
Vulnerable top-of-permafrost ground ice indicated by remotely
sensed late-season subsidence
Simon Zwieback1 and Franz J. Meyer1

1Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA

Correspondence: S. Zwieback (szwieback@alaska.edu)

Abstract. Ground ice is foundational to the integrity of Arctic ecosystems and infrastructure. However, we lack fine-scale

ground ice maps across almost the entire Arctic, chiefly because ground ice cannot be observed directly from space. Focusing

on northwestern Alaska, we study the suitability of late-season subsidence from Sentinel-1 InSAR satellite observations as

a physically based indicator of vulnerable excess ground ice at the top of permafrost. The idea is that, towards the end of

an exceptionally warm summer, the thaw front can penetrate materials that were previously perennially frozen, triggering5

increased subsidence if they are ice rich. We assess the idea by comparing the InSAR observations to permafrost cores and

an independently derived ground ice classification. We find that the late-season subsidence in an exceptionally warm summer

was 4–8 cm (5th–95th percentile) in the ice-rich areas, while it was low in ice-poor areas (-1–2 cm; 5th–95th percentile). The

distributions of the late-season subsidence overlapped by 2%, demonstrating high sensitivity and specificity for identifying top-

of-permafrost excess ground ice. The strengths of late-season subsidence include the ease of automation and its applicability10

to areas that lack conspicuous manifestations of ground ice, as often occurs on hillslopes. One limitation is that it is not

sensitive to excess ground ice below the thaw front and thus the total ice content. Late-season subsidence can enhance the

automated mapping of vulnerable permafrost ground ice, complementing existing (predominantly non-automated) approaches

based on largely indirect associations with vegetation and periglacial landforms. Thanks to its suitability for mapping ice-rich

permafrost, satellite-observed late-season subsidence can make a vital contribution to anticipating terrain instability in the15

Arctic and sustainably stewarding its ecosystems.

1 Introduction

Permafrost conditions are changing across the Arctic, as evidenced by widespread observations of ground warming and in-

creasing terrain instability (Romanovsky et al., 2010; Jorgenson et al., 2015; Segal et al., 2016; Box et al., 2019). Susceptibility

to terrain instability is primarily governed by the presence and abundance of excess ice in the permafrost, i.e. the volume of ice20

in the ground which exceeds the total pore volume that the ground would have under natural unfrozen conditions (French and

Shur, 2010; Kanevskiy et al., 2017). As excess ice melts and the meltwater drains, the ground will settle, slump or collapse

(Morgenstern and Nixon, 1971; Kokelj and Jorgenson, 2013; Shiklomanov et al., 2013). Even though such thermokarst is an

infrastructure hazard, we lack accurate fine-scale estimates of excess ground ice over most of the Arctic (Heginbottom, 2002;
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Figure 1. Late-season subsidence is predicted to be closely related to the excess ice content at the top of permafrost in an exceptionally warm

summer. When the thaw front penetrates the permafrost in the late season, the melt of excess ice in the permafrost, where present, will give

rise to increased subsidence. Early-season subsidence reflects excess ice at the top of the active layer, which may also be present in units

with ice-poor permafrost (top row), such as young floodplains. The subsidence time series are referenced to zero at the beginning of the late

season (second week of August; shown on the right in dark grey).

Melvin et al., 2017). This lack is a major limitation for sustainably planning in the Arctic and for accurately anticipating how25

ecosystems and the hydrologic cycle will change (Prowse et al., 2009).

The paucity of fine-scale ground ice maps is largely due to the fact that permafrost ground ice is not directly observable from

satellites (Heginbottom, 2002). Current approaches for mapping ground ice have significant shortcomings. Maps obtained

from palaeogeographic modelling of ground ice aggradation and degradation, are currently limited to coarse scales (Jorgenson

et al., 2008; O’Neill et al., 2019). For localized maps, the standard approach is to upscale costly field observations and expert30

interpretations based on imperfect indirect associations with vegetation cover and surficial geology (Pollard and French, 1980;

Heginbottom, 2002; Reger and Solie, 2008; Paul et al., 2020). This works well where near-surface perennial ground ice can be

reliably excluded (such as under active floodplains; Jorgenson et al. (1998); Reger and Solie (2008)), or where there are robust

indicators of excess ground ice that can be recognized using (largely manual) image analysis. These include aggradational

landforms such as palsas (Borge et al., 2017) and, more commonly, degradational features that include thermokarst lakes, thaw35

slumps and ice wedge pits (Dredge et al., 1999; Farquharson et al., 2016; Kokelj et al., 2017; Zhang et al., 2018). Two problems

with this approach are the paucity of reliable ground ice indicators in many areas (Mackay, 1990; Jorgenson et al., 2008; Reger

and Solie, 2008), and that identifying ice-rich permafrost using degradational features works best when it is already too late.

What is needed is an indicator that can be used to map ground ice vulnerable to future degradation.

Here, we study the suitability of late-season subsidence in an exceptionally warm summer as an indicator of excess ground40

ice at the top of permafrost. The idea is that, towards the end of a hot summer, the thaw front can penetrate materials that
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were previously perennially frozen (Fig. 1). If these materials do not contain excess ground ice, we generally do not expect

to observe elevated late-season subsidence. If they are rich in excess ground ice, the melt of this vulnerable ice is predicted to

induce a characteristic late-season acceleration of subsidence (Harris et al., 2011).

Late-season subsidence is a physically based indicator of vulnerable top-of-permafrost excess ground ice. To sketch the45

physical connection, we will make the simplifying assumption that even on submonthly time scales, thaw consolidation equals

the melt of excess ground ice in a given period (Morgenstern and Nixon, 1971). We further neglect summer heave Mackay

(1983). In a simple 1D scenario, the subsidence s(t1, t2) between times t1 and t2 is then equal to the total excess ice that melts

during that period:

s(t1, t2) =

yf (t2)∫
yf (t1)

e(y)dy , (1)50

where e(y) is the excess ice content [−] per unit depth dy. yf (t) is the depth of the thaw front relative to the surface at

the beginning of the thaw season; it is assumed to be a monotonic function of t. By judicious choice of t1 and t2, one can

determine at which depth to probe the excess ice content. If the time period includes the early thaw season (small yf ), s will

reflect the seasonal ground ice (Lewkowicz, 1992; Chen et al., 2020). By focusing on the late season instead (larger yf ), we

intend to isolate the excess ice at the base of the active layer and top of the permafrost (Harris et al., 2011; Bartsch et al., 2019).55

Because the observational strategy relies on ice melt, the identification of excess ice in the upper permafrost is tantamount to

its vulnerability.

The stratigraphy of permafrost-affected soils adds complexity to the link between upper-permafrost ice content and remotely

sensed late-season subsidence. To describe the cryostratigraphy in ice-rich terrain, Shur et al. (2005) divide the long-term

permafrost into three layers. The uppermost layer, the transient layer, is characterized by relatively low to moderate excess60

ice contents, as a result of occasional deep thaw. Disappearance of the transient layer is frequently triggered by sustained

warming or disturbance Jorgenson et al. (2015); Kanevskiy et al. (2017). The subjacent ice-rich intermediate layer is then

exposed, increasing the susceptibility to enhanced subsidence (Shur et al., 2005). The risk of sustained thaw consolidation is

amplified where the intermediate layer overlies massive ice such as ice wedges. Once the protection afforded by the transient

and intermediate layer has been lost, further thaw will lead to ice wedge degradation (Kanevskiy et al., 2017). Ice wedge65

polygons also illustrate the large lateral variability in ground ice conditions, which need to be considered when interpreting

late-season subsidence as an indicator of ice-rich upper permafrost.

We assess the sensitivity and specificity of remotely sensed late-season subsidence as a permafrost ground ice indicator. To

estimate late-season subsidence on regional scales, we use Sentinel-1 satellite InSAR observations (Bartsch et al., 2019; Wang

et al., 2020). We test its suitability as a permafrost ground ice indicator in northwestern Alaska, contrasting the exceptionally70

warm summer of 2019 with preceding years. We do so by comparing it to ground ice cores and to an independent ground

ice map, which we derived based on manual interpretation of high-resolution optical images and field observations. Because

the manual interpretation relied on conspicuous indicators of ground ice, it was not applicable to featureless hillslopes – in

contrast to late-season subsidence. Based on these assessments, we appraise the suitability and discuss the limitations of late-
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Study area and meteorological conditions
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Figure 2. The Kivalina study area in northwestern Alaska a) comprises areas of low to moderate topography (source: TanDEM-X DLR

(2020)). b) Thawing degree days (TDD) estimated from MERRA-2 air temperatures identify 2019 as an exceptionally warm summer.

season subsidence as a ground ice indicator. These findings will serve to enhance the automated mapping of ground ice and75

anticipating terrain instability on pan-Arctic scales.

