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Abstract  

The spatial variability of snow plays a key role in snow water storage, spring runoff and hydraulic dam management. The snow 

survey network unequally distributed ability, to monitoring the spatial variability of the snow cover is limited. The spatial 

variability of the snow cover is explained by physiographic factors, which generate spatial structures at different scales. The 10 

variability of the snow cover is explained by physiographic factors, which generate structures at different scales. These 

structures of spatial variability of the snow cover were delimited by a functional approach at the local (300 x 300 m) and 

regional (10 x 10 km) scales on eastern Canada. The territory was segmented into regions, (called spatial structures,) with 

homogeneous average maximum annual snow water equivalent (SWE). 

The aim of this paper is to spatialize the average maximum annual snow water equivalent (SWE) according to spatial variability 15 

structures at both scales. Initially, at the regional scale, the average maximum annual SWE is estimated using the stepwise 

regression approach. Secondly, the SWE residuals are estimated using a regression approach on local physiographic meta-

variables.  

The estimated SWE allows quantifying the spatial variability of the average maximum annual SWE for regional and local 

physiographic factors. Indeed, at the regional scale, the physiographic regional factors explain 68% of the variance of the 20 

spatial variability of the average maximum annual SWE. At the local scale, physiographic factors improve the estimate of the 

average annual maximum SWE by 21% (R = 89%) for an unexplained share of 10% of the variance. Local physiographic 

factors reorganize the regional residuals of average maximum annual SWE and contribute to the local variability. This study 

shows the role of altitude in snow accumulation at the regional scale, where the presence of high mountains increases the 

amount of rainfall from wet winds. In each geographical area, the highest values of the SWE are related to high mountain 25 

peaks. The impact is confirmed at the foothills of the Canadian Shield mountains. At the local scale, the regional residual value 

was reorganized based on local physiographic factors (slope, forms of catchment, distance to rivers, etc.); this adjustment led 

to high SWE values in the concave landscape and the ubacs away from sunlight. The SWE accumulation area corresponds to 

the depressions and concave sections at foothills. 
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1. Introduction 

Knowledge of the spatial variability of snow cover is very important because the snow cover plays an important role in many 

environmental aspects in Canada, e.g., water management, snow water storage, spring runoff and hydraulic dam management. 

Snow accumulations in Quebec and Labrador often exceed 300 mm in terms of snow water equivalent (SWE) (Brown, 2010).  

The main snow data are provided by the snow survey network, which was designed to monitor meteorological and hydrological 5 

forecasts in areas of economic interest (Brown et al., 2007; Brasnett, 1999; Braateen and Brown, 1998). Therefore, its density 

and spatial distribution are not optimal to analyze the spatial variability of the snow cover across the entire territory. 

For example, in quantitative analysis spatial variability and the validation of spatial estimations made using remote sensing 

algorithms, major limit or obstacle is the uneven spatial distribution of the snow survey stations. Under this condition, the 

snow survey network’s ability to reproduce the spatial variability of SWE is reduced (Sena et al., 2019). Because the number 10 

of snow sites is inadequate, some studies integrate data from other structures in the estimation process of their watershed study, 

regardless of the limitations and scale. In zones insufficiently covered by the snow survey, different approaches of spatial 

estimation such as the linear geostatistical methods (Erxleben et al., 2002), neural networks (Evora et al., 2008), and physical 

or hybrid models (Turcotte et al., 2006; Goovaerts, 2000) help to spatialize the physical parameters of snow cover (density, 

depth, SWE).  15 

Focusing on SWE, Tapsoba, et al. (2005) used the geostatistical algorithm of kriging with external drift (KED) on in situ data 

applied to the Gatineau River watershed and used a digital elevation model with a resolution of 10 km as external drift. The 

KED approach shows a good estimations precision improvement notably in under-sampled and extrapolated areas. The authors 

of this study found that the integration of cofactors correlated with SWE could improve the accuracy of these estimates. At the 

regional scale, Watson et al. (2008) explain how, orographic mountain ranges and valleys influence the overall distribution of 20 

precipitations and, hence, the snow water equivalent. Other factors, such as solar radiation, vegetation cover, and exposure to 

high winds act to reduce snow pack accumulations at highly localized scales. Elder et al. (1991) evaluated a stratified sampling 

scheme by identifying and mapping the zones of similar snow properties, based on the topographic parameters (elevation, 

slope and radiation values) that induce accumulation and ablation variations in the heterogeneous landscape of the Madison 

headwaters system of the central Yellowstone National Park. Carroll and Cressie (1997) estimated the SWE in the North Fork 25 

Clearwater River watershed by using a positive-definite spatial covariance function that incorporated geomorphic site attributes 

when SWE estimates were obtained. Remote sensing (optical, passive or active microwave, etc.) is also used as an alternative 

source of indirect snow cover data. It provides results on the presence or absence of snow (De Sève et al., 2008; Chokmani et 

al., 2005; Chokmani et al., 2006; Brown and Goodison, 1996). 

 30 

Factors such as snow conditions (deep snow cover) and vegetation cover (tundra, taiga, boreal forest, agricultural area) 

represent a challenge to the development of an efficient approach to estimate the physical properties of snow and to measure 

its spatial variability (Turcotte et al., 2006; Goïta et al., 2003; Brown, 2000).  
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The study of multi-scale analysis of the spatial variability of the SWE in eastern Canada by Sena et al (2015), has applied a 

functional approach under the assumption that the snow event was stationary over the entire observation period (Sena et al., 

2015). First, the different spatial variability structures of the mean annual maximum of the SWE were visually identified, 

according to their geographical positions (latitude and longitude). According on the similarity of the values collected at each 

station, they were quantitatively selected using the spatial association index. The two methods of this study show that the SWE 5 

was not stationary neither in terms of its mean nor its variance across the study area. This study demonstrated the spatial 

structure limits remain subjective. In this case, the spatial segmentation approach is justified for delimiter explicitly the spatial 

structures. Subsequently, the spatial segmentation algorithm was used to elicit delineate the boundaries of the SWE spatial 

variability structures. Sena et al. (2015) applied a Canonical Correlation Analysis (CCA) to analyze the spatial variability of 

snow. This allowed to identify the spatial structures based on the physiographic meta-variables obtained by the CCA. The 10 

CCA is applied to regional physiographic factors (latitude, longitude, altitude and distance to ocean) and local physiographic 

factors (slope, aspect, distance to rivers, solar radiation, curvature, and vegetation height) and average maximum annual SWE 

(Séna, 2015). This physiographic factor holds in place the underlying processes that generate the homogeneous areas (called 

SWE spatial structures), that have a strong contrast with their surrounding area according to the different observation scales. 

