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Abstract. A wealth of research has focused on elucidating the key controls on mass loss from the Greenland and Antarctic ice
sheets in response to climate forcing, specifically in relation to the drivers of marine-terminating outlet glacier change. The
manual methods traditionally used to monitor change in satellite imagery of marine-terminating outlet glaciers are time-
consuming and can be subjective, especially where mélange exists at the terminus. Recent advances in deep learning applied
to image processing have created a new frontier in the field of automated delineation of glacier calving fronts. However, there
remains a paucity of research on the use of deep learning for pixel-level semantic image classification of outlet glacier
environments. Here, we apply and test a two-phase deep learning approach based on a well-established convolutional neural
network (CNN) for automated classification of Sentinel-2 satellite imagery. The novel workflow, termed CNN-Supervised
Classification (CSC) is adapted to produce multi-class outputs for unseen test imagery of glacial environments containing
marine-terminating outlet glaciers in Greenland. Different CNN input parameters and training techniques are tested, with
overall F1 scores for resulting classifications reaching up to 94% for in-sample test data (Helheim Glacier) and 96% for out-
of-sample test data (Jakobshavn Isbrae and Store Glacier), establishing a state-of-the-art in classification of marine-terminating
glaciers in Greenland. Predicted calving fronts derived using optimal CSC input parameters have a mean deviation of 56.17 m
(5.6 pixels) and median deviation of 24.7 m (2.5 pixels) from manually digitised fronts. This demonstrates the transferability
and robustness of the deep learning workflow despite complex and seasonally variable imagery. Future research could focus
on the integration of deep learning classification workflows with free cloud-based platforms, to efficiently classify imagery
and produce datasets for a range of glacial applications without the need for substantial prior experience in coding or deep

learning.
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1 Introduction

Quantifying glacier change from remote sensing data is essential to improve our understanding of the impacts that climate
change has on glaciers (Vaughan et al., 2013; Hill et al., 2017). In many glaciated areas, well-established semi-automated
techniques such as image band ratio methods are used to extract glacier outlines for this purpose and to create glacier
inventories (Paul et al., 2016). These methods are widely used in studies of mountain glaciers and ice caps (e.g., Bolch et al.,
2010; Frey et al., 2012; Rastner et al., 2012; Guo et al., 2015; Stokes et al., 2018). However, they are less effective for mapping
more complex glaciated landscapes such as marine-terminating outlet glaciers, which often contain spectrally similar surfaces

like mélange (a mixture of sea-ice and icebergs) near their calving fronts (Amundson et al., 2020).

As a result, manual digitisation remains the most common technique used to delineate marine-terminating glaciers (e.g., Miles
etal., 2016, 2018; Carr et al., 2017; Wood et al., 2018; Brough et al., 2019; Cook et al., 2019; King et al., 2020). Nonetheless,
the labour-intense nature of manual digitisation can result in datasets with spatial or temporal limitations (Seale et al., 2011).
With this in mind, the importance of processes occurring at marine-terminating outlet glaciers on a range of spatio-temporal
scales (Amundson et al., 2010; Juan et al., 2010; Chauché et al., 2014; Carroll et al., 2016; Bunce et al., 2018; Catania et al.,
2018, 2020; King et al., 2018; Bevan et al., 2019; Sutherland et al., 2019; Tuckett et al., 2019) highlights the growing need for

a more efficient method to quantify outlet glacier change, especially in an era of increasingly available satellite data.

To confront this challenge, several specialised automated techniques reliant on traditional image processing and computer
vision tools (i.e., semantic segmentation and edge detection) have been developed to extract ice fronts in Greenland and
Antarctica (Sohn and Jezek, 1999; Liu and Jezek, 2004; Seale et al., 2011; Krieger and Floricioiu, 2017; Yu et al., 2019).
Semantic segmentation, a term interchangeable with pixel-level semantic classification, divides an image into its constituent
parts based on groups of pixels of a given class, and assigns each pixel a semantic label (Liu et al., 2019). It remains a core
concept underlying more recent advancements which use deep learning approaches to classify imagery for more efficient

automated calving front detection (Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019; Cheng et al., 2021).

Deep learning is a type of machine learning in which a computer learns complex patterns from raw data by building a hierarchy
of simpler patterns (Goodfellow et al., 2016). Convolutional Neural Networks (CNNSs) are deep learning models specifically
designed to process multiple 2D arrays of data such as multiple image bands (LeCun et al., 2015). They differ from
conventional classification algorithms based solely on the spectral properties of individual pixels by detecting the contextual
information in images such as shape and texture, in the same way a human operator would. This is beneficial for classification
of complex environments with little contrast between spectrally similar surfaces (e.g., glacier ice/ice shelves, snow, mélange,
and water containing icebergs) where traditional statistical classification techniques (e.g., maximum likelihood) produce more

noisy classifications (Li et al., 2014). Previous studies which apply deep learning to detect the calving fronts of marine-
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terminating glaciers used a type of CNN called a Fully Convolutional Neural Network (FCN) (Ronneberger et al., 2015), and
various post-processing techniques to extract the boundaries between 1) ice and ocean in Antarctica (Baumhoer et al., 2019),
and 2) marine-terminating outlet glaciers and mélange/water in Greenland (Mohajerani et al., 2019; Zhang et al., 2019, Cheng
et al., 2021). Calving fronts detected using these methods deviate by 38 to 108 m (<2 to 6 pixels) from manual delineations,

providing an accurate automated alternative to manual digitisation.

These approaches have so far relied on a binary classification of input images. For example, Baumhoer et al. (2019) used only
two classes (land ice and ocean). Similarly, Zhang et al. (2019) classified images into ice mélange regions and non-ice mélange
regions (the latter including both glacier ice and bedrock). While these methods are valuable for extracting glacier and ice shelf
fronts to quantify fluctuations over time, they perhaps overlook the ability of deep learning methods to create highly accurate
image classification outputs which contain more than two classes (i.e., not just ice and no-ice areas). Aside from calving front
delineation, a method which produces multi-class image classifications could provide an efficient way to further elucidate
processes and interactions controlling outlet glacier behaviour at high temporal resolution (e.g., calving events, the buttressing
effects of mélange, subglacial plumes, and supra-glacial lakes). Moreover, deep learning has been used successfully in other
disciplines to classify entire landscapes or image scenes to a high level of accuracy (Sharma et al., 2017; Carbonneau et al.,
2020a). In glaciology, CNNs have been used to map debris-covered land-terminating glaciers (Xie et al., 2020), rock glaciers
(Robson et al., 2020), supraglacial lakes (Yuan et al., 2020) and snow cover (Nijhawan et al., 2019). Despite this, multi-class

image classification of entire marine-terminating outlet glacier environments has not yet been tested using deep learning.

Thus, the aim of this paper is to adapt a two-phase deep learning method which was originally developed to classify airborne
imagery in fluvial settings (Carbonneau et al., 2020a) and test it on satellite imagery of marine-terminating outlet glaciers in
Greenland. We first modify and train a well-established CNN using labelled image tiles from 13 seasonally variable images
of Helheim Glacier, southeast Greenland. The two-phase deep learning approach is then applied to produce pixel-level
classifications, from which calving front outlines are detected and error is estimated from manually delineated validation labels.
We assess the sensitivity of the classification workflow to different image band combinations, training technigues, and model
parameters for fine-tuning and transferability. Our objective is to establish and evaluate a workflow for multi-class image
classification for glacial landscapes in Greenland which can be accessed and used rapidly without having specialised
knowledge of deep learning or the need for time-consuming generation of substantial new training data. Furthermore, we aspire
to exceed the current state-of-the-art for pixel-level image classification of marine-terminating outlet glacier landscapes. The

methods developed here are trained and tested on glaciers in Greenland with a pre-defined set of seven image classes.
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2 Methods
2.1 Overview of CNN-Supervised Classification

The classification workflow used here is termed CNN-Supervised Classification (CSC), and was originally developed and
tested on airborne imagery (<10 cm resolution) to produce pixel-level landcover classifications of fluvial scenes (Carbonneau
et al., 2020a). CSC is a two-phase workflow based on convolutional architectures which concatenates a CNN to a multilayer
perceptron (MLP) or compact CNN (cCNN). The two-phase approach was designed to simulate traditional supervised
classification techniques (Carbonneau et al., 2020a). In effect, a pre-trained CNN is used in the first phase of CSC to produce
locally specific training labels for each individual input image, replacing manual collection of training data which is typically
required for traditional machine learning classifiers (Carbonneau et al., 2020a). The phase one CNN therefore accounts for
image heterogeneity and incorporates the specific illumination conditions and seasonal characteristics of each unseen image
by detecting local predictive features like brightness, texture, and geometry (e.g., crevasses) in relation to class. Thus, the

predictions of the phase one CNN provide bespoke training labels for pixel-level image classification in phase two.

