	l�c	��l�	
   ,       (27) 

 
or 
 

v2v1

!1 !2
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  𝑣∗ = 	 ��	
9}�	}�

	>l�c	l�	
   .      (28) 

 
Now let subscript 1 denote water vapor (1 = v) and subscript 2 denote ice (2 = i) and, 

further, let  𝑣� = 	𝑣X		 → ∞. We arrive at the result: 
 

𝑣&∗ = 	
�<		
lab	

   .       (29) 
 
The above represents an apparent diffusion velocity for water vapor in the layered 

ice/humid air microstructure under the hypothesis of ice acting as a source/sink for water vapor 
transport. Physically, the ice phase is acting to speed water vapor along through the mixture.  
Or, if one prefers, the ice phase acts to shorten the path needed to travel by water vapor. For 
instance, for a humid air volume fraction of 0.5, the apparent vapor diffusion velocity is twice the 
actual diffusion velocity because water vapor must only travel half as far because of the 
source/sink behavior of ice. 

 
As a metaphor to the above, suppose you intend to walk a package from point A across 

town to a point B an hour away. If instead, you are given a car ride half-way there and you walk 
the remainder, an observer at B sees your apparent walking velocity for the entire trip as twice 
your actual walking velocity. The car ride is, in essence, the equivalent of the ice phase in water 
vapor transport. 

 
Now begin the analysis of water vapor diffusion in the layered ice/humid air 

microstructure by utilizing the apparent diffusion velocity in the humid air and writing the 
volume averaged mass flux through the continuous medium as 

 
𝑗 = 	𝜙W+	𝛾&	𝑣&∗,        (30) 

 
where 	𝑣&∗ is the apparent humid air diffusion velocity. The leading volume fraction in the above 
equation is a consequence of the ice phase occupying volume where diffusion does not occur. 

 
Recognizing that 	𝑣&∗ = 𝑣& 𝜙W+⁄  leads to 

 
𝑗 = 	𝛾&	𝑣& = 	−		𝐷&*+ 9

:	;<
:	=
> 9Z=

ZP
>
W+
		.     (31) 

 
Finally, introduce the macroscale temperature gradient to arrive at 

 
𝑗 = 	𝛾&	𝑣& = 	−9

		d<eb
lab

> 9:	;}
:	=
> Z=
Z]
	  .     (32) 

 
In the case of the ice/humid air mixture, the mass flux may be expressed in terms of the 

effective diffusion coefficient as 
 
 𝑗 = −	𝐷,-- 9:	;}

:	=
> Z=
Z]
		 .      (33) 
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Comparing equations (32) and (33) leads directly to Eq. (16), the known diffusion 
enhancement result predicted strictly from 1-D heat and mass transfer principles: 
 

𝐷,-- = 		 9dab
lab

>    .       (34) 

 
The analytical solution for the effective diffusion coefficient given in Eq. (16) is entirely 

compatible with the apparent diffusion velocity concept used in conjunction with volume 
averaging, yielding Eq. (34).   

 
An additional harmony in the solution of Position B exists by examining the mass flux 

crossing the boundaries of the unit cell, Figure 5. The mass flux across the upper and lower 
boundaries of the unit cell is given by 
 

𝑗 = −𝐷&*+ 9
:	;<
:	=
> 9Z=

ZP
>
W+
		.      (35) 

 
Expressing the above in terms of the macroscale temperature gradient gives 

 
𝑗 = 	𝛾&	𝑣& = 	−9

		d<eb
lab

> 9:	;}
:	=
> Z=
Z]
	  ,     (36) 

 
Hence, the volume averaged mass flux (Eq. 32), the analytical solution for the mass flux 

obtained from first principles of heat and mass transfer (Eq. 13), and the known surface flux 
across the boundaries of the RVE (Eq. 36) are all in perfect agreement. The results of Eq. (36) 
appear as far back as de Quervain (1963). 

 
In contrast, in Position A, the volume averaged mass flux does not agree with either the 

analytical solution for mass flux or the known surface flux across the boundaries of the RVE. 
This untenable outcome is attributed to neglecting the influence of ice on the apparent diffusion 
velocity of water vapor. It defies logic to acknowledge hand to hand diffusion as an important 
mass transfer mechanism and then neglect this mechanism in the accompanying mathematical 
development of mass transfer at the macroscale. 

 
The conclusion, then, is that hand-to-hand diffusion is a critical component of mass 

transfer enhancing the effective diffusion coefficient through an elevated vapor velocity we have 
coined the apparent (intrinsic) velocity.  This apparent velocity is quite real and is the result of 
shortened distance a water vapor molecule must travel through the humid air. Once the water 
vapor transport reaches the ice and undergoes deposition, it is effectively immediately transferred 
through the ice and begins sublimation. Of course, it is not the same water molecule—no 
matter—the resulting diffusion effect as applied to mass transfer is a real physical mechanism 
caused by hand-to-hand diffusion of water vapor. 