Canonical correlation analysis has allowed to obtain physiographic metavariables that are integrated in the spatial segmentation 15 

algorithm. Finally, the spatial segmentation results were validated by comparing snow data from the adjacent geographical 

zones using the Kruskal–Wallis nonparametric statistical test (Séna et al.2015). As a result, the structures identified are 

different from another and the physical spatialization parameters of snow cover (such as snow water equivalent) must take into 

account the physical boundaries to reduce errors and biases in the spatial estimation (Séna, 2015). 

To respond to this need, this study proposes to spatialize the SWE according to the structures of spatial variability of SWE. 20 

The main objective of this study is to develop a multi-scale spatialization approach by taking into account the structures 

delineated in the spatial variability analysis of the SWE at both scales (local and regional) by Sena et al. (2015). The objectives 

are the following: 

 1 - estimate the SWE according to the physiographic meta-variables delimited by spatial structures at a regional scale  

(10 km) 25 

 2 - spatialize the SWE at the local scale (300 m), based on SWE residuals and local physiographic meta-variables. 

The first part addresses the regional scale, and a polynomial multi-function is applied to the physiographic meta-variables and 

average maximum annual SWE recorded at the snow survey stations included in the study area. Kriging was applied to the 

residuals of each spatial structure obtained by a variogram analysis to improve the SWE estimation. In the second part, 

addressing the local scale, a regression approach is applied to the local physiographic meta-variables and the residuals in each 30 

unit area. The SWE values estimated at the local scale correspond to the regional estimation adjusted by the residuals obtained 

from local physiographic meta-variables. 
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2. Material and methods 

2.1 Study site and description of SWE structures  

The study covers the province of Quebec and Labrador region, extending from 45°–65 °N to 55°–82 °W (Fig. 1). The relief is 

moderate and includes three sets (MDDELCC, 2001): Appalachia, St. Lawrence Lowlands and the Canadian Shield.  

 5 

 

 

 

 

 10 

Figure 1: Geographical areas with homogeneous SWE spatial structures and the delimited zones at the regional (a) and local 

(b) scale obtained with the functional approach (Sena, 2015)
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Séna et al. (2015) applied the multi-resolution spatial segmentation algorithm which led to the identification of six geographical 

areas with homogeneous SWE spatial structures at the regional (10 km x 10 km) and local scales (300 m x 300 m) (Fig. 1a). 

At the regional scale, the multi-resolution spatial segmentation algorithm led to the identification of six geographical zones with 

homogeneous SWE spatial structures. The identification process of the structures was based on physiographic factors, geographic 

position (latitude and longitude), relief, and distance from the ocean. SWE spatial structures can be considered similar to the 

layout of landforms (altitude) and climate classes. A description of the main structures used in this study is provided below. 

The eastern zone (A) of the study site includes the plains bays (Hudson and James) and the foothills located east of the high 

reliefs of the Canadian Shield. The central zone (B), located in the northeast-southwest axis included much of the medium relief 

(500-700 m) and mountains (Tichégami 776 m, Otish 1128 m). North of the study area, the hilly landscape of the high lands of 

northwestern (Pingualuit Crater) and northeastern Labrador (Jacques-Rousseau Mountain 1261 m) are grouped in zone C. Along 

the St. Lawrence River is zone D, which includes the highlands of northern and northeastern Labrador and the eastern part of the 

Canadian Shield. The maritime part of the study area, including the Appalachian Mountains of Gaspésie and the St. Lawrence 

River, are grouped in zone F. In south, the lowland of the Laurentians, the Outaouais and Abitibi-Témiscamingue are grouped in 

zone E. 

At the local scale (300 m x 300 m), the multi-resolution spatial segmentation algorithm allowed the limit of several geographical 

areas. The identified local structures of SWE spatial variability demonstrate the dominant role of the physiographic factors (slope, 

curvature, orientation, distance to rivers etc.) (Fig. 1b) in the maintenance and redistribution of snow cover. At this scale, 

geographical areas with homogeneous SWE spatial structures were identified based on local underlying processes controlled by 

physiographic factors such as slopes, curvature of slopes, aspect, solar radiation, distance to rivers, plant height. The local 

characteristics of watershed on each zone contribute to the variation of snow accumulations (Sena et al., 2015). The spatial 

structures of the SWE used in this study thus varied depending on the observation scale. 

2.2 Snow data  

The measurement site must be representative of the variability of the surrounding snow cover and topography (MSC, 2004). At 

each measurement site, snow depth was measured. A core sample was extracted, which allowed to evaluate the SWE and density 

of the snow pack. At each marker where the snow depth was greater than 25 cm, the weight of the core sample was measured. 

The SWE was obtained by subtracting the weight of the empty snow sampler from the total weight of the sample. On the other 

hand, if the snow depth was less than 25 cm at one or more of the markers, the SWE was obtained after subtracting the weight of 

the empty snow sample bucket from the cumulative measurement of the cores of all markers. Values representative of the entire 

sampling site were obtained by calculating the mean of the 10 sampling sites. Measurements were carried out biweekly and were 

generally limited to the period ranging from January to May (MSC, 2004).  

A ten-year observation period is the minimum necessary to cover cyclical atmospheric and oceanic events (solar cycle, El Niño-

Southern oscillation, La Niña, etc.) that can influence the variability of the snow cover (Brown, 2000; Rasmussen et al., 1999; 

Sobolowski and Frei, 2007). Based on the hypothesis that the snow phenomenon was stationary during a ten-year observation 

period, the sub-periods were not considered. Therefore, out of the 426 snow survey stations constituting the network of the studied 

territory, we considered the 367 stations for which historical data was available for at least the last 10 years. The data from these 

stations was provided by our partners, including data from 193 stations of the province of Quebec’s Ministère du Développement 

Durable, Environnement et Lutte contre les Changements Climatiques (MSC, 2004), 19 stations belonging to RioTinto, 76 to 

Hydro-Québec, and 79 provided to Environment and Climate Change Canada. For each retained station, the mean annual 
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maximum SWE was calculated. Thereafter, statistical descriptors of central tendency (mean of annual maxima) and dispersion 

(standard deviation, interquartile interval, median) of the mean annual maximum SWE were calculated.  