2 Study area

Our study area is located in the northwestern Alaskan Arctic, near the town of Kivalina (Fig. 2a). The surficial geology and

topography are varied (DOWL Engineers, 1994; Tryck Nyman Hayes, 2006). The spectrum includes marine deposits near the

mouth of the Kivalina river; various types of alluvial and colluvial sediments; as well as bedrock outcrops and well-drained,80

rubble-covered uplands. The area is underlain by warm (mean annual ground temperature of ∼ 3◦C), (quasi-)continuous per-

mafrost (Tryck Nyman Hayes, 2006). While no contemporary active layer thickness measurements are available, Shannon &

Wilson, Inc. (2006) report values ranging from 0.5 to 1.0 m.

Excess ground ice at the top of permafrost underlies many locations, as indicated by geotechnical investigations (Shannon

& Wilson, Inc., 2006) as well as remote sensing. Geotechnical analyses have been necessitated by environmental hazards such85

as increasing storm surges and coastal erosion, which have been driving efforts to relocate the village from its present location

on a low-lying barrier island. The 2006 master plan for the relocation planning project (Tryck Nyman Hayes, 2006) concluded

that all investigated alternative sites were at least partially underlain by ice-rich permafrost. Ice wedges and ice-rich layers of

segregated ice are widespread throughout the study area (Shannon & Wilson, Inc., 2006).

Meteorological conditions in the summers of 2017 to 2019 differed markedly. 2019 was a record warm summer in western90

Alaska. According to MERRA-2 reanalysis data (Gelaro et al., 2017; Global Modeling and Assimilation Office, 2020) shown

in Fig. 2b), the thawing degree days in 2019 exceeded those of the years 2008–2017 by more than a third. Average daily

temperatures in 2019 were particularly elevated in late June and early July (Fig. S1a), and they also remained consistently
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above 10◦C in late August and the first half of September. The summer of 2018 was also warm, but not as exceptional as that

of 2019. Precipitation also varied, with 2019 being the wettest and 2018 the driest of the three (Fig. S1b).95

3 Methods

3.1 Subsidence from radar interferometry

3.1.1 Sentinel-1 observations

To estimate surface displacements at a resolution of 60 m, we used Sentinel-1 observations between early June and mid-

September 2017–2019. The Sentinel-1 observations (Torres et al., 2012; Copernicus Sentinel, 2020) were acquired at a fre-100

quency of 5 GHz with VV polarization in the Interferometric Wide mode (single-look resolution of ∼10 m). Acquisitions from

an easterly look direction (37 degrees incidence angle; descending orbit; path 15, frame 367) were available at 12-day intervals.

There was one exception in 2017, during which a gap of 18 days occurred.

3.1.2 Estimating subseasonal subsidence time series

To estimate a subseasonal displacement d time series from the Sentinel-1 observations Copernicus Sentinel (2020), we ap-105

plied Short BAseline Subset (SBAS) processing (Berardino et al., 2002). The rationale of this Interferometric SAR (InSAR)

approach is to derive displacement time series from redundant interferograms. We first formed interferograms with temporal

separations of up to 24 days, using spectral diversity techniques for coregistration (Scheiber and Moreira, 2000) and removing

the topographic phase contribution using the TanDEM-X DEM (Rizzoli et al., 2017; TanDEM-X DLR, 2020). After multi-

looking to a resolution of 60 m, we unwrapped the interferograms using SNAPHU (Statistical-Cost, Network-Flow Algorithm110

for Phase Unwrapping; Chen and Zebker (2001)). Ionospheric phase corrections were deemed to be unnecessary. We then es-

timated the displacement time series, with a temporal sampling of 12 days, from the interferogram stack. We used a weighted

least squares approach based on the singular value decomposition (Berardino et al., 2002), with the weights determined by the

Cram’er-Rao phase variance estimate (Tough et al., 1995).

The time series are reported as displacements d along the line-of-sight direction, with positive values corresponding to115

increasing distance. Owing to the hilly terrain, we chose not to convert them to vertical displacements. However, we did

not discern aspect-dependent trends that are associated with downslope movements. For simplicity’s sake, we will refer to

displacements with increasing distance as subsidence. To emphasize the late-season subsidence, we set the zero point of the

relative subsidence time series to be at the beginning of the late season t1 (default: 10 August).

3.1.3 Referencing and assessing its quality120

To reduce long-wavelength atmospheric errors in the subsidence observations, we spatially referenced the raw time series at

multiple locations with outcropping bedrock or a thin rubble veneer. These locations were assumed to be stable (Reger and

Solie, 2008; Antonova et al., 2018).
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Late-season subsidence from spline fitting
a) Spline basis functions b) Quality assessment of the referencing
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Figure 3. a) The three cubic spline basis functions, distinguished by colour, used for estimating early–mid-season and de late-season dl

subsidence. b) Estimated de and dl over the validation points, with the individual values for all points and years shown at the top, and a

kernel density estimate of the distribution below.

To assess the quality of the referencing, we chose eight bedrock validation points distributed across the study region. Assum-

ing these points to remain stable, the subsidence observations at these locations are a measure of the observational uncertainty.125

This uncertainty estimate subsumes decorrelation errors and uncompensated atmospheric contributions under a single number.

3.1.4 Late-season subsidence from spline fitting

We estimated the late-season subsidence dl by fitting spline basis functions to the referenced subsidence time series. The

advantage of fitting a flexible and yet simple spline function is that measurement noise, such as residual atmospheric errors,

can be reduced (Berardino et al., 2002).130

To capture a range of subseasonal subsidence patterns, we used three cardinal quadratic B-splines for the subsidence rate

(first derivative), corresponding to the cubic spline basis functions for the subsidence time series shown in Fig. 3a). For each

pixel, we estimated the three coefficients by ordinary least squares.

The late-season subsidence dl was defined to be the cumulative subsidence between 10 August (t1) and 10 September (t2)

for all years. We chose t1 such that the thaw front in an exceptionally warm summer could plausibly have reached the average135

long-term permafrost table. To test the sensitivity of the dl estimates to this choice, we also computed dl starting 10 days earlier

or later. The end point t2 was chosen to minimize the confounding impact of diurnal frost heave (Chen et al., 2020). We expect

the thaw front to be within <5% of its seasonal maximum at t2. For the specified values of t1 and t2, we derived dl from the

spline fit.

We also estimated total subsidence during the early and mid thaw season (10 June to 10 August), de. While de is not expected140

to contain direct information about permafrost ground ice, being sensitive to soil texture and interannual variations in active

layer moisture (Lewkowicz, 1992; Harris et al., 2011), it provides a simple reference for assessing the late-season speed-up

characteristic of melting top-of-permafrost excess ground ice.
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3.2 Assessment with independent ground ice data

3.2.1 Manual mapping145

We assessed the suitability of late-season subsidence as an indicator of permafrost ground ice content by comparing the InSAR

observations to an independently derived ground ice map, published as Zwieback (2020a). The map comprised two primary

categories: ice rich and ice poor. To assess the sensitivity and specificity, we computed the observed late-season subsidence

distributions conditional on the location being ice rich and ice poor, respectively.

The independently derived ground ice map was obtained using manual interpretation and expert knowledge, drawing on150

field observations and high-resolution (∼1 m) satellite imagery. The mapped focus area, 8 km by 8 km in size, was chosen

because of the wide range of ecotypes and the availability of field observations. A drawback of the map are its gaps, as ice-rich

permafrost cannot be identified reliably in areas that lack unambiguous indicators. Furthermore, six percent of the area were

discarded in the comparison to avoid unrepresentative values over lakes and infrastructure.

The key considerations in the manual mapping were:155

1. Ice-rich permafrost was assigned to ecotypes where high-resolution imagery and field observations revealed direct in-

dicators of excess ice at the top of permafrost. Ice wedge polygons – some only barely visible or inconspicuous except

along lakeshores and beaded streams, others in an advanced state of degradation – are widespread (Fig. 4). They are

abundant in old alluvial and lacustrine deposits (DOWL Engineers, 1994; Shannon & Wilson, Inc., 2006), as well as in

colluvial sediments that are rich in retransported silt (DOWL Engineers, 1994).160

2. A major caveat is that the presence of ice wedges provides no direct information on the ice content in the polygon

interiors. However, previously taken cores (by Shannon & Wilson, Inc. (2006); to be discussed later) from centres in

various terrain units were ice rich, and the presence and ongoing expansion of thermokarst ponds and lakes also provides

support for this assumption.