 
In retrospect, the existence and importance of hand-to-hand diffusion to macroscale mass 

transfer should come as no surprise. Mass flux across a surface of a continuum mixture of humid 
air and ice involves topology such as an ice phase occupying a volume within a continuum point 
where diffusion will not occur. However, mass flux is also dependent on diffusion velocity and 
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the apparent diffusion velocity in the ice/humid air microstructure is elevated by the ice as the ice 
acts to speed along water vapor transport in the continuous mixture. Moreover, it cannot be 
overstated that the analytical solution of Eq. (16) requires no such interpretation of apparent 
diffusion velocity and represents an independent calculation of macroscale mass diffusion in 
the layered microstructure. 
 
 The layered microstructure shows enhanced water vapor diffusion at all ice volume 
fractions compared to diffusion in humid air alone (see Eq. 16).  Moreover, the hand-to-hand 
vapor transport mechanism is an important mechanism contributing to this enhanced diffusion. A 
natural question is what, if any, insight does this result provide for mass diffusion in snow. A 
complete discussion of mass diffusion in snow is beyond the scope of this technical note. 
However, it is possible to infer some expected properties of water vapor diffusion for low-
density snow.  
 

 
5. Some insights into water vapor diffusion in low-density snow 

 
 Intentionally left blank. 
 
Note: I am willing to add this content if The Cryosphere wishes to consider the full text as 
submission for publication. Otherwise, I will defer and present this work for full consideration by 
a journal at a later date. 
 
 

6. Discussion 
 

Intentionally left blank 
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Appendix A 
 

Formulae for Key Parameters 
 

The binary diffusion coefficient of water vapor in air may be represented as (Incropera 
and DeWitt, 1985)   
 

  𝐷&*+ = 0.26	(10)*� 9 =
���
>
8.�
	m�		s*8	        ,   (A.1) 

 
where q is the absolute temperature.  
 

The saturated vapor density is given by Dorsey (1968, pg 598) as   
 

𝛾& = (10)�
��
k c	

��	��	(k)
��	(��) c	��	=c��=

�c���	𝑐�/𝑅&/𝜃				,   (A.2)    
 
where 
 
 𝑐8 = 	 − 2445.56    𝑐� = 	1.205	(10)*� 
 
 𝑐� 	= 	8.2312     𝑐� = 	−6.7572 
 
 𝑐¥ = 	−1.667	(10)*�    𝑐� = 	133.32	 
  
 R& = 	461.5	J	kg	*8	K*8 Cengal, Y.A.: Thermodynamics: An Engineering Approach 
 
 

Differentiating the saturated vapor density with respect to temperature leads to 
 

:	;<
:	=

= 𝛾& ln(10) 9−
��
=�
+ ��

= «¬(8�)
+ 𝑐¥ + 2	𝑐�	𝜃	> −

;<
=

   .  (A.3) 
 

The latent heat of sublimation is given by  
 
𝑢#$ = 2626.1	(10)¥ + 1317.6	𝜃 − 3715.8	𝜃�    .   (A.4) 

 
The thermal conductivity of ice is taken from Fukusako (1990) as 

 
𝑘X = 1.16	[	1.91 − 8.66(10)*¥(θ − 273.15) 

 
  +2.97(10)*�	(θ − 273.15)	� ] .    (A.5) 
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The thermal conductivity of air is obtained from interpolated data provided by Incoprera 
and Dewitt (1985). 

 
Diffusion in an ice/humid air mixture is most active at high temperatures and strong 

temperature gradients. Therefore, consider humid air with a temperature of 271.15 K (-2oC) and 
a relatively strong temperature gradient of 40 K m-1. Some parameters of interest include: 
  
𝛾& = 4.419	(10)*¥	kg	m*¥  Vapor density of humid air  
 
:	;<
:	=

= 3.53(10)*�	kg	m*¥	K*8 Derivative of vapor density with respect to temperature 
 
𝐷&*+ = 2.257	(10)*�	m�	s*8   Binary diffusion coefficient of water vapor in air 
 
𝑗 = 3.188	(10)*°	kg	m*�	s*8 Mass flux of humid air  
 
𝑘W+ = 0.024	W	m*8	K*8  Thermal conductivity of air (Incropera and DeWitt, 1985) 
 
𝑘X = 2.236	W	m*8	K*8  Thermal conductivity of ice (Fukusako, 1990)  
 
𝑢#$ = 2710(10)¥		J	kg*8	 Latent heat of sublimation of ice  
 

𝑢#$𝐷&*+ 	[
𝑑	𝛾&
𝑑	𝜃 \ = 

 
0.0216	W	m*8	K*8 It is useful to compare the magnitude of this term to 𝑘W+ as 

a measure of the influence of heat transfer due to diffusion 
in the humid air constituent. 

 
𝑣& = 7.214	(10)*�	m	s*8    Humid air diffusion velocity 
 

The values provided above serve to ground one’s physical intuition while also allowing 
for comparisons with known published values where possible. 

