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Abstract. A wealth of research has focused on elucidating the key controls on mass loss from the Greenland and Antarctic ice 

sheets in response to climate forcing, specifically in relation to the drivers of marine-terminating outlet glacier change. The 10 

manual methods traditionally used to monitor change in satellite imagery of marine-terminating outlet glaciers are time-

consuming and can be subjective, especially where mélange exists at the terminus. Recent advances in deep learning applied 

to image processing have created a new frontier in the field of automated delineation of glacier calving fronts. However, there 

remains a paucity of research on the use of deep learning for pixel-level semantic image classification of outlet glacier 

environments. Here, we apply and test a two-phase deep learning approach based on a well-established convolutional neural 15 

network (CNN) for automated classification of Sentinel-2 satellite images. The novel workflow, termed CNN-Supervised 

Classification (CSC) is adapted to produce multi-class outputs for unseen test imagery of glacial environments containing 

marine-terminating outlet glaciers in Greenland. Different CNN input parameters and training techniques are tested, with 

overall F1 scores for resulting classifications reaching up to 94% for in-sample test data (Helheim Glacier) and 96% for out-

of-sample test data (Jakobshavn Isbrae and Store Glacier), establishing a state-of-the-art in classification of marine-terminating 20 

glaciers in Greenland. Predicted calving fronts derived using optimal CSC input parameters have a mean deviation of 56.17 m 

(5.6 pixels) and median deviation of 24.7 m (2.5 pixels) from manually digitised fronts. This demonstrates the transferability 

and robustness of the deep learning workflow despite complex and seasonally variable imagery. Future research could focus 

on the integration of deep learning classification workflows with free cloud-based platforms, to efficiently classify imagery 

and produce datasets for a range of glacial applications without the need for substantial prior experience in coding or deep 25 

learning. 
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1 Introduction 

Quantifying glacier change (e.g., volume, area, geometry, surface hydrology, and terminus position) from remote sensing data 

is essential to improve our understanding of the impacts of that climate change has on glaciers (Vaughan et al., 2013; Hill et 30 

al., 2017)(Vaughan et al., 2013; Hill et al., 2017). In many glaciated areas, well-established semi-automated techniques such 

assuch as image band ratio methods are used to extract glacier outlines for this purpose and to create glacier inventories (Paul 

et al., 2016)(Paul et al., 2016). These methods accurately classify areas of debris-free ice in contrast to surrounding topography 

and are widely used in studies of mountain glaciers and ice caps (e.g., Bolch et al., 2010; Frey et al., 2012; Rastner et al., 2012; 

Guo et al., 2015; Stokes et al., 2018)(e.g., Bolch et al., 2010; Frey et al., 2012; Rastner et al., 2012; Guo et al., 2015; Stokes et 35 

al., 2018). However, these approaches . However, they are less effective for accurately mapping more complex glaciers and 

iated glaciated landscapes such as marine-terminating outlet glaciers, which often often havecontain spectrally similar 

seasonally variable surfaces likeareas  of a spectrally similar mélange (a mixture of sea-ice and icebergs) near their calving 

fronts (Amundson et al., 2020)(e.g., Amundson et al., 2020).  

 40 

As a result, manual digitisation remains the most common technique used to delineate marine-terminating glaciers (e.g., Miles 

et al., 2016, 2018; Carr et al., 2017; Wood et al., 2018; Brough et al., 2019; Cook et al., 2019; King et al., 2020).(e.g., Miles 

et al., 2016, 2018; Carr et al., 2017; Wood et al., 2018; Brough et al., 2019; Cook et al., 2019; King et al., 2020) Nonetheless, 

the labour-intense nature of manual digitisation can result in datasets with spatial or temporal limitations (Seale et al., 

2011)(Seale et al., 2011). With this in mind, the. importance of processes occurring at marine-terminating outlet glaciers on a 45 

range of spatio-temporal scales (Amundson et al., 2010; Juan et al., 2010; Chauché et al., 2014; Carroll et al., 2016; Bunce et 

al., 2018; Catania et al., 2018, 2020; King et al., 2018; Bevan et al., 2019; Sutherland et al., 2019; Tuckett et al., 2019) 

highlights the growing need for a more efficient method to quantify outlet glacier change, especially in an era of increasingly 

available satellite data. , and more recently, bespoke (semi-) automated techniques have been relied upon for delineation of 

glaciers in more complex settings (e.g., Robson et al., 2015; Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019; 50 

Cheng et al., 2021). 

 

 

 

The importance of processes occurring at marine-terminating outlet glaciers on a range of timescales (Amundson et al., 2010; 55 

Juan et al., 2010; Chauché et al., 2014; Carroll et al., 2016; Bunce et al., 2018; Catania et al., 2018, 2020; King et al., 2018; 

Bevan et al., 2019; Sutherland et al., 2019; Tuckett et al., 2019) highlights the growing need for a method to efficiently quantify 

outlet glacier change in an era of increasingly available satellite data. Since manual digitisation remains the most common 

technique used to delineate marine-terminating glaciers (e.g., Miles et al., 2016, 2018; Carr et al., 2017; Wood et al., 2018; 

Brough et al., 2019; Cook et al., 2019; King et al., 2020), studies which analyse seasonal glacier dynamics are often limited to 60 
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individual glaciers or small spatial areas due to the labour-intense and time-consuming nature of the method (Seale et al., 

2011). In contrast, where studies encapsulate larger numbers of glaciers over increased spatial areas, monitoring is often 

constrained to inter-annual to decadal scales (e.g., Moon and Joughin, 2008), removing the opportunity to understand seasonal 

changes and drivers.  

To confront this challenge, several specialised automated techniques reliant on traditional image processing and computer 65 

vision tools (i.e., semantic segmentation and edge detection) have been developed to extract ice fronts in Greenland and 

Antarctica (Sohn and Jezek, 1999; Liu and Jezek, 2004; Seale et al., 2011; Krieger and Floricioiu, 2017; Yu et al., 2019). 

Semantic segmentation, a term interchangeable with pixel-level semantic classification, divides an image into its constituent 

parts based on groups of pixels of a given class, and assigns each pixel a semantic label (Liu et al., 2019). It remains a core 

concept underlying more recent advancements which use deep learning approaches to classify imagery for more efficient 70 

automated calving front detection (Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019; Cheng et al., 2021).  

 

Deep learning is a type of machine learning in which a computer learns complex patterns from raw data by building a hierarchy 

of simpler patterns (Goodfellow et al., 2016)(Goodfellow et al., 2016. ). 

Meanwhile, traditional statistical classification techniques (e.g., maximum likelihood) are not considered robust when it comes 75 

to extracting ice fronts where there is little contrast between glacier ice/ice shelves and spectrally similar areas of mélange or 

even water containing icebergs (Baumhoer et al., 2019). Moreover, classification techniques which rely solely on individual 

pixel values often miss contextual, class representative shapes and textures, meaning that for land cover classification of 

medium resolution satellite imagery, pixel-based approaches rarely produce satisfactory levels of accuracy (Blaschke et al., 

2000) and commonly result in noisy classifications (Li et al., 2014). To confront this challenge, some specialised automated 80 

techniques for extracting ice fronts have been developed, exemplified in a small number of studies which delineate the 

boundaries of marine-terminating glaciers and ice shelves at the margins of the Greenland (Sohn and Jezek, 1999; Seale et al., 

2011; Krieger and Floricioiu, 2017) and Antarctic ice sheets (Liu and Jezek, 2004; Yu et al., 2019). These methods generally 

rely on tools from the fields of image processing and computer vision, namely semantic segmentation, and edge detection. 