3. Pingos in drained lake basins are also direct indicators of excess ground ice (Mackay, 1973).165

4. Exposed bedrock and rubble-covered surfaces (Fig. 4b) were classified as ice poor. This classification is generally sup-

ported by geotechnical investigations and field evidence from the study area (Pewe et al., 1958; DOWL Engineers, 1994).

Deviations from this general pattern cannot be excluded (Robinson and Pollard, 1998; French and Shur, 2010).

5. Active and recent inactive floodplains were categorized as ice poor (Fig. 4a; DOWL Engineers (1994)) because near-

surface permafrost, where present, is too young for abundant ground ice to have aggraded (Jorgenson et al., 1998). We170

did not observe any indications of abundant excess ground ice in these ecotypes.

6. Such indirect indicators as vegetation cover and surficial geology were used to classify areas as ice rich where similar

adjacent areas were clearly ice rich. For instance, if polygons were visible over 80% of an alluvial deposit, the entire

deposit was classified as ice rich (Fig. 4a).

7



Manual mapping of permafrost ground ice
a) Alluvial & floodplain b) Colluvial & bedrock
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Figure 4. Manual classification into ice-rich and ice-poor terrain relies heavily on visible manifestations of ground ice. a) Ice-rich predomi-

nantly alluvial deposits on the left, as indicated by ice wedge polygons (inundated troughs; heterogeneous vegetation communities; cut bank

morphology), whereas the active floodplain of the Wulik river on the right is ice poor. b) Hillslope sequence with the ice-poor nature of the

ridge (right) being indicated by bedrock and rubble; there is little evidence for or against ice richness near the top of the slope (middle);

the midslope hosts abundant but faint polygons (inset). For visual display purposes, the boundaries have been shifted. The two locations are

identified in Fig. 7b)

7. The ice content of the remaining locations was deemed to be indeterminate. The majority of these locations are in uplands175

and on hillslopes, where ice content is inherently variable (Morse et al., 2009). In Fig. 4b, the areas above the clearly

ice-rich toe and midslope deposits (Fig. 4b) lack visible manifestations of ice-rich permafrost, but it is known that some

are ice rich (Shannon & Wilson, Inc., 2006). Floodplain deposits of intermediate age (between recent inactive and old

abandoned floodplains) were also classified as indeterminate (Jorgenson et al., 1998).

The mapping process is inherently subjective. The discretization of top-of-permafrost excess ground ice into a limited num-180

ber of categories present challenges (Tryck Nyman Hayes, 2006; Paul et al., 2020). The most difficult decisions were about

where to draw the line between the ice-rich/ice-poor and the indeterminate category.

3.2.2 Cores

We also compared the late-season subsidence observations to geotechnical assessments of permafrost ground ice content from

>3 m deep cores. The cores were taken in 2005 by Shannon & Wilson, Inc. to investigate the suitability of three proposed185

relocation sites for Kivalina (Shannon & Wilson, Inc., 2006). Where polygons were discernable at the surface, cores were

taken from the polygon centres (in one case: centre and wedge).
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Ice-rich permafrost was encountered underneath all sites, but the Tatchim Isua site (Fig. 5) also encompassed an ice-poor

bench. The ice-rich nature of the area surrounding the ice-poor bench was not evident at the surface; it only became conspicuous

at the surface ∼300 m upslope, in the form of faint polygons (Shannon & Wilson, Inc., 2006).190

Although coring is the most reliable method for determining ground ice content, the spatial and temporal representativeness

of the cores need to be considered. The point observation a single core represents could paint a misleading picture of ground

ice content (Morse et al., 2009; Kanevskiy et al., 2017) when compared to a ∼60 m resolution cell. The cores were further

taken a decade before the remote sensing observations. However, none of the locations showed signs of severe disturbance, and

the observed thickness of the ice-rich layer at the top of permafrost, where present, exceeded 30 cm (Shannon & Wilson, Inc.,195

2006).

We classified the cores as ice poor and ice rich based on the descriptions in the geotechnical report (Shannon & Wilson, Inc.,

2006). The ground ice content of each core was summarized verbally as ice rich or ice poor, complemented by pictures and

estimates of the visible ice content. All cores but one were ice rich with visible ice contents >30% in the form of segregated

and massive ice. The only ice-poor core, from the bench, was a gravelly soil grading into weathered bedrock (5% visible ice200

content in joints). Two cores taken from within the same ice wedge polygon were combined for the comparison exercise. Tab.

S1 summarizes the locations and ground ice properties of all 13 coring locations.

4 Results

4.1 Spatial and temporal variability of late-season subsidence

4.1.1 Regional variability205

The observed late-season subsidence in our study area showed two distinct modes in 2019 (Fig. 5a). One corresponded to no

or very small subsidence (-1 – 1 cm). The other corresponded to regions with elevated subsidence (4–8 cm) in 2019. In 2017,

the subsidence in these regions was lower (1–4 cm). There were no notable instances of pronounced negative estimates in any

of the years.

Late-season subsidence was consistently low in elevated uplands (e.g. bedrock or talus without vegetation cover) and along210

rivers (recent floodplains without or with dense vegetation cover; Fig. 5a–b). This association supports the assumption that the

reference and validation points on bedrock (circles in Fig. 5) , could be assumed to be stable. The early–mid and late-season

subsidence observations at the validation points, shown in Fig. 3b) had a root-mean-square deviation of 0.6 cm.

Other low-lying areas and many hillslopes exhibited elevated late-season subsidence, especially in the exceptionally warm

summer of 2019 (Fig. 5). Late-season subsidence commonly exceeded 4–8 cm in 2019, whereas it rarely exceeded 3–4 cm in215

the average summer of 2017.
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Maps of late-season subsidence
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Figure 5. Regional variability of remotely sensed late-season (after 10 August) subsidence dl within the study area, defined in Fig. 2. a) dl in

the exceptionally warm summer of 2019; b) dl in the average summer of 2017, with missing values shown in light blue. c) Sentinel-2 false-

colour composite image (Copernicus Sentinel, 2020); d) Topography estimated from the TanDEM-X DEM. The reference and validation

points (Sec. 3.1.3) for the Sentinel-1 subsidence estimates are indicated by white and black circles, respectively; the locations of the ground

ice cores are shown by triangles; the labelled diamonds refer to points shown in Fig. 10. The focus area for manual mapping and the Tatchim

Isua candidate relocation site are shown in d).
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Temporal variability of remotely sensed subsidence
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Figure 6. Subsidence time series (line: spline fit, markers: unconstrained) from all three years. The locations shown in a–c) are shown in Fig.

7c.

4.1.2 Temporal variability

The late-season subsidence exhibited more year-to-year variability than the early–mid-season subsidence (Fig. 5, S2). Three

examples in Fig. 6 illustrate the inter-annual variability of the subsidence time series.

An acceleration of subsidence in 2019 was observed in two locations that were independently determined to be ice rich (Fig.220

6 a and b). According to the radar observations, the rate of subsidence more than doubled in the late season. The rate and the

total subsidence of ∼ 5cm during the late season is approximately a factor of three smaller in the years 2017 and 2018.

For the ice-poor floodplain in Fig. 6c, the interannual variability in late-season subsidence was less than 1 cm. The magnitude

of the late-season subsidence was always small, comparable to the observational uncertainty in all years.

4.2 Assessing the suitability as an indicator of top-of-permafrost ground ice225

4.2.1 Suitability in an exceptionally warm summer

Late-season subsidence in the hot summer of 2019 was markedly different for ice-rich and ice-poor areas (Fig. 7a). It exceeded

4 cm at all cored locations rich in top-of-permafrost ground ice. For the ice-rich areas, as determined by independent manual

mapping , dl varied between 4 and 8 cm (5th and 95th percentile; Fig. 7c–d). For ice-poor areas the 5th–95th percentile range

was -1 to 2 cm. Only in the extreme tails (2%) do the distributions overlap, ensuring a robust separability of the two classes.230

Based on the distributions, we applied a threshold of 2.5 cm to separate ice-rich from ice-poor permafrost (Fig. 7e).

