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Abstract. A wealth of research has focused on elucidating the key controls on mass loss from the Greenland and Antarctic ice 

sheets in response to climate forcing, specifically in relation to the drivers of marine-terminating outlet glacier change. The 10 

manual methods traditionally used to monitor change in satellite imagery of marine-terminating outlet glaciers are time-

consuming and can be subjective, especially where mélange exists at the terminus. Recent advances in deep learning applied 

to image processing have created a new frontier in the field of automated delineation of glacier calving fronts. However, there 

remains a paucity of research on the use of deep learning for pixel-level semantic image classification of outlet glacier 

environments. Here, we apply and test a two-phase deep learning approach based on a well-established convolutional neural 15 

network (CNN) for automated classification of Sentinel-2 satellite imagery. The novel workflow, termed CNN-Supervised 

Classification (CSC) is adapted to produce multi-class outputs for unseen test imagery of glacial environments containing 

marine-terminating outlet glaciers in Greenland. Different CNN input parameters and training techniques are tested, with 

overall F1 scores for resulting classifications reaching up to 94% for in-sample test data (Helheim Glacier) and 96% for out-

of-sample test data (Jakobshavn Isbrae and Store Glacier), establishing a state-of-the-art in classification of marine-terminating 20 

glaciers in Greenland. Predicted calving fronts derived using optimal CSC input parameters have a mean deviation of 56.17 m 

(5.6 pixels) and median deviation of 24.7 m (2.5 pixels) from manually digitised fronts. This demonstrates the transferability 

and robustness of the deep learning workflow despite complex and seasonally variable imagery. Future research could focus 

on the integration of deep learning classification workflows with free cloud-based platforms, to efficiently classify imagery 

and produce datasets for a range of glacial applications without the need for substantial prior experience in coding or deep 25 

learning. 
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1 Introduction 

Quantifying glacier change from remote sensing data is essential to improve our understanding of the impacts that climate 

change has on glaciers (Vaughan et al., 2013; Hill et al., 2017). In many glaciated areas, well-established semi-automated 30 

techniques such as image band ratio methods are used to extract glacier outlines for this purpose and to create glacier 

inventories (Paul et al., 2016). These methods are widely used in studies of mountain glaciers and ice caps (e.g., Bolch et al., 

2010; Frey et al., 2012; Rastner et al., 2012; Guo et al., 2015; Stokes et al., 2018). However, they are less effective for mapping 

more complex glaciated landscapes such as marine-terminating outlet glaciers, which often contain spectrally similar surfaces 

like mélange (a mixture of sea-ice and icebergs) near their calving fronts (Amundson et al., 2020).  35 

 

As a result, manual digitisation remains the most common technique used to delineate marine-terminating glaciers (e.g., Miles 

et al., 2016, 2018; Carr et al., 2017; Wood et al., 2018; Brough et al., 2019; Cook et al., 2019; King et al., 2020). Nonetheless, 

the labour-intense nature of manual digitisation can result in datasets with spatial or temporal limitations (Seale et al., 2011). 

With this in mind, the importance of processes occurring at marine-terminating outlet glaciers on a range of spatio-temporal 40 

scales (Amundson et al., 2010; Juan et al., 2010; Chauché et al., 2014; Carroll et al., 2016; Bunce et al., 2018; Catania et al., 

2018, 2020; King et al., 2018; Bevan et al., 2019; Sutherland et al., 2019; Tuckett et al., 2019) highlights the growing need for 

a more efficient method to quantify outlet glacier change, especially in an era of increasingly available satellite data.  

 

To confront this challenge, several specialised automated techniques reliant on traditional image processing and computer 45 

vision tools (i.e., semantic segmentation and edge detection) have been developed to extract ice fronts in Greenland and 

Antarctica (Sohn and Jezek, 1999; Liu and Jezek, 2004; Seale et al., 2011; Krieger and Floricioiu, 2017; Yu et al., 2019). 

Semantic segmentation, a term interchangeable with pixel-level semantic classification, divides an image into its constituent 

parts based on groups of pixels of a given class, and assigns each pixel a semantic label (Liu et al., 2019). It remains a core 

concept underlying more recent advancements which use deep learning approaches to classify imagery for more efficient 50 

automated calving front detection (Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019; Cheng et al., 2021).  

 

Deep learning is a type of machine learning in which a computer learns complex patterns from raw data by building a hierarchy 

of simpler patterns (Goodfellow et al., 2016). Convolutional Neural Networks (CNNs) are deep learning models specifically 

designed to process multiple 2D arrays of data such as multiple image bands (LeCun et al., 2015). They differ from 55 

conventional classification algorithms based solely on the spectral properties of individual pixels by detecting the contextual 

information in images such as shape and texture, in the same way a human operator would. This is beneficial for classification 

of complex environments with little contrast between spectrally similar surfaces (e.g., glacier ice/ice shelves, snow, mélange, 

and water containing icebergs) where traditional statistical classification techniques (e.g., maximum likelihood) produce more 

noisy classifications (Li et al., 2014). Previous studies which apply deep learning to detect the calving fronts of marine-60 
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terminating glaciers used a type of CNN called a Fully Convolutional Neural Network (FCN) (Ronneberger et al., 2015), and 

various post-processing techniques to extract the boundaries between 1) ice and ocean in Antarctica (Baumhoer et al., 2019), 

and 2) marine-terminating outlet glaciers and mélange/water in Greenland (Mohajerani et al., 2019; Zhang et al., 2019, Cheng 

et al., 2021). Calving fronts detected using these methods deviate by 38 to 108 m (<2 to 6 pixels) from manual delineations, 

providing an accurate automated alternative to manual digitisation.  65 

 

These approaches have so far relied on a binary classification of input images. For example, Baumhoer et al. (2019) used only 

two classes (land ice and ocean). Similarly, Zhang et al. (2019) classified images into ice mélange regions and non-ice mélange 

regions (the latter including both glacier ice and bedrock). While these methods are valuable for extracting glacier and ice shelf 

fronts to quantify fluctuations over time, they perhaps overlook the ability of deep learning methods to create highly accurate 70 

image classification outputs which contain more than two classes (i.e., not just ice and no-ice areas). Aside from calving front 

delineation, a method which produces multi-class image classifications could provide an efficient way to further elucidate 

processes and interactions controlling outlet glacier behaviour at high temporal resolution (e.g., calving events, the buttressing 

effects of mélange, subglacial plumes, and supra-glacial lakes). Moreover, deep learning has been used successfully in other 

disciplines to classify entire landscapes or image scenes to a high level of accuracy (Sharma et al., 2017; Carbonneau et al., 75 

2020a). In glaciology, CNNs have been used to map debris-covered land-terminating glaciers (Xie et al., 2020), rock glaciers 

(Robson et al., 2020), supraglacial lakes (Yuan et al., 2020) and snow cover (Nijhawan et al., 2019). Despite this, multi-class 

image classification of entire marine-terminating outlet glacier environments has not yet been tested using deep learning.  

 

Thus, the aim of this paper is to adapt a two-phase deep learning method which was originally developed to classify airborne 80 

imagery in fluvial settings (Carbonneau et al., 2020a) and test it on satellite imagery of marine-terminating outlet glaciers in 

Greenland. We first modify and train a well-established CNN using labelled image tiles from 13 seasonally variable images 

of Helheim Glacier, southeast Greenland. The two-phase deep learning approach is then applied to produce pixel-level 

classifications, from which calving front outlines are detected and error is estimated from manually delineated validation labels. 