Semantic segmentation is a term used interchangeably with pixel-level semantic classification and refers to the process of 85 

dividing an image into its constituent parts based on groups of pixels of a given class, assigning each pixel a semantic label 

(Liu et al., 2019). Throughout the remainder of this study, we refer to this generally as classification. The technique was used 

by Liu and Jezek (2004) to partition Synthetic Aperture Radar (SAR) imagery into two major semantic classes (ice/land and 

water). Following substantial post-processing, they applied an edge detection algorithm to the classified image to extract the 

boundary between ice/land and water around Antarctica. Edge detection identifies areas in an image with abrupt changes in 90 

pixel brightness, therefore providing a useful tool to detect boundaries from satellite imagery (Chen and Hong Yang, 1995). 

In further work, Seale et al. (2011) applied an edge detection algorithm to Moderate Resolution Imaging Spectroradiometer 

(MODIS) satellite imagery of Greenland to detect glacier calving fronts with a similar level of accuracy to manual digitisation. 

Despite adequate levels of accuracy, edge detection techniques require substantial pre- and post-processing, and have since 
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only been used for calving front delineation in a few studies (e.g., Joughin et al., 2008a; Christoffersen et al., 2012). Meanwhile, 95 

traditional statistical classification techniques (e.g., maximum likelihood) are not considered robust when it comes to extracting 

ice fronts where there is little contrast between glacier ice/ice shelves and spectrally similar areas of mélange or even water 

containing icebergs (Baumhoer et al., 2019). Moreover, classification techniques which rely solely on individual pixel values 

often miss contextual, class representative shapes and textures, meaning that for land cover classification of medium resolution 

satellite imagery, pixel-based approaches rarely produce satisfactory levels of accuracy (Blaschke et al., 2000) and commonly 100 

result in noisy classifications (Li et al., 2014). Therefore, edge detection and traditional pixel-based classification methods 

have not yet overcome the widespread use of manual digitisation for monitoring marine-terminating outlet glaciers. 

 

More recently, deep learning methods have been developed to extract ice front outlines and overcome these drawbacks 

(Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019, Cheng et al., 2021). Deep learning is a type of machine 105 

learning in which a computer learns complex patterns from raw data by building a hierarchy of simpler patterns (Goodfellow 

et al., 2016). Convolutional Neural Networks (CNNs) are deep learning models specifically designed to process multiple 2D 

arrays of data such as multiple image bands (LeCun et al., 2015)(LeCun et al., 2015). They differ from conventional 

classification algorithms based solely on the spectral properties of individual pixels by detecting the contextual information of 

in images such as shape and texture, in the same way a human operator would. This is beneficial for classification of complex 110 

environments with little contrast between spectrally similar surfaces (e.g., glacier ice/ice shelves, snow, mélange, and water 

containing icebergs) where traditional statistical classification techniques (e.g., maximum likelihood) produce more noisy 

classifications (Li et al., 2014). Previous studies which apply deep learning to detect the calving fronts of marine-terminating 

glaciers used a type of CNN called a Fully Convolutional Neural Network (FCN) (Ronneberger et al., 2015)(Ronneberger et 

al., 2015), and various post-processing techniques to extract the boundaries between 1) ice and ocean in Antarctica (Baumhoer 115 

et al., 2019), and 2) marine-terminating outlet glaciers and mélange/water in Greenland (Mohajerani et al., 2019; Zhang et al., 

2019, Cheng et al., 2021). Calving fronts detected using these methods have mean errorsdeviate by 38 to 108 m (<2 to 6 pixels) 

from manual delineations ranging from 38 to 108 m (<2 to 6 pixels), providing an accurate automated alternative to manual 

digitisation.   

 120 

 

 

These deep learning methods approaches have so far relied on a binary classification of input images. For example, Baumhoer 

et al. (2019) used only two classes (land ice and ocean). Similarly,, as did Zhang et al. (2019) who classified the input 

imageimages into ice mélange regions and non-ice mélange regions (the latter including both glacier ice and bedrock). While 125 

these methods are valuableincredibly useful for extracting glacier and ice shelf fronts to quantify fluctuations over time, they 

perhaps overlook the ability of deep learning methods to create highly accurate image classification outputs which contain 

more than two classes (i.e., not just ice and no-ice areas). Aside from calving front delineation, a method which quickly 
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produces accurate multi-class image classifications of complex and seasonally variable outlet glacier environments could 

provide an efficient way to further elucidate processes and interactions controlling outlet glacier behaviour at high temporal 130 

resolution (e.g., calving events, the buttressing effects of mélange, subglacial plumes, and supra-glacial lakes). Moreover, deep 

learning has been used successfully in other disciplines to classify entire landscapes or image scenes to a high level of accuracy 

(Sharma et al., 2017; Carbonneau et al., 2020a)(Sharma et al., 2017; Carbonneau et al., 2020a). In glaciology, CNNs have 

achieved success in mappinghave been used to map debris-covered land-terminating glaciers (Xie et al., 2020)(Xie et al., 

2020), rock glaciers (Robson et al., 2020)(Robson et al., 2020), supraglacial lakes (Yuan et al., 2020)(Yuan et al., 2020) and 135 

snow cover (Nijhawan et al., 2019)(Nijhawan et al., 2019). Despite this, multi-class image classification of entire marine-

terminating outlet glacier environments has not yet been tested using deep learning.  

 

CNNs have achieved success in mapping debris-covered land-terminating glaciers (Xie et al., 2020), rock glaciers (Robson et 

al., 2020), supraglacial lakes (Yuan et al., 2020) and snow cover (Nijhawan et al., 2019), but the use of deep learning in 140 

glaciology is still in its infancy. Given the abundance of available satellite imagery, deep learning methods could be a 

significant aid in the automation of image processing for marine-terminating glacial settings. Image classification using deep 

learning techniques has the clear potential to not only reduce the labour-intensive nature of manual methods but facilitate 

automated analysis in numerous research areas. Aside from calving front delineation, a method which quickly produces 

accurate multi-class image classifications of complex and seasonally variable outlet glacier environments could provide an 145 

efficient way to further elucidate processes and interactions controlling outlet glacier behaviour at high temporal resolution 

(e.g., calving events, the buttressing effects of mélange, subglacial plumes, and supra-glacial lakes). The compatibility of deep 

learning image classification methods with platforms such as Google Earth Engine (Gorelick et al., 2017) and its integration 

with Geographic Information Systems (GIS) software could also improve the efficiency of such analysis and remove the need 

for prior expertise in deep learning and coding. This in turn could allow the incorporation of a more detailed understanding of 150 

marine-terminating outlet glacier dynamics and interactions in models used to project future sea-level changes (Csatho et al., 

2014).  