The pre-trained CNN applied in phase one of CSC falls into the category of supervised learning (Goodfellow et al., 2016) and
is trained with a sample of image tiles which have been manually labelled according to class (training dataset). Each tile used
to train the phase one CNN represents a sample of pure class (i.e., one class covers over 95% of the tile area) allowing the
CNN to learn predictive features, and subsequently make class predictions for a tiled input image not previously seen in training
(test dataset). During phase one of CSC, unseen test images are tiled and encoded in the form of 4D tensors which contain
several separate tiles (dimensions: tiles, X, y, image bands). The pre-trained phase one CNN predicts a class for each input tile
and the tiles are subsequently re-assembled in the shape of the original input image (Fig. 1). As shown in Fig. 1, this produces
a one band class raster made up of tiles, each of which is denoted by a single integer representing its predicted class. In phase
two, the phase one-predicted class raster and input image features are used to train a second model specific to the unseen input

image. The predictions of this second model result in a final pixel-level image classification (Fig. 1).

Since the phase one CNN predictions take the form of a tiled class raster, it is expected that individual tiles may straddle more
than one class and result in inaccurate class boundaries. As a result, this will generate some error in the phase one predictions
and therefore phase two training labels. Nonetheless, deep learning approaches have been found to tolerate noise in training
labels (Rolnick et al., 2018). This is because the training process minimises overall error rather than memorising noise, meaning
models can still learn a trend even if some labels are wrong. Likewise, the phase two models used in CSC are robust to noise
and have been shown to overcome these errors with resulting pixel-level classifications following class boundaries much more

accurately (Carbonneau et al., 2020a).
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Figure 1: Conceptual diagram of the CNN-Supervised Classification workflow showing the production of a tiled class raster in phase
one. Phase one predictions are then used as image-specific training labels for the phase two model which produces a final pixel-level
classification.

2.2. Study areas
2.2.1 Training area: Helheim Glacier, SE Greenland

An area spanning ~69 x 37 km (6875 x 3721 pixels) which includes Helheim Glacier (Fig. 2a), a major outlet of the south-
eastern Greenland Ice Sheet (GrlS), was chosen to adapt CSC for classification of marine-terminating outlet glacier landscapes
and train the phase one CNN. Helheim is one of the five largest outlet glaciers of the GriIS by ice discharge (Howat et al., 2011;
Enderlin et al., 2014) and has flow speeds of 5-11 km a* (Bevan et al., 2012). The glacier has a 48,140 km? drainage basin
(Rignot and Kanagaratnam, 2006) equivalent to ~4% of the ice sheet’s total area (Straneo et al., 2016), from which several
tributaries converge into a ~6 km wide terminus. As shown in Fig. 2a, there is an extensive area of ice mélange adjacent to the
terminus where it enters Sermilik Fjord and is influenced by ocean currents (Straneo et al., 2016). Inspection of available
satellite imagery from 2019 revealed that the area of mélange varied seasonally with monthly variations in extension and

composition as previously observed (Andresen et al., 2012, 2013).

The glacier, fjord, and surrounding landscape provide an ideal training area for the deep learning workflow because they
contain a number of diverse elements that vary over short spatial and temporal scales and are typical of other complex outlet
glacier settings in Greenland. These characteristics include 1) seasonal variations in glacier calving front position; 2) weekly
to monthly changes in the extent and composition of mélange; 3) sea-ice in varying stages of formation; 4) varying volumes
and sizes of icebergs in fjord waters; 5) seasonal variations in the degree of surface meltwater on the glacier and ice mélange;
6) short-lived, meltwater-fed glacial plumes which result in polynyas adjacent to the terminus; and 7) seasonal variations in

snow cover on both bedrock and ice. The resulting spectral variations over multiple satellite images, in addition to potential
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differences resulting from changes in illumination and weather, pose a considerable challenge to image classification.
However, capturing these characteristics at the scale of an entire outlet glacier image scene is important for a more efficient
and integrated understanding of how numerous glacial processes interact. Examination of imagery showing the seasonal
change of the glacial landscape throughout 2019 resulted in the establishment of seven semantic classes, including: 1) open
water, 2) iceberg water, 3) mélange, 4) glacier ice, 5) snow on ice, 6) snow on rock, and 7) bare bedrock (see class examples
in Fig. 2b and detailed criteria for each in Table S1). Training and validation data for the phase one CNN applied in CSC was

collected from the Helheim study area shown in Fig. 2 and labelled according to these seven classes.

(a) Training area: Helheim Glacier
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Figure 2: (a) Location of the area from which phase one CNN training data was extracted, showing Helheim Glacier (66.4° N, 38.8°
W) and the surrounding landscape. Sentinel-2 image acquired on 15 June 2019. (b) Shows example image samples for each of the
seven semantic classes used to train the phase one CNN. The outline of Greenland is from Gerrish (2020).

2.2.2 Test areas: Helheim, Jakobshavn, and Store Glaciers

The ability of a model to accurately predict the class of pixels in an unseen test image is called generalisation (Goodfellow et
al., 2016) and determines the transferability of the model. To test the transferability of the CSC workflow adapted for marine-
terminating glacial landscapes in Greenland, we applied CSC to a test dataset composed of seasonally variable imagery from

in-sample and out-of-sample study sites (Fig. 3). CSC was never tested on any image that was used in training. Rather the in-

6
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sample test dataset is compiled of images from the same glacier used in training but acquired on different dates to training
data. The in-sample test site includes Helheim Glacier (Helheim) and has a slightly smaller area (~47 x 40 km, or 4711 x 3986

pixels) compared to the training site (Fig. 3a).
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Figure 3: Test areas used to quantify the transferability of the CSC workflow. (a) The in-sample test area including Helheim Glacier.
Example image acquired on 18 June 2019. (b) The out-of-sample test areas of Jakobshavn Isbrae (example image acquired on 21
May 2020) and (c) Store Glacier (example image acquired on 28 June 2020). The outline of Greenland is from Gerrish (2020).

The out-of-sample test areas contain Jakobshavn Isbrae (Jakobshavn) and Store Glacier (Store) in central west (CW)
Greenland, and they represent outlet glacier landscapes never seen during training (Fig. 3b and c). The Jakobshavn site spans
~36 x 23 km (3566 x 2265 pixels) while the Store site spans ~28 x 21 km (2797 x 2089 pixels). Both out-of-sample test sites
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have notably different characteristics compared to the Helheim site, specifically in terms of glacier, calving front, and fjord
shape, providing an adequate test of spatial transferability. Jakobshavn is the largest (by discharge) and fastest flowing outlet
of the GrIS (Mouginot et al., 2019). The glacier discharges 45% of the CW GrIS (Mouginot et al., 2019) and has been
undergoing terminus retreat, thinning, and acceleration over the past few decades (Howat et al., 2007; Joughin et al., 2008).
As aresult, the terminus of Jakobshavn is composed of two distinct branches which are no longer laterally constrained by fjord
walls in the same manner as Helheim. Store Glacier is responsible for 32% of discharge from the CW GrIS (Mouginot et al.,
2019), but has remained relatively stable over the last few decades (Catania et al., 2018). The calving front of Store is laterally
constrained by the walls of Ikerasak Fjord (Fig. 3c) and both Jakobshavn and Store glaciers have different flow directions in
comparison to Helheim. The seven classes identified from the training area were also present in the out-of-sample test sites,
including mélange which continuously occupied the fjord at Jakobshavn, and was sporadically present in front of Store Glacier

throughout the range of test imagery acquired in 2020 (Fig. 3).