We assess the sensitivity of the classification workflow to different image band combinations, training techniques, and model 85 

parameters for fine-tuning and transferability. Our objective is to establish and evaluate a workflow for multi-class image 

classification for glacial landscapes in Greenland which can be accessed and used rapidly without having specialised 

knowledge of deep learning or the need for time-consuming generation of substantial new training data. Furthermore, we aspire 

to exceed the current state-of-the-art for pixel-level image classification of marine-terminating outlet glacier landscapes. The 

methods developed here are trained and tested on glaciers in Greenland with a pre-defined set of seven image classes. 90 
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2 Methods 

2.1 Overview of CNN-Supervised Classification 

The classification workflow used here is termed CNN-Supervised Classification (CSC), and was originally developed and 

tested on airborne imagery (<10 cm resolution) to produce pixel-level landcover classifications of fluvial scenes (Carbonneau 

et al., 2020a). CSC is a two-phase workflow based on convolutional architectures which concatenates a CNN to a multilayer 95 

perceptron (MLP) or compact CNN (cCNN). The two-phase approach was designed to simulate traditional supervised 

classification techniques (Carbonneau et al., 2020a). In effect, a pre-trained CNN is used in the first phase of CSC to produce 

locally specific training labels for each individual input image, replacing manual collection of training data which is typically 

required for traditional machine learning classifiers (Carbonneau et al., 2020a). The phase one CNN therefore accounts for 

image heterogeneity and incorporates the specific illumination conditions and seasonal characteristics of each unseen image 100 

by detecting local predictive features like brightness, texture, and geometry (e.g., crevasses) in relation to class. Thus, the 

predictions of the phase one CNN provide bespoke training labels for pixel-level image classification in phase two.  

 

The pre-trained CNN applied in phase one of CSC falls into the category of supervised learning (Goodfellow et al., 2016) and 

is trained with a sample of image tiles which have been manually labelled according to class (training dataset). Each tile used 105 

to train the phase one CNN represents a sample of pure class (i.e., one class covers over 95% of the tile area) allowing the 

CNN to learn predictive features, and subsequently make class predictions for a tiled input image not previously seen in training 

(test dataset). During phase one of CSC, unseen test images are tiled and encoded in the form of 4D tensors which contain 

several separate tiles (dimensions: tiles, x, y, image bands). The pre-trained phase one CNN predicts a class for each input tile 

and the tiles are subsequently re-assembled in the shape of the original input image (Fig. 1). As shown in Fig. 1, this produces 110 

a one band class raster made up of tiles, each of which is denoted by a single integer representing its predicted class. In phase 

two, the phase one-predicted class raster and input image features are used to train a second model specific to the unseen input 

image. The predictions of this second model result in a final pixel-level image classification (Fig. 1).  

 

Since the phase one CNN predictions take the form of a tiled class raster, it is expected that individual tiles may straddle more 115 

than one class and result in inaccurate class boundaries. As a result, this will generate some error in the phase one predictions 

and therefore phase two training labels. Nonetheless, deep learning approaches have been found to tolerate noise in training 

labels (Rolnick et al., 2018). This is because the training process minimises overall error rather than memorising noise, meaning 

models can still learn a trend even if some labels are wrong. Likewise, the phase two models used in CSC are robust to noise 

and have been shown to overcome these errors with resulting pixel-level classifications following class boundaries much more 120 

accurately (Carbonneau et al., 2020a).  
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Figure 1: Conceptual diagram of the CNN-Supervised Classification workflow showing the production of a tiled class raster in phase 

one. Phase one predictions are then used as image-specific training labels for the phase two model which produces a final pixel-level 

classification. 125 
 

2.2. Study areas 

2.2.1 Training area: Helheim Glacier, SE Greenland 

An area spanning ~69 x 37 km (6875 x 3721 pixels) which includes Helheim Glacier (Fig. 2a), a major outlet of the south-

eastern Greenland Ice Sheet (GrIS), was chosen to adapt CSC for classification of marine-terminating outlet glacier landscapes 130 

and train the phase one CNN. Helheim is one of the five largest outlet glaciers of the GrIS by ice discharge (Howat et al., 2011; 

Enderlin et al., 2014) and has flow speeds of 5-11 km a-1 (Bevan et al., 2012). The glacier has a 48,140 km2 drainage basin 

(Rignot and Kanagaratnam, 2006) equivalent to ~4% of the ice sheet’s total area (Straneo et al., 2016), from which several 

tributaries converge into a ~6 km wide terminus. As shown in Fig. 2a, there is an extensive area of ice mélange adjacent to the 

terminus where it enters Sermilik Fjord and is influenced by ocean currents (Straneo et al., 2016). Inspection of available 135 

satellite imagery from 2019 revealed that the area of mélange varied seasonally with monthly variations in extension and 

composition as previously observed (Andresen et al., 2012, 2013).  

 

The glacier, fjord, and surrounding landscape provide an ideal training area for the deep learning workflow because they 

contain a number of diverse elements that vary over short spatial and temporal scales and are typical of other complex outlet 140 

glacier settings in Greenland. These characteristics include 1) seasonal variations in glacier calving front position; 2) weekly 

to monthly changes in the extent and composition of mélange; 3) sea-ice in varying stages of formation; 4) varying volumes 

and sizes of icebergs in fjord waters; 5) seasonal variations in the degree of surface meltwater on the glacier and ice mélange; 

6) short-lived, meltwater-fed glacial plumes which result in polynyas adjacent to the terminus; and 7) seasonal variations in 

snow cover on both bedrock and ice. The resulting spectral variations over multiple satellite images, in addition to potential 145 
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differences resulting from changes in illumination and weather, pose a considerable challenge to image classification. 

However, capturing these characteristics at the scale of an entire outlet glacier image scene is important for a more efficient 

and integrated understanding of how numerous glacial processes interact. Examination of imagery showing the seasonal 

change of the glacial landscape throughout 2019 resulted in the establishment of seven semantic classes, including: 1) open 

water, 2) iceberg water, 3) mélange, 4) glacier ice, 5) snow on ice, 6) snow on rock, and 7) bare bedrock (see class examples 150 

in Fig. 2b and detailed criteria for each in Table S1). Training and validation data for the phase one CNN applied in CSC was 

collected from the Helheim study area shown in Fig. 2 and labelled according to these seven classes. 

Figure 2: (a) Location of the area from which phase one CNN training data was extracted, showing Helheim Glacier (66.4° N, 38.8° 

W) and the surrounding landscape. Sentinel-2 image acquired on 15 June 2019. (b) Shows example image samples for each of the 

seven semantic classes used to train the phase one CNN. The outline of Greenland is from Gerrish (2020). 155 

 

2.2.2 Test areas: Helheim, Jakobshavn, and Store Glaciers 

The ability of a model to accurately predict the class of pixels in an unseen test image is called generalisation (Goodfellow et 

al., 2016) and determines the transferability of the model. To test the transferability of the CSC workflow adapted for marine-

terminating glacial landscapes in Greenland, we applied CSC to a test dataset composed of seasonally variable imagery from 160 

in-sample and out-of-sample study sites (Fig. 3). CSC was never tested on any image that was used in training. Rather the in-
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sample test dataset is compiled of images from the same glacier used in training but acquired on different dates to training 

data. The in-sample test site includes Helheim Glacier (Helheim) and has a slightly smaller area (~47 x 40 km, or 4711 x 3986 

pixels) compared to the training site (Fig. 3a).  

Figure 3: Test areas used to quantify the transferability of the CSC workflow. (a) The in-sample test area including Helheim Glacier. 165 
Example image acquired on 18 June 2019. (b) The out-of-sample test areas of Jakobshavn Isbrae (example image acquired on 21 

May 2020) and (c) Store Glacier (example image acquired on 28 June 2020). The outline of Greenland is from Gerrish (2020). 

 

 

The out-of-sample test areas contain Jakobshavn Isbrae (Jakobshavn) and Store Glacier (Store) in central west (CW) 170 

Greenland, and they represent outlet glacier landscapes never seen during training (Fig. 3b and c). The Jakobshavn site spans 

~36 x 23 km (3566 x 2265 pixels) while the Store site spans ~28 x 21 km (2797 x 2089 pixels). Both out-of-sample test sites 
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have notably different characteristics compared to the Helheim site, specifically in terms of glacier, calving front, and fjord 

shape, providing an adequate test of spatial transferability. Jakobshavn is the largest (by discharge) and fastest flowing outlet 

of the GrIS (Mouginot et al., 2019). The glacier discharges 45% of the CW GrIS (Mouginot et al., 2019) and has been 175 

undergoing terminus retreat, thinning, and acceleration over the past few decades (Howat et al., 2007; Joughin et al., 2008). 