The separability based on the 2019 late-season subsidence dl is better than that based on the early–mid-season subsidence

de. The de distributions of ice-rich and ice-poor areas overlap (Fig. 8c), whereas the dl distributions are concentrated around

two separate peaks (see also Fig. 7a). When the start of the late-season period is pushed backward, the separability based on

de improves whereas that based on dl decreases (Fig. S3).235

The candidate relocation site Tatchim Isua was characterized by a narrow zone with low late-season subsidence (Fig. 9). This

∼100 m wide zone largely coincides with the gravel-covered bench that a single core from 2005 (Tab. S1) indicates to be ice
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Assessing late-season subsidence as indicator of ice-rich near-surface permafrost
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Figure 7. Assessment of late-season subsidence with respect to an independent ground ice map of the focus area defined in Fig. 5. a) Little

overlap between the distributions of late-season subsidence dl in 2019 over areas independently determined to be ice rich and ice poor.

The markers just below the kernel density estimates further show the observations at the boring locations (triangles in Fig. 5). b) Sentinel-2

false-colour composite (Copernicus Sentinel, 2020) for the focus area defined in Fig. 2. c) The estimated dl; d) the independently determined

ground ice map; and e) the ground ice classification obtained by thresholding dl. The diamonds indicate points mentioned in Figures 6 and

10.
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Separability of ice-rich and ice-poor permafrost

0 4 8

0

4

8

a) 2017: average summer
la

te
-s

ea
so

n
su

bs
id

en
ce
d
l

[c
m

]

0 4 8

b) 2018: warm summer

early–mid-season subsidence de [cm]de [m] de [m]
0 4 8

c) 2019: extreme summer

ice poor

ice rich

Figure 8. Contours plot of a kernel density estimate of the early–mid-season and late-season subsidence for ice rich (purple) and ice poor

(grey), as determined independently by manual mapping (Fig. 7c). The markers correspond to the values observed at the location of the ice

cores (triangles in Fig. 5)
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Figure 9. The late-season subsidence in 2019 a) at the Tatchim Isua site (see Fig. 5 for its location) is smaller at the site of the gravelly bench,

which appears grey in the false-colour composite (courtesy of Planet Labs, Inc.; Planet Team (2020)) in b), than the areas further upslope

(right) and downslope (left). The triangles mark the location of the ice cores, with the colour indicating their ice content. Ice wedge polygons

were observed in the field ∼300 m upslope from the bench.
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Subsidence time series from an exceptionally warm summer
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Figure 10. Subsidence time series (line: spline fit, markers: unconstrained) from 2019 for points shown in 7d). First row a–d): points that

were independently determined to be ice rich; second row e–h) indeterminate according to manual mapping, but dl > 2.5cm indicates they

are ice rich; third row i–l): independently determined to be ice poor; fourth row m–p): indeterminate according to manual mapping, but dl

indicates they are ice poor.

poor (Shannon & Wilson, Inc., 2006). Late-season subsidence was elevated (∼7 cm) at the location of the seven cores further

downslope or upslope. All cores contained ice-rich materials at the top of permafrost, but in the field the ice-rich nature was

not readily apparent at the surface near the proximal coring locations (Shannon & Wilson, Inc., 2006). Visible manifestations240

of ground ice, in the form of faint polygons, were observed ∼400 m upslope from the bench.

Further examples from a range of geologic settings serve to illustrate the suitability of dl for identifying ice-rich permafrost.

Fig. 10a–d shows instances of ice-rich permafrost with ice wedge polygons. They all exhibited elevated dl of 4–8 cm, corre-

sponding to an increased subsidence rate during the late season. Conversely, the observed subsidence was below 1 cm for the

points shown in Fig. 10i–l, which were independently determined to be poor in ground ice because of their young age, such as245

active and inactive floodplains, or because the formation of excess ice is impeded by their composition.

The most interesting cases are those 19% of the area where the manual ground ice mapping was indeterminate because there

was no strong evidence for either category. They exhibited a bimodal distribution of dl (Fig. 7a). The larger mode dl∼ 5 cm,
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comparable to those of ice-rich areas. Examples include colluvial hillslope deposits without conspicuous ground ice indicators

(Fig. 10e–h). The characteristic late-season acceleration in subsidence leading to elevated dl∼ 5 cm uniquely indicates that250

the top of the permafrost is ice rich. The smaller mode dl∼ 1 cm roughly matches the observations over ice-poor terrain. The

negligible subsidence observed at the locations shown in Fig. 10m–p suggests that the materials that thawed late in summer

contained little excess ice.

4.2.2 Suitability in cooler years

In the average year of 2017, the suitability was reduced because the late-season subsidence distributions of ice-rich and ice-255

poor regions overlapped substantially (Fig. 8a). The late-season subsidence dl of 80% of the terrain that was mapped to be ice

rich and all the coring locations was less than 2 cm. On average, it was a factor of 5 smaller than during 2019.

In the warm summer of 2018, the separability based on the dl distributions was intermediate. The distributions overlapped

at the 10% level (Fig. 8b), compared to 2% in 2019. This is largely due to the smaller late-season subsidence of ice-rich terrain

compared to the exceptionally warm summer of 2019.260

5 Discussion

5.1 Suitability for identifying vulnerable top-of-permafrost ground ice

Comparing the late-season subsidence to the independently determined ground ice map and the ice cores, we note that ice-

poor and ice-rich permafrost are well distinguishable in the exceptionally warm summer of 2019 (Fig. 7). Ice-poor areas were

stable, whereas ice-rich areas exhibited pronounced (∼ 5 cm) late-season subsidence (Fig. 10). We suggest that the elevated265

late-season subsidence was caused by the melt of vulnerable top-of-permafrost ground ice.

The late-season speed-up in subsidence is interpreted as the thaw front penetrating ice-rich materials at the top of permafrost

(Harris et al., 2011). A characteristic feature is that the subsidence rate increased up to fivefold in late summer (Fig. 10). This

acceleration is thought to stem from the contrast between the ice-rich intermediate layer (or massive ice) and the comparatively

ice-poor lower half of the active layer and the transient layer, where present (Matsuoka, 2001; Shur et al., 2005; French and270

Shur, 2010). In practical terms, the acceleration increases the robustness of the separability with respect to the chosen starting

day of the late season period (Fig. S3), thus facilitating the identification of vulnerable top-of-permafrost ground ice.

Elevated late-season subsidence indicates that top-of-permafrost excess ice is present and vulnerable. It is vulnerable be-

cause subsidence corresponds to initial degradation, under the assumptions of Eq. 1. If the ice-rich layer is thick, late-season

subsidence can be a subtle precursor for long-term terrain instability (Kanevskiy et al., 2017).275

Inter-annual variability in late-season subsidence of ice-rich areas poses challenges for ground ice mapping. Potential sources

of inter-annual variability and trends include surface changes (e.g., soil moisture, disturbance, snow) and variable meteorolog-

ical conditions such as precipitation (Shiklomanov et al., 2010; Bartsch et al., 2019; Douglas et al., 2020). Memory effects

could also be relevant. Taking the ice-rich area in Figure 6a) as an example, we speculate that thaw of materials with moderate
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excess ice contents (transient layer) at the end of the warm summer of 2018 (limited late-season subsidence of ∼ 2 cm) could280

have promoted larger subsidence in 2019 by weakening the protection given to the subjacent materials richer in excess ice

(intermediate layer, massive ice). Equally, the summer of 2018 may not have been warm (and wet) enough to allow for reliable

identification of the vulnerable ground ice at this location. That the identification strategy presupposes an initial degradation of

ground ice constitutes its biggest limitation.

5.2 Limitations285

The excellent separability in our study area in the exceptionally warm summer does not imply that interferometric obser-

vations of late-season subsidence are a universally applicable basis for mapping ice-rich permafrost. Limitations arise from

observational uncertainties and from the imperfect sensitivity and specificity of subseasonal subsidence as an indicator of

top-of-permafrost excess ground ice.

5.2.1 Observational uncertainties290

Observational uncertainties chiefly arose from errors in the referencing, dominated by uncompensated atmospheric contribu-

tions, and from location-specific systematic and random errors.

The errors due to imperfect referencing were determined to be substantially smaller (1 cm; 3b) than the typical difference in

late-season subsidence between ice-rich and ice-poor permafrost terrain (5 cm; Fig. 7a).

This uncertainty metric does not account for systematic biases associated with changes in soil or vegetation moisture, as it295

was obtained from rocky, non-vegetated surfaces. Soil moisture commonly increases toward the end of the thaw season, which

would correspond to a spurious subsidence signal (De Zan et al., 2015). However, the worst-case estimates of the bias (∼ 1 cm

at C-band) are a factor of five smaller than the late-season subsidence observations (Zwieback et al., 2017). Vegetation moisture

in shrubs will decrease with senescence, corresponding to a spurious heave signal of ∼1 cm (Zwieback and Hajnsek, 2016).