2.3 Imagery

To train and test the CSC workflow, Sentinel-2 image bands 4, 3, 2, and 8 (red, green, blue (RGB), and near infrared (NIR)),
were used at 10 m spatial resolution. RGB bands are commonly selected for image classification with deep learning
architectures, making existing CNNs easily transferable for the purpose of this study. Additionally, snow and ice have high
reflectance in the NIR band which is often used in remote sensing of glacial environments, for example to identify glacier
outlines using band ratios (e.g., Alifu et al., 2015). Initial testing revealed that the combination of RGB and NIR bands
(collectively referred to as RGBNIR) improved classification results compared to using RGB bands alone (see section 2.6).
Thus, four-band RGBNIR images of the study sites were used as CSC inputs.

Cloud cover and insufficient solar illumination present challenges when using optical satellite imagery such as Sentinel-2 data,
meaning data availability for the study sites was limited to cloud-free imagery from February to October. Despite these
limitations, sufficient data were available to train and test CSC on seasonal timescales. Therefore, to best encompass the
seasonally variable landscape characteristics and collect sufficient training data to represent intra-class variation, 13 cloud-free
Sentinel-2 images of the Helheim training area, taken between February and October 2019, were acquired for phase one CNN
training (Table S2 in the Supplement). Similarly, a seasonally variable test dataset composed of nine in-sample images from
2019 with different dates to training data, and 18 out-of-sample images from February to October 2020 were acquired (Table
S2 in Supplement). Level-2A products were downloaded from Copernicus Open Access Hub (available at:

https://scihub.copernicus.eu/dhus/#/home, last accessed: 20/07/20) and RGBNIR images were created, cropped to the study

sites, and saved in GeoTIFF format. Additionally, a whole unseen Sentinel-2 tile (10980 x 10980 pixels) acquired on 13
September 2019 which included the entire landscape surrounding Helheim Glacier was used to test CSC over a larger spatial

scale (i.e., more than a single glacier).


https://scihub.copernicus.eu/dhus/#/home

210

215

220

225

230

2.4 CSC model architectures and training
2.4.1 Phase 1: model architecture

For the base architecture of the pre-trained CNN used in phase one of CSC we adapted a well-established CNN called VGG16
(Simonyan and Zisserman, 2015) which achieved state-of-the-art performance in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2014. The architecture used consists of five stacks of 13 2D convolutional layers which have 3x3 pixel
filters (Fig. 4). The filter spatially convolves over the input image to create a feature map, using the filter weights. The
dimensions of the output filters increase from 64 in the first stack of convolutional layers to 512 in the last (Fig. 4). All the
convolutional layers use rectified linear unit (ReLU) activation and are interspersed with five max-pooling layers. The
convolutional and pooling stacks are followed by three fully connected (dense) layers (i.e., a normal fine-tuned neural network)
without shared weights, typical of CNN architectures. This section allows the features learned by the CNN to be allocated to
a class by a final Softmax layer with the same number of units as classes. The dense layers use L? regularisation to reduce

over-training (Goodfellow et al., 2016; Carbonneau et al., 2020a).

The input image tile size for the first convolutional layer in the original VGG 16 model architecture was fixed as a 224x224x3
RGB image. However, here we tested the impact of tile size to determine the optimal scale for detecting features within the
glacial landscape using 10 m resolution imagery. Tile sizes of 50x50, 75x75, and 100x100 pixels were tested, and architectures
were adjusted accordingly (Fig. 4). Overall, optimal results in both phases of CSC were achieved using tile sizes of 50x50
pixels (see Section 2.6). Finally, since the input RGBNIR imagery has four bands, the number of input channels was adapted
(i.e., from RGB in the original VGG architecture to RGBNIR in the adapted architecture).

50 x 50 x 4 50 x 50 x 64 25x25x128 12 x 12 x 256 6x6x512 3x3x512

) £ 1x1x512
[==~3x3 Flatten 512 256 8

e \l,, :
Dropout Output

- 7 ' Convz I I !
Input Conv1 Conv3 Convd Convs

_'__: 3x3 Filter @ Convolution (RelLU) Max pooling Fully connected (ReLU) [] Softmax
Figure 4: Architecture of phase one CNN, adapted from the original VGG16 model architecture (Simonyan and Zisserman, 2015).
Diagram shows an example with a 50x50 pixel RGBNIR input image tile. There are five stacks of 2D convolutional layers (labelled
‘Conv#’) which extract features from input tiles using a 3x3 filter. The convolutional stacks are followed by a fully connected neural
network and Softmax activation for phase one class prediction.
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2.4.2 Phase 1: model training

To train the phase one CNN, we employed early stopping to control hyperparameters and inhibit overfitting which occurs
when a model is unable to generalize between training and validation data (Goodfellow et al., 2016). To do this, we designed
a custom callback that trains the network until the validation data (20% set aside with a train-validate-split) reaches a desired
target accuracy threshold. These targets ranged from 92.5 to 99% and determined the number of epochs the CNN was trained
for. We used categorical cross entropy as the loss function and Adam gradient-based optimisation (Kingma and Ba, 2017) with

a learning rate of 10 x 10 and batch sizes of 30.

When applying CSC to multiple sites, we came to a similar conclusion to Carbonneau et al. (2020a) which found that model
transferability was improved when the phase one CNN was trained with data from more than one site. We therefore deployed
a joint fine-tuning training procedure where a CNN initially trained only on data from Helheim was trained further with a small
set of extra tiles (5,000 samples per class) using only two images (one from winter and one from summer) for all three glaciers.
This fine tuning was done at a low learning rate of 10 x 10° and smaller batch sizes of 10 in comparison to initial CNN training
(which used a learning rate of 10 x 10 and batch size of 30). The rational for this is that if a glacier is identified for monitoring,
the addition of two available scenes to produce data used to fine-tune an existing CNN is not an onerous task and can deliver
significant improvements to the final results. For clarity, we will refer to CNN training without this extra level of fine-tuning
as ‘Single’ training and CNN training with this added fine-tuning as ‘Joint’ training. This resulted in an additional glacier-

specific CNN with Joint training for each of the three test areas.

2.4.3 Phase 1: training data production

A dataset of 210,000 training samples with 30,000 image tiles per class was used to train and validate the phase one CNN. To
create the training tiles, the RGBNIR images extracted from 13 Sentinel-2 acquisitions were manually labelled according to
the seven semantic classes using QGIS 3.4 digitising tools. Vector polygons labelled by class number were rasterised to
produce a per-pixel class raster the same size as the training area. Both the input image and class raster were then tiled using
a script which extracted tiles with high overlap using a stride of 20 pixels (Fig. 5). Each tile was extracted, assigned a class
label based on the manually delineated class raster and any tiles occupied by less than 95% pure class were rejected, removing
tiles containing mixed classes. Once extracted, each image tile was augmented by three successive rotations of 90 degrees
(Fig. 5). Data augmentation is a common step for bolstering training datasets in deep learning, and usually entails slightly
altering existing data to increase the number of training samples (Chollet, 2017). Tile rotation also allows the model to learn
classes which may appear at different orientations in unseen images, for example accounting for different glacier flow
directions, providing the potential for increased transferability. Following augmentation, tiles were normalised by a constant

value of 8192 to convert raw Sentinel-2 data to 16-bit floating point data. This was because a GPU with a Turing architecture

10
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as used in CNN training, enabling the use of the TensorFlow mixed precision training method for which the input is 16-bit

floating point data.