 

Thus, Tthe aim of this paper is to adapt a two-phase deep learning method which was originally developed to classify airborne 

imagery in fluvial settings (Carbonneau et al., 2020a)(Carbonneau et al., 2020a) and test it on satellite imagery of marine-155 

terminating outlet glaciers in Greenland. We first modify and train a well-established CNN called VGG16 (Simonyan and 

Zisserman, 2015) using labelled image tiles from 13 seasonally variable images of Helheim Glacier, south eastsoutheast 

Greenland. TIn the first phase of the workflow, this transferable, pre-trained model is applied to an unseen image from an 

outlet glacier environment. The resulting class predictions are then used as training data for a phase two model which is specific 

to the unseen input image. This phase two model produces a finalhe two-phase deep learning approach is then applied to 160 

produce pixel-level classifications, from which calving front outlines are detected and error is estimated from manually 

delineated validation labels. We assess the sensitivity of the classification workflow to different image band combinations, 
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training techniques, and model parameters for fine-tuning and transferability. Our objective is to establish and evaluate a 

workflow for multi-class image classification for glacial landscapes in Greenland which can be accessed and used rapidly 

without having specialised knowledge of deep learning or the need for time-consuming generation of substantial new training 165 

data. Furthermore, we aspire to exceed the current state-of-the-art and advance accuracy levels (F1 scores >90%) for pixel-

level image classification of marine-terminating outlet glacier landscapes. in Greenland. The methods developed here are 

trained and tested on outlet glaciers in Greenland with a pre-defined set of seven image classes. However, in future work the 

workflow may be applicable to mapping outlet glaciers elsewhere in the world, dependant on suitable adaptations to training 

data inputs and further fine-tuning. 170 

2 Methods 

2.1 Overview of CNN-Supervised Classification 

The classification workflow used here is termed CNN-Supervised Classification (CSC), and was originally developed and 

tested on airborne imagery (<10 cm resolution) to produce pixel-level landcover classifications of fluvial scenes (Carbonneau 

et al., 2020a). CSC is a two-phase workflow based on convolutional architectures which concatenates a CNN to a multilayer 175 

perceptron (MLP) or compact CNN (cCNN) to produce pixel-level classifications. The two-phase approach was designed to 

simulate traditional supervised classification techniques (Carbonneau et al., 2020a). In effect, a pre-trained CNN is used in the 

first phase of CSC to produce locally to automatically detect training areas specific training labels for each individual input 

image, instead of ma replacing manual collection of training data which is, which is typically required for traditional supervised 

machine learning classifiers (Carbonneau et al., 2020a). The phase one CNN removes the need for intensive manual digitisation 180 

for every new image and its critical role is to produce training data which is locally specific to each image. In other words, the 

CNN The phase one CNN therefore accounts for image heterogeneity and incorporates, and incorporates the specific 

illumination/weather  conditions , acquisition angles and seasonal characteristics of each unseen image by detecting local 

predictive features like brightness, texture, and geometric features geometry (e.g., crevasses) in relation to class. Thus, the 

predictions of the phase one CNN therefore provide bespoke training data labels for pixel-level image classification in phase 185 

two.  

 

The pre-trained CNN applied in phase one of CSC falls into the category of supervised learning (Goodfellow et al., 2016) and 

is trained with a sample of image tiles which have been manually labelled according to class (training dataset). Each tile used 

to train the phase one CNN represents a sample of pure class (i.e., one class covers over 95% of the tile area) allowing the 190 

CNN to learn predictive features associated with class, and subsequently make class class predictions for a tiled input image 

not previously seen in training (test dataset). During phase one of CSC, unseen test images are tiled and encoded in the form 

of 4D tensors which contain several separate tiles (dDimensions: tTiles, xX, yY, iImage bands). The pre-trained phase one 

CNN predicts a class for each input tile and the tiles are subsequently re-assembled in the shape of the original input image 
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(Fig. 1). As shown in Fig. 1, this produces a one band class raster made up of tiles, each of which is denoted by a single integer 195 

number representing its predicted class. In the second phase of CSC, this class rasterIn phase two, the phase one-predicted 

class raster and input image features are used to train a robust second model specific to the unseen input image. The predictions 

of this second model . The predictions of this phase two model result in a final, pixel-level image classification (Fig. 1).  

 

Since the phase one CNN predictions take the form of a tiled class raster, it is expected that individual tiles may straddle more 200 

than one class and result in inaccurate class boundaries. As a result, this will generate some error in the phase one predictions 

and therefore phase two training datalabels. Nonetheless, deep learning approaches have been found to tolerate noise in training 

labels (Rolnick et al., 2018). This is because the training process minimises overall error rather than memorising noise, meaning 

models can still learn a trend even if some labels are wrong.  However,Likewise, the phase two models the phase two models 

used in CSC are robust to noise and have been shown to overcome these errors (Carbonneau et al., 2020a) with resulting pixel-205 

level classifications following class boundaries much more accurately (Carbonneau et al., 2020a).  

 

Figure 1: Conceptual diagram of the CNN-Supervised Classification workflow showing the production of a tiled class raster in phase 

one. Phase one  which ispredictions are used as image-specific training data labels for the phase two model. The predictions of the 

phase two  modelwhich produces a final pixel-level classification. 210 

 

2.2. Study areas 

2.2.1 Training area: Helheim Glacier, SE Greenland 

An area spanning ~68.869 x 377.2 km (6875 x 3721 pixels) (Fig. 2a) which includes Helheim Glacier (Fig. 2a) (66.4° N, 38.8° 

W), a major outlet of the south-eastern Greenland Ice Sheet (GrIS), was chosen to adapt CSC for classification of marine-215 

terminating outlet glacier landscapes and train the phase one CNN. Helheim is one of the five largest outlet glaciers of the 

GrIS by ice discharge (Howat et al., 2011; Enderlin et al., 2014)(Howat et al., 2011; Enderlin et al., 2014) and has flow speeds 
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of 5-11 km a-1 (Bevan et al., 2012)(Bevan et al., 2012). The glacier has a 48,140 km2 drainage basin (Rignot and Kanagaratnam, 

2006)(Rignot and Kanagaratnam, 2006) equivalent to ~4% of the ice sheet’s total area (Straneo et al., 2016)(Straneo et al., 

2016), from which several tributaries converge into a ~6 km wide terminus. As shown in Fig. 2a, Tthere is an extensive area 220 

of ice mélange (a mixture of sea-ice and icebergs) adjacent to the terminus where it enters Sermilik Fjord and is influenced by 

ocean currents (Straneo et al., 2016) (Fig. 2a). Inspection of available satellite imagery from 2019 revealed that the area of 

mélange varied seasonally with monthly variations in extension and composition as previously observed (Andresen et al., 

2012, 2013)(Andresen et al., 2012, 2013).  

 225 

The glacier, fjord, and surrounding landscape provide an ideal training area for the deep learning workflow because they 

contain a number of diverse elements that vary over short spatial and temporal scales and are typical of other complex outlet 

glacier settings in Greenland. These characteristics include 1) seasonal variations in glacier calving front position; 2) weekly 

to monthly changes in the extent and composition of mélange; 3) sea-ice in varying stages of formation; 4) varying volumes 

and sizes of icebergs in fjord waters; 5) seasonal variations in the degree of surface meltwater on the glacier and ice mélange; 230 

6) short-lived, meltwater-fed glacial plumes which result in polynyas adjacent to the terminus; and 7) seasonal variations in 

snow cover on both bedrock and ice. The resulting spectral variations over multiple satellite images, in addition to potential 

differences resulting from changes in illumination and weather, pose a considerable challenge to image classification. 

However, capturing these characteristics at the scale of an entire outlet glacier image scene is important for a more efficient 

and integrated understanding of how numerous glacial processes interact. Examination of imagery showing the seasonal 235 

change of the glacial landscape throughout 2019 resulted in the establishment of seven semantic classes, including: 1) open 

water, 2) iceberg water, 3) mélange, 4) glacier ice, 5) snow on ice, 6) snow on rock, and 7) bare bedrock (see class examples 



9 

 

in Fig. 2b and detailed criteria for each in Table S1). Training and validation data for the phase one CNN applied in CSC was 

collected from the Helheim study area shown in Fig. 2 and labelled according to these seven classes. 

Additionally, a gap in the mélange at the glacier terminus appeared at the beginning of July and persisted until mid-August, 240 
suggesting the presence of an active meltwater-fed glacial plume (Straneo et al., 2011).  

Figure 2: (a) Location of the area from which phase one CNN training data was extracted, showing Helheim Gglacier (66.4° N, 38.8° 

W) and the surrounding landscape. Sentinel-2 image acquired on 15 June 2019. (b) Shows example image samples for each of the 

seven semantic classes used to train the phase one CNN. The outline of Greenland is from (Gerrish, Laura, (2020)Gerrish (2020). 