The persistently small magnitude of the displacement estimates over shrub-covered inactive floodplains (Fig. 5) indicates that300

these systematic errors were not a major confounding factor in the present study. However, dedicated in-situ observations are

needed to accurately characterize the observational uncertainties. We expect these errors to be greater in densely vegetated,

often discontinuous, permafrost (Wang et al., 2020).

5.2.2 Limitations of late-season subsidence for identifying top-of-permafrost ground ice

The ample suitability of late-season subsidence for mapping ice-rich permafrost that we identified in the study area was ar-305

guably promoted by the exceptionally warm summer of 2019 and the high ice content at the top of permafrost. In less propitious

circumstances, its sensitivity and specificity may be reduced.

Its sensitivity is impaired when excess ground ice does not manifest as elevated late-season subsidence. Such false negatives

occurred for instance in the warm summer 2018 (Fig. 8b), indicating that the thaw front did not penetrate substantially into the

ice rich materials in the upper permafrost (Harris et al., 2011). The ice content at the very top of permafrost can be reduced310
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because the transient layer is subject to thawing in occasional warm summers (Shur et al., 2005). It then takes an exceptionally

warm summer such as 2019, or disturbances like vegetation die-off (Jorgenson et al., 2015), for deep thaw of the intermediate

layer or massive ice bodies to enhance late-season subsidence.

False negatives – even in an extremely warm summer – are expected to occur most commonly in the discontinuous and

sporadic permafrost zone. There, disturbances such as forest fires are more likely to have obliterated the ecosystem-protected315

or ecosystem-driven perennial ground ice near the surface (Jorgenson et al., 2010; Kanevskiy et al., 2012, 2014; Paul et al.,

2020), but see Burn (1997). Ice-rich permafrost may occur at depth, perhaps under a thick talik. The thermal regime of such

permafrost is more complex (Jorgenson et al., 2010; Connon et al., 2018), and melt-induced subsidence does not necessarily

occur primarily at the end of the thaw period. The sensitivity may further be diminished by sinkhole formation and piping un-

derneath cohesive materials such as peat (Osterkamp et al., 2000); or by the retardation of thaw consolidation due to inefficient320

drainage of the excess melt water (Morgenstern and Nixon, 1971).

The specificity is impaired when unrelated processes induce late-season subsidence. Gradual subsidence due to processes

such as organic layer degradation (Stephens et al., 1984) may be distinguished from the ground ice signals shown in Fig. 6a–b

by the late-season acceleration typical for ice-rich permafrost. Elevated late-season subsidence may also reflect ice content at

the bottom of the active layer. Cold permafrost and ample moisture supply promote ice segregation at the base of the active325

layer, which can be continuous with the intermediate layer (Mackay, 1981). Deformation related to precipitation events and

lateral flow may pose additional challenges, in particular in peatlands and on slopes (Roulet, 1991; Matsuoka, 2001; Gruber,

2020; Zhang et al., 2020). In hilly terrain it will be advantageous to resolve the downslope and surface-normal movement

components, but we currently lack adequate satellite observations to do so routinely. The limited downslope movements in our

study area likely contributed to the high specificity of late-season subsidence for mapping ice-rich permafrost.330

A final limitation of this study and the preceding discussion is that the complexity of ground ice was simplified to just two

categories: ice rich and ice poor. In reality, however, excess ground ice content is a continuous parameter (Morse et al., 2009;

Kanevskiy et al., 2012; Paul et al., 2020) whose magnitude could be constrained using late-season subsidence observations.

A big challenge, the sub-resolution spatial variability of ground ice, is exemplified by ice-wedge polygons. To what extent do

the satellite observations reflect the wedges and the polygon interior, and how does it vary with factors such as ice content of335

the centres and the thickness distribution of the protective layer above the wedges? Quantitative answers will require densely

sampled ground ice cores (Morse et al., 2009; Jorgenson et al., 2010).

5.3 Enhancing automated ground ice mapping

Late-season subsidence can enhance the automated mapping of vulnerable permafrost ground ice. Remotely sensed late-season

subsidence can be mapped on pan-Arctic scales, thanks to the global availability of Sentinel-1 data. A further practical advan-340

tage is that it lends itself to automation, as no manual interpretation and no calibration using in-situ cores are required. To

automate the specification of the late-season period, globally available reanalysis data could be considered. Despite the poten-

tial for automation, we believe that the greatest potential lies in its synergistic use with expert knowledge, field observations

and complementary mapping approaches.
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Incorporating external constraints and expertise will be essential to counteract weaknesses of remotely sensed late-season345

subsidence. Site knowledge is indispensable for interpreting the stratigraphic complexity and sub-resolution variability of

ground ice conditions. Most importantly, independent observations will be needed to estimate excess ice at depth and thus

constrain total ice contents. External data can further assist in densely vegetated areas with larger errors (Wang et al., 2020)

and mitigate false negatives when the thaw front fails to penetrate deep into the ice-rich materials (Shur et al., 2005).

Late-season subsidence is complementary to state-of-the-art mapping approaches based on visible manifestations of ground350

ice and indirect associations with vegetation cover or topographic variables. The greatest contribution of late-season subsidence

will likely be where field observations are sparse or where ground ice is indistinct and poorly correlated with surface charac-

teristics. Examples include uplands and hillslopes (Fig. 9), as well as areas underlain by ice wedges from the early Holocene

or the Pleistocene (Pewe et al., 1958; Dredge et al., 1999; Reger and Solie, 2008; Morse et al., 2009; Jorgenson et al., 2015;

Farquharson et al., 2016).355

6 Conclusions

We studied the late-season subsidence of permafrost terrain in northwestern Alaska. We predicted that ice-rich near-surface

permafrost would become detectable by enhanced subsidence toward the end of an exceptionally warm summer. By comparing

Sentinel-1 satellite observations of subsidence with independent ground ice data, we assessed the suitability of late-season

subsidence as an indicator of excess ground ice at the top of permafrost. Our principal findings and conclusions are:360

1. In the exceptionally warm summer of 2019, the InSAR-derived late-season subsidence observations were large (∼ 4–

8 cm) in areas that were independently determined to be rich in top-of-permafrost ground ice. The acceleration of

subsidence is consistent with the degradation of vulnerable excess ice in the upper permafrost. Conversely, the observed

late-season subsidence was small (-1–2 cm) in ice poor areas.

2. Distinguishing ice-rich from ice-poor terrain worked best in the exceptionally warm summer, as the respective late-365

season subsidence distribution overlapped by less than 2%. In the preceding summers the overlap was 10% or larger.

3. Late-season subsidence can enhance the mapping of vulnerable excess ground ice and the susceptibility to terrain insta-

bility. A major strength is that it does not require conspicuous manifestations of excess ground ice, including degrada-

tional landforms. Late-season subsidence in a warm summer may be relatively small, but it can serve as an observable

precursor for much larger terrain changes.370

4. The suitability of late-season subsidence as an indicator of top-of-permafrost excess ice will not always be as high as in

this study. The greatest drawback is the lack of sensitivity when the thaw front does not penetrate deep into the ice-rich

layers. Another concern are observational limitations in forests.

5. Remotely sensed late-season subsidence complements established techniques for estimating ground ice contents, such

as manual mapping approaches that exploit visible manifestations of ground ice and indirect associations with surface375
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characteristics. Because late-season subsidence is insensitive to excess ice at depth, it will be essential to incorporate

geological reasoning and indirect associations established using in-situ observations for estimating total ice contents.

6. The practical advantages of remotely sensed late-season subsidence for mapping ice-rich permafrost include the pan-

Arctic availability of data, the ease of automation, and the independence from costly in-situ observations.

Pan-Arctic expansion of ground ice mapping using late-season subsidence is timely and societally relevant. It is timely380

because of the widespread warming and accelerating degradation of permafrost. It is relevant because we lack accurate, fine-

scale ground ice maps over essentially the entire Arctic. Late-season subsidence observations can make a vital contribution to

anticipating terrain instability in the Arctic and to sustainably stewarding its vulnerable ecosystems.
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(2020a), respectively. The Sentinel-1 and 2 data are freely available from Copernicus Sentinel (2020), and the MERRA-2 data from Global385

Modeling and Assimilation Office (2020). The Planet and TanDEM-X DEM data are available from Planet Team (2020) and TanDEM-X

DLR (2020), respectively.

Author contributions. SZ conceived of the idea and analysed the data. FJM provided guidance on the study design and the data processing.