The tiles were randomly allocated to training and validation folders with an 80/20% training-validation split for phase one
CNN training. Overall, this resulted in a dataset upwards of 1 million tiles with a large imbalance that ranged from 50,000 tiles
in class one to 900,000 tiles in class four. However, class imbalance can have negative impacts on model performance (Johnson
and Khoshgoftaar, 2019), so 30,000 tiles were randomly subsampled from each class, thus drastically reducing the tile
population and resulting in a balanced training dataset. The final number of 30,000 tiles per class was chosen after trial and
error revealed that the CNN could be trained with all tiles loaded in an available RAM space of 64GB with a 32GB paging
file. For the Joint fine tuning of phase one CNNs, a small dataset of 5,000 samples per class was extracted from a single winter

image and a single summer image for each of the three glaciers.

Class 1 Class 2

Class raster

Pure class >95%

_ Augmentation -
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i Class tile rotation by 90°,
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/
NIR 14 L
B L
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Figure 5: Conceptual diagram of the tiling process used to create training and validation data. A specified tile size and stride were
used to extract tiles from the class raster and training image. Image tiles were filtered, augmented and saved to individual class
folders using an 80/20% split for training and validation data.

Training Validation

2.4.4 Phase 2: model architectures and training

To classify airborne imagery of fluvial scenes at pixel-level using the CSC workflow, Carbonneau et al. (2020a) applied a
pixel-based approach using an MLP in the second phase of the workflow, achieving high levels of accuracy (90-99%). We
propose that applying pixel-based techniques to coarser resolution imagery such as Sentinel-2 data may be less effective
compared to applying the workflow to high resolution imagery. Furthermore, particularly in landscapes containing marine-
terminating glaciers, many distinct classes may be covered in snow or ice and therefore be very spectrally similar (i.e., all
classes are white), and where this is the case a pixel-based MLP would predictably struggle to differentiate between classes.
So, in addition to testing a pixel-based MLP, we adopted a patch-based approach which uses a small window of pixels to

determine the class of a central pixel, as in Sharma et al. (2017). This approach is based on the idea that a pixel in remotely
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sensed imagery is spatially dependent and likely to be similar to those around it (Berberoglu et al., 2000). The use of a region
instead of a single pixel allows for the construction of a small CNN (dubbed ‘compact CNN’ or cCNN: Samarth et al. (2019))
with fewer convolutional layers that assigns a class to the central pixel according to the properties of the region (Carbonneau
et al., 2020b). It therefore combines spatial and spectral information. Sharma et al. (2017) use a patch size of 5x5 pixels for
patch-based classification of medium resolution Landsat 8 imagery. We tested both pixel- and patch-based approaches using
an MLP and cCNN in the second phase of the workflow (the architectures and application of which are detailed in the following
sections 2.4.4.1 and 2.4.4.2). Specifically, five patch sizes of 1x1 (pixel-based), 3x3, 5x5, 7x7, and 15x15 pixels were tested.

This revealed that larger patch sizes of 5x5 to 15x15 pixels delivered optimal classification results (see section 2.6).

2.4.4.1 Multilayer Perceptron

For the pixel-based classification in phase two we used an MLP (Fig. 6a). An MLP is a typical deep learning model (also
commonly known as an artificial neural network) which consists of three (or more) interconnected layers (Rumelhart et al.,
1986; Berberoglu et al., 2000). The MLP has five layers consisting of four fully connected (dense) layers and one batch
normalisation layer (Fig. 6a). The first dense layer has 64 output filters and is followed by a batch normalization layer which
helps to reduce overfitting by adjusting the activations in the network to add noise. This is followed by two more dense layers
with 32 and 16 filters, respectively. Each dense layer uses L? regularisation and ReL.U activation except the output layer. The
final output layer in the network has Softmax activation and eight output filters for class prediction. We used categorical cross

entropy as the loss function and Adam gradient-based optimisation (Kingma and Ba, 2017) with a learning rate of 10 x 1073,

. (a) MLP architecture Batch
Phase 1 predlclted class raster normalisation
3x3 pixel i ] o ‘:Vl"“
patches —4 1 | : 1 pixel
extracted | |.-1 stride
Input image
(b) cCNN architecture Batch

normalisation
e

Flatten
e

@ 2D Convolution >

- Fully connected (ReLU)

Tensor of 3Ix3x32

3x3x4
[] Softmax patches 64
Figure 6: (a) architecture of phase two multilayer perceptron used for pixel-based classification. (b) Architecture of the cCNN used
in phase two for patch-based pixel-level classification. Patches are extracted from the input image with a stride of one pixel, assigned
a class label according to the class raster produced in phase one, and compiled into 4D tensors which are then fed into the cCNN.
An example of a 3x3 patch is shown in this diagram which uses an architecture with a single 2D convolutional layer with 32 3x3
filters. The convolutional layer feeds into a fully connected network like that of the MLP for class prediction.
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The MLP was trained using conventional early stopping with a patience parameter and a minimum improvement threshold.
The minimum improvement was set as 0.5%. Training did not stabilise for at least 20 epochs, so the patience was set to 20.
This means that if training does not improve the validation accuracy by 0.5% after a period of 20 epochs, the training will stop.
Since the MLP is pixel-based, the number of parameters was smaller compared to the patch-based model, with 3,192 trainable
parameters for RGBNIR imagery.

2.4.4.2 Compact Convolutional Neural Network

For the patch-based classification in phase two we used a cCNN architecture (Fig. 6b). This model architecture is referred to
as a compact CNN (cf. Samarth et al., 2019) because it contains fewer convolutional layers in comparison to conventional
CNNSs. The cCNN learns the class of a central pixel in a patch as a function of its neighbourhood. So, for each pixel in the
input image, a small image tile is extracted with square dimensions of the patch size (e.g., 3x3, 5x5, 7x7, or 15x15 pixels). The
central pixel from the phase one predicted class raster is used as the associated class label. As with the phase one CNN, there
are four input channels to match the number of bands and the patches are fed into the cCNN in the form of 4D tensors

(dimensions: patches, X, y, image bands).

The architecture of the cCNN is composed of a deepening series of convolution layers which change depending on the patch
size. In effect, we use as many 3x3 filters as can be accommodated by the patch size without the recourse to padding. Therefore,
for 3x3 image patches, we use a single 2D convolution layer since the convolution of a 3x3 image with a 3x3 kernel returns a
single scalar value. An example of the cCNN architecture for a 3x3 pixel patch is shown in Fig. 6b. For the 5x5 image patch,
we use two 2D convolution layers. The first convolution of the 5x5 image with a 3x3 kernel leaves a 3x3 image which is
rendered to a scalar after a second 3x3 convolution. For the 7x7 image patch size, we use three 2D convolution layers. Finally,
for the 15x15 patch size we use seven 2D convolution layers. In all cases, each convolution layer uses 32 filters and therefore
passes 32 equivalent channels to the following layer, with the exception of the final layer which passes a set of 32 scalar
predictors. These scalars are flattened and fed into a dense top which emulates the MLP architecture (Fig. 6a) and terminates

in the usual Softmax layer for class prediction (Fig. 6b).

As with the MLP, conventional early stopping was used to train the cCNN with a patience parameter and a minimum
improvement threshold. The minimum improvement was set as 0.5%. For patch sizes of 3x3 we used a patience of 15, and for
patches of 7x7 and 15x15, a patience of 10. The number of trainable of parameters reached up to 231,582 for RGBNIR imagery
with a patch size of 15x15 pixels.
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2.5 CNN-Supervised Classification performance

The performance of CSC was tested in two ways to allow comparison to previous deep learning methods. Firstly, classification
accuracy was measured using manually collected validation labels. Secondly, a calving front detection method was
implemented, and error was quantified using manually digitised calving front data for all test images.