As a result, the terminus of Jakobshavn is composed of two distinct branches which are no longer laterally constrained by fjord 

walls in the same manner as Helheim. Store Glacier is responsible for 32% of discharge from the CW GrIS (Mouginot et al., 

2019), but has remained relatively stable over the last few decades (Catania et al., 2018). The calving front of Store is laterally 

constrained by the walls of Ikerasak Fjord (Fig. 3c) and both Jakobshavn and Store glaciers have different flow directions in 180 

comparison to Helheim. The seven classes identified from the training area were also present in the out-of-sample test sites, 

including mélange which continuously occupied the fjord at Jakobshavn, and was sporadically present in front of Store Glacier 

throughout the range of test imagery acquired in 2020 (Fig. 3).       

 

2.3 Imagery  185 

To train and test the CSC workflow, Sentinel-2 image bands 4, 3, 2, and 8 (red, green, blue (RGB), and near infrared (NIR)), 

were used at 10 m spatial resolution. RGB bands are commonly selected for image classification with deep learning 

architectures, making existing CNNs easily transferable for the purpose of this study. Additionally, snow and ice have high 

reflectance in the NIR band which is often used in remote sensing of glacial environments, for example to identify glacier 

outlines using band ratios (e.g., Alifu et al., 2015). Initial testing revealed that the combination of RGB and NIR bands 190 

(collectively referred to as RGBNIR) improved classification results compared to using RGB bands alone (see section 2.6). 

Thus, four-band RGBNIR images of the study sites were used as CSC inputs. 

 

Cloud cover and insufficient solar illumination present challenges when using optical satellite imagery such as Sentinel-2 data, 

meaning data availability for the study sites was limited to cloud-free imagery from February to October. Despite these 195 

limitations, sufficient data were available to train and test CSC on seasonal timescales. Therefore, to best encompass the 

seasonally variable landscape characteristics and collect sufficient training data to represent intra-class variation, 13 cloud-free 

Sentinel-2 images of the Helheim training area, taken between February and October 2019, were acquired for phase one CNN 

training (Table S2 in the Supplement). Similarly, a seasonally variable test dataset composed of nine in-sample images from 

2019 with different dates to training data, and 18 out-of-sample images from February to October 2020 were acquired (Table 200 

S2 in Supplement). Level-2A products were downloaded from Copernicus Open Access Hub (available at: 

https://scihub.copernicus.eu/dhus/#/home, last accessed: 20/07/20) and RGBNIR images were created, cropped to the study 

sites, and saved in GeoTIFF format. Additionally, a whole unseen Sentinel-2 tile (10980 x 10980 pixels) acquired on 13 

September 2019 which included the entire landscape surrounding Helheim Glacier was used to test CSC over a larger spatial 

scale (i.e., more than a single glacier).  205 

https://scihub.copernicus.eu/dhus/#/home
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2.4 CSC model architectures and training 

2.4.1 Phase 1: model architecture 

For the base architecture of the pre-trained CNN used in phase one of CSC we adapted a well-established CNN called VGG16 

(Simonyan and Zisserman, 2015) which achieved state-of-the-art performance in the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) 2014. The architecture used consists of five stacks of 13 2D convolutional layers which have 3x3 pixel 210 

filters (Fig. 4). The filter spatially convolves over the input image to create a feature map, using the filter weights. The 

dimensions of the output filters increase from 64 in the first stack of convolutional layers to 512 in the last (Fig. 4). All the 

convolutional layers use rectified linear unit (ReLU) activation and are interspersed with five max-pooling layers. The 

convolutional and pooling stacks are followed by three fully connected (dense) layers (i.e., a normal fine-tuned neural network) 

without shared weights, typical of CNN architectures. This section allows the features learned by the CNN to be allocated to 215 

a class by a final Softmax layer with the same number of units as classes. The dense layers use L2 regularisation to reduce 

over-training (Goodfellow et al., 2016; Carbonneau et al., 2020a).  

 

The input image tile size for the first convolutional layer in the original VGG16 model architecture was fixed as a 224x224x3 

RGB image. However, here we tested the impact of tile size to determine the optimal scale for detecting features within the 220 

glacial landscape using 10 m resolution imagery. Tile sizes of 50x50, 75x75, and 100x100 pixels were tested, and architectures 

were adjusted accordingly (Fig. 4). Overall, optimal results in both phases of CSC were achieved using tile sizes of 50x50 

pixels (see Section 2.6). Finally, since the input RGBNIR imagery has four bands, the number of input channels was adapted 

(i.e., from RGB in the original VGG architecture to RGBNIR in the adapted architecture). 

 225 

Figure 4: Architecture of phase one CNN, adapted from the original VGG16 model architecture (Simonyan and Zisserman, 2015). 

Diagram shows an example with a 50x50 pixel RGBNIR input image tile. There are five stacks of 2D convolutional layers (labelled 

‘Conv#’) which extract features from input tiles using a 3x3 filter. The convolutional stacks are followed by a fully connected neural 

network and Softmax activation for phase one class prediction. 

 230 
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2.4.2 Phase 1: model training 

To train the phase one CNN, we employed early stopping to control hyperparameters and inhibit overfitting which occurs 

when a model is unable to generalize between training and validation data (Goodfellow et al., 2016). To do this, we designed 

a custom callback that trains the network until the validation data (20% set aside with a train-validate-split) reaches a desired 

target accuracy threshold. These targets ranged from 92.5 to 99% and determined the number of epochs the CNN was trained 235 

for. We used categorical cross entropy as the loss function and Adam gradient-based optimisation (Kingma and Ba, 2017) with 

a learning rate of 10 × 10-4 and batch sizes of 30. 

 

When applying CSC to multiple sites, we came to a similar conclusion to Carbonneau et al. (2020a) which found that model 

transferability was improved when the phase one CNN was trained with data from more than one site. We therefore deployed 240 

a joint fine-tuning training procedure where a CNN initially trained only on data from Helheim was trained further with a small 

set of extra tiles (5,000 samples per class) using only two images (one from winter and one from summer) for all three glaciers. 

This fine tuning was done at a low learning rate of 10 × 10-5 and smaller batch sizes of 10 in comparison to initial CNN training 

(which used a learning rate of 10 × 10-4 and batch size of 30). The rational for this is that if a glacier is identified for monitoring, 

the addition of two available scenes to produce data used to fine-tune an existing CNN is not an onerous task and can deliver 245 

significant improvements to the final results. For clarity, we will refer to CNN training without this extra level of fine-tuning 

as ‘Single’ training and CNN training with this added fine-tuning as ‘Joint’ training. This resulted in an additional glacier-

specific CNN with Joint training for each of the three test areas. 

 

2.4.3 Phase 1: training data production 250 

A dataset of 210,000 training samples with 30,000 image tiles per class was used to train and validate the phase one CNN. To 

create the training tiles, the RGBNIR images extracted from 13 Sentinel-2 acquisitions were manually labelled according to 

the seven semantic classes using QGIS 3.4 digitising tools. Vector polygons labelled by class number were rasterised to 

produce a per-pixel class raster the same size as the training area. Both the input image and class raster were then tiled using 

a script which extracted tiles with high overlap using a stride of 20 pixels (Fig. 5). Each tile was extracted, assigned a class 255 

label based on the manually delineated class raster and any tiles occupied by less than 95% pure class were rejected, removing 

tiles containing mixed classes. Once extracted, each image tile was augmented by three successive rotations of 90 degrees 

(Fig. 5). Data augmentation is a common step for bolstering training datasets in deep learning, and usually entails slightly 

altering existing data to increase the number of training samples (Chollet, 2017). Tile rotation also allows the model to learn 

classes which may appear at different orientations in unseen images, for example accounting for different glacier flow 260 

directions, providing the potential for increased transferability. Following augmentation, tiles were normalised by a constant 

value of 8192 to convert raw Sentinel-2 data to 16-bit floating point data. This was because a GPU with a Turing architecture 



11 

 

as used in CNN training, enabling the use of the TensorFlow mixed precision training method for which the input is 16-bit 

floating point data.  

 265 

The tiles were randomly allocated to training and validation folders with an 80/20% training-validation split for phase one 

CNN training. Overall, this resulted in a dataset upwards of 1 million tiles with a large imbalance that ranged from 50,000 tiles 

in class one to 900,000 tiles in class four. However, class imbalance can have negative impacts on model performance (Johnson 

and Khoshgoftaar, 2019), so 30,000 tiles were randomly subsampled from each class, thus drastically reducing the tile 

population and resulting in a balanced training dataset. The final number of 30,000 tiles per class was chosen after trial and 270 

error revealed that the CNN could be trained with all tiles loaded in an available RAM space of 64GB with a 32GB paging 

file. For the Joint fine tuning of phase one CNNs, a small dataset of 5,000 samples per class was extracted from a single winter 

image and a single summer image for each of the three glaciers.  