 245 

 

The glacier, fjord, and surrounding landscape provide an ideal training area for the deep learning workflow because it contains 

a number of diverse elements that vary over short spatial and temporal scales and are typical of other complex outlet glacier 

settings in Greenland. These characteristics include 1) seasonal variations in the degree of surface meltwater on the glacier and 

ice mélange; 2) weekly to monthly changes in the extent and composition of mélange; 3) short-lived, meltwater-fed glacial 250 

plumes which result in polynyas adjacent to the terminus; 4) sea-ice in varying stages of formation; 5) varying volumes and 

sizes of icebergs in fjord waters and 6) seasonal variations in snow cover on both bedrock and ice. The resulting spectral 

variations over multiple satellite images in addition to potential variations resulting from changes in illumination and weather, 

pose a considerable challenge to image classification. However, capturing these characteristics at the scale of an entire outlet 
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glacier image scene is important for a more efficient and integrated understanding of how numerous glacial processes interact. 255 

Examination of imagery showing the seasonal change of the glacial landscape throughout the year resulted in the establishment 

of seven semantic classes, including: 1) open water, 2) iceberg water, 3) mélange, 4) glacier ice, 5) snow on ice, 6) snow on 

rock, and 7) bare bedrock (see class examples in Fig. 2 and detailed criteria for each in Table 1). Training and validation data 

for the phase one CNN applied in CSC was collected from the Helheim study area shown in Fig. 2 and labelled according to 

these seven classes. 260 

 

Table 1: Descriptions of each of the seven semantic classes used to train the phase one CNN in the deep learning workflow. Example 

image samples of each class can be found in Figure 2. 

 Class Class description 

1. Open water Open water with no icebergs 

2. Iceberg water Water with varying amounts of icebergs or disintegrated mélange/sea-ice 

3. Mélange Mixture of sea-ice and icebergs of varying sizes 

4. Glacier ice Glacier ice, with seasonally variable surface meltwater 

5. Snow on ice Snow/ice with a smooth appearance 

6. Snow on rock Bedrock with varying amounts of snow cover 

7. Bedrock Bedrock with no snow cover 

 

2.2.2 Test areas: Helheim, Jakobshavn, and Store Glaciers 265 

The ability of a model to accurately predict the class of pixels in an unseen test image is called generalisation (Goodfellow et 

al., 2016)(Goodfellow et al., 2016) and determines the transferability of the model. To test the transferability of the CSC 

workflow adapted for marine-terminating glacial landscapes in Greenland, we appliedy CSC to a test dataset composed of 

seasonally variable imagery from in-sample and out-of-sample study sites (Fig. 3). CSC is was never tested on any image that 

was used in training. Rather the in-sample test dataset is compiled of images from the same glacier used in training, buttraining 270 
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but acquired on different dates to the training data. The in-sample test site includes Helheim Glacier (Helheim) and has a 

slightly smaller area (~47.1 x 4039.9 km, or 4711 x 3986 pixels) compared to the training site (Fig. 3a).  

 

Figure 3: Test areas used to quantify the transferability of the CSC workflow. (a) The in-sample test area including Helheim Glacier. 

Example image acquired on 18 June 2019. (b) The out-of-sample test areas of Jakobshavn Isbrae (example image acquired on 21 275 
May 2020) and (c) Store Glacier (example image acquired on 28 June 2020). The outline of Greenland is from Gerrish (2020). 

 

 

The out-of-sample test areas contain Jakobshavn Isbrae (Jakobshavn) and Store Glacier (Store) in central west (CW) 

Greenland, and they represent outlet glacier landscapes never seen during training (Fig. 3b and c). The Jakobshavn site spans 280 

~35.736 x 22.73 km (3566 x 2265 pixels) while the Store site spans ~28 x 20.91 km (or 2797 x 2089 pixels). Both out-of-
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sample test sites have notably different characteristics compared to the Helheim site, specifically in terms of glacier, 

terminuscalving front, and fjord shape, providing an adequate test of spatial transferability. Jakobshavn is the largest (by 

discharge) and fastest flowing outlet of the GrIS (Mouginot et al., 2019)(Mouginot et al., 2019). The glacier discharges 45% 

of the CW GrIS (Mouginot et al., 2019) and has been undergoing terminus retreat, thinning, and acceleration over the past few 285 

decades (Howat et al., 2007; Joughin et al., 2008)(Howat et al., 2007; Joughin et al., 2008b). As a result, the terminus of 

Jakobshavn is composed of two distinct branches which are no longer laterally constrained by fjord walls in the same manner 

as Helheim. Store Glacier is responsible for 32% of discharge from the CW GrIS (Mouginot et al., 2019)(Mouginot et al., 

2019), but has remained relatively stable over the last few decades (Catania et al., 2018)(Catania et al., 2018). The calving 

front of Store is laterally constrained by the walls of Ikerasak Fjord (Fig. 3c) and both Jakobshavn and Store glaciers have 290 

different flow directions in comparison to Helheim. The seven classes identified from the training area are were also present 

in the out-of-sample test sites, including mélange which continuously occupied the fjord at Jakobshavn, and was sporadically 

present in front of Store Glacier throughout the range of test imagery acquired in 2020 (Fig. 3).       

Figure 3: Test areas used to quantify the transferability of the CSC workflow. (a) The in-sample test area including Helheim Glacier. 

Example image acquired on 18 June 2019. (b) The out-of-sample test areas of Jakobshavn Isbrae (example image acquired on 21 295 
May 2020) and (c) Store Glacier (example image acquired on 28 June 2020). The outline of Greenland is from Gerrish (2020). 

2.3 Imagery  

To train and test the CSC workflow adapted for marine-terminating glacial landscapes, Sentinel-2 image bands 2 (blue), 3 

(green), 4 (red), and 8 (Near Infrared (NIR))4, 3, 2, and 8 (red, green, blue (RGB), and near infrared (NIR)),  were used at 10 

m spatial resolution. The red, green, and blue (RGB) bands were chosen because they are commonly used inRGB bands are 300 

commonly selected for image classification with deep learning architectures, making existing, pre-trained, models CNNs easily 

transferable for the purpose of this study. Additionally, snow and ice have high reflectance in the NIR NIR band which is often 

used in remote sensing of glacial environments, for example in band ratios to automaticallyto identify glacier outlines using 

band ratios (e.g., Alifu et al., 2015)(e.g., Alifu et al., 2015). Initial testing revealed that the combination of RGB and NIR bands 

(collectively referred to as RGBNIR) improved classification results compared to using RGB bands alone (see section 2.6). 305 

Thus, four-band RGBNIR images of the study sites were used as CSC inputs.As a result, the CSC workflow was tested using 

both RGB and RGB+NIR band combinations. 