Model performance is often measured by classification accuracy (the number of correct predictions divided by the total number
of predictions). However, some models require more robust measures of accuracy which also account for confusion between
predicted classes (Goodfellow et al., 2016; Carbonneau et al., 2020a). We therefore used an F1 score as the primary
performance metric. The F1 score is defined as the harmonic mean between precision (p) and recall (r):
2pr

F1=

- p+r (1)
where precision finds the proportion of positive predictions that are actually correct by dividing the number of true positives
by the sum of both true (correct) positives and false (incorrect) positives. Recall finds the proportion of positive predictions
that were identified correctly by dividing the number of true positives by the sum of true positives and false negatives
(misidentified positives). Thus, the inclusion of recall provides a metric which represents confusion between class predictions
(Carbonneau et al., 2020a). F1 scores range from 0 to 1 with 1 being equivalent to 100% accuracy. Carbonneau et al. (2020a)
used classification results from 862 images to compare F1 and accuracy. They found that they are closely correlated (accuracy

= 1.03F1 +4.1% with an R? of 0.96), with F1 and accuracy converging at 100%.

The validation labels used to calculate F1s were digitised manually using QGIS 3.4 digitising tools. Due to the manual nature
of the data collection, this resulted in some unlabelled areas where classes were particularly difficult to define. This often
occurred at class boundaries or where very small areas of different classes were mixed (at the scale of a few pixels). For
example, in areas where the snow on rock class transitioned to bare bedrock, the structure of the underlying rock would often
result in snow-covered areas spanning just a few pixels. In cases like this, digitising small patches of snow at pixel scale would
be very time-consuming, and as a result some areas of the images remained unlabelled. Despite this, we aimed to cover as

much of each test image with validation labels as possible.

F1 scores were calculated based on the concatenation of all the predictions for all available test images within the given
parameters of tile size, patch size, number of bands, CSC phase, type of training (Single or Joint), glacier, and type of test data
(in-sample or out-of-sample). Given that the calculation of F1 scores for gigapixel samples can be very computationally
intensive, each F1 score presented here was estimated from a sample of 10 million pixels of the available data.

In addition to classification performance, we implemented a calving front detection method based on morphological geodesic

active contours (see Fig. S1). The method is based on the definition of a calving front as the contact between ‘ocean’ pixels
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(open water, iceberg water, or mélange) and glacier ice pixels. Since the final classification output from CSC is at pixel-level,
this allowed for calving front detection at the native spatial resolution of Sentinel-2 imagery (10 m). Error was quantified for
each predicted calving front by measuring the Euclidean distance between each predicted calving front pixel and the closest
pixel in manually digitised calving fronts. From this, the mean, median, and mode error was quantified for each predicted
calving front. Calculating the median and mode values allows the elimination of outliers in calving front predictions (Baumhoer

et al., 2019). Calving fronts were digitised in QGIS 3.4 and rasterised to form a single pixel-wide line.

2.6 Optimal performance parameters

Table S3 shows that the highest classification performance in phase one was achieved using 50x50 pixel tiles from images
composed of all four RGBNIR bands. For models trained with RGB bands, performance was highest with 100x100 pixel tiles,
suggesting that the greater proportion of spatial information stored in larger tiles was beneficial when using only three bands.
This finding extended to phase two results, and the additional testing of patch- vs pixel- based techniques revealed that
optimum classification performance was achieved using larger patch sizes from 5x5 to 15x15 pixels (Table 1) with F1s varying
by only 0.6% for classifications produced with 50x50 RGBNIR tiles.

Table 1: F1 scores for all test data combined (Single training). Highest values are highlighted in bold. RGBNIR bands, 50x50 tiles
and the patch-based approach, specifically patches of 5x5 to 15x15 pixels, produced optimum classification results.

Phase 2 F1 scores (%)  RGB bands RGBNIR bands
Patch size (pixels):
Ix1 3x3 5x5 7 15x15 1x1 3x3 5%5 7 15x15

50x50 tiles 76.1 88.8 90.6 90.5 90.8 80 89.7 91.6 91.8 92.2
75x75 tiles 73.6 89.4 91.3 91.6 91.6 81.4 89.5 90.7 90.7 90.9
100x100 tiles 73.2 89.5 914 91.6 911 79 88.6 89.5 89.4 89.2

Similarly, an evaluation of calving front error for CSC results revealed that a patch size of 5x5 pixels produced the most
accurate calving fronts, followed closely by patches of 7x7, 3x3, and 15x15 pixels (Fig. 7). Figure 7 shows the full error
distribution for predicted calving front pixels detected from classifications produced with RGBNIR bands and 50x50 tiles.
Overall, this suggests that optimum parameters for classification and calving front accuracy combined are 50x50 pixel
RGBNIR tiles with a phase two patch size of 5x5 pixels. Using these parameters resulted in a mean calving front error of 56.17
m (equivalent to 5.6 pixels) for the test dataset as a whole (with individual mean errors of 58.81 m for Helheim, 70.6 m for
Jakobshavn, and 39.1 m for Store). Additionally, median error was 24.7 m (equivalent to 2.5 pixels) for all test data (30 m for
Helheim and Jakobshavn, and 14.1 m for Store), and modal error was 10 m (equivalent to 1 pixel) for all glaciers, suggesting

that mean values are increased by extremes.
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Figure 7: A kernel density estimate (KDE) plot of the full error distribution for all calving front predictions derived from all test
sites using classifications produced with optimal parameters. Error values above 1000 m are grouped into a single bin to reduce tail
length and show a second peak which represents catastrophic errors in calving front prediction. Note that low calving front errors
occur most with 5x5 patches, followed by 7x7 and 3x3 patches, with highest error occurring for the pixel-based approach.

In comparison, manually digitised calving fronts usually have error of around 2 to 4 pixels. For example, Carr et al. (2017)
calculated a mean calving front error of 27.1 m using repeat digitisations. In this work, small classification errors of a few
pixels (often caused by shadows at the front) can lead to errors in the range of 5 to 10 pixels. The smaller scale information
provided in a 5x5 pixel patch is clearly optimal in comparison to overall classification accuracy which achieves good results
with patch sizes from 5x5 to 15x15 pixels. Furthermore, we note a small tail of data where large errors occurred (Fig. 7). The
secondary peak in Fig. 7 represents calving front errors of 2000 m and above which shows where calving front predictions
were catastrophically erroneous. This was caused by one of the 27 test images severely failing to detect the calving front

(despite a high F1). The calving front error distribution derived from Joint training can be found in Fig. S2.

3 Results
3.1 Classification performance

Figure 8 shows examples of CSC applied to images of the Helheim test site. High F1s are maintained despite the noticeable
seasonal differences between images, such as changes in illumination, shadow, snow cover, ablation area, and mélange extent
(Figs. 8a, ¢, and e). Corresponding calving front errors range from 10 to 42.4 m. Similarly, Fig. 9 shows examples of CSC
applied to imagery of Store Glacier (out-of-sample). The F1s shown for the out-of-sample examples in Fig. 9 are slightly lower
compared to the in-sample examples (Fig. 8). This is because the out-of-sample site is more prone to misclassification. For
example, Fig. 9b shows several areas of glacier ice which have been misclassified as mélange. Additionally, in Fig. 9d there
are areas of bedrock which are deeply shadowed, resulting in some misclassifications of bedrock areas as open water. These
misclassifications did not increase calving front error which ranged from 10 to 14.1 m (Figs. 9b, d, f), but lower F1 scores

prompted testing of the Joint fine-tuning method.
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Figure 8: Examples of pixel-level classification outputs for seasonally variable imagery from the in-sample test site showing input
images of Helheim in the first column, which were acquired on (a) 5 March 2019, (c) 5 June 2019, and (e) 1 October 2019 and the
associated CSC outputs shown in (b), (d), and (f). The F1 scores and calving front error are shown next to each classification.
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Figure 9: Examples of pixel-level classification outputs for seasonally variable imagery from the out-of-sample test site showing
input images of Store in the first column, which were acquired on (a) 23 June 2020, (c) 14 September 2020, and (e) 8 October 2020
with the associated CSC outputs shown in (b), (d), and (f). The F1 scores and calving front error is shown next to each classification.