2.3  Method 

The multi-scale spatialization approach based on spatial variability structures of SWE is shown in Fig. 2. 

 

Figure 2: Diagram of the SWE spatialization methodological approach applied to the spatial structures defined at the regional 

and local scale. 

 

2.4 Stepwise regression approach 

This study proposes to spatialize the SWE according to the different structures of delimited spatial variability at regional (10 km 

x 10 km) and local (300 m x 300 m) scales, as presented by Sena et al. (2015). 

2.4.1 Regional scale 

The stepwise regression is a linear regression in which the relationship between the independent variable X (physiographic meta-

variables) and the dependent variable Y (SWE) is modelled as an nth degree polynomial equation (Borcard, 2005). At the regional 

scale (10 km x 10 km), the physiographic metavariables (𝑈1, 𝑈2, 𝑈3, 𝑈4), and all the collected average maximum annual SWE 

data were used in the stepwise regression. In statistic, the choice of predictive variables carried out by an automatic procedure, is 

one of an approach of stepwise regression model fitting. According some pre- criterion, a variable is added or subtracted from 

the set of explanatory variables (Draper and Smith, 1998). The backward elimination is the main approach adopted. First, all 
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candidate variables are involved and testing the deletion of each variable basing a chosen model fit criterion. Next, deleted the 

variable whose loss gives the most statistically insignificant deterioration of the model fit. Finally, the process is repeated until 

no other variable can be removed without a statistically insignificant loss of adjustment. In this study, the MATLAB R2014a 

statistical analysis tool interrupts the operation when all variables not in the model have a p-value greater than the specified Alpha 

value for inclusion and all variables in the model have a p-value less than or equal to the specified Alpha value for exclusion. 

The stepwise function adjusts the explanatory variables to the dependent variable in a non-linear manner and involves adding the 

newly obtained predictor in squared, cubed, etc. The prediction function is according to 𝑓(𝑥) in Eq. (1): 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥2 + 𝑎𝑛+1𝑥2
2 + ⋯ + 𝑎𝑛𝑚𝑥𝑛

𝑚 (1) 

Where 𝑎0and 𝑎𝑛 are the adjustment coefficients of the prediction model and 𝑥 the secondary variable defined on X element in 

R2. 

The combination of the trend and the residuals results in the random SWE𝐸𝑠𝑡 function (Eq. 2):  

SWE𝐸𝑠𝑡 = 𝑓(𝑥) + 𝜀       (2) 

Where 𝜀 is random (residual) with a null mean and the variogram describes the spatial dependence at a small scale. 

 

At the regional scale, the residuals 𝜀  (ε = SWE𝑂𝑏𝑠𝑒𝑟 − SWE𝐸𝑠𝑡 ) were extracted for each homogeneous SWE zone. These 

estimated residuals were added to estimate the SWE. The variogram analysis consists of the experimental variogram calculated 

from the data (residuals) and the variogram model fitted to the residuals data (Goovaerts, 1997). The variogram is defined as the 

variance of the difference between field values at two locations across realizations of the residuals field. The residuals with a 

spatial structure underwent kriging and were retained to improve the deterministic part of the estimated SWE (Fig. 2). Ordinary 

kriging was performed to interpolate the residual of the regression model resulting from the variogram analysis (further 

information can be found in Goovaerts (1997)). The variogram indices (C0 = nugget effect and C = variance) are used to 

characterize the spatial structure of residuals by considering the following ratio (β) (Eq. 3): 

β =
𝐶

(𝐶+𝐶0)
   (3) 

-if β has a high value, the nugget effect C0 is very small (< 0.5) and the spatial variability is due to the distance between the 

snow survey stations;C0 < 10%𝐶; 

-if β has a small value, the nugget effect C0 is high (> 0.5) and the spatial variability of residual is due to the nugget effect. 

2.3.2 Local scale 

At the local scale, the residuals of the regional estimation of the SWE are reorganized by local physiographic factors to develop 

specific snow accumulation estimations for each zone. To do that, the residuals are estimated based on local physiographic 

metavariables. Thereafter, local SWE estimates correspond to the regional estimate corrected by the residuals calculated using 

the local physiographic metavariables of each area (Fig. 2). For this purpose, the stepwise regression model exploits local 

physiographic metavariables and residuals from the regional estimate of each area. The models are verified by cross validation 

methods (further information can be found in Polikar (2006)). Four statistical evaluation indices were used (determination 

coefficient (R2), BIAIS, relative mean squared error (RMSE), and Nash–Sutcliffe efficiency) and they are presented in Table 1.  

In zone C, the small number of snow survey stations (3) did not allow to proceed with the stepwise regression. The resampling 

process is applied to the SWE estimated at the regional scale (10 km x 10 km) to have SWE estimates at the local scale 

(300 m x300 m). 
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Table1: Statistical evaluation indices 

 

R2 = [
∑ (Mi − M̅)(ES − E̅S)n

i=1

√∑ (Mi − M̅)2n
i=1 √∑ (Es − E̅s)2n

1=1

]

2

 (4) 

 

BIAISr =
1

n
∑ [

Esi − Mi

Mi

]

n

i=1

 
(5) 

EQMr = √
1

n
∑ [

Esi − Mi

Mi

]

n

i=1

2

 (6) 

NASH = 1 −
∑ (Mi − Esi)

2n
i=1

∑ (Mi − M̅)2n
i=1

 (7) 

 

where n is the sample number; M and E𝑠 SWE data measured and estimated; M̅ and E̅𝑠 mean values of SWE data measured and 

estimated. 

2.5 Mapping approach for SWE 

SWE spatialization maps were modelled using PCI Geomatica 2012 and ArcGis 9.0 softwares for both observation scales 

(regional and local) was modelled using PCI Geomatica and ArcGis software. At the regional scale, SWE mapping was achieved 

by combining the information contained in the structures delimited by according to the delimited structure in projects composites 

to the physiographic metavariables (𝑈1, 𝑈2, 𝑈3, 𝑈4), and the residues having a spatial structure. The structures were kriged using 

a standard kriging approach. At the local scale, SWE mapping was performed according to the SWE estimated at the regional 

scale and the estimated regression residuals based on the physiographic metavariables (U1LZ, U2LZ, U3LZ, U4LZ, U5LZ, U6LZ). 