Both authors contributed to the writing of the manuscript.

Competing interests. The authors declare no conflict of interest.390

Acknowledgements. The authors thank Trent Hubbard and Gabriel Wolken from the Alaska Division of Geological & Geophysical Surveys

for sharing field notes and their knowledge about the Kivalina area. They are grateful to Vladimir Romanovsky for discussions about thaw

consolidation.

The authors acknowledge support by the National Aeronautics and Space Administration, grant number 80NSSC19K1494.

19



References395

Antonova, S., Sudhaus, H., Strozzi, T., Zwieback, S., Kääb, A., Heim, B., Langer, M., Bornemann, N., and Boike, J.: Thaw subsidence of a

yedoma landscape in northern Siberia, measured in situ and estimated from TerraSAR-X interferometry, Remote Sensing, 10, 494, 2018.

Bartsch, A., Leibman, M., Strozzi, T., Khomutov, A., Widhalm, B., Babkina, E., Mullanurov, D., Ermokhina, K., Kroisleitner, C., and

Bergstedt, H.: Seasonal Progression of Ground Displacement Identified with Satellite Radar Interferometry and the Impact of Unusually

Warm Conditions on Permafrost at the Yamal Peninsula in 2016, Remote Sensing, 11, https://doi.org/10.3390/rs11161865, https://www.400

mdpi.com/2072-4292/11/16/1865, 2019.

Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A new algorithm for surface deformation monitoring based on

small baseline differential SAR interferograms, IEEE Transactions on Geoscience and Remote Sensing, 40, 2375–2383,

https://doi.org/10.1109/TGRS.2002.803792, 2002.

Borge, A. F., Westermann, S., Solheim, I., and Etzelmüller, B.: Strong degradation of palsas and peat plateaus in northern Norway during the405

last 60 years, The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, 2017.

Box, J. E., Colgan, W. T., Christensen, T. R., Schmidt, N. M., Lund, M., Parmentier, F.-J. W., Brown, R., Bhatt, U. S., Euskirchen,

E. S., Romanovsky, V. E., Walsh, J. E., Overland, J. E., Wang, M., Corell, R. W., Meier, W. N., Wouters, B., Mernild, S., Mård,

J., Pawlak, J., and Olsen, M. S.: Key indicators of Arctic climate change: 1971–2017, Environmental Research Letters, 14, 045 010,

https://doi.org/10.1088/1748-9326/aafc1b, https://doi.org/10.1088%2F1748-9326%2Faafc1b, 2019.410

Burn, C. R.: Cryostratigraphy, paleogeography, and climate change during the early Holocene warm interval, western Arctic coast, Canada,

Canadian Journal of Earth Sciences, 34, 912–925, https://doi.org/10.1139/e17-076, 1997.

Chen, C. W. and Zebker, H. A.: Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimiza-

tion, J. Opt. Soc. Am. A, 18, 338–351, https://doi.org/10.1364/JOSAA.18.000338, http://josaa.osa.org/abstract.cfm?URI=josaa-18-2-338,

2001.415

Chen, J., Wu, Y., O’Connor, M., Cardenas, M. B., Schaefer, K., Michaelides, R., and Kling, G.: Active layer freeze-thaw

and water storage dynamics in permafrost environments inferred from InSAR, Remote Sensing of Environment, 248, 112 007,

https://doi.org/https://doi.org/10.1016/j.rse.2020.112007, http://www.sciencedirect.com/science/article/pii/S0034425720303771, 2020.

Connon, R., Devoie, É., Hayashi, M., Veness, T., and Quinton, W.: The influence of shallow taliks on permafrost thaw and active layer

dynamics in subarctic Canada, Journal of Geophysical Research: Earth Surface, 123, 281–297, 2018.420

Copernicus Sentinel: Copernicus Open Access Hub, https://scihub.copernicus.eu, https://scihub.copernicus.eu, 2020.

De Zan, F., Zonno, M., and Lopez-Dekker, P.: Phase Inconsistencies and Multiple Scattering in SAR Interferometry, IEEE Transactions on

Geoscience and Remote Sensing, 53, 6608 – 6616, 2015.

Douglas, T. A., Turetsky, M. R., and Koven, C. D.: Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal

ecosystems, NPJ Climate and Atmospheric Science, 3, 1–7, 2020.425

DOWL Engineers: City of Kivalina Relocation Study, Tech. rep., 1994.

Dredge, L. A., Kerr, D. E., and Wolfe, S. A.: Surficial materials and related ground ice conditions, Slave Province, N.W.T., Canada, Canadian

Journal of Earth Sciences, 36, 1227–1238, https://doi.org/10.1139/e98-087, 1999.

Farquharson, L., Mann, D., Grosse, G., Jones, B., and Romanovsky, V.: Spatial distribution of thermokarst terrain in Arctic Alaska, Geomor-

phology, 273, 116 – 133, https://doi.org/https://doi.org/10.1016/j.geomorph.2016.08.007, http://www.sciencedirect.com/science/article/430

pii/S0169555X1630191X, 2016.

20

https://doi.org/10.3390/rs11161865
https://www.mdpi.com/2072-4292/11/16/1865
https://www.mdpi.com/2072-4292/11/16/1865
https://www.mdpi.com/2072-4292/11/16/1865
https://doi.org/10.1109/TGRS.2002.803792
https://doi.org/10.5194/tc-11-1-2017
https://doi.org/10.1088/1748-9326/aafc1b
https://doi.org/10.1088%2F1748-9326%2Faafc1b
https://doi.org/10.1139/e17-076
https://doi.org/10.1364/JOSAA.18.000338
http://josaa.osa.org/abstract.cfm?URI=josaa-18-2-338
https://doi.org/https://doi.org/10.1016/j.rse.2020.112007
http://www.sciencedirect.com/science/article/pii/S0034425720303771
https://scihub.copernicus.eu
https://doi.org/10.1139/e98-087
https://doi.org/https://doi.org/10.1016/j.geomorph.2016.08.007
http://www.sciencedirect.com/science/article/pii/S0169555X1630191X
http://www.sciencedirect.com/science/article/pii/S0169555X1630191X
http://www.sciencedirect.com/science/article/pii/S0169555X1630191X


French, H. and Shur, Y.: The principles of cryostratigraphy, Earth-Science Reviews, 101, 190 – 206,

https://doi.org/https://doi.org/10.1016/j.earscirev.2010.04.002, 2010.

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle,

R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R.,435

Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao,

B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), Journal of Climate, 30, 5419–5454,

https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.

Global Modeling and Assimilation Office: MERRA-2 statD_2d_slv_Nx: 2d, Daily, Aggregated Statistics, Single-Level, Assimilation, Single-

Level Diagnostics, Goddard Earth Sciences Data and Information Services Center, https://doi.org/10.5067/9SC1VNTWGWV3, https:440

//disc.gsfc.nasa.gov/datasets/M2T1NXLND_V5.12.4/, accessed in August 2020, 2020.

Gruber, S.: Ground subsidence and heave over permafrost: hourly time series reveal interannual, seasonal and shorter-term movement

caused by freezing, thawing and water movement, The Cryosphere, 14, 1437–1447, https://doi.org/10.5194/tc-14-1437-2020, https:

//tc.copernicus.org/articles/14/1437/2020/, 2020.

Harris, C., Kern-Luetschg, M., Christiansen, H. H., and Smith, F.: The Role of Interannual Climate Variability in Controlling Solifluction445

Processes, Endalen, Svalbard, Permafrost and Periglacial Processes, 22, 239–253, 2011.

Heginbottom, J. A.: Permafrost mapping: a review, Progress in Physical Geography: Earth and Environment, 26, 623–642,

https://doi.org/10.1191/0309133302pp355ra, https://doi.org/10.1191/0309133302pp355ra, 2002.

Jorgenson, M., Yoshikawa, K., Kanevskiy, M., Shur, Y., Romanovsky, V., Marchenko, S.and Grosse, G., Brown, J., and Jones, B.: Permafrost

characteristics of Alaska, in: Proceedings of the Ninth International Conference on Permafrost, Fairbanks, Alaska, 2008.450

Jorgenson, M. T., Romanovsky, V., Harden, J., Shur, Y., O’Donnell, J., Schuur, E. A. G., Kanevskiy, M., and Marchenko, S.: Resilience

and vulnerability of permafrost to climate change, Canadian Journal of Forest Research, 40, 1219–1236, https://doi.org/10.1139/X10-060,

2010.