Figure 5: Conceptual diagram of the tiling process used to create training and validation data. A specified tile size and stride were 

used to extract tiles from the class raster and training image. Image tiles were filtered, augmented and saved to individual class 275 
folders using an 80/20% split for training and validation data.  

 

2.4.4 Phase 2: model architectures and training 

To classify airborne imagery of fluvial scenes at pixel-level using the CSC workflow, Carbonneau et al. (2020a) applied a 

pixel-based approach using an MLP in the second phase of the workflow, achieving high levels of accuracy (90-99%). We 280 

propose that applying pixel-based techniques to coarser resolution imagery such as Sentinel-2 data may be less effective 

compared to applying the workflow to high resolution imagery. Furthermore, particularly in landscapes containing marine-

terminating glaciers, many distinct classes may be covered in snow or ice and therefore be very spectrally similar (i.e., all 

classes are white), and where this is the case a pixel-based MLP would predictably struggle to differentiate between classes. 

So, in addition to testing a pixel-based MLP, we adopted a patch-based approach which uses a small window of pixels to 285 

determine the class of a central pixel, as in Sharma et al. (2017). This approach is based on the idea that a pixel in remotely 
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sensed imagery is spatially dependent and likely to be similar to those around it (Berberoglu et al., 2000). The use of a region 

instead of a single pixel allows for the construction of a small CNN (dubbed ‘compact CNN’ or cCNN: Samarth et al. (2019)) 

with fewer convolutional layers that assigns a class to the central pixel according to the properties of the region (Carbonneau 

et al., 2020b). It therefore combines spatial and spectral information. Sharma et al. (2017) use a patch size of 5x5 pixels for 290 

patch-based classification of medium resolution Landsat 8 imagery. We tested both pixel- and patch-based approaches using 

an MLP and cCNN in the second phase of the workflow (the architectures and application of which are detailed in the following 

sections 2.4.4.1 and 2.4.4.2). Specifically, five patch sizes of 1x1 (pixel-based), 3x3, 5x5, 7x7, and 15x15 pixels were tested. 

This revealed that larger patch sizes of 5x5 to 15x15 pixels delivered optimal classification results (see section 2.6). 

 295 

2.4.4.1 Multilayer Perceptron 

For the pixel-based classification in phase two we used an MLP (Fig. 6a). An MLP is a typical deep learning model (also 

commonly known as an artificial neural network) which consists of three (or more) interconnected layers (Rumelhart et al., 

1986; Berberoglu et al., 2000). The MLP has five layers consisting of four fully connected (dense) layers and one batch 

normalisation layer (Fig. 6a). The first dense layer has 64 output filters and is followed by a batch normalization layer which 300 

helps to reduce overfitting by adjusting the activations in the network to add noise. This is followed by two more dense layers 

with 32 and 16 filters, respectively. Each dense layer uses L2 regularisation and ReLU activation except the output layer. The 

final output layer in the network has Softmax activation and eight output filters for class prediction. We used categorical cross 

entropy as the loss function and Adam gradient-based optimisation (Kingma and Ba, 2017) with a learning rate of 10 × 10-3.  

 305 

Figure 6: (a) architecture of phase two multilayer perceptron used for pixel-based classification. (b) Architecture of the cCNN used 

in phase two for patch-based pixel-level classification. Patches are extracted from the input image with a stride of one pixel, assigned 

a class label according to the class raster produced in phase one, and compiled into 4D tensors which are then fed into the cCNN. 

An example of a 3x3 patch is shown in this diagram which uses an architecture with a single 2D convolutional layer with 32 3x3 

filters. The convolutional layer feeds into a fully connected network like that of the MLP for class prediction. 310 
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The MLP was trained using conventional early stopping with a patience parameter and a minimum improvement threshold. 

The minimum improvement was set as 0.5%. Training did not stabilise for at least 20 epochs, so the patience was set to 20. 

This means that if training does not improve the validation accuracy by 0.5% after a period of 20 epochs, the training will stop. 

Since the MLP is pixel-based, the number of parameters was smaller compared to the patch-based model, with 3,192 trainable 315 

parameters for RGBNIR imagery.  

 

2.4.4.2 Compact Convolutional Neural Network 

For the patch-based classification in phase two we used a cCNN architecture (Fig. 6b). This model architecture is referred to 

as a compact CNN (cf. Samarth et al., 2019) because it contains fewer convolutional layers in comparison to conventional 320 

CNNs. The cCNN learns the class of a central pixel in a patch as a function of its neighbourhood. So, for each pixel in the 

input image, a small image tile is extracted with square dimensions of the patch size (e.g., 3x3, 5x5, 7x7, or 15x15 pixels). The 

central pixel from the phase one predicted class raster is used as the associated class label. As with the phase one CNN, there 

are four input channels to match the number of bands and the patches are fed into the cCNN in the form of 4D tensors 

(dimensions: patches, x, y, image bands). 325 

 

The architecture of the cCNN is composed of a deepening series of convolution layers which change depending on the patch 

size. In effect, we use as many 3x3 filters as can be accommodated by the patch size without the recourse to padding. Therefore, 

for 3x3 image patches, we use a single 2D convolution layer since the convolution of a 3x3 image with a 3x3 kernel returns a 

single scalar value. An example of the cCNN architecture for a 3x3 pixel patch is shown in Fig. 6b. For the 5x5 image patch, 330 

we use two 2D convolution layers. The first convolution of the 5x5 image with a 3x3 kernel leaves a 3x3 image which is 

rendered to a scalar after a second 3x3 convolution. For the 7x7 image patch size, we use three 2D convolution layers. Finally, 

for the 15x15 patch size we use seven 2D convolution layers. In all cases, each convolution layer uses 32 filters and therefore 

passes 32 equivalent channels to the following layer, with the exception of the final layer which passes a set of 32 scalar 

predictors. These scalars are flattened and fed into a dense top which emulates the MLP architecture (Fig. 6a) and terminates 335 

in the usual Softmax layer for class prediction (Fig. 6b). 

 

As with the MLP, conventional early stopping was used to train the cCNN with a patience parameter and a minimum 

improvement threshold. The minimum improvement was set as 0.5%. For patch sizes of 3x3 we used a patience of 15, and for 

patches of 7x7 and 15x15, a patience of 10. The number of trainable of parameters reached up to 231,582 for RGBNIR imagery 340 

with a patch size of 15x15 pixels. 
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2.5 CNN-Supervised Classification performance 

The performance of CSC was tested in two ways to allow comparison to previous deep learning methods. Firstly, classification 

accuracy was measured using manually collected validation labels. Secondly, a calving front detection method was 

implemented, and error was quantified using manually digitised calving front data for all test images. 345 

 

Model performance is often measured by classification accuracy (the number of correct predictions divided by the total number 

of predictions). However, some models require more robust measures of accuracy which also account for confusion between 

predicted classes (Goodfellow et al., 2016; Carbonneau et al., 2020a). We therefore used an F1 score as the primary 

performance metric. The F1 score is defined as the harmonic mean between precision (𝑝) and recall (𝑟): 350 

𝐹1 =
2𝑝𝑟

𝑝+ 𝑟
                                                                                                (1) 

where precision finds the proportion of positive predictions that are actually correct by dividing the number of true positives 

by the sum of both true (correct) positives and false (incorrect) positives. Recall finds the proportion of positive predictions 

that were identified correctly by dividing the number of true positives by the sum of true positives and false negatives 

(misidentified positives). Thus, the inclusion of recall provides a metric which represents confusion between class predictions 355 

(Carbonneau et al., 2020a). F1 scores range from 0 to 1 with 1 being equivalent to 100% accuracy. Carbonneau et al. (2020a) 

used classification results from 862 images to compare F1 and accuracy. They found that they are closely correlated (accuracy 

= 1.03F1 +4.1% with an R2 of 0.96), with F1 and accuracy converging at 100%.  