3. Results 

3.1.1 Stepwise regression approach based on the structures obtained at the regional scale 

At the regional scale, the stepwise function is based on the physiographic meta-variables 𝑈1, 𝑈2, 𝑈3 and 𝑈4 and SWE dataset, as 

presented in Eq. 4. 

 

𝐸𝑠𝑡𝑆𝑊𝐸𝐸𝑅 = 45.2𝑈1 + 8.4𝑈4 − 19.2𝑈2
2 + 11.8𝑈3

2 + 3𝑈3
3 + 2410.8   (4) 

The variogram analysis was not applied to the residual of zones A and C because the number of snow survey stations was too 

low (8 and 3, respectively). To alleviate the text, the variogram of zone E is presented in Fig. 3, but the variogram of the other 

residuals (B, D and F) are available in Figure A 1. 

In zone B, the variogram analysis of the SWE residual has a variance (γ(ℎ𝐵)) of 1100, with an increment of 10 km over a distance 

of 42 km (Figure A 1, residue variogram of zone B). With a nugget effect of 260, the ratio (β = 0.8) shows a high spatial variation 

due to the distance between the snow survey stations. Based on this we can confirm that the residual structure is due to the 

distance between sites.  
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The same ratio (β = 0.8) is observed in zone D, illustrating that the SWE residue variation is also due to the distance between 

stations rather than the nugget effect. The nugget effect (𝐶0 = 1000) of zone D is the highest observed in this study (Figure A 1 

D). The variance between stations (γ(hD) = 4200) is observed at 100 km for increment of 2 km (Figure A 1, residual variogram 

of zone F). The nugget effect (C0 = 90) observed at the regional scale of zone E was the smallest one among delineated zones.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: SWE data observed versus data estimated by the model (a), the model adjusted by residues (b) with model performance 

indices and the variogram model applied to estimate residues throughout the study area (top right) 
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This can be explained by the high sampling density, which reduces the variations due to the distance between stations, which 

is inferior to the increment step. Furthermore, at a distance of 150 km, the correlation between the residuals of the stations is 

high, with γ(ℎ𝐸) = 1250 (variance of the SWE residues in zone E). 

In zone F, the SWE residual variogram has a high value; with C0 = 510, and a variance of γ(ℎ𝐹) = 400. A low ratio (β = 0.4) 5 

shows that the variation is due to the nugget effect. This value indicates a partial absence of correlation between the SWE 

values observed at two very close stations. The nugget effect is explained by a low resemblance between the regionalized 

values taken in close proximity. 

3.1.2 Validation approach at regional scale 

The model estimated SWE values and their variance by using the determination coefficient  𝑅2 = 0.65. This value shows that 10 

65% of the variation of the average annual maximum of SWE is explained by the regression model and 35% remain 

unexplained. The estimates show that the model tends to underestimate the highest SWE values (BIAIS = -3.39%) with 

reference to the diagonal line (Fig. 3a). The variogram analysis of the SWE tailings was carried out in zones B, D, E and F 

(see Figure A 1). In zone A, the number of stations (18) is very small, which is a limitation to the variogram analysis. In zone 

B, the variogram analysis of the SWE residuals shows a variance of 1100 mm 2 up to the distance of 42 km at 10 km intervals 15 

(Figure A 1B). With a nugget effect of 260 mm 2, the ratio (β = 0.8) shows that the spatial variation is due to the distance 

between stations. However, the estimation of SWE residuals as a function of the regional metavariables evaluated by the cross-

validation shows points that are very far from the 1:1 diagonal (Figure A 3B). 

In zone D, the nugget effect of the SWE residue (C0=1000) is the highest of all zones. The variance between stations (C= 

4200 mm 2) is reached at 100 km with a 2 km interval (Figure A 1D). The ratio (β = 0.8) also shows that the variation is due 20 

to the distance between stations and not to the nugget effect. In zone D, SWE residuals explain 57% of the variance of the 

SWE residuals for 43% unexplained (Figure A 3D). The same is observed in the case of zone B, where the point distribution 

in the plot of SWE residuals versus SWE estimated by the variogram model (see Figure A 3 D) is also far from the 1:1 diagonal 

(Figure A 3D). In zone D, the estimated SWE residual explains 57% of the variance and the balance remains unexplained. 

Moreover, the residual’s distribution does not fit with the diagonal (Figure A 1D). 25 

In zone E, the variogram analysis of the SWE residues has a nugget effect of 90 mm 2. This is the lowest nugget effect observed 

through all zones. This can be explained by the high sampling density, which attenuates variation at distances inferior to the 

increment step. On the other hand, at a distance of about 150 km, the correlation between the residuals of the SWE stations is 

strong and reflected by the spatial structure C=1250 mm 2, (Fig. 3C). The SWE residuals obtained with the spherical variogram 

model explains 70% of the variance of the residuals and 30% remain unexplained (Figure A 3E). The ratio (β = 0.9) shows 30 

that the variability of the SWE in zone B is mostly explained by the distance. On the other hand, the graph of the measured 

SWE residuals estimated versus those estimated by the variographic model shows a good distribution of points with respect to 

the 1:1 diagonal. 
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In zone F, the variogram analysis of the SWE residues shows a variance of 800 mm2 and a nugget effect (microvariation) of 

C0 = 510 mm 2 (Figure A 1F). The ratio (β = 0.4) is very low, indicating that the variation is due to the nugget effect. Also, the 

results of the cross validation show that the SWE distribution is far from the 1:1 diagonal. The variance of the SWE residuals 

explained by the variographic model is near zero. The SWE variance of zone F, as explained by the residual variogram model, 

is null (Figure A 3F).  5 

The cross validation to predict the effectiveness of variogram models on residuals shows overall that the variogram model on 

the zone E provides a better result (R= 0.70). For this purpose, only the estimated residual in zone E was added to the regional 

estimate to adjust the estimated value of the SWE at the regional scale. The results of the adjusted model by the residuals of 

the zone E improved the variance by 3% (R2 = 0.68) and 32% remain unexplained. The Nash–Sutcliffe efficiency test 

indicates that the estimated residual model is robust with a success rate of 83% (Fig.3b). The RMSE and BIAIS were reduced 10 

by 2% and 8%, respectively, compared to models without adjustments. The robustness of the model is also confirmed by 

comparing the measured SWE with the estimated SWE, which shows a better distribution of the points along the diagonal.  