The Joint training method improved classification performance (Table 2). Results were only marginally improved for the in-
sample study site which was to be expected since phase one models were already trained on data from Helheim. A comparison
of classification outputs from Single and Joint training for an image of Store Glacier can be found in Fig. S3 which shows that
the addition of Joint fine-tuning rectified areas of misclassification seen in results which used Single training, with the overall

F1 score increasing from 84.7% (Single training) to 97.5% (Joint training). Figures S4 and S5 also show examples of Joint
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training classifications. These examples suggest that digitising two additional images for the purposes of fine-tuning an existing

pre-trained CNN for glacier-specific classification is worth the improvements in classification accuracy.

Table 2: Optimum F1 scores for classifications produced with Single and Joint training (50x50 RGBNIR tiles). Note the Joint
approach improves classification F1 scores, with biggest improvement for out-of-sample sites.

Phase 2 F1 scores (%) Helheim Jakobshavn Store
Single training 93.3 95 87.1
Joint training 94 97.3 94.6

Confusion matrices which show the relationship between CSC class predictions and validation data for each test glacier are
shown in Fig. S6. In summary, Fig. S6 shows good agreement between predicted and actual classes for all glaciers, with the
exception of the open water class for Helheim and Jakobshavn where confusion occurs between the iceberg water and bedrock
classes. Open water is the smallest class for both sites, with open water often covering only small areas in each individual
image. There is still class confusion in Joint results (Fig. S7), however better overall F1s suggest that improvements are made
in class prediction despite a different pattern of inter-class confusion. Overall, these examples show the ability of CSC to
classify in- and out-of-sample imagery of marine-terminating glacial landscapes in Greenland with different seasonal

characteristics.

Moreover, the size of input imagery to the CSC workflow is not limited to a specified set of dimensions. Since collection of
validation labels for each test image required manual digitisation, the test sites were restricted to ~20 to 50 km to allow
collection of seasonal data for individual glacial landscapes. Despite this, CSC can also be applied to entire Sentinel-2 tiles.
The outputs of the CSC workflow applied to an entire Sentinel-2 image are shown in Fig. S8. The overall F1 score of this
classification was 92%. This suggests that CSC has good classification performance at the level of individual glaciers as well

as whole glacial landscapes.

3.2 Time series of Helheim Glacier

A time series produced using CSC results showing calving front position and changes in mélange area at Helheim throughout
2019 can be seen in Fig. 10. Figure 10a and c¢ show fluctuation in calving front position between March and October 2019
with an overall pattern of retreat. Two predicted calving fronts which had error of over 4.2 pixels were removed from the time
series and frontal position change was quantified using the rectilinear box method to account for cross-glacier variation (Lea
etal., 2014). Figure 10b and c illustrate the variation in mélange area for all nine in-sample test images. Taken together, these
results show the robustness of CSC and usefulness of multi-class outputs for holistic analysis of marine-terminating glacial

environments.
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CSC-predicted mélange pixels from Helheim test dataset showing the seasonal variation in mélange extent. (c) Cumulative retreat
of the calving front relative to 5 March 2019 and mélange area for each test image.

475 4 Discussion
4.1 Comparison to previous work

Our results build on the work of deep learning-based classification methods for ice front delineation (Baumhoer et al., 2019;
Mohajerani et al., 2019; Zhang et al., 2019; Cheng et al., 2021), with several key innovations and variations of note. Firstly,
the CSC workflow produces multi-class outputs using seven semantic classes rather than the binary outputs of previous
480 methods. This fulfils the aim to provide meaningful information which could be used for a variety of applications at the scale
of entire outlet glacier landscapes. In terms of classification accuracy, CSC produces marginally better F1s in comparison to
previous methods applied to marine-terminating glacial environments. Previous studies which focus on outlet glaciers of the
GrlS do not provide F1 scores for their classification outputs. However, Baumhoer et al. (2019) apply their method to Antarctic
marine-terminating environments and produce overall F1s of 89.5% for training areas (in-sample) and 90.5% for test areas
485  (out-of-sample). In comparison, CSC produces F1 scores of up to 93.3% for in-sample test imagery, and 91% for out-of-sample

test imagery when using a phase one CNN trained only with data from Helheim Glacier. By applying Joint CNN training to
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fine-tune the phase one CNN to each test glacier, F1 scores increased to 94% for in-sample test data and 96% for out-of-sample
test data. It is worth noting that the characteristics of Antarctic outlet glacier environments can vary substantially from
Greenlandic outlet glacier environments, potentially presenting different classification challenges. As such, this is a tentative
comparison, especially given that CSC outputs contain seven classes at the scale of the whole landscape, rather than just two
classes focused at the ice front.

Additionally, since previous deep learning studies which produce binary classifications for Greenlandic outlet glaciers do not
provide F1 scores, for further comparison we integrated a calving front detection method into the CSC workflow. Table 3
shows the mean calving front errors produced in this study and each of the previous studies. Mean calving front errors for test
imagery from both training sites (in-sample) and test sites (out-of-sample) are provided, however not all studies specified these
values. In terms of the number of metres that predicted fronts deviate from manual digitisations, the predictions of CSC are
comparable to those of previous studies. However, in terms of the equivalent number of pixels, CSC predictions deviate from
manual digitisations by a few more pixels compared to previous studies (apart from Zhang et al., 2019), indicating that if a
given application solely requires accurate calving front localisation of a known glacier, the method presented here is not

necessarily the optimal choice.

Table 3: Mean calving front errors from previous deep learning methods designed specifically to detect ice fronts in comparison to
the mean calving front errors produced by CSC in this study.

Mean calving front error (and equivalent in pixels)

No. of
Study Ice sheet irr:?:gtes Training site(s) Test site(s) (sitesnot  Both training and
used in training) test sites combined
Baumhoer et al. (2019)  Antarctic 11 78.25 m (< 2 pix.) 107.75 m (2.69 pix.) 93 m (2.33 pix.)

Mohajerani et al. (2019)  Greenland 10 - 96.31 m (1.97 pix.) -
Zhang et al. (2019) Greenland 84 38 m (6 pix.) - -

Cheng et al. (2021) Greenland 162 - - 86.76 m (2.25 pix.)

This study Greenland 27 58.81 m (5.9 pix.) 54.86 m (5.5 pix.) 56.17 m (5.6 pix.)

The second major difference between CSC and previous methods is the deep learning architecture. All previous deep learning
classification methods for delineating ice fronts (Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019; Cheng et
al., 2021) use FCN/U-Net architectures (Ronneberger et al., 2015). Hoeser et al. (2020) reviewed image segmentation and
object detection in remote sensing and whilst they do conclude that FCN/U-Net architectures are dominant, they still find about
30% of published work uses patch-based approaches which are akin to the second phase of the CSC method presented here.
This suggests that FCN architectures need not be considered the de facto algorithm for glacial landscape classification.

Moreover, the advantage of CSC over one-stage patch-based methods using FCNs is that the initial phase one CNN provides
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transferability and delivers bespoke training labels for the pixel-level patch-based operator (as described in Section 2.1). We

discuss the other major implications of the architectural differences between our work and FCNs in the following sections.

4.1.1 Data pre-processing and computational loads

CSC has certain practical advantages over FCNs in terms of data processing and computational loads. Firstly, the CSC method
has low pre-processing requirements. In effect, Sentinel-2 images were cropped to produce large images containing whole
marine-terminating glacier landscapes, yet still within a workable size for detailed digitisation of validation labels. The only
other pre-processing step required is normalisation by a constant factor of 8192 to convert raw Sentinel-2 data to 16-bit floating
point data. Once this is done, CSC has a low computational load. Training the initial VGG16 model can be done in under one
hour using an 17 processor at 5.1Ghz, and an Nvidia RTX 2060 GPU. When CSC is subsequently applied to a sample image
of ~3000x3000 pixels using optimal phase one parameters and a phase two patch size of 7x7 pixels, classification requires 4
minutes. We also coded a low-memory usage pathway in the main script that classifies a large image row-by-row with a
threshold to define ‘large’ set by the user. Using this, Sentinel-2 images can be classified at native resolution (10980x10980
pixels each) in 12 minutes with a peak RAM consumption of 11GB. This makes CSC suitable for use in free cloud-based
solutions such as Google Colaboratory, providing the potential to build on existing cloud-based tools for glacial mapping (e.qg.,
Lea, 2018). Moreover, given the simplicity of data pre-processing steps required for CSC, the workflow has good accessibility

and can be implemented easily by new users.