 

Cloud cover and insufficient solar illumination present challenges when using optical satellite imagery such as Sentinel-2 data, 

meaning  and resulting data availability for the study sites is was limited to cloud-free imagery that spans from February to 310 

October for our study areas. Despite these limitations, optical image availability still provides sufficient data were available to 

train and test CSC on seasonal timescales. Therefore, to best encompass the seasonally variable landscape characteristics and 

collect sufficient training data to represent intra-class variation in all seven classes, 13 cloud-free Sentinel-2 images of the 

Helheim training area, taken between February and October 2019, were acquired for phase one CNN training (Table S1S2 in 
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the Supplement). Similarly, a for the test dataset we aimed to acquire seasonally variable test imagerydataset composed, 315 

resulting in a dataset of nine in-sample test images from 2019 acquired onwith different dates to training data in 2019data, and 

18 out-of-sample test images acquired from February to October 2020 were acquired (Table S21 in Supplement). Level-2A 

images products were downloaded from Copernicus Open Access Hub (available at: 

https://scihub.copernicus.eu/dhus/#/home, last accessed: 20/07/20) and a simple set of pre-processing steps were applied. First, 

the RGB and NIR bands were combined into composite four band imagesRGBNIR images were created, cropped to the study 320 

sites, and saved in GeoTIFF format. Second, the images were.  cropped to the training and test areas. Additionally, a whole 

unseen Sentinel-2 tile (10980 x 10980 pixels) acquired on 13 September 2019 which included the entire landscape surrounding 

Helheim Glacier was used to test CSC over a larger spatial scale (i.e., more than a single glacier), we also created a four-band 

composite image for a whole unseen Sentinel-2 tile which included the entire landscape surrounding Helheim Glacier (10980 

x 10980 pixels) acquired on 13 September 2019.  325 

 

2.4 CSC model architectures and training 

2.4.1 Phase 1: model architecture 

For the base architecture of the pre-trained CNN used in phase one of CSC we adapted a well-established CNN called VGG16 

(Simonyan and Zisserman, 2015)(Simonyan and Zisserman, 2015) which outperformed the achieved state-of-the-art 330 

performance performance of AlexNet in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014. The VGG 

model architecture used we use consists of five stacks of 13 2D convolutional layers which have filters with a 3x3 pixel kernel 

size filters (Fig. 4). The filter spatially convolves over the input image to create a feature map, using the filter weights. The 

dimensions of the output filters increase from 64 in the first stack of convolutional layers to 512 in the last (Fig. 4). All the 

convolutional layers use rectified linear unit (ReLU) activation and are interspersed with five max-pooling layers. The 335 

convolutional and pooling stacks are followed by three fully connected (dense) layers (i.e., a normal fine-tuned neural network) 

without shared weights, typical of CNN architectures. This section allows the features learned by the CNN to be allocated to 

a class by a final Softmax layer with the same number of units as classes. The dense layers use L2 regularisation to reduce 

over-training (Goodfellow et al., 2016; Carbonneau et al., 2020a).  

 340 

The input image tile size for the first convolutional layer in the original VGG16 model architecture was fixed as a 224x224x3 

RGB image. However, here here we testwe tested the impact of tile size to determine the optimal scale for detecting features 

within the glacial landscape using 10 m resolution imagery.by using three datasets with different tile sizes of Tile sizes of 

50x50, 75x75, and 100x100 pixels were testeds, and architectures were . Thus, we adjust the input image size, so it matches 

our three tile sizesadjusted accordingly (Fig. 4 shows an example of an input tile size of 100). Overall, optimal results in both 345 

phases of CSC were achieved using tile sizes of 50x50 pixels (see Section 2.6). Finally, since the input RGBNIR imagery has 

https://scihub.copernicus.eu/dhus/#/home
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four bands, the number of input channels was adapted (i.e., from RGB in the original VGG architecture to RGBNIR in the 

adapted architecture). and adjust the number of input channels depending on the number of image bands used for training (i.e., 

three: RGB or four: RGB+NIR).  

 350 

Figure 4: Architecture of phase one convolutional neural networkCNN, adapted for three tile size datasets from the original VGG16 

model architecture (Simonyan and Zisserman, 2015). Diagram shows an example of with a an RGB tile of 100x100 pixels50x50 pixel 

RGBNIR input image tile. There are five stacks of 2D convolutional layers (lLabelled ‘Conv#’) which extract features from input 

tiles using a 3x3 filter. The convolutional stacks are followed by a fully connected neural network and Softmax activation for final 

phase one class predictions which are subsequently used as localised training data for phase two models. 355 

 

2.4.2 Phase 1: model training 

We tested several different training inputs for the phase one CNN in order to find the best performing input parameters. Firstly, 

we tested training the CNN with tiles composed of 1) RGB bands, and 2) RGB+NIR bands. Secondly, we tested three different 

input tile sizes of 50x50 pixels, 75x75 pixels and 100x100 pixels to find the best tile size for identifying landscape features at 360 

the scale of the 10 m resolution imagery. Overall, this produced six pre-trained phase one CNNs to test.  

 

To train each of  the six phase one CNNs, we employed early stopping to control hyperparameters and inhibit overfitting which 

occurs when a model is unable to generalize between training and validation data (Goodfellow et al., 2016). To do this, we 

designed a custom callback that trains the network until the validation data (20% set aside with a train-validate-split) reaches 365 

a desired target accuracy threshold. These targets ranged from 92.5 to 99% and determined the number of epochs each the 

CNN was trained for. We used categorical cross entropy as the loss function and Adam gradient-based optimisation (Kingma 

and Ba, 2017)(Kingma and Ba, 2017) with a learning rate of 10 × 10-4 and batch sizes of 30. Training the phase one CNNs 

took under an hour using an I7 processor at 5.1Ghz, and an Nvidia RTX 2060 GPU. 

 370 

When applying CSC to multiple sites, we came to a similar conclusion to Carbonneau et al. (2020a) which found that model 

transferability was improved when the phase one CNN was trained with data from more than one site. We therefore deployed 

a joint fine-tuning training procedure where a CNN initially trained only on data from Helheim was trained further with a small 
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set of extra tiles (5,000 samples per class) using only two images (one from winter and one from summer) for all 3 three 

glaciers. This fine tuning was done at a low learning rate of 10 × 10-5 and smaller batch sizes of 10 in comparison to initial 375 

CNN training (which used a learning rate of 10 × 10-4 and batch size of 30). The rational for this is that if a glacier is identified 

for monitoring, the addition of two available scenes to produce data used to fine-tune an existing CNN is not an onerous task 

and can deliver significant improvements to the final results. For clarity, we will refer to CNN training without this extra level 

of fine-tuning as ‘Single’ training and CNN training with this added fine-tuning as ‘Joint’ training. We test the Joint training 

by applying it with tile sizes of 50x50 pixels and RGB+NIR bands due to the good general performance of these parameters 380 

during Single training. Alongside the six phase one CNNs with Single training, thisThis resulted in an additional glacier-

specific CNN with Joint training for each of the three test areas.   

 

 

2.4.3 Phase 1: model training data production 385 

A dataset of 210,000 training samples with 30,000 image tiles per class was used to train and validate each the phase one CNN. 

To create the training tiles, the cropped four-band (RGB+NIR) RGBNIR images extracted from 13 Sentinel-2 acquisitions 

were manually labelled according to the seven semantic classes using QGIS 3.4 digitising tools. Vector polygons labelled by 

class number were rasterised to produce a per-pixel class raster the same size as the training area. Both the input image and 

class raster were then tiled using a script which extracted tiles of 100x100 pixels with high overlap using a stride of 20 (number 390 

of pixels the window moves before extracting another tile)pixels (Fig. 5). Each tile was extracted, assigned a class label based 

on the manually delineated class raster and any tiles occupied by less than 95% pure class were rejected, removing tiles 

containing mixed classes. Once extracted, each image tile was augmented by three successive rotations of 90 degrees (Fig. 5). 

Data augmentation is a common step for bolstering training datasets in deep learning, and usually entails slightly altering 

existing data to increase the number of training samples (Chollet, 2017)(Chollet, 2017). Tile rotation also allows the model to 395 

learn classes which may appear at different orientations in unseen images, for example accounting for different glacier flow 

directions, providing the potential for increased transferability. Following augmentation, tiles were normalised by a constant 

value of 8192 to convert raw Sentinel-2 data to 16-bit floating point data. and saved to disk in TIF format. This was because a 

GPU with a Turing architecture  was used in CNN training, enabling the use of the TensorFlow mixed precision training 

method for which the input is 16-bit  floating point data.  400 
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The tiles were randomly allocated to training and validation folders with an 80/20% training-validation split for phase one 

CNN training.  