3.1.3 Stepwise regression approach at the local scale 

As noted above, stepwise regression models were applied to the regional SWE residuals according to the local metavariables 

observed in each of the six zones. This does in fact make it possible to estimate the SWE by using local variables (Fig. 2. 15 

Diagram of the SWE spatialization methodological approach applied to the spatial structures defined at the regional and local 

scale). The stepwise regression models of the SWE residuals at the local scale are presented in Eq. 5-9: 

𝐸𝑠𝑡𝑅𝑒𝑠𝐿𝑜𝑐𝜀𝐴 = −19.1𝑈1𝐿𝑍𝐴 − 5.1     (5) 

𝐸𝑠𝑡𝑅𝑒𝑠𝐿𝑜𝑐𝜀𝐵 = 9.4𝑈4𝐿𝑍𝐵
2 + 4.1     (6) 

𝐸𝑠𝑡𝑅𝑒𝑠𝐿𝑜𝑐𝜀𝐷 = 17.6𝑈1𝐿𝑍𝐷
2 + 6.1𝑈1𝐿𝑍𝐷

3 − 14.2   (7) 20 

𝐸𝑠𝑡𝑅𝑒𝑠𝐿𝑜𝑐𝜀𝐸 = −6.3𝑈2𝐿𝑍𝐸 − 7.1𝑈3𝐿𝑍𝐸 − 5.2𝑈1𝐿𝑍𝐸
3 + 0.7  (8) 

𝐸𝑠𝑡𝑅𝑒𝑠𝐿𝑜𝑐𝜀𝐹 = −22.7𝑈1𝐿𝑍𝐹 + 5.1𝑈1𝐿𝑍𝐹
3 + 5.8𝑈1𝐿𝑍𝐹

3 − 1.8   (9) 

Where 𝑈𝐿𝑍 is the local physiographic metavariables of each zone (A, B, D, E and F). 

3.1.4 Validation approach at the local scale 

Figures 4a and 5a demonstrate that local regression models of residuals as a function of local physiographic metavariables in 25 

zones A and B are not very strong. In zones A and B, the SWE residual estimation model takes into account the physiographic 

metavariable U1LZA and U4LZB. Indeed, local residual models explain 35% and 30% of the variation in residuals in zones A and 

B respectively (Fig. 4a and 5a). The Nash values (-0.77 and -0.38) indicate that the models are not robust in the restitution of 

the regional residuals of SWE observed. These negative Nash values indicate that the mean residual values are considered 

more precise than the results obtained by the modeling. The performance of the residual regression models can be assessed by  30 
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Figure 4: In zone A at local scale: (a) Estimated residuals of the SWE by the zonal model- (b) Observed values versus regional 

estimate of the SWE - (c) Observed values adjusted by the residuals estimated by the zonal model for the SWE in (a)
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observing the distribution of points in relation to the 1:1 diagonal of the plots. The dispersion of the points is greater for extreme 

residual values (e.g., Fig. 5a). This suggests that the majority of the error calculated (RMSE) for all models would be affected 

by the extreme values. The negative BIAIS (-26% and -81%) indicates that the models tend to underestimate the residuals. 

Figures 4c and 5c shows the adjustment of the SWE estimates based on the residuals in relation to the local regression model 

of the zones A and B. The local model explains 35% (Fig. 4a) of residual variance as a function of the local physiographic 5 

metavariables and increases the variance by 31% relative to the regional estimates (R2 = 0.46 versus 0.15) (Figs. 4b and 4c). 

The Nash value of the local estimate is very low (0.27 in Fig. 4c), but it is better than the one observed at a local non-fitting 

model with a negative Nash (-0.72).  

The same pattern is observed in zone B (Fig. 5c), where the addition of the estimated residuals explains 74% of the variance 

of the local SWE and improves the variance by 16% (Fig. 5b and 5c). In this case, the SWE estimation model performs better 10 

with a higher Nash (0.65). The sum of the residuals estimated with the local metavariables reduces the BIAIS and RMSE 

values by 19% and 3% respectively (Fig. 5c). 

In zone D, the SWE residual estimation model takes into account the physiographic metavariable U1LZD. The result of the cross-

validation shows that the local regression model of residuals as a function of local metavariables is not very robust (Fig. 6a). 

It explains only 21% of the variance of the residuals of the SWE. Furthermore, the negative Nash value (-0.23) also indicates 15 

that the mean values of zone D residuals are more accurate than the results obtained by modelling. The dispersion of the points 

along the 1:1 diagonal shows the low robustness of the model with an RMSE of 74%. Adding the estimated residuals to the 

regional estimate slightly improves the local variance of the SWE, which is of 4% (Fig. 6c). The validation indices 

(Nash = 0.79 and RMSE = 12%) show that the adjustment model performs slightly better than the regional estimate when 

compared to the observed SWE data (Fig. 6b). 20 

The models used to estimate the SWE residues in zones E and F as a function of local physiographic metavariables take into 

account U1LZE, U2LZE, U3LZE (Eq. 8) and U1LZF (Eq. 7) respectively. In these zones, the Nash value is negative. In zone E, the 

residuals model explains 35% (Fig. 7a) of the variance compared to 23% in zone F (Fig. 8a). In addition, the points along the 

1:1 diagonal in zone F are less scattered than in zone E. The negative value of BIAIS in both zones shows that the model used 

for residual estimations tends to underestimate SWE values. In zone E, the local SWE estimation results perform the best, with 25 

a higher portion of variance being explained by the residuals model (85% in zone E and 64% in zone F) and a higher Nash 

value than in zone F (0.83 in zone E and 0.70 in zone F) (Fig. 7c). The dispersion of the points along the 1:1 diagonal is more 

clustered with an RMSE of 10.3% compared to the 18% observed for zone F. 
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Figure 5 : In zone B at local scale: (a) Estimated residuals of the SWE by the zonal model- (b) Observed values versus regional 

estimate of the SWE - (c) Observed values adjusted by the residuals estimated by the zonal model for the SWE in (a)
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Figure 6 : In zone D at local scale: (a) Estimated residuals of the SWE by the zonal model- (b) Observed values versus regional 

estimate of the SWE - (c) Observed values adjusted by the residuals estimated by the zonal model for the SWE in (a) 
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Figure 7 : In zone E at local scale: (a) Estimated residuals of the SWE by the zonal model- (b) Observed values versus regional 

estimate of the SWE - (c) Observed values adjusted by the residuals estimated by the zonal model for the SWE in (a)
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Figure 8 : In zone F at local scale: (a) Estimated residuals of the SWE by the zonal model- (b) Observed values versus regional 

estimate of the SWE - (c) Observed values adjusted by the residuals estimated by the zonal model for the SWE in (a)
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Over the whole study area, at the regional scale, the linear relationship between the regional variables (distance to the ocean, 

altitude, latitude and longitude) and the SWE shows a weaker relationship (R2 = 0.68) (Fig. 3). At the local scale, the SWE 

adjusted by the estimated residuals according to local metavariables (slope, orientation of slopes, land cover, solar radiation, 

distance to lakes, curvature and height of vegetation) shows a strong linear relationship (R2 = 0.89) (Fig. 9).  