In contrast, for several of the previous studies which implement FCN architectures, a larger number of pre-processing steps
are required, including but not limited to rotation for consistent glacier flow direction, edge enhancement, and pseudo-HDR
toning (Mohajerani et al., 2019; Zhang et al., 2019; Cheng et al., 2021). Similarly, FCN architectures can be very demanding
in terms of computer RAM and GPU RAM, especially when large images are used as inputs. When we tested this by
implementing the popular FCN8 based on VGG16 which has ~130 million trainable parameters, we found that the largest
dyadic image size that could be processed was 512x512 pixels. This general problem has been resolved in different ways in
the Earth observation (EO)-facing literature. Baumhoer et al. (2019) used 40 m Sentinel-1 Synthetic Aperture Radar (SAR)
data and a DEM at 90 m resolution as their base. Using a smaller FCN with ~7.8 million parameters, they used image tiles of
780x780 pixels with 4 channels (HH, HV, DEM, HH/HV polarisations) on a GTX 1080 GPU (8GB vs 6GB for the RTX2060).
However, it is important to note that with 40 m data, 780 pixels still covers 31.2 km. If this were Sentinel-2 optical data, with
a resolution of 10 m, the sample tiles would only cover 7.8 km. In contrast, the calving front of Jakobshavn has a width of ~11
km. To get around this sort of issue using FCNs, downsampling is used. For example, Mohajerani et al. (2019) used an
advanced pre-processing routine that involved a re-orientation and then a resampling of the scene to 200x300 pixels. This
resampling resulted in imagery with varied resolutions across glaciers used in training and test data. In the end, the FCN they

used only had 240x152 pixels in a single post-processed channel which was tested at a single site (Helheim Glacier) with a
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resampled spatial resolution of 49 m (from Landsat data with 15/30 m resolution). In contrast, the spatial resolution of the

input images and resulting classification outputs using CSC always remains native to raw Sentinel-2 data (i.e., 10 m).

4.1.2 Training data volume

In terms of the number of training samples used for deep learning models, Goodfellow et al. (2016) note that, as a general rule,
each class should contain at least 5,000 samples to reach satisfactory performance, but models can reach and exceed human-
level performance when trained on at least 10 million samples. Considering this, the number of labelled samples produced by
manually labelled training images and data augmentation in the datasets used here (210,000 tiles) makes them relatively small.
However, in comparison to pre-trained models such as VGG16 which were trained on the ImageNet database using over 1000
classes, our adapted VGG16 architecture only uses seven classes, and therefore can be trained sufficiently with ‘only’ a few
100 thousand samples. This suggests that relatively few images are needed to produce highly accurate image classifications
using our workflow, reducing the time required for initial creation of manually labelled training data. Furthermore, the number
of satellite acquisitions used to produce the training data for the phase one CNN in CSC is smaller than that used to train
models in previous FCN-based studies. Given that our optimal phase one CNN training sample is 50x50 pixels, a very large
number of samples can be extracted from a full Sentinel-2 tile of 10980x10980 pixels. In our initial training of the phase one
CNN, we used sub-images of 6875 x 3721 pixels extracted from 13 Sentinel-2 acquisitions. In the joint-fine tuning step, we
added data from six Sentinel-2 acquisitions (one winter and one summer for each of the three glaciers). So, in total, this work
used data from 13 to 19 Sentinel-2 acquisitions. Comparatively, Baumhoer et al. (2019) used 38 Sentinel-1 satellite
acquisitions, Zhang et al. (2019) used 75 TerraSAR-X acquisitions, Mohajerani et al. (2019) used 123 Landsat 5-8 acquisitions,
and Cheng et al. (2021) used 1,872 images (1,541 from Landsat and 232 from Sentinel-1). So, overall, we argue that our results

were obtained with less training data than those from comparator FCN-facing works.

4.1.3 Size of input imagery

The size of input imagery also represents an area where CSC has advantages over FCNs. In FCN architectures, the instance
that must be classified must be well framed in the input image. Often in the case of higher resolution images where such
framing would lead to image sizes in excess of 1000x1000 pixels, downsampling must be used unless extremely powerfully
GPU are available. Similarly, the pre-processing methods used in FCN-based papers start with a user actually knowing where
the feature of interest is and cropping the image accordingly. For example, Mohajerani et al. (2019) crops imagery to within a
300 m buffer area of a pre-defined calving front and further crops training images to 150x240 pixels for FCN training inputs.
In the resulting images, the calving front must be kept within the frame. This type of pre-processing is not required in CSC.
Instead, CSC can process entire tiles of Sentinel-2 data at native resolutions without the need for downsampling, selection and
cropping of a known target area, or extensive pre-processing (see Fig. S8). In order to produce digitised validation labels for a

test dataset spanning seasonally variable imagery, our test areas were cropped to 2000/3000 pixels (digitisation of entire
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Sentinel-2 tiles to near pixel-levels of detail for seasonally variable test imagery would be a more onerous task), but the CSC
method is not sensitive to where the crop boundaries fall, and it performs well even when an image boundary cuts a glacier in
half. It also works well when the user does not have previous knowledge of the location of a feature of interest. Admittedly,
in the case of glaciers, this is arguably less important because we already have high quality glacier inventories. However, in
terms of the wider scope of image classification in EO, there are many cases where a human user cannot be expected to know
a priori the location of all features/class instances of interest in order to carry out the level of pre-processing required by FCN
architectures. In these cases, the lower levels of pre-processing required by CSC are advantageous and has allowed us to

produce classifications for full Sentinel-2 tiles (Fig. S8) that are absent from other works based on FCNs and U-Nets.

4.1.4 Local textures vs object shapes

Finally, from a theoretical perspective, FCN architectures can be strongly dependent on object shapes and less dependent on
inner textures. In the final stages of the encoder part of an FCN architecture, the simplified shape of the object will contribute
to the weights learned in training (as will inter class relations). This means that an FCN must be trained to recognise specific
shapes. As a result, an FCN trained only on data from Helheim could not be expected to perform well at the task of classifying
Jakobshavn. There are no published examples where an FCN has been trained on a single glacier and displays transferability
to very different glaciers. For example, Mohajerani et al. (2019) train their FCN on three glaciers (Jakobshavn, Sverdrup, and
Kangerlussuaq) and only test it on Helheim Glacier. Similarly, the FCN used by Zhang et al. (2019) is only trained and tested
on Jakobshavn, providing no test of spatial transferability. Instead, multiple sites must be included in FCN training in order to
reach good transferability (e.g., Cheng et al., 2021). Contrastingly, in this study, even before the application of Joint fine-
tuning, the phase one VGG16 CNN solely trained on data from Helheim successfully classified large areas of Jakobshavn
leading to very high performance with final, phase two results with F1s in excess of 95%. This is because CSC is driven by
spectral and textural properties within the object, whilst the downsampling often required in an FCN pipeline can remove local
textures. FCNs compensate for this by making use of inter-class relations, which CSC does not consider. However, on the
terrestrial surface, there is a strong correlation between the ontology of a semantic class and both colour and textural properties.
This explains why a statistical learning algorithm such as maximum likelihood has been used with reasonable success by the
EO community for nearly half a century (Lillesand and Kiefer, 1994). Furthermore, the learning of shapes, a strong point of
FCN, is not so relevant in EO since many semantic classes have either variable shapes or no shapes at all. Good examples are

forests/vegetation, water body shapes (including supraglacial lakes), rocky outcrop shapes, and sediment patches in rivers.
Overall, the empirical results presented here show that CSC has delivered a state-of-the-art performance for novel multi-class

pixel-level classification of marine-terminating glacial landscapes in Greenland. In summary, when compared to FCN

architectures, CSC has lower training data volume requirements and simpler pre-processing steps. Moreover, the workflow
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produces marginally better F1 scores but marginally poorer calving front detections (in terms of pixel dimensions). On balance,

we argue that this shows that there is still a place in EO for patch-based classification methods such as CSC.