Jorgenson, M. T., Kanevskiy, M., Shur, Y., Moskalenko, N., Brown, D. R. N., Wickland, K., Striegl, R., and Koch, J.: Role of ground ice

dynamics and ecological feedbacks in recent ice wedge degradation and stabilization, Journal of Geophysical Research: Earth Surface,455

120, 2280–2297, https://doi.org/10.1002/2015JF003602, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JF003602, 2015.

Jorgenson, T., Shur, Y., and Walker, H.: Evolution of a permafrost-dominated landscape on the Colville River Delta, northern Alaska, in:

Proceedings of the 7th InternationalConference On Permafrost, Yellowknife, Canada, 1998.

Kanevskiy, M., Shur, Y., Connor, B., Dillon, M., Stephani, E., and O’Donnell, J.: Study of Ice-Rich Syngenetic Permafrost for Road Design

(Interior Alaska), Proceedings of the Tenth International Conference on Permafrost, 2012.460

Kanevskiy, M., Jorgenson, T., Shur, Y., O’Donnell, J. A., Harden, J. W., Zhuang, Q., and Fortier, D.: Cryostratigraphy and

Permafrost Evolution in the Lacustrine Lowlands of West-Central Alaska, Permafrost and Periglacial Processes, 25, 14–34,

https://doi.org/10.1002/ppp.1800, https://onlinelibrary.wiley.com/doi/abs/10.1002/ppp.1800, 2014.

Kanevskiy, M., Shur, Y., Jorgenson, T., Brown, D. R., Moskalenko, N., Brown, J., Walker, D. A., Raynolds, M. K., and Buch-

horn, M.: Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska, Geomor-465

phology, 297, 20 – 42, https://doi.org/https://doi.org/10.1016/j.geomorph.2017.09.001, http://www.sciencedirect.com/science/article/pii/

S0169555X17303756, 2017.

Kokelj, S. V. and Jorgenson, M. T.: Advances in Thermokarst Research, Permafrost and Periglacial Processes, 24, 108–119,

https://doi.org/10.1002/ppp.1779, 2013.

21

https://doi.org/https://doi.org/10.1016/j.earscirev.2010.04.002
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.5067/9SC1VNTWGWV3
https://disc.gsfc.nasa.gov/datasets/M2T1NXLND_V5.12.4/
https://disc.gsfc.nasa.gov/datasets/M2T1NXLND_V5.12.4/
https://disc.gsfc.nasa.gov/datasets/M2T1NXLND_V5.12.4/
https://doi.org/10.5194/tc-14-1437-2020
https://tc.copernicus.org/articles/14/1437/2020/
https://tc.copernicus.org/articles/14/1437/2020/
https://tc.copernicus.org/articles/14/1437/2020/
https://doi.org/10.1191/0309133302pp355ra
https://doi.org/10.1191/0309133302pp355ra
https://doi.org/10.1139/X10-060
https://doi.org/10.1002/2015JF003602
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JF003602
https://doi.org/10.1002/ppp.1800
https://onlinelibrary.wiley.com/doi/abs/10.1002/ppp.1800
https://doi.org/https://doi.org/10.1016/j.geomorph.2017.09.001
http://www.sciencedirect.com/science/article/pii/S0169555X17303756
http://www.sciencedirect.com/science/article/pii/S0169555X17303756
http://www.sciencedirect.com/science/article/pii/S0169555X17303756
https://doi.org/10.1002/ppp.1779


Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R., and Lacelle, D.: Climate-driven thaw of permafrost preserved glacial landscapes, north-470

western Canada, Geology, 45, 371–374, https://doi.org/10.1130/G38626.1, http://geology.geoscienceworld.org/content/45/4/371, 2017.

Lewkowicz, A. G.: A solifluction meter for permafrost sites, Permafrost and Periglacial Processes, 3, 11–18,

https://doi.org/10.1002/ppp.3430030103, 1992.

Mackay, J. R.: The Growth of Pingos, Western Arctic Coast, Canada, Canadian Journal of Earth Sciences, 10, 979–1004,

https://doi.org/10.1139/e73-086, https://doi.org/10.1139/e73-086, 1973.475

Mackay, J. R.: Active layer slope movement in a continuous permafrost environment, Garry Island, Northwest Territories, Canada, Canadian

Journal of Earth Sciences, 18, 1666–1680, https://doi.org/10.1139/e81-154, https://doi.org/10.1139/e81-154, 1981.

Mackay, J. R.: Downward water movement into frozen ground, western arctic coast, Canada, Canadian Journal of Earth Sciences, 20, 120–

134, https://doi.org/10.1139/e83-012, 1983.

Mackay, J. R.: Some observations on the growth and deformation of epigenetic, syngenetic and anti-syngenetic ice wedges, Permafrost and480

Periglacial Processes, 1, 15–29, https://doi.org/10.1002/ppp.3430010104, 1990.

Matsuoka, N.: Solifluction rates, processes and landforms: a global review, Earth-Science Reviews, 55, 107 – 134,

https://doi.org/https://doi.org/10.1016/S0012-8252(01)00057-5, 2001.

Melvin, A. M., Larsen, P., Boehlert, B., Neumann, J. E., Chinowsky, P., Espinet, X., Martinich, J., Baumann, M. S., Rennels, L., Bothner, A.,

Nicolsky, D. J., and Marchenko, S. S.: Climate change damages to Alaska public infrastructure and the economics of proactive adaptation,485

Proceedings of the National Academy of Sciences, 114, E122–E131, https://doi.org/10.1073/pnas.1611056113, https://www.pnas.org/

content/114/2/E122, 2017.

Morgenstern, N. R. and Nixon, J. F.: One-dimensional Consolidation of Thawing Soils, Canadian Geotechnical Journal, 8, 558–565,

https://doi.org/10.1139/t71-057, https://doi.org/10.1139/t71-057, 1971.

Morse, P. D., Burn, C. R., and Kokelj, S. V.: Near-surface ground-ice distribution, Kendall Island Bird Sanctuary, western Arctic coast,490

Canada, Permafrost and Periglacial Processes, 20, 155–171, https://doi.org/10.1002/ppp.650, https://onlinelibrary.wiley.com/doi/abs/10.

1002/ppp.650, 2009.

O’Neill, H. B., Wolfe, S. A., and Duchesne, C.: New ground ice maps for Canada using a paleogeographic modelling approach, The

Cryosphere, 13, 753–773, https://doi.org/10.5194/tc-13-753-2019, https://tc.copernicus.org/articles/13/753/2019/, 2019.

Osterkamp, T. E., Viereck, L., Shur, Y., Jorgenson, M. T., Racine, C., Doyle, A., and Boone, R. D.: Observations of Thermokarst and Its495

Impact on Boreal Forests in Alaska, U.S.A., Arctic, Antarctic, and Alpine Research, 32, 303–315, http://www.jstor.org/stable/1552529,

2000.

Paul, J. R., Kokelj, S. V., and Baltzer, J. L.: Spatial and stratigraphic variation of near-surface ground ice in discontinuous permafrost of

the Taiga Shield, Permafrost and Periglacial Processes, n/a, https://doi.org/10.1002/ppp.2085, https://onlinelibrary.wiley.com/doi/abs/10.

1002/ppp.2085, 2020.500

Pewe, T., Hopkins, D., and Lachenbruch, A.: Engineering geology bearing on harbor site-selection along the Northwest coast of Alaska from

Nome to Point Barrow, Tech. rep., United States Department of the Interior, Geological Survey, 1958.

Planet Team: Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA, https://api.planet.com, 2020.