  
 

Appendix B 
 

Thermal conductivity discussion 
 

While water vapor transport in snow is shrouded in controversy, there is little debate on 
the thermal conductivity properties of snow. Calonne et al. (2011) presented experimental data 
for thermal conductivity over a wide range of densities as shown in Figure B.1. In addition, they 
developed an empirical best fit of numerical thermal conductivity values they generated from 
finite element analyses of snow samples characterized through x-ray tomography.  

 
Riche and Schneebeli (2013) also performed numerical thermal conductivity calculations 

for snow samples obtained from x-ray tomography. Their study focused on snow samples 



Andrew	Hansen	
1	January	2021	

		 	 20	

exhibiting characteristics of depth hoar, producing ice grains that were more columnar in nature, 
aligned with the temperature gradient. As expected, the thermal conductivities, aligned with the 
temperature gradient, for the depth hoar samples show higher values than snow samples of 
Calonne containing more rounded ice grains. They also performed a regression analyses and 
generated a curve fit of thermal conductivity. 
 

Fourteau et al. (2020b) performed a third set of numerical thermal conductivity 
calculations for snow samples obtained from x-ray tomography. They included heat transfer due 
to diffusion and used the term effective thermal conductivity (a personal observation is that 
terminology of the word effective continues to be a struggle—I do not have a great solution). 
They also performed a regression analyses and generated a curve fit of thermal conductivity. The 
empirical relation generated for 263 K is given by (the subscript con+d is used to emphasize that 
both conduction and heat transfer due to mass diffusion are included). 

 
𝑘²A¬c³,-- = 1.985	𝜙X� + 0.073		𝜙X + 0.0336			.    (B.1) 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure B.1.   Experimental and numerical modeling of thermal conductivity for snow (Calonne    
et al., 2011). 

  
 
Finally, we draw attention to Foslien’s (1994) theoretical model (see Hansen and Foslien, 

2015) for both thermal conductivity and the effective diffusion coefficient. Motivated by 
physical arguments and observations from quantitative stereology, Foslien’s model is developed 
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from first principles applied to simplified microstructures combined with valuable information 
from stereology and some key insights into heat transfer mechanisms.  

 
  The theoretical equation for thermal conductivity including heat transfer due to diffusion  

assumes the simplified form valid for low to moderate densities as 
 
𝑘²A¬c³,-- = 	𝜙X(𝜙W+	𝑘W+ +	𝜙X	𝑘X) +		 	𝑘W+ +	𝑢#$	𝐷&*+(1 +	𝜙X𝜙W+)   . (B.2) 

 
An exact expression for 𝑘²A¬c³,-- , valid for all densities, may be found in Hansen and Foslien 
(2015). 
 

Figure B.2 shows the regression curves for thermal conductivity of snow developed by 
Riche and Schneebeli (2013), Calonne et al. (2011), and Fourteau et al. (2020b), along with the 
theoretical model of Foslien (1994). The curves are rather remarkable in that Foslien’s model, 
developed nearly 25 years earlier than the present work, tracks the three regression curves 
extremely well.  In the comparison with Fourteau, the two curves are nearly indistinguishable for 
ice volume fractions up to 0.25. Additionally, we note that the exact formulation of Foslien is 
self-consistent, meaning the curve predicts the known thermal conductivity of ice for an ice 
volume fraction of one. 

 
The correlation of Foslien’s model with the finite element predictions provides important 

credibility to the analytical energy flux model of Foslien (1994). It also provides valuable clues 
related to the effective diffusion coefficient for low-density snow—a topic for future publication.  
 

 
 
Figure B.2.   Regression fits of thermal conductivity obtained from numerical RVE analyses: i) 

Calonne (2011), ii) Riche and Schneebeli (2013), and Fourteau (2020b). Also 
shown is the theoretical model of thermal conductivity of Foslien (1994), Eq. (42). 
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Figure B.3 shows the temperature dependence of the thermal conductivity as predicted by 

Foslien’s (1994) model. Consistent with results shown in Figure 9 of Fourteau (2020b), the 
curves in Figure B.3 show a flattening of thermal conductivity with increasing temperature. The 
similarities between Fourteau et al (202b) and Foslien’s 1994 model shown below are striking. 
The curves generated by Foslien’s model are all analytical in nature and generated from a single 
equation (Eq. B.2) with no adjustable parameters, demonstrating the veracity of Foslien’s theory. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Figure B.3 Temperature dependence of the effective thermal conductivity of Foslien (1994). 

 
 
As a final worthy comparison, I would suggest the authors compare results for the 

contributions of vapor transport to thermal conductivity from Figure 8 of Hansen and Foslien 
(2015) with the low and high density, fast kinetics results shown in Figure 5 of Fourteau (2020b). 
Given Foslien’s analytical results were developed in 1994 and contain no adjustable coefficients, 
the accuracy of the vapor contribution to the energy flux is, again, truly remarkable. 
 
 