4.2 CSC performance and wider application

The results reported here demonstrate that the CSC workflow adapted for landscapes containing marine-terminating outlet
glaciers in Greenland produces state-of-the-art pixel-level classifications for seasonally variable imagery. After testing the
performance of different band combinations, tile sizes, and patch sizes on seasonally variable test imagery, we find that
classifications reach F1 scores of up to 93.3% for in-sample test imagery, and 91% for out-of-sample test imagery when using
a phase one CNN trained only with data from Helheim Glacier and the overall optimal classification parameters. With the
addition of Joint fine-tuning, F1 scores increased to 94% for in-sample test data and 96% for out-of-sample test data. In terms
of calving front accuracy, a mean error of 56.17 m (5.6 pixels) and median error of 24.7 m (2.5 pixels) was achieved from
classifications produced with overall optimum parameters. Taken together, this suggests that the accurate multi-class outputs
of CSC are capable of producing datasets with sufficient levels of accuracy, for example to monitor calving front change at a
high temporal resolution. Indeed, the method could be developed to generate extensive time series data of calving front changes
with 10s of measurements per year for multiple glaciers and over several years, which is a key advantage over time-consuming

manual digitisation.

Given that CSC can identify multiple semantic classes, this also provides scope for analysis in other research areas, beyond
calving front monitoring. Changes in other class boundaries could be monitored, for instance to detect changes in
snowline/equilibrium line position and quantify ablation area change (Noél et al., 2019). Similarly, the multi-class outputs
could be used to quantify seasonal changes in the area of a specific class, for example to monitor changes in the area of mélange
(Foga et al., 2014; Cassotto et al., 2015) as shown in Fig. 10. Moreover, while CSC operates at the scale of overall landcover
classes, outputs could potentially be used to isolate a specific target class for detection of smaller scale features, for example
to detect change in the evolution of supraglacial lakes (Hochreuther et al., 2021) and subglacial meltwater plumes (How et al.,
2017; Everett et al., 2018), as well as iceberg tracking (Barbat et al., 2021). Finally, the outputs of the CSC script retain the
geospatial information of the input data, meaning classification and calving front outputs can be easily manipulated in GIS

software.

4.3 Technical considerations for future work

The Joint fine-tuning method significantly improved classification F1s with the addition of training data from only two glacier-
specific images. Considering the improvements to classification performance for out-of-sample sites, we suggest that the
manual labour required to collect 5,000 additional samples per class derived from only two images is not substantial and may

be worthwhile if a glacier is identified for monitoring. Further work may also benefit from more diverse training data for the
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phase one CNN rather than training from a single glacier. Similarly, CSC did not produce very accurate classifications for
images with extremely low illumination angles. This is most likely because images with very low illumination angles occurred
most frequently at the beginning or end of the image availability season and made up a smaller proportion of phase one training
data. To improve the ability of CSC to classify imagery with deep shadow and extremely low illumination angles, the
proportion of phase one CNN training data containing these qualities could be increased. Despite this, the application of CSC
using Single CNN training still produced an F1 score of up to 91% for out-of-sample test data, providing sufficient
classification quality to detect calving fronts with a mean error of 54.86 m (5.5 pixels) and a median error of 22.1 m (2.2

pixels).

CSC performance was optimal when using RGBNIR bands rather than RGB bands alone. Testing the use of additional image
bands to increase spectral data may be advantageous in future work. For example, Xie et al. (2020) used a CNN trained with
17 input bands derived from Landsat 8 imagery and DEM data and found that using more bands produced higher accuracy for
mapping debris-covered mountain glaciers. However, this may not necessarily be the case with marine-terminating outlet
glaciers and using additional input channels is likely to increase processing time which should also be taken into account when

considering that accurate results can be achieved using only RGBNIR bands.

We proposed that adopting a patch-based technique which includes contextual information surrounding a pixel would aid
classification of complex and seasonally variable outlet glacier landscapes, as it has in other applications (Sharma et al., 2017)
and found that the phase two patch-based method significantly outperformed the pixel-based method. This also validates
similar findings that patch-based CNNs outperform standard pixel-based neural networks and CNNs (Sharma et al., 2017). For
calving front detection, a patch size of 5x5 pixels was optimal, suggesting that the smaller scale contextual information
contained within a 5x5 pixel patch is beneficial for classification at the glacier front where small areas of shadow can impact
front prediction at the scale of a few pixels. Overall, for marine-terminating glacier classification we suggest that the patch-

based technique is used instead of pixel-based methods.

5 Conclusion

We develop and evaluate a workflow for novel multi-class image classification of seasonally variable marine-terminating
outlet glacier scenes using deep learning. The development of deep learning methods for automated classification of outlet
glaciers is an important step towards monitoring processes at high temporal and spatial resolution (e.g., changes in frontal
position, mélange extent, and calving events) over several years. While still in its infancy in glacial settings, image
classification using deep learning provides clear potential to reduce the labour-intensive nature of manual methods and

facilitate automated analysis in an era of the burgeoning availability of satellite imagery. Our two-phase workflow, termed
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CNN-Supervised Classification, is adapted for classification of medium resolution Sentinel-2 imagery of outlet glaciers in
Greenland. In phase one, the application of a well-established, pre-trained CNN called VGG16 replicates the way a human
operator would interpret an image, rapidly producing training labels for a second image-specific model in phase two.
Application of the phase two model produces pixel-level classifications according to seven semantic classes characteristic of

complex outlet glacier settings in Greenland.

Alongside an evaluation of input parameters and training methods on model performance, we apply and test the workflow on
27 seasonally variable unseen images. The test dataset is composed of nine images from the training area of Helheim Glacier
(in-sample), and 18 images from Jakobshavn and Store glaciers which represent landscapes not previously seen during training
(out-of-sample). Resulting pixel-level classifications produce high F1 scores for both in- and out-of-sample imagery. Similarly,
the calving front detection method built into the CSC workflow predicts fronts with a mean error of 56.17 m (5.6 pixels) and
median error of 24.7 m (2.5 pixels). Overall, this demonstrates that the CSC workflow has good spatial and temporal
transferability to unseen marine-terminating glaciers in Greenland. Moreover, the method can be used to classify entire
landscapes and produce secondary datasets (such as calving front data) with a good level of accuracy. The simplicity of data
pre-processing and the low computational costs of CSC make it a useful tool which can be accessed and used without having
specialised knowledge of deep learning or the need for time-consuming generation of substantial new training data. From a
wider perspective, the results of this study strengthen the foothold of deep learning in the realm of automated processing of
freely available medium resolution satellite imagery, especially building on the growing body of research using deep learning
in glaciology (Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019; Xie et al., 2020; Cheng et al., 2021).

Code and data availability: Sentinel-2 imagery is available from the Copernicus Open Access Hub (available at:
https://scihub.copernicus.eu/dhus/#/home, last accessed: 20/07/20). The Python scripts for the full deep learning workflow and
instructions on how to apply them are available at: http://doi.org/10.5281/zenod0.4081095 and can be cited as Carbonneau and
Marochov (2020). The pre-trained CNN for phase one of CSC are available for download from this institutional repository:
http://doi:10.15128/r2gh93gz51k and can be cited as Marochov and Carbonneau (2020). The original code for the CSC

workflow for classification of fluvial scenes is available at: https://github.com/geojames/CNN-Supervised-Classification.

Supplement: The supplement includes descriptions for each of the seven semantic classes (Table S1); the Sentinel-2
acquisitions used for training and testing the classification workflow (Table S2); a flow chart of the methodology used to
produce calving fronts (Fig. S1); phase one F1 scores (Table S3); calving front error for the Joint approach (Fig. S2); example
outputs using Joint training (Figs. S3 to S5), confusion matrices (Figs. S6 and S7); and an example of CSC applied to a whole

Sentinel-2 image (Fig. S8).
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