  

Overall, this resulted in a dataset upwards of 1 million tiles with a large imbalance that ranged from 50,000 tiles in class one 405 

to 900,000 tiles in class four. However, class imbalance can have negative impacts on model performance (Johnson and 

Khoshgoftaar, 2019)(Johnson and Khoshgoftaar, 2019), so we then drastically cut the tile population and randomly subsampled 

30,000 tiles were randomly subsampled from each class, thus drastically reducing the tile population and resulting in a balanced 

training dataset. The final number of 30,000 tiles per class was chosen after trial and error revealed that we could run all needed 

CNNthe CNN could be trained  models with all the tiles loaded in an available RAM space of 64GB with a 32GB paging file. 410 

These populations of 100x100 pixel tiles composed of RGB+NIR bands were then sliced as needed to create the tiles of 50x50 

or 75x75 pixels in either RGB or RGB+NIR format. For the Joint fine tuning of phase one CNNs, a small dataset of 5,000 

samples per class was extracted from a single winter image and a single summer image for each of the three glaciers.  

Figure 5: Conceptual diagram of the tiling process used to create training and validation data. A specified tile size (100x100 pixels) 

and stride (20 pixels) were used to extract tiles from the class raster and image bandstraining image. These Image tiles were filtered,  415 
and augmented and saved to individual class folders using an 80/20% split for training and validation data.  

 

 

2.4.4 Phase 2: model architectures and training 

To classify airborne imagery of fluvial scenes at pixel-level using the CSC workflow, Carbonneau et al. (2020a) applied a 420 

pixel-based approach using an MLP in the second phase of the workflow, achieving high levels of accuracy (90-99%). We 

propose that applying pixel-based techniques to coarser resolution imagery such as Sentinel-2 data may be less effective 

compared to applying the workflow to high resolution imagery. Furthermore, particularly in landscapes containing marine-

terminating glaciers, many distinct classes may be covered in snow or ice and therefore be very spectrally similar (i.e., all 

classes are white), and where this is the case a pixel-based MLP would predictably struggle to differentiate between classes. 425 
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An example of this is shown in Fig. 11a in the results where the majority of the image is snow-covered and different classes 

are very spectrally similar. So, in addition to testing a pixel-based MLP, we We therefore adopted a patch-based approach 

which uses a small window of pixels to determine the class of a central pixel, as in Sharma et al. (2017). This approach is 

based on the idea that a pixel in remotely sensed imagery is spatially dependent and likely to be similar to those around it 

(Berberoglu et al., 2000)(Berberoglu et al., 2000). Sharma et al. (2017) use a patch size of 5x5 pixels for patch-based 430 

classification of medium resolution Landsat 8 imagery. Thise use of a region instead of a single pixel allows for the construction 

of a small CNN (dubbed ‘compact CNN’ or cCNN: (Samarth et al., (2019))Samarth et al., 2019) with fewer convolutional 

layers that assigns a class to the central pixel according to the properties of the region (Carbonneau et al., 2020b)(Carbonneau 

et al., 2020b). It therefore combines spatial and spectral information. (Sharma et al., (2017)Sharma et al. (2017) use a patch 

size of 5x5 pixels for patch-based classification of medium resolution Landsat 8 imagery. Here we testWe tested both pixel- 435 

and patch-based approaches using an MLP and cCNN in the second phase of the workflow (the architectures and application 

of which are detailed in the following sections 2.4.4.1 and 2.4.4.2). Specifically, five patch sizes of 1x1 (pixel-based), 3x3, 

5x5, 7x7, and 15x15 pixels were tested. This revealed that larger patch sizes of 5x5 to 15x15 pixels delivered optimal 

classification results (see section 2.6)..  

 440 

 

2.4.4.1 Multilayer Perceptron 

For the pixel-based classification in phase two we used an MLP (Fig. 6a). An MLP is a typical deep learning model (also 

commonly known as an artificial neural network)  (ANN)) which consists of three (or more) interconnected layers (Rumelhart 

et al., 1986; Berberoglu et al., 2000)(Rumelhart et al., 1986; Berberoglu et al., 2000). The MLP used here has five layers 445 

consisting of four fully connected (dense) layers and one batch normalisation layer (Fig. 6a). The first dense layer has the same 

number of input dimensions as image bands and 64 output filters. This is and is followed by a batch normalization layer which 



18 

 

helps to reduce overfitting in a similar way to dropout layers, by adjusting the activations in the network to add noise. This is 

followed by two more dense layers with 32 and 16 filters, respectively. Each dense layer uses L2 regularisation and ReLU 

activation except the output layer. The final output layer in the network is a dense layer withhas Softmax activation and eight 450 

output filters, to match the number of output classes for class prediction. We used categorical cross entropy as the loss function 

and Adam gradient-based optimisation (Kingma and Ba, 2017) with a learning rate of 10 × 10-3.  

 

Figure 6: (a) architecture of phase two multilayer perceptron used for pixel-based classification. (b) Architecture of the cCNN used 

in phase two for patch-based pixel-level classification. Patches are extracted from the input image with a stride of one pixel, assigned 455 
a class label according to the class raster produced in phase one, and compiled into 4D tensors which are then fed into the cCNN. 

An example of a 3x3 patch is shown in this diagram which uses an architecture with a single 2D convolutional layer with 32 3x3 

filters. The convolutional layer feeds into a fully connected network like that of the MLP for class prediction. 

 

 460 

We usedThe MLP was trained using conventional early stopping with with a patience parameter and a ma minimum 

improvement thresholdd to train the MLP. The minimum improvement was set as 0.5%. TFor the MLP, we found that training 

did not stabilise for at least 20 epochs and we setso the patience was set to 20. This means that if training does not improve the 

validation accuracy by 0.5% after a period of 20 epochs, the training will stop. Since the MLP is pixel-based, the number of 

parameters wais smaller compared to the patch-based model, with 3,128 and with 3,192 trainable parameters for RGB and 465 

NIR+RGBRGBNIR imagery, respectively.  

Figure 6: Architecture of phase two multilayer perceptron used for pixel-based classification.Figure 7: Architecture of the 

cCNN used in phase two for patch-based pixel level classification. Patches are extracted from the input image with a stride of 

one pixel, assigned a class label according to the class raster produced in phase one, and compiled into 4D tensors which are 

then fed into the cCNN. An example of a 3x3 RGB patch is shown in this diagram which uses an architecture with a single 2D 470 

convolutional layer with 32 3x3 filters. The convolutional layer feeds into a fully connected network for class prediction. 

2.4.4.2 Compact Convolutional Neural Network 

For the patch-based classification in phase two we used a cCNN architecture (Fig. 6b7). We refer to thisThis model architecture 

is referred to as a compact CNN (cf. Samarth et al., 2019) because it the cCNN architecture contains fewer convolutional layers 

in comparison to conventional CNNs. The cCNN trains to learnlearns the class of a central pixel in a patch as a function of its 475 
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neighbourhood. So, for each pixel in the input image, a small image tile is extracted with square dimensions of the patch size 

(e.g., 3x3, 5x5, 7x7, or 15x15 pixels). The central pixel from the phase one predicted class raster is used as the associated class 

label. The number of image bands in each patch is determined by which band combination is being tested (i.e., three for RGB 

or four for RGB+NIR bands)As with the phase one CNN, there are four input channels to match the number of bands and. T 

the patches are fed into the cCNN in the form of 4D tensors (dimensions: patches, x, y, image bands). 480 

 

The architecture of the cCNN is composed of a deepening series of convolution layers which change depending on the patch 

size. In effect, we use as many 3x3 filters as can be accommodated by the patch size without the recourse to padding. Therefore, 

for 3x3 image patches, we use a single 2D convolution layer since the convolution of a 3x3 image with a 3x3 kernel returns a 

single scalar value. An example of the cCNN architecture for a 3x3 pixel patch is shown in Fig. 6b7. For the 5x5 image patch, 485 

we use two 2D convolution layers. The first convolution of the 5x5 image with a 3x3 kernel leaves a 3x3 image which is 

rendered to a scalar after a second 3x3 convolution. For the 7x7 image patch size, we use three 2D convolution layers. Finally, 

for the 15x15 patch size we use seven 2D convolution layers. In all cases, each convolution layer uses 32 filters and therefore 

passes 32 equivalent channels to the following layer, with the exception of the final layer which passes a set of 32 scalar 

predictors. These scalars are flattened and fed into a dense top which emulates the MLP architecture (Fig. 6a) and terminates 490 

in the usual Softmax layer for class prediction (Fig. 6b)(Fig. 7). 