 5 

 

 

 

 

 10 

 

 

 

Figure 9: Observed SWE values versus all local SWE adjusted by the residuals estimated based on local physiographic 

metavariables. Their performance indicators are indicated at the local scale. 15 

The linear relationship increases by 21% relative to the regional scale and that can be explained by the role played by local 

variables in snow accumulations. At this scale of observation, snow cover accumulation is controlled and guided by sets of 

subprocesses controlled by these local variables. With a very high Nash indicator (0.9), the linear relationship between the 

sum of estimated SWE residuals based on physiographic metavariables and observed SWE data shows that the model is very 

efficient in estimating SWE values. 20 

3.2 SWE mapping according to the delimited structures  

3.2.1 Regional scale 

At the regional scale (10 km x 10 km), the SWE spatialization was performed in each of the delimited structure. In zone A, 

along the foothills of the Canadian Shield, SWE values are of 250-300 mm (Fig. 10A). North of the Inukjuak snow survey 

station, the D'Youville and Puvirnituq mountains are also very snowy, with a value of 250-300 mm all the way to Hudson Bay 25 

(Fig. 10A). The snow survey stations located at Bolem, Kanaapscow, Bienvielle and Mollet lakes on the foothills of the 

Canadian Shield and at Qingaaluk (400 m) and Umiujaq (400 m) hills also have a high SWE value (250-300 mm). The value 

gradually decreases west of the foothills of the Canadian Shield towards the bay’s lowlands. This shows that in this area, high 

altitude constitutes a barrier for the wet winds, resulting in more snow on the western foothills and along the coast.
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Figure 10: Average maximum annual SWE on the spatial structures delimited by the functional approach at the regional scale 15 

in eastern Canada. 

In zone B, the SWE ranges from 200 mm to 300 mm on Tichégami, Otish Témiscamie, Severson and Uapahtkueh mountain 

line (Fig. 10B). The eastern part of the mountain foothills has an estimated SWE between 300 and 400 mm. The foothills of 

Mount Otish presents the SWE values between 300 and 350 mm, and 350 and 400 mm in concave section. The same value is 

also estimated on the great peaks of the Laurentian Mountains (Mount Kaoskiwonatinak (627 m). In the southwestern part of 20 

zone B, the estimated SWE is between 300  and 350 mm on the high reliefs of the Laurentians (Mont Reid, 424 m) and 250-

300 mm in the southwest foothills of Témiscamie Mountains. To the north, a high precipitation area (300-400 mm) that acts 

as a barrier to polar winds for the northernmost mountains (Jacques-Rousseau Mountains Iberville). In sum, the highest values 

are found on the Canadian Shield (province of Greenville and Lake Superior). 

In zone C (Fig. 10C), the SWE spatialization shows values between 300 mm and 350 mm over all northern limits with high 25 

peaks (400 m) of Torngat Mountains. Indeed, the northern limit of the study area is mountainous and includes Labrador Sea, 

Torngat Mountains (Jacques-Rousseau 1261 m, Iberville, 1662 m) and the Pingualuit crater along the Hudson Bay Strait to 

the north. These mountains act as polar wind barriers, leading to high snow accumulations on the north side. The lowlands of 

Ungava Bay have SWE values between 250 mm and 300 mm. These mountains extend to the east and constitute the highest 
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peaks in zone D. As in zone C, north of zone D, the high values (300-400 mm) are found on the northern mountains (from 

Happy Valley Goose Bay to Churchill Falls). The same value is found along the Laurentian peaks and along the St. Lawrence 

River. South of zone D, the high values illustrate the role played by altitude with regard to snow accumulations, at the Grands-

Jardins national park (Raoul Blanchard (1175 m), Erables (1033 m), etc.) and Valin mountains (984 m) (Fig. 10 D (Average 

maximum annual SWE on the spatial structures delimited by the functional approach at the regional scale in eastern Canada). 5 

The foothills of coastal mountains (Groulx, Kapatahkatnahiu, etc.) have SWE values ranging between 250 and 400 mm. 

In zone E (Fig. 10E), the estimated SWE values on the axis of Tremblant (998 m) and Raoul Blanchard (1175 m) mountains 

correspond to the values found on the northern summits at latitude 50°. At a lower altitude, in the Outaouais and 

Témiscamingue regions, the values of the SWE are between 100 mm and 250 mm. The St. Lawrence lowlands and southern 

regions have very low snow accumulations (100-200 mm). Southern parts of Chatigny (585 m) and Kaoskiwonatinak (627 m) 10 

mountains have estimated values between 300 mm and 400 mm, compared to100-200 mm in the Saguenay River watershed. 

The role of altitude on snow accumulation is also observed in the north and centre of zone F. The peaks of these mountains 

(Notre-Dame and Chic-Choc) have SWE values ranging between 250 mm and 400 mm. In coastal marine lands, values of 

250 mm to 400 mm are estimated. At the southern limit between zone F with E are the St. Lawrence lowlands, where the 

estimated snow values are near the low SWE value of zone E (Fig. 10 F). 15 

Overall, at the regional scale, the results of spatialization of the average maximum annual SWE based on the delimited 

structures are similar to the relief on the study area (Fig. 11). Indeed, the landscape (Canadian Shield, Appalachian, etc.) and 

the mountains north of the study area have high snow accumulation values. Towards the lowlands and coastal areas, the 

estimated average accumulations are low throughout the study area. The map of the SWE average annual maximum based on 

the grouped delimited structures approach resembles the results of the snow cover simulations done in eastern Canada by the 20 

Canadian Regional Climate Model (CRCM) and the Global Environment Multiscale in Climate Model (GEMCLIM) 

(Roy, 2006, and Dorsaz, 2008) (Fig. 11). These models have identified, at the regional scale (appx. 55 km), the isoline of SWE 

values up to 300 mm in the Torngat Mountains at the north, and 250 mm northeast on the central axis. Spatialization according 

to SWE structures demonstrates the same results as the regional values provided by the CRCM or the GEMCLIM. The 