Pollard, W. H. and French, H. M.: A first approximation of the volume of ground ice, Richards Island, Pleistocene Mackenzie delta, Northwest

Territories, Canada, Canadian Geotechnical Journal, 17, 509–516, https://doi.org/10.1139/t80-059, https://doi.org/10.1139/t80-059, 1980.505

22

https://doi.org/10.1130/G38626.1
http://geology.geoscienceworld.org/content/45/4/371
https://doi.org/10.1002/ppp.3430030103
https://doi.org/10.1139/e73-086
https://doi.org/10.1139/e73-086
https://doi.org/10.1139/e81-154
https://doi.org/10.1139/e81-154
https://doi.org/10.1139/e83-012
https://doi.org/10.1002/ppp.3430010104
https://doi.org/https://doi.org/10.1016/S0012-8252(01)00057-5
https://doi.org/10.1073/pnas.1611056113
https://www.pnas.org/content/114/2/E122
https://www.pnas.org/content/114/2/E122
https://www.pnas.org/content/114/2/E122
https://doi.org/10.1139/t71-057
https://doi.org/10.1139/t71-057
https://doi.org/10.1002/ppp.650
https://onlinelibrary.wiley.com/doi/abs/10.1002/ppp.650
https://onlinelibrary.wiley.com/doi/abs/10.1002/ppp.650
https://onlinelibrary.wiley.com/doi/abs/10.1002/ppp.650
https://doi.org/10.5194/tc-13-753-2019
https://tc.copernicus.org/articles/13/753/2019/
http://www.jstor.org/stable/1552529
https://doi.org/10.1002/ppp.2085
https://onlinelibrary.wiley.com/doi/abs/10.1002/ppp.2085
https://onlinelibrary.wiley.com/doi/abs/10.1002/ppp.2085
https://onlinelibrary.wiley.com/doi/abs/10.1002/ppp.2085
https://doi.org/10.1139/t80-059
https://doi.org/10.1139/t80-059


Prowse, T. D., Furgal, C., Melling, H., and Smith, S. L.: Implications of Climate Change for Northern Canada: The Physical Environ-

ment, AMBIO: A Journal of the Human Environment, 38, 266 – 271, https://doi.org/10.1579/0044-7447-38.5.266, https://doi.org/10.

1579/0044-7447-38.5.266, 2009.

Reger, R. and Solie, D.: Reconnaissance interpretation of permafrost, Alaska Highway corridor, Delta Junction to Dot Lake, Alaska: Prelim-

inary Interpretive Report, Tech. Rep. 2008-3C, State of Alaska, Department of Natural Resources, Division of Geological & Geophysical510

Surveys, https://doi.org/10.14509/17621, 2008.

Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Borla Tridon, D., Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T., Huber, M., Wes-

sel, B., Krieger, G., Zink, M., and Moreira, A.: Generation and performance assessment of the global TanDEM-X digital elevation model,

ISPRS Journal of Photogrammetry and Remote Sensing, 132, 119 – 139, https://doi.org/https://doi.org/10.1016/j.isprsjprs.2017.08.008,

2017.515

Robinson, S. D. and Pollard, W. H.: Massive ground ice within Eureka Sound Bedrock, Ellesmere Island, Canada, in: Proceedings of the 7th

InternationalConference On Permafrost, Yellowknife, Canada, 1998.

Romanovsky, V. E., Drozdov, D. S., Oberman, N. G., Malkova, G. V., Kholodov, A. L., Marchenko, S. S., Moskalenko, N. G., Sergeev,

D. O., Ukraintseva, N. G., Abramov, A. A., Gilichinsky, D. A., and Vasiliev, A. A.: Thermal state of permafrost in Russia, Permafrost and

Periglacial Processes, 21, 136–155, https://doi.org/10.1002/ppp.683, 2010.520

Roulet, N. T.: Surface Level and Water Table Fluctuations in a Subarctic Fen, Arctic and Alpine Research, 23, 303–310,

https://doi.org/10.2307/1551608, 1991.

Scheiber, R. and Moreira, A.: Coregistration of interferometric SAR images using spectral diversity, IEEE Transactions on Geoscience and

Remote Sensing, 38, 2179–2191, 2000.

Segal, R. A., Lantz, T. C., and Kokelj, S. V.: Acceleration of thaw slump activity in glaciated landscapes of the Western Canadian Arctic,525

Environmental Research Letters, 11, 034 025, http://stacks.iop.org/1748-9326/11/i=3/a=034025, 2016.

Shannon & Wilson, Inc.: Geotechnical Investigation: Potential Relocation Sites, Kivalina, Alaska, Tech. rep., 2006.

Shiklomanov, N., Streletskiy, D., Nelson, F., Hollister, R., Romanovsky, V., Tweedie, C., Bockheim, J., and Brown, J.: Decadal varia-

tions of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska, Journal of Geophysical Research: Biogeosciences, 115,

https://doi.org/10.1029/2009JG001248, 2010.530

Shiklomanov, N. I., Streletskiy, D. A., Little, J. D., and Nelson, F. E.: Isotropic thaw subsidence in undisturbed permafrost landscapes,

Geophysical Research Letters, 40, 6356–6361, https://doi.org/10.1002/2013GL058295, 2013.

Shur, Y., Hinkel, K. M., and Nelson, F. E.: The transient layer: implications for geocryology and climate-change science, Permafrost and

Periglacial Processes, 16, 5–17, https://doi.org/10.1002/ppp.518, https://onlinelibrary.wiley.com/doi/abs/10.1002/ppp.518, 2005.

Stephens, J. C., Allen Jr, L., and Chen, E.: Organic soil subsidence, Reviews in Engineering Geology, 6, 107–122, 1984.535

TanDEM-X DLR: TanDEM-X Science Service System, https://tandemx-science.dlr.de, accessed in February 2020, 2020.

Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., Floury, N., Brown, M., Traver, I. N.,

Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L’Abbate, M., Croci, R., Pietropaolo, A., Huchler, M., and Rostan,

F.: GMES Sentinel-1 mission, Remote Sensing of Environment, 120, 9 – 24, https://doi.org/https://doi.org/10.1016/j.rse.2011.05.028,

http://www.sciencedirect.com/science/article/pii/S0034425712000600, the Sentinel Missions - New Opportunities for Science, 2012.540

Tough, R., Blacknell, D., and Quegan, S.: A statistical description of polarimetric and interferometric synthetic aperture radar, Proc. R. Soc.

Lond. A, 449, 567–589, 1995.

23

https://doi.org/10.1579/0044-7447-38.5.266
https://doi.org/10.1579/0044-7447-38.5.266
https://doi.org/10.1579/0044-7447-38.5.266
https://doi.org/10.1579/0044-7447-38.5.266
https://doi.org/10.14509/17621
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2017.08.008
https://doi.org/10.1002/ppp.683
https://doi.org/10.2307/1551608
http://stacks.iop.org/1748-9326/11/i=3/a=034025
https://doi.org/10.1029/2009JG001248
https://doi.org/10.1002/2013GL058295
https://doi.org/10.1002/ppp.518
https://onlinelibrary.wiley.com/doi/abs/10.1002/ppp.518
https://doi.org/https://doi.org/10.1016/j.rse.2011.05.028
http://www.sciencedirect.com/science/article/pii/S0034425712000600


Tryck Nyman Hayes: Relocation Planning Project Master Plan: Kivalina, Alaska, Tech. rep., U.S. Army Corps of Engineers Alaska District,

2006.

Wang, L., Marzahn, P., Bernier, M., and Ludwig, R.: Sentinel-1 InSAR measurements of deformation over discontinuous permafrost terrain,545

Northern Quebec, Canada, Remote Sensing of Environment, 248, 111 965, https://doi.org/https://doi.org/10.1016/j.rse.2020.111965, 2020.

Zhang, J., Liu, L., and Hu, Y.: Global Positioning System interferometric reflectometry (GPS-IR) measurements of ground surface elevation

changes in permafrost areas in northern Canada, The Cryosphere, 14, 1875–1888, https://doi.org/10.5194/tc-14-1875-2020, 2020.

Zhang, W., Witharana, C., Liljedahl, A. K., and Kanevskiy, M.: Deep Convolutional Neural Networks for Automated Characterization of

Arctic Ice-Wedge Polygons in Very High Spatial Resolution Aerial Imagery, Remote Sensing, 10, https://doi.org/10.3390/rs10091487,550

2018.

Zwieback, S.: Kivalina ground ice map (Version 1.0), https://doi.org/10.5281/zenodo.4072407, 2020a.

Zwieback, S.: Kivalina subsidence observations (Version 1.0), https://doi.org/10.5281/zenodo.4072257, 2020b.

Zwieback, S. and Hajnsek, I.: Influence of vegetation growth on the polarimetric DInSAR phase diversity – implications for deformation

studies, IEEE Trans. Geosc. Remote Sens., 54, 3070–3082, 2016.555

Zwieback, S., Hensley, S., and Hajnsek, I.: Soil Moisture Estimation Using Differential Radar Interferometry: Toward

Separating Soil Moisture and Displacements, IEEE Transactions on Geoscience and Remote Sensing, 55, 5069–5083,

https://doi.org/10.1109/TGRS.2017.2702099, 2017.

24

https://doi.org/https://doi.org/10.1016/j.rse.2020.111965
https://doi.org/10.5194/tc-14-1875-2020
https://doi.org/10.3390/rs10091487
https://doi.org/10.5281/zenodo.4072407
https://doi.org/10.5281/zenodo.4072257
https://doi.org/10.1109/TGRS.2017.2702099