 

The validation labels used to calculate F1s were digitised manually using QGIS 3.4 digitising tools. Due to the manual nature 360 

of the data collection, this resulted in some unlabelled areas where classes were particularly difficult to define. This often 

occurred at class boundaries or where very small areas of different classes were mixed (at the scale of a few pixels). For 

example, in areas where the snow on rock class transitioned to bare bedrock, the structure of the underlying rock would often 

result in snow-covered areas spanning just a few pixels. In cases like this, digitising small patches of snow at pixel scale would 

be very time-consuming, and as a result some areas of the images remained unlabelled. Despite this, we aimed to cover as 365 

much of each test image with validation labels as possible.  

 

F1 scores were calculated based on the concatenation of all the predictions for all available test images within the given 

parameters of tile size, patch size, number of bands, CSC phase, type of training (Single or Joint), glacier, and type of test data 

(in-sample or out-of-sample). Given that the calculation of F1 scores for gigapixel samples can be very computationally 370 

intensive, each F1 score presented here was estimated from a sample of 10 million pixels of the available data. 

 

In addition to classification performance, we implemented a calving front detection method based on morphological geodesic 

active contours (see Fig. S1). The method is based on the definition of a calving front as the contact between ‘ocean’ pixels 
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(open water, iceberg water, or mélange) and glacier ice pixels. Since the final classification output from CSC is at pixel-level, 375 

this allowed for calving front detection at the native spatial resolution of Sentinel-2 imagery (10 m). Error was quantified for 

each predicted calving front by measuring the Euclidean distance between each predicted calving front pixel and the closest 

pixel in manually digitised calving fronts. From this, the mean, median, and mode error was quantified for each predicted 

calving front. Calculating the median and mode values allows the elimination of outliers in calving front predictions (Baumhoer 

et al., 2019). Calving fronts were digitised in QGIS 3.4 and rasterised to form a single pixel-wide line.  380 

 

2.6 Optimal performance parameters 

Table S3 shows that the highest classification performance in phase one was achieved using 50x50 pixel tiles from images 

composed of all four RGBNIR bands. For models trained with RGB bands, performance was highest with 100x100 pixel tiles, 

suggesting that the greater proportion of spatial information stored in larger tiles was beneficial when using only three bands.  385 

This finding extended to phase two results, and the additional testing of patch- vs pixel- based techniques revealed that 

optimum classification performance was achieved using larger patch sizes from 5x5 to 15x15 pixels (Table 1) with F1s varying 

by only 0.6% for classifications produced with 50x50 RGBNIR tiles. 

 

Table 1: F1 scores for all test data combined (Single training). Highest values are highlighted in bold. RGBNIR bands, 50x50 tiles 390 
and the patch-based approach, specifically patches of 5x5 to 15x15 pixels, produced optimum classification results.  

Phase 2 F1 scores (%) RGB bands RGBNIR bands 

 Patch size (pixels):  

 1x1 3x3 5x5 7x7 15x15 1x1 3x3 5x5 7x7 15x15 

50x50 tiles 76.1 88.8 90.6 90.5 90.8 80 89.7 91.6 91.8 92.2 

75x75 tiles 73.6 89.4 91.3 91.6 91.6 81.4 89.5 90.7 90.7 90.9 

100x100 tiles 73.2 89.5 91.4 91.6 91.1 79 88.6 89.5 89.4 89.2 

 

Similarly, an evaluation of calving front error for CSC results revealed that a patch size of 5x5 pixels produced the most 

accurate calving fronts, followed closely by patches of 7x7, 3x3, and 15x15 pixels (Fig. 7). Figure 7 shows the full error 

distribution for predicted calving front pixels detected from classifications produced with RGBNIR bands and 50x50 tiles. 395 

Overall, this suggests that optimum parameters for classification and calving front accuracy combined are 50x50 pixel 

RGBNIR tiles with a phase two patch size of 5x5 pixels. Using these parameters resulted in a mean calving front error of 56.17 

m (equivalent to 5.6 pixels) for the test dataset as a whole (with individual mean errors of 58.81 m for Helheim, 70.6 m for 

Jakobshavn, and 39.1 m for Store). Additionally, median error was 24.7 m (equivalent to 2.5 pixels) for all test data (30 m for 

Helheim and Jakobshavn, and 14.1 m for Store), and modal error was 10 m (equivalent to 1 pixel) for all glaciers, suggesting 400 

that mean values are increased by extremes.  
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Figure 7: A kernel density estimate (KDE) plot of the full error distribution for all calving front predictions derived from all test 

sites using classifications produced with optimal parameters. Error values above 1000 m are grouped into a single bin to reduce tail 

length and show a second peak which represents catastrophic errors in calving front prediction. Note that low calving front errors 

occur most with 5x5 patches, followed by 7x7 and 3x3 patches, with highest error occurring for the pixel-based approach. 405 

 

In comparison, manually digitised calving fronts usually have error of around 2 to 4 pixels. For example, Carr et al. (2017) 

calculated a mean calving front error of 27.1 m using repeat digitisations. In this work, small classification errors of a few 

pixels (often caused by shadows at the front) can lead to errors in the range of 5 to 10 pixels. The smaller scale information 

provided in a 5x5 pixel patch is clearly optimal in comparison to overall classification accuracy which achieves good results 410 

with patch sizes from 5x5 to 15x15 pixels. Furthermore, we note a small tail of data where large errors occurred (Fig. 7). The 

secondary peak in Fig. 7 represents calving front errors of 1000 m and above which shows where calving front predictions 

were catastrophically erroneous. This was caused by one of the 27 test images severely failing to detect the calving front 

(despite a high F1). The calving front error distribution derived from Joint training can be found in Fig. S2. 

3 Results 415 

3.1 Classification performance 

Figure 8 shows examples of CSC applied to images of the Helheim test site. High F1s are maintained despite the noticeable 

seasonal differences between images, such as changes in illumination, shadow, snow cover, ablation area, and mélange extent 

(Figs. 8a, c, and e). Corresponding calving front errors range from 10 to 42.4 m. Similarly, Fig. 9 shows examples of CSC 

applied to imagery of Store Glacier (out-of-sample). The F1s shown for the out-of-sample examples in Fig. 9 are slightly lower 420 

compared to the in-sample examples (Fig. 8). This is because the out-of-sample site is more prone to misclassification. For 

example, Fig. 9b shows several areas of glacier ice which have been misclassified as mélange. Additionally, in Fig. 9d there 

are areas of bedrock which are deeply shadowed, resulting in some misclassifications of bedrock areas as open water. These 

misclassifications did not increase calving front error which ranged from 10 to 14.1 m (Figs. 9b, d, f), but lower F1 scores 

prompted testing of the Joint fine-tuning method.  425 
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Figure 8: Examples of pixel-level classification outputs for seasonally variable imagery from the in-sample test site showing input 

images of Helheim in the first column, which were acquired on (a) 5 March 2019, (c) 5 June 2019, and (e) 1 October 2019 and the 

associated CSC outputs shown in (b), (d), and (f). The F1 scores and calving front error are shown next to each classification.  

 430 
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Figure 9: Examples of pixel-level classification outputs for seasonally variable imagery from the out-of-sample test site showing 

input images of Store in the first column, which were acquired on (a) 23 June 2020, (c) 14 September 2020, and (e) 8 October 2020 

with the associated CSC outputs shown in (b), (d), and (f). The F1 scores and calving front error is shown next to each classification.  

 

The Joint training method improved classification performance (Table 2). Results were only marginally improved for the in-435 

sample study site which was to be expected since phase one models were already trained on data from Helheim. A comparison 

of classification outputs from Single and Joint training for an image of Store Glacier can be found in Fig. S3 which shows that 

the addition of Joint fine-tuning rectified areas of misclassification seen in results which used Single training, with the overall 

F1 score increasing from 84.7% (Single training) to 97.5% (Joint training). Figures S4 and S5 also show examples of Joint 
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training classifications. These examples suggest that digitising two additional images for the purposes of fine-tuning an existing 440 

pre-trained CNN for glacier-specific classification is worth the improvements in classification accuracy. 

 

Table 2: Optimum F1 scores for classifications produced with Single and Joint training (50x50 RGBNIR tiles). Note the Joint 

approach improves classification F1 scores, with biggest improvement for out-of-sample sites. 