Figure 7: Architecture of the cCNN used in phase two for patch-based pixel level classification. Patches are extracted from the 

input image with a stride of one pixel, assigned a class label according to the class raster produced in phase one, and compiled 

into 4D tensors which are then fed into the cCNN. An example of a 3x3 RGB patch is shown in this diagram which uses an 

architecture with a single 2D convolutional layer with 32 3x3 filters. The convolutional layer feeds into a fully connected 495 

network for class prediction. 

 

As with the MLP, when the cCNN was applied we used conventional early stopping was used to train the cCNN with a patience 

parameter and a minimum improvement threshold. The minimum improvement was set as 0.5%. Using For patch sizes of 3x3, 

we used a patience of 15, and for patches of 7x7 and 15x15, a patience of 10. The number of trainable of parameters ranged 500 
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from 5,880 in the case of RGB imagery with a patch size of 3x3 pixels toreached up to 231,582 for NIR+RGB RGBNIR 

imagery with a patch size of 15x15 pixels. 

 

2.5 CNN-Supervised Classification performance 

The performance of CSC was tested in two ways to allow comparison to previous deep learning methods. Firstly, classification 505 

accuracy was measured using manually collected validation labels. Secondly, a calving front detection method was 

implemented, and error was quantified using manually digitised calving front data for all test images. 

 

Model performance is often measured by classification accuracy (the number of correct predictions divided by the total number 

of predictions). However, some models require more robust measures of accuracy which also take into account account for 510 

confusion between predicted classes (Goodfellow et al., 2016; Carbonneau et al., 2020a). We therefore used an F1 score as the 

primary performance metric for the models used in both phases of the classification workflow. The F1 score is defined as the 

harmonic mean between precision (𝑝) and recall (𝑟): 

𝐹1 =
2𝑝𝑟

𝑝+ 𝑟
                                                                                                (1) 

 515 

(1) 

where precision finds the proportion of positive predictions that are actually correct by dividing the number of true positives 

by the sum of both true (correct) positives and false (incorrect) positives. Recall finds the proportion of positive predictions 

that were identified correctly by dividing the number of true positives by the sum of true positives and false negatives 

(misidentified positives). Thus, the inclusion of recall provides a metric which represents confusion between class predictions 520 

and takes into account class imbalance (Carbonneau et al., 2020a). F1 scores range from 0 to 1 with 1 being equivalent to 

100% accuracy. Carbonneau et al. (2020a) used classification results from 862 images to compare F1 and accuracy. They 

found that they are closely correlated (accuracy = 1.03F1 +4.1% with an R2 of 0.96), with F1 and accuracy converging at 

100%.  

 525 

The validation labels used to calculate F1s were digitised manually using QGIS 3.4 digitising tools. Due to the manual nature 

of the data collection, this resulted in some unlabelled areas where classes were particularly difficult to define. This often 

occurred at class boundaries or where very small areas of different classes were mixed (at the scale of a few pixels). For 

example, in areas where the snow on rock class transitioned to bare bedrock, the structure of the underlying rock would often 

result in snow-covered areas spanning just a few pixels. In cases like this, digitising small patches of snow at pixel -level scale 530 

would become very time-consuming, and as a result some areas of the images remained unlabelled. Despite this, we aimed to 

cover as much of each test image with validation labels as possible.  
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The F1 scores were calculated based on the concatenation of all the predictions for all available test images within the given 

parameters of tile size, patch size, number of bands, CSC phase, type of training (Single or Joint), glacier, and type of validation 535 

test data (in-sample or out-of-sample). Given that the calculation of F1 scores for gigapixel samples can be very 

computationally intensive, each F1 score presented here was estimated from a sample of 10 million pixels of the available 

data. 

 

 540 

IIn addition to classification performance, we implemented a calving front detection method based on morphological geodesic 

active contours (see Fig. S1 in the Supplement). The method is based on the definition of a calving front as the contact between 

‘ocean’ pixels (open water, iceberg water, or mélange) and glacier ice pixels. Since the final classification output from CSC is 

at pixel-level, this allowed for calving front detection at the native spatial resolution of Sentinel-2 imagery (10 m). Error was 

quantified for each predicted calving front by measuring the Euclidean distance between each predicted calving front pixel 545 

and the closest pixel in manually digitised calving fronts. From this, the mean, median, and mode error was quantified for each 

predicted calving front. Calculating the median and mode values allows the elimination of outliers in calving front predictions 

(Baumhoer et al., 2019). CAs with the classification validation labels, calving fronts were digitised in QGIS 3.4 and rasterised 

to form a single pixel-wide line.  

 550 

2.6 Optimal performance parameters 

Table S3 shows that the highest classification performance in phase one was achieved using 50x50 pixel tiles from images 

composed of all four RGBNIR bands. Forthe performance of models trained with RGB bands, performance tend to improvewas 

highest  with  larger100x100 pixel tiles sizes, suggesting that the greater proportion of spatial information stored in larger tiles 

is beneficialwas beneficial  when using only three bands. In contrast, with RGB+NIR bands, classification performance 555 

declines with larger tile sizes, suggesting that spectral information is more important than spatial information.  Phase one CNN 

predictions are more accurate for in-sample test data than out-of-sample test data, which is to be expected since the CNN was 

trained with data from Helheim.This finding extended to phase two results, and the additional testing of patch- vs pixel- based 

techniques revealed that optimum classification performance was achieved using larger patch sizes from 5x5 to 15x15 pixels 

(Table 1) with F1s varying by only 0.6% for classifications produced with 50x50 RGBNIR tiles. 560 

 

Table 1: F1 scores for all test data combined (Single training). Highest values are highlighted in bold. RGBNIR bands, 50x50 tiles 

and the patch-based approach, specifically patches of 5x5 to 15x15 pixels, produced optimum classification results.  

Phase 2 

F1 

RGB bands RGBNIR bands 
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scores 

(%) 

 Patch size (pixels):  

 1x1 3x3 5x5 7x7 15x15 1x1 3x3 5x5 7x7 15x15 

50x50 

tiles 

76.1 88.8 90.6 90.5 90.8 80 89.7 91.6 91.8 92.2 

75x75 

tiles 

73.6 89.4 91.3 91.6 91.6 81.4 89.5 90.7 90.7 90.9 

100x10

0 tiles 

73.2 89.5 91.4 91.6 91.1 79 88.6 89.5 89.4 89.2 

 

Similarly, an evaluation of calving front error for CSC results revealed that a patch size of 5x5 pixels produced the most 565 

accurate calving fronts, followed closely by patches of 7x7, 3x3, and 15x15 pixels (Fig. 7). Figure 718 shows the full error 

distribution for every predicted calving front pixels detected infrom classifications produced with RGB+NIR bands and 50x50 

tiles. The data shown is for all glaciers combined.  Overall, this suggests that optimum parameters for classification and calving 

front accuracy combined are 50x50 pixel RGBNIR tiles with a phase two patch size of 5x5 pixels. 