GEMCLIM model overestimated the SWE on the coast of Labrador when compared to the results based on delimited structures 25 

(SWE values were overestimated by 100 mm in Blanc-Sablon, 200 mm in Natashquan, and 318 mm in Sept-Îles). Mapping of 

the average maximum annual SWE according to the structures generated more accurate results than the isolines of the regional 

model. Furthermore, the mapping of annual maximum SWE results is consistent with snow classes determined by Sturm et 

al. (1995) and is nearest to those observed by Langlois et al. (2014) in their study of the SWE simulation using remote sensing 

and in situ data on the regional models. 30 
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Figure 11: Average maximum annual SWE obtained by merging the spatial structures delimited at regional (10 km x10 km) 

3.2.2 Local scale 

At the local scale (300 m x 300 m), the snow variability is observed due to the slope, curvature forms, orientation of the 20 

watershed, vegetation height, etc. (Fig. 12). The results pin a specific value on the underlying processes taking place due to 

local physiographic factors. Indeed, north of zone A, the summits of the D'Youville mountains and foothills leading to the 

Canadian Shield have high SWE values (300-450 mm) (Fig. 12) but on the coast of Hudson and James bays, the high values 

of Qingaaluk (400 m) and Umiujaq (400 m) mountains is in contrast with the low value (250-300 mm) found along the bays. 

Zone A is exposed to the dominant winds of the bays, where a low and medium accumulation (250-300 mm) is located in 25 

curvature forms. The forests located towards the hinterland are areas of high accumulations, with more than 300 mm. 
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Figure 12: Average maximum annual SWE on the spatial structures delimited by the functional approach at the local scale 15 

(300 x 300 m) in eastern Canada 

 

In zone B, the results confirm the accumulation identified by the model at the regional scale (Fig. 12B). At this observation 

scale, mountain lakes (Tichégami, Otish, Témiscamie, Severson and Uapahtkueh) have low values (200-250 mm), strongly 

contrasting with the high values (300-450 mm) of the mountains. These high SWE values are found on the sheltered slopes of 20 

the foothills of the northern mountains, which are exposed to humid ocean winds. The central part of zone B is a large series 

of lakes (Lake Caniapiscau at the north and Lake Mistassini in the southernmost centre). It is slightly hilly with SWE values 

ranging between 250 mm and 300 mm. To the west, the high values of SWE identified on Reid ount (425 m) are intersected 

by the values (250-350 mm) of the western shield’s foothills. Further south, the foothills of Chantigny mountains have SWE 

values ranging between 250 and 450 mm. The SWE of the southern part of zone B (the lowlands) ranges between 100 mm and 25 

300 mm.  

The estimated SWE in zone C (Fig. 12C) has lower average values (150-200 mm) into the means relief of Ungava Bay. 

However, this spatial estimation approach, based on the estimated resampling at the regional scale, does not model micro 
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reliefs (concavity and convexity forms) in the redistribution of the snow cover in this area. Hence, the summits swept by polar 

winds would presumably have very low SWE values, while the estimated values on watershed ubacs, which are moderately 

concave and not exposed to wind, would be high. In the far north, the valleys of the Pingualuit crater and coastal watershed 

would have high values and the hills and mountains would have lower values. 

In zone D, which covers the mountains, foothills and lowlands east of the Otish and Groulx hills (Fig. 12D) the SWE 5 

spatialization returned high values (300-450 mm). These same values are found in the Kapatahkatnahiu hills, which constitutes 

a barrier to the humid oceanic winds. To the north and northwest, Happy Valley-Goose Bay mountains and valleys have an 

estimated SWE ranging between 250 mm and 350 mm. In the south, on either side of the Saguenay River, are the Grands 

Jardins National park (Raoul Blanchard, Conscrits etc.) and Valin hills (984 m), which had high SWE values (250-400 mm). 

The areas located in topographic depressions (Manicouagan reservoir, St John, etc.) have low accumulations (0-150 mm). The 10 

lowlands of the northeastern coastline are high accumulation areas because the snow particles are trapped by forest formations. 

The estimated values (100-250 mm) are prominent in zone E (Fig. 12E). The mountains found on the northeast (Sir Wilfried 

Laurier, Tremblant, Grands Jardins) have high estimated snow accumulation values, between 300 mm to 450 mm. Similarly, 

the Chantigny hills and foothills also have high SWE values (250 mm to 300 mm) and they intersect with the medium values 

of the Saguenay watershed (200-250 mm). To the west, values of 200-250 mm are found over the uplands of Abitibi. The 15 

results show high values north of the Gatineau watershed and low values in the valleys (further south). This confirms the 

findings of Tapsoba et al. (2005) regarding the Gatineau watershed. SWE spatialization in zone F demonstrates the role of 

concave shapes in the accumulation of snow. In the Appalachian area, the SWE found in the concave shapes of the Chic-Chocs 

Mountains and valleys were estimated to be between 300 mm and 450 mm (Fig. 12F). 

Overall, the estimated SWE values obtained at the local scale confirm the results found at the regional scale, with more 20 

variations in the structures (Fig. 13). The eastern part of the study area is influenced by the wet winds of Hudson Bay, the short 

vegetation, and the complex topographic curves and slopes, which explain the SWE average of 100-300 mm. On the foothills 

of the Canadian Shield, snow accumulations increase to 450 mm. The roles of the cooling air as a function of altitude and 

forests on the accumulation and retention of snow is observed on the eastern mountains (Groulx, Otish and Severson) and 

summits of the Appalachian landscape, where snow values increase to more than 300 mm. The estimated values confirm the 25 

role played as a coastal barrier of the mountains, which block Atlantic wet winds. The centre of the study area has a low altitude 

and it is dominated by forests. To the south, the estimated values are generally low in the Laurentian lowlands and elevated in 

the highlands. This result confirms that the accumulation of snow is generally lower on the south of the study area than the 

north. In the north of the study area (Nunavik, for example), the sectors sheltered from polar winds have large accumulations 

and the importance of micro-relief (curvature, slope, etc.) is once again demonstrated in the organization and maintenance of 30 

snow on the ground. 
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Figure 13: Average maximum annual SWE obtained by merging the spatial structures delimited at local scales (300 m x 300 

m) in eastern Canada  

4. Conclusion 20 

This work is based on the explicit delineation of the spatial variability patterns of SWE conducted by Sena et al. (2015). This 