Phase 2 F1 scores (%) Helheim Jakobshavn Store 

Single training 93.3 95 87.1 

Joint training 94 97.3 94.6 

 445 

Confusion matrices which show the relationship between CSC class predictions and validation data for each test glacier are 

shown in Fig. S6. In summary, Fig. S6 shows good agreement between predicted and actual classes for all glaciers, with the 

exception of the open water class for Helheim and Jakobshavn where confusion occurs between the iceberg water and bedrock 

classes. Open water is the smallest class for both sites, with open water often covering only small areas in each individual 

image. There is still class confusion in Joint results (Fig. S7), however better overall F1s suggest that improvements are made 450 

in class prediction despite a different pattern of inter-class confusion. Overall, these examples show the ability of CSC to 

classify in- and out-of-sample imagery of marine-terminating glacial landscapes in Greenland with different seasonal 

characteristics.  

 

Moreover, the size of input imagery to the CSC workflow is not limited to a specified set of dimensions. Since collection of 455 

validation labels for each test image required manual digitisation, the test sites were restricted to ~20 to 50 km to allow 

collection of seasonal data for individual glacial landscapes. Despite this, CSC can also be applied to entire Sentinel-2 tiles. 

The outputs of the CSC workflow applied to an entire Sentinel-2 image are shown in Fig. S8. The overall F1 score of this 

classification was 92%. This suggests that CSC has good classification performance at the level of individual glaciers as well 

as whole glacial landscapes. 460 

  

3.2 Time series of Helheim Glacier 

A time series produced using CSC results showing calving front position and changes in mélange area at Helheim throughout 

2019 can be seen in Fig. 10. Figure 10a and c show fluctuation in calving front position between March and October 2019 

with an overall pattern of retreat. Two predicted calving fronts which had error of over 4.2 pixels were removed from the time 465 

series and frontal position change was quantified using the rectilinear box method to account for cross-glacier variation (Lea 

et al., 2014). Figure 10b and c illustrate the variation in mélange area for all nine in-sample test images. Taken together, these 

results show the robustness of CSC and usefulness of multi-class outputs for holistic analysis of marine-terminating glacial 

environments. 
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Figure 10: (a) time series of Helheim calving front positions produced from CSC outputs of the 2019 test data. (b) Frequency of 470 
CSC-predicted mélange pixels from Helheim test dataset showing the seasonal variation in mélange extent. (c) Cumulative retreat 

of the calving front relative to 5 March 2019 and mélange area for each test image.  

 

 

4 Discussion 475 

4.1 Comparison to previous work 

Our results build on the work of deep learning-based classification methods for ice front delineation (Baumhoer et al., 2019; 

Mohajerani et al., 2019; Zhang et al., 2019; Cheng et al., 2021), with several key innovations and variations of note. Firstly, 

the CSC workflow produces multi-class outputs using seven semantic classes rather than the binary outputs of previous 

methods. This fulfils the aim to provide meaningful information which could be used for a variety of applications at the scale 480 

of entire outlet glacier landscapes. In terms of classification accuracy, CSC produces marginally better F1s in comparison to 

previous methods applied to marine-terminating glacial environments. Previous studies which focus on outlet glaciers of the 

GrIS do not provide F1 scores for their classification outputs. However, Baumhoer et al. (2019) apply their method to Antarctic 

marine-terminating environments and produce overall F1s of 89.5% for training areas (in-sample) and 90.5% for test areas 

(out-of-sample). In comparison, CSC produces F1 scores of up to 93.3% for in-sample test imagery, and 91% for out-of-sample 485 

test imagery when using a phase one CNN trained only with data from Helheim Glacier. By applying Joint CNN training to 
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fine-tune the phase one CNN to each test glacier, F1 scores increased to 94% for in-sample test data and 96% for out-of-sample 

test data. It is worth noting that the characteristics of Antarctic outlet glacier environments can vary substantially from 

Greenlandic outlet glacier environments, potentially presenting different classification challenges. As such, this is a tentative 

comparison, especially given that CSC outputs contain seven classes at the scale of the whole landscape, rather than just two 490 

classes focused at the ice front.  

 

Additionally, since previous deep learning studies which produce binary classifications for Greenlandic outlet glaciers do not 

provide F1 scores, for further comparison we integrated a calving front detection method into the CSC workflow. Table 3 

shows the mean calving front errors produced in this study and each of the previous studies. Mean calving front errors for test 495 

imagery from both training sites (in-sample) and test sites (out-of-sample) are provided, however not all studies specified these 

values. In terms of the number of metres that predicted fronts deviate from manual digitisations, the predictions of CSC are 

comparable to those of previous studies. However, in terms of the equivalent number of pixels, CSC predictions deviate from 

manual digitisations by a few more pixels compared to previous studies (apart from Zhang et al., 2019), indicating that if a 

given application solely requires accurate calving front localisation of a known glacier, the method presented here is not 500 

necessarily the optimal choice.  

Table 3: Mean calving front errors from previous deep learning methods designed specifically to detect ice fronts in comparison to 

the mean calving front errors produced by CSC in this study. 

 

 505 

The second major difference between CSC and previous methods is the deep learning architecture. All previous deep learning 

classification methods for delineating ice fronts (Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019; Cheng et 

al., 2021) use FCN/U-Net architectures (Ronneberger et al., 2015). Hoeser et al. (2020) reviewed image segmentation and 

object detection in remote sensing and whilst they do conclude that FCN/U-Net architectures are dominant, they still find about 

30% of published work uses patch-based approaches which are akin to the second phase of the CSC method presented here. 510 

This suggests that FCN architectures need not be considered the de facto algorithm for glacial landscape classification. 

Moreover, the advantage of CSC over one-stage patch-based methods using FCNs is that the initial phase one CNN provides 

Study Ice sheet 

No. of 

test 

images 

Mean calving front error (and equivalent in pixels) 

Training site(s) 
Test site(s) (sites not 

used in training) 

Both training and 

test sites combined 

Baumhoer et al. (2019) Antarctic 11 78.25 m (< 2 pix.) 107.75 m (2.69 pix.) 93 m (2.33 pix.) 

Mohajerani et al. (2019) Greenland 10 - 96.31 m (1.97 pix.) - 

Zhang et al. (2019) Greenland 84 38 m (6 pix.) - - 

Cheng et al. (2021) Greenland 162 - - 86.76 m (2.25 pix.) 

This study Greenland 27 58.81 m (5.9 pix.) 54.86 m (5.5 pix.) 56.17 m (5.6 pix.) 
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transferability and delivers bespoke training labels for the pixel-level patch-based operator (as described in Section 2.1). We 

discuss the other major implications of the architectural differences between our work and FCNs in the following sections. 

 515 

4.1.1 Data pre-processing and computational loads 

CSC has certain practical advantages over FCNs in terms of data processing and computational loads. Firstly, the CSC method 

has low pre-processing requirements. In effect, Sentinel-2 images were cropped to produce large images containing whole 

marine-terminating glacier landscapes, yet still within a workable size for detailed digitisation of validation labels. The only 

other pre-processing step required is normalisation by a constant factor of 8192 to convert raw Sentinel-2 data to 16-bit floating 520 

point data. Once this is done, CSC has a low computational load. Training the initial VGG16 model can be done in under one 

hour using an I7 processor at 5.1Ghz, and an Nvidia RTX 2060 GPU. When CSC is subsequently applied to a sample image 

of ~3000x3000 pixels using optimal phase one parameters and a phase two patch size of 7x7 pixels, classification requires 4 

minutes. We also coded a low-memory usage pathway in the main script that classifies a large image row-by-row with a 

threshold to define ‘large’ set by the user. Using this, Sentinel-2 images can be classified at native resolution (10980x10980 525 

pixels each) in 12 minutes with a peak RAM consumption of 11GB. This makes CSC suitable for use in free cloud-based 

solutions such as Google Colaboratory, providing the potential to build on existing cloud-based tools for glacial mapping (e.g., 

Lea, 2018). Moreover, given the simplicity of data pre-processing steps required for CSC, the workflow has good accessibility 

and can be implemented easily by new users. 

 530 

In contrast, for several of the previous studies which implement FCN architectures, a larger number of pre-processing steps 

are required, including but not limited to rotation for consistent glacier flow direction, edge enhancement, and pseudo-HDR 

toning (Mohajerani et al., 2019; Zhang et al., 2019; Cheng et al., 2021). Similarly, FCN architectures can be very demanding 

in terms of computer RAM and GPU RAM, especially when large images are used as inputs. When we tested this by 

implementing the popular FCN8 based on VGG16 which has ~130 million trainable parameters, we found that the largest 535 

dyadic image size that could be processed was 512x512 pixels. This general problem has been resolved in different ways in 

the Earth observation (EO)-facing literature. Baumhoer et al. (2019) used 40 m Sentinel-1 Synthetic Aperture Radar (SAR) 

data and a DEM at 90 m resolution as their base. Using a smaller FCN with ~7.8 million parameters, they used image tiles of 

780x780 pixels with 4 channels (HH, HV, DEM, HH/HV polarisations) on a GTX 1080 GPU (8GB vs 6GB for the RTX2060). 

However, it is important to note that with 40 m data, 780 pixels still covers 31.2 km. If this were Sentinel-2 optical data, with 540 

a resolution of 10 m, the sample tiles would only cover 7.8 km. In contrast, the calving front of Jakobshavn has a width of ~11 

km. To get around this sort of issue using FCNs, downsampling is used. For example, Mohajerani et al. (2019) used an 

advanced pre-processing routine that involved a re-orientation and then a resampling of the scene to 200x300 pixels. This 

resampling resulted in imagery with varied resolutions across glaciers used in training and test data. In the end, the FCN they 

used only had 240x152 pixels in a single post-processed channel which was tested at a single site (Helheim Glacier) with a 545 
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resampled spatial resolution of 49 m (from Landsat data with 15/30 m resolution). In contrast, the spatial resolution of the 

input images and resulting classification outputs using CSC always remains native to raw Sentinel-2 data (i.e., 10 m). 

 

4.1.2 Training data volume  

In terms of the number of training samples used for deep learning models, Goodfellow et al. (2016) note that, as a general rule, 550 

each class should contain at least 5,000 samples to reach satisfactory performance, but models can reach and exceed human-

level performance when trained on at least 10 million samples. Considering this, the number of labelled samples produced by 

manually labelled training images and data augmentation in the datasets used here (210,000 tiles) makes them relatively small. 

However, in comparison to pre-trained models such as VGG16 which were trained on the ImageNet database using over 1000 

classes, our adapted VGG16 architecture only uses seven classes, and therefore can be trained sufficiently with ‘only’ a few 555 

100 thousand samples. This suggests that relatively few images are needed to produce highly accurate image classifications 

using our workflow, reducing the time required for initial creation of manually labelled training data. Furthermore, the number 

of satellite acquisitions used to produce the training data for the phase one CNN in CSC is smaller than that used to train 

models in previous FCN-based studies. Given that our optimal phase one CNN training sample is 50x50 pixels, a very large 

number of samples can be extracted from a full Sentinel-2 tile of 10980x10980 pixels. In our initial training of the phase one 560 

CNN, we used sub-images of 6875 x 3721 pixels extracted from 13 Sentinel-2 acquisitions. In the joint-fine tuning step, we 

added data from six Sentinel-2 acquisitions (one winter and one summer for each of the three glaciers). So, in total, this work 

used data from 13 to 19 Sentinel-2 acquisitions. Comparatively, Baumhoer et al. (2019) used 38 Sentinel-1 satellite 

acquisitions, Zhang et al. (2019) used 75 TerraSAR-X acquisitions, Mohajerani et al. (2019) used 123 Landsat 5-8 acquisitions, 

and Cheng et al. (2021) used 1,872 images (1,541 from Landsat and 232 from Sentinel-1). So, overall, we argue that our results 565 

were obtained with less training data than those from comparator FCN-facing works.  

 

4.1.3 Size of input imagery 

The size of input imagery also represents an area where CSC has advantages over FCNs. In FCN architectures, the instance 

that must be classified must be well framed in the input image. Often in the case of higher resolution images where such 570 

framing would lead to image sizes in excess of 1000x1000 pixels, downsampling must be used unless extremely powerfully 

GPU are available. Similarly, the pre-processing methods used in FCN-based papers start with a user actually knowing where 

the feature of interest is and cropping the image accordingly. For example, Mohajerani et al. (2019) crops imagery to within a 

300 m buffer area of a pre-defined calving front and further crops training images to 150x240 pixels for FCN training inputs. 

In the resulting images, the calving front must be kept within the frame. This type of pre-processing is not required in CSC. 575 

Instead, CSC can process entire tiles of Sentinel-2 data at native resolutions without the need for downsampling, selection and 

cropping of a known target area, or extensive pre-processing (see Fig. S8). In order to produce digitised validation labels for a 

test dataset spanning seasonally variable imagery, our test areas were cropped to 2000/3000 pixels (digitisation of entire 
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Sentinel-2 tiles to near pixel-levels of detail for seasonally variable test imagery would be a more onerous task), but the CSC 

method is not sensitive to where the crop boundaries fall, and it performs well even when an image boundary cuts a glacier in 580 

half.  It also works well when the user does not have previous knowledge of the location of a feature of interest. Admittedly, 

in the case of glaciers, this is arguably less important because we already have high quality glacier inventories. However, in 

terms of the wider scope of image classification in EO, there are many cases where a human user cannot be expected to know 

a priori the location of all features/class instances of interest in order to carry out the level of pre-processing required by FCN 

architectures. In these cases, the lower levels of pre-processing required by CSC are advantageous and has allowed us to 585 

produce classifications for full Sentinel-2 tiles (Fig. S8) that are absent from other works based on FCNs and U-Nets. 

 

4.1.4 Local textures vs object shapes 

Finally, from a theoretical perspective, FCN architectures can be strongly dependent on object shapes and less dependent on 

inner textures. In the final stages of the encoder part of an FCN architecture, the simplified shape of the object will contribute 590 

to the weights learned in training (as will inter class relations). This means that an FCN must be trained to recognise specific 

shapes. As a result, an FCN trained only on data from Helheim could not be expected to perform well at the task of classifying 

Jakobshavn. There are no published examples where an FCN has been trained on a single glacier and displays transferability 

to very different glaciers. For example, Mohajerani et al. (2019) train their FCN on three glaciers (Jakobshavn, Sverdrup, and 

Kangerlussuaq) and only test it on Helheim Glacier. Similarly, the FCN used by Zhang et al. (2019) is only trained and tested 595 

on Jakobshavn, providing no test of spatial transferability. Instead, multiple sites must be included in FCN training in order to 

reach good transferability (e.g., Cheng et al., 2021). Contrastingly, in this study, even before the application of Joint fine-

tuning, the phase one VGG16 CNN solely trained on data from Helheim successfully classified large areas of Jakobshavn 

leading to very high performance with final, phase two results with F1s in excess of 95%. This is because CSC is driven by 

spectral and textural properties within the object, whilst the downsampling often required in an FCN pipeline can remove local 600 

textures. FCNs compensate for this by making use of inter-class relations, which CSC does not consider. However, on the 

terrestrial surface, there is a strong correlation between the ontology of a semantic class and both colour and textural properties. 

This explains why a statistical learning algorithm such as maximum likelihood has been used with reasonable success by the 

EO community for nearly half a century (Lillesand and Kiefer, 1994). Furthermore, the learning of shapes, a strong point of 

FCN, is not so relevant in EO since many semantic classes have either variable shapes or no shapes at all. Good examples are 605 

forests/vegetation, water body shapes (including supraglacial lakes), rocky outcrop shapes, and sediment patches in rivers.    

 

Overall, the empirical results presented here show that CSC has delivered a state-of-the-art performance for novel multi-class 

pixel-level classification of marine-terminating glacial landscapes in Greenland. In summary, when compared to FCN 

architectures, CSC has lower training data volume requirements and simpler pre-processing steps. Moreover, the workflow 610 
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produces marginally better F1 scores but marginally poorer calving front detections (in terms of pixel dimensions). On balance, 

we argue that this shows that there is still a place in EO for patch-based classification methods such as CSC. 