previous study by Sena et al. (2015) also addressed the regional and local scales. At the regional scale (10 km x 10 km), the 

study territory was divided into six geographical regions with homogeneous SWE spatial structures. These zones correspond 

to the major relief of the Canadian Shield (zones B, C, and D), the foothills of the shield (eastern part of zone A), the lowlands 

sectors (zone E) and the Appalachian relief (zone F). These spatial segmentation results are consistent with the divisions of 25 

major climate types, previous knowledge of major snow classes, and the limitations of snow density structures. Moreover, the 
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spatial segmentation results obtained provide precision on the limits of the spatial variability of SWE structures than those 

obtained by the Regional Climate Simulation Models (Langlois et al., 2014; Sturm et al., 1995). At the local scale (300 m 

x 300 m), these zones were segmented into small homogeneous SWE structures corresponding to the roles of slope 

morphology, vegetation height, slope, solar radiation and distance to lakes in accumulating and retaining snow on the ground. 

The main objective of this work was to develop a multi-scale spatialization approach to estimate SWE which took into account 5 

the structures of the spatial variability of SWE at both regional and local scales (Sena et al., 2015). This goal was first achieved, 

at the regional scale, by applying the stepwise regression approach to regional physiographic metavariables (𝑈1, 𝑈2, 𝑈3, 𝑈4) 

and the average maximum annual SWE of all snow survey site. The residuals having a spatial structure as confirmed by a 

variogram analysis were retained to adjust the estimated values. At the local scale, snow accumulation and retention estimations 

are a combination of regional estimated values and regional residual processing using local physiographic factors. In this case, 10 

the regional residuals for each area were modelled applying a stepwise regression on local physiographic metavariables. The 

estimated residual values allowed to adjust the estimate. All models were validated by a cross-validation method and confirmed 

by the index criteria (Nash, RSME, BIAIS). This method allows to take into account two components that are the deterministic 

and a part that is random (residual). In the deterministic part, the regression kriging model uses physiographic metavariables 

as explanatory variables and in the random part, the regression residuals are calculated per region and undergo the variographic 15 

analysis process. Those with a spatial structure are kriged to account for the random component and improve the SWE estimate. 

At the regional scale (10 km), the stepwise regression model explains 68% of the variance. Only the residuals from zone E 

with a spatial structure were used to adjust the regional estimate. At the local scale (300 m), the stepwise regression models of 

the residuals improved the variance observed in the different zones. Overall, the adjustment of the regional SWE estimates 

with the estimated local residuals explains a variance of 89%, improving the variance by 21% with a Nash value of 0.9. This 20 

shows that the SWE variability is explained by major regional variables (latitude, longitude, distance to the ocean and altitude) 

and approximately 21% of this variance is conditioned by local variables (slope, aspect, distance to rivers, solar radiation, 

curvature and vegetation height). 

The map of the SWE was developed using PCI Geomatica and Arcgis softwares using metavariable physiographics on spatial 

data forms. At the regional scale, the maps show the physiographic metavariables (𝑈1, 𝑈2, 𝑈3, 𝑈4) and kriged residuals of zone 25 

E on the spatial data forms. At the local scale, the maps of SWE was developed for each zone with the spatial metavariable 

physiographics of stepwise model of zone. 

Two levels were distinguished from the results. Firstly, the SWE was estimated according to the physiographic factors which 

drive the dynamic structure and organize the accumulation of snow on the ground. The results of the SWE spatial estimation 

show the role of elevation in snow accumulation at the regional scale. High mountains and highlands are opposed to moist 30 

winds loaded with snowfall. In each of the different geographic zones, high values of SWE are observed on mountain peaks 

and highlands. The effect of elevation is confirmed at the foothills of the Canadian Shield mountains. In zone A, on the western 

lowlands, high values are observed at the foothills of the shield. To the north, the Torngat, Pingualuit Crater and D'Youville 

mountains have heavy snow accumulations with estimated values between 300 mm and 450 mm (zone C). Similarly in the 
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Maritimes, the top of the Appalachian relief is an area of high accumulation (300 mm to 400 mm) (zone F). At the local scale, 

high values of SWE are observed on the concave forms of watersheds. Relief tops show SWE discontinuities accumulation 

corresponding to depressions or convex slope areas in the foothills. At this scale, SWE maps demonstrate the roles of 

physiographic variables (concave slope curvature, adret, etc.) in snow accumulation. The ubacs show high accumulation values 

along the major mountains (Appalachians, Mont Groulx, etc.). On the mountains located in the eastern part of the study area, 5 

high values of SWE are observed on the high peaks forested. In the Maritimes, the eroded summits of the Appalachian relief 

are snow traps where the estimated SWE is over 300 mm. In the western part of the study area (zone A), the complexity of 

watershed shapes and low vegetation formations condition the estimated mean SWE values. Secondly, this approach improves 

the spatialization of the physical parameter of snow and provides data representative of the spatial variability of snow where 

the snow survey network is not available. Also, this approach can be used for other purposes, such as determining the structure 10 

of the Climate Regional Model simulated data as the Canadian Regional Climate Model, for example. This was not the aim of 

the study. 

This study is limited by the small number of snow survey stations (<4) in some areas (zone C, for example). Second, the 

availability, quality and accuracy of physiographic data at the desired resolution is also a limitation when applying the method 

to other natural phenomena. This limit can influence the spatialization results in some areas and does not allow to adopt the 15 

approach at a larger scale. 

This work introduces a thematic contribution to the new way of understanding SWE spatial variability by proposing SWE 

maps that take into account the limits of the structure of the SWE spatial variability at the regional (10 km x 10 km) and local 

(300 m x 300 m) scales. Other thematic contribution of this work includes the quantification of the percentage of the spatial 

variability of the SWE at the local (89%) versus regional (68%) scales according to the corresponding physiographic variables. 20 

The adapted methodology and the results of this work offer several perspectives that can contribute to the study of the spatial 

variability of snow in a context of climate change. This method can be applied to other physical parameters of snow (density, 

height) and other variables of interest (annual minimum, monthly maximum, monthly average, etc.). 
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Figure A1: SWE residue variogram analysis of areas B, D, and F at the regional scale 
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Figure A2: Estimated residus in zones A, B, D, E and F at the local scale 
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Figure A 3: Cross validation analysis on residuals of zones B, D, E, and F at the regional scale 
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