 

4.2 CSC performance and wider application 

The results reported here demonstrate that the CSC workflow adapted for landscapes containing marine-terminating outlet 615 

glaciers in Greenland produces state-of-the-art pixel-level classifications for seasonally variable imagery. After testing the 

performance of different band combinations, tile sizes, and patch sizes on seasonally variable test imagery, we find that 

classifications reach F1 scores of up to 93.3% for in-sample test imagery, and 91% for out-of-sample test imagery when using 

a phase one CNN trained only with data from Helheim Glacier and the overall optimal classification parameters. With the 

addition of Joint fine-tuning, F1 scores increased to 94% for in-sample test data and 96% for out-of-sample test data. In terms 620 

of calving front accuracy, a mean error of 56.17 m (5.6 pixels) and median error of 24.7 m (2.5 pixels) was achieved from 

classifications produced with overall optimum parameters. Taken together, this suggests that the accurate multi-class outputs 

of CSC are capable of producing datasets with sufficient levels of accuracy, for example to monitor calving front change at a 

high temporal resolution. Indeed, the method could be developed to generate extensive time series data of calving front changes 

with 10s of measurements per year for multiple glaciers and over several years, which is a key advantage over time-consuming 625 

manual digitisation. 

  

Given that CSC can identify multiple semantic classes, this also provides scope for analysis in other research areas, beyond 

calving front monitoring. Changes in other class boundaries could be monitored, for instance to detect changes in 

snowline/equilibrium line position and quantify ablation area change (Noël et al., 2019). Similarly, the multi-class outputs 630 

could be used to quantify seasonal changes in the area of a specific class, for example to monitor changes in the area of mélange 

(Foga et al., 2014; Cassotto et al., 2015) as shown in Fig. 10. Moreover, while CSC operates at the scale of overall landcover 

classes, outputs could potentially be used to isolate a specific target class for detection of smaller scale features, for example 

to detect change in the evolution of supraglacial lakes (Hochreuther et al., 2021) and subglacial meltwater plumes (How et al., 

2017; Everett et al., 2018), as well as iceberg tracking (Barbat et al., 2021). Finally, the outputs of the CSC script retain the 635 

geospatial information of the input data, meaning classification and calving front outputs can be easily manipulated in GIS 

software. 

 

4.3 Technical considerations for future work 

The Joint fine-tuning method significantly improved classification F1s with the addition of training data from only two glacier-640 

specific images. Considering the improvements to classification performance for out-of-sample sites, we suggest that the 

manual labour required to collect 5,000 additional samples per class derived from only two images is not substantial and may 

be worthwhile if a glacier is identified for monitoring. Further work may also benefit from more diverse training data for the 
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phase one CNN rather than training from a single glacier. Similarly, CSC did not produce very accurate classifications for 

images with extremely low illumination angles. This is most likely because images with very low illumination angles occurred 645 

most frequently at the beginning or end of the image availability season and made up a smaller proportion of phase one training 

data. To improve the ability of CSC to classify imagery with deep shadow and extremely low illumination angles, the 

proportion of phase one CNN training data containing these qualities could be increased. Despite this, the application of CSC 

using Single CNN training still produced an F1 score of up to 91% for out-of-sample test data, providing sufficient 

classification quality to detect calving fronts with a mean error of 54.86 m (5.5 pixels) and a median error of 22.1 m (2.2 650 

pixels).  

 

CSC performance was optimal when using RGBNIR bands rather than RGB bands alone. Testing the use of additional image 

bands to increase spectral data may be advantageous in future work. For example, Xie et al. (2020) used a CNN trained with 

17 input bands derived from Landsat 8 imagery and DEM data and found that using more bands produced higher accuracy for 655 

mapping debris-covered mountain glaciers. However, this may not necessarily be the case with marine-terminating outlet 

glaciers and using additional input channels is likely to increase processing time which should also be taken into account when 

considering that accurate results can be achieved using only RGBNIR bands. 

 

We proposed that adopting a patch-based technique which includes contextual information surrounding a pixel would aid 660 

classification of complex and seasonally variable outlet glacier landscapes, as it has in other applications (Sharma et al., 2017) 

and found that the phase two patch-based method significantly outperformed the pixel-based method. This also validates 

similar findings that patch-based CNNs outperform standard pixel-based neural networks and CNNs (Sharma et al., 2017). For 

calving front detection, a patch size of 5x5 pixels was optimal, suggesting that the smaller scale contextual information 

contained within a 5x5 pixel patch is beneficial for classification at the glacier front where small areas of shadow can impact 665 

front prediction at the scale of a few pixels. Overall, for marine-terminating glacier classification we suggest that the patch-

based technique is used instead of pixel-based methods. 

 

 

5 Conclusion 670 

We develop and evaluate a workflow for novel multi-class image classification of seasonally variable marine-terminating 

outlet glacier scenes using deep learning. The development of deep learning methods for automated classification of outlet 

glaciers is an important step towards monitoring processes at high temporal and spatial resolution (e.g., changes in frontal 

position, mélange extent, and calving events) over several years. While still in its infancy in glacial settings, image 

classification using deep learning provides clear potential to reduce the labour-intensive nature of manual methods and 675 

facilitate automated analysis in an era of the burgeoning availability of satellite imagery. Our two-phase workflow, termed 
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CNN-Supervised Classification, is adapted for classification of medium resolution Sentinel-2 imagery of outlet glaciers in 

Greenland. In phase one, the application of a well-established, pre-trained CNN called VGG16 replicates the way a human 

operator would interpret an image, rapidly producing training labels for a second image-specific model in phase two. 

Application of the phase two model produces pixel-level classifications according to seven semantic classes characteristic of 680 

complex outlet glacier settings in Greenland.  

 

Alongside an evaluation of input parameters and training methods on model performance, we apply and test the workflow on 

27 seasonally variable unseen images. The test dataset is composed of nine images from the training area of Helheim Glacier 

(in-sample), and 18 images from Jakobshavn and Store glaciers which represent landscapes not previously seen during training 685 

(out-of-sample). Resulting pixel-level classifications produce high F1 scores for both in- and out-of-sample imagery. Similarly, 

the calving front detection method built into the CSC workflow predicts fronts with a mean error of 56.17 m (5.6 pixels) and 

median error of 24.7 m (2.5 pixels). Overall, this demonstrates that the CSC workflow has good spatial and temporal 

transferability to unseen marine-terminating glaciers in Greenland. Moreover, the method can be used to classify entire 

landscapes and produce secondary datasets (such as calving front data) with a good level of accuracy. The simplicity of data 690 

pre-processing and the low computational costs of CSC make it a useful tool which can be accessed and used without having 

specialised knowledge of deep learning or the need for time-consuming generation of substantial new training data. From a 

wider perspective, the results of this study strengthen the foothold of deep learning in the realm of automated processing of 

freely available medium resolution satellite imagery, especially building on the growing body of research using deep learning 

in glaciology (Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019; Xie et al., 2020; Cheng et al., 2021). 695 

 

Code and data availability: Sentinel-2 imagery is available from the Copernicus Open Access Hub (available at: 

https://scihub.copernicus.eu/dhus/#/home, last accessed: 20/07/20). The Python scripts for the full deep learning workflow and 

instructions on how to apply them are available at: http://doi.org/10.5281/zenodo.4081095 and can be cited as Carbonneau and 

Marochov (2020). The pre-trained CNN for phase one of CSC are available for download from this institutional repository: 700 

http://doi:10.15128/r2gh93gz51k and can be cited as Marochov and Carbonneau (2020). The original code for the CSC 

workflow for classification of fluvial scenes is available at: https://github.com/geojames/CNN-Supervised-Classification. 

 

Supplement: The supplement includes descriptions for each of the seven semantic classes (Table S1); the Sentinel-2 

acquisitions used for training and testing the classification workflow (Table S2); a flow chart of the methodology used to 705 

produce calving fronts (Fig. S1); phase one F1 scores (Table S3); calving front error for the Joint approach (Fig. S2); example 

outputs using Joint training (Figs. S3 to S5), confusion matrices (Figs. S6 and S7); and an example of CSC applied to a whole 

Sentinel-2 image (Fig. S8). 

 

https://scihub.copernicus.eu/dhus/#/home
https://github.com/geojames/CNN-Supervised-Classification
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