 Using these parameters resulted in a mean calving front error of 56.17 m (equivalent to 5.6 pixels) for the test dataset as a 570 

whole (with individual mean errors of 58.81 m for Helheim, 70.6 m for  Jakobshavn, and 39.1 m for Store). For the same 

parameter setAdditionally, median error was 24.7 m (equivalent to 2.5 pixels) for all test data (30 m for Helheim and 

Jakobshavn, and 14.1 m for Store), and modal error was 10 m (equivalent to 1 pixel) for all glaciers, suggesting that mean 

values are increased by extreme svalues.  

Figure 7: A kernel density estimate (KDE) plot of the full error distribution for all calving front predictions derived from all test 575 
sites using classifications produced with optimal parameters. Error values above 1000 m are grouped into a single bin to reduce tail 

length and show a second peak which represents catastrophic errors in calving front prediction. Note that low calving front errors 

occur most with 5x5 patches, followed by 7x7 and 3x3 patches, with highest error occurring for the pixel-based approach. 
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In comparison, manually digitised calving fronts usually have error of around 2 to 4 pixels. For example, (Carr et al., (2017) 580 

calculated a mean calving front error of 27.1 m using repeat digitisations. In this work, swe note that small classification errors 

of a few pixels (often caused by shadows at the front) can lead to errors in the range of 5 to 10 pixels. On this front, tThe 

smaller scale information provided in a 5x5 pixel patch is clearly optimal in comparison to overall classification accuracy 

which achieves good results with patch sizes from 5x5 to 15x15 pixels. SecondlyFurthermore, we note a small tail of data 

where large errors can occuroccurred (Fig. 7). In Fig. 18, aThe secondary peak in Fig. 7 which represents calving front errors 585 

of 1000 m and aboveabove which shows where calving front predictions were catastrophically erroneous. In all of our test 

data, This was caused by one of the 27 test images severely failedfailing to detect the calving front (despite a high F1). The 

calving front error distribution derived from Joint training can be found in Fig. S2. 

 

3 Results 590 

3.1 Classification performance 

Figure 8 shows examples of CSC applied to images of the Helheim test site. High F1s are maintained despite the 

noticeable seasonal differences between images, such as changes in illumination, shadow, snow cover, ablation area, 

and mélange extent (Figs. 8a, c, and e). Corresponding calving front errors range from 10 to 42.4 m. 3.1.1 Phase 1: 

sensitivity to tile size and image bands 595 

F1 scores for the tiled phase one classifications of unseen test imagery using a CNN with Single training are shown in Fig. 8. 

F1 scores range between 83.2% for 50x50 RGB tiles from out-of-sample data to 92.2% for 50x50 RGB+NIR tiles for in-

sample data (Fig. 8). In general, these F1 scores suggest that the phase one CNN can classify unseen images to a sufficient 

level of accuracy to produce training data for phase two pixel-level classification. As shown in Fig. 8, the performance of 

models trained with RGB bands tend to improve with larger tile sizes, suggesting that the greater proportion of information 600 

stored in larger tiles is beneficial when using only three bands. In contrast, with RGB+NIR bands, classification performance 

declines with larger tile sizes, suggesting that spectral information is more important than spatial information. Phase one CNN 

predictions are more accurate for in-sample test data than out-of-sample test data, which is to be expected since the CNN was 

trained with data from Helheim. Overall, F1 scores from all test data combined suggest that the optimum tile size and band 

combination in phase one is 50x50 pixel tiles with RGB+NIR bands. 605 
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Figure 8: Performance of the phase one CNN with Single training showing the impact of tile size and image band combinations. For 

all test data combined we see that RGB+NIR tiles of 50x50 pixels produce optimum F1 scores. Note also that the RGB band 

combination tends to reach better performance with larger 100x100 pixel tiles whereas for RGB+NIR images, performance declines 

for larger tile sizes.  

 610 

3.1.2 Phase 2: pixel- vs patch-based methods 

For phase two pixel-level classification, the performance of both pixel- and patch-based techniques were tested using an MLP 

and cCNN, respectively. The F1 scores for pixel-level phase two classifications using the optimum band combination 

(RGB+NIR) and Single training are shown in Fig. 9, combining both in-sample and out-of-sample test data. The pixel-based 

technique is clearly outperformed by the patch-based technique, with F1 scores for the pixel-based method ranging from 73.2% 615 

(with 100x100 RGB tiles) to 81.4% (with 75x75 RGB+NIR tiles) for all test data combined. Comparatively, F1 scores from 

all test data combined using the patch-based method reach up to 89.7% for 3x3 patches, 91.6% for 5x5 patches, 91.8% for 7x7 

patched and 92.2% for 15x15 patches (all with 50x50 RGB+NIR tiles).  

 

The F1 scores for patch-based results from combined in-sample and out-of-sample test data using Single training are shown 620 

in Fig. 10. In general, larger patches of 5x5, 7x7 and 15x15 pixels outperform the 3x3 patch size. However, the range in F1s 

between different patch sizes is small (i.e., a 3.3% range), with the worst performing patch producing an F1 of 88.9% (3x3 

patch using 100x100 RGB+NIR tiles) to the best performing patch size producing an F1 of 92.2% (15x15 patch with 50x50 

RGB+NIR tiles). In addition, the trend shown in Fig. 8 which exemplifies a trade-off between spatial and spectral information 

in phase one is carried through to phase two. As in phase one, the phase two results show that smaller tile sizes of 50x50 pixels 625 

perform best with RGB+NIR bands rather than RGB alone. Using the RGB band combination requires larger tile sizes to 

produce better results. Given this, the optimum input parameters for the CSC workflow with Single training for GrIS marine-

terminating glaciers are 50x50 RGB+NIR tiles with larger patch sizes from 5x5 to 15x15 pixels. 
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 Figure 9: F1 scores for final phase two classifications of all test data combined, produced using the RGB+NIR band combination. 

Shows that the patch-based method significantly outperforms the pixel-based method for phase 2 classifications.   630 

Figure 10: F1s of final patch-based phase 2 classifications for all test data combined (both in-sample and out-of-sample). Note the 

similar trend to phase one whereby RGB bands perform better with larger tile sizes, but with RGB+NIR bands, smaller tiles improve 

performance. Additionally, larger patch sizes deliver optimal performance, with 15x15 pixel patches producing best overall F1. 

 

Confusion matrices for output classifications of each test glacier using the optimal patch size of 15x15 pixels with Single 635 

training can be found in the Supplement (Fig. S2). In summary, Fig. S1 shows good agreement between predicted and actual 

classes for all glaciers, with the exception of the open water class for Helheim and Jakobshavn where confusion occurs between 

the bergy water and bedrock classes. Open water is the smallest class for both sites, with open water often covering only small 

areas in each individual image. Moreover, at Helheim and Jakobshavn, land-based lakes (which are labelled as open water in 
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the manually digitised validation labels) often cover such small areas that they are missed during the application of the phase 640 

one CNNs. This is because most lakes occur at smaller scales than individual image tiles.  

 

3.1.3 Seasonal performance 

The test data for both in-sample and out-of-sample sites was seasonally variable, with images acquired between February and 

October 2019/2020 which contained different seasonal elements and varied illumination conditions. The generally good F1 645 

scores for both in-sample and out-of-sample sites using 50x50 RGB+NIR tiles, and the patch-based technique, suggests that 

CSC has good seasonal transferability. For example, Fig. 11 shows three example test images acquired on different dates 

throughout 2019 for the Helheim test site, and alongside each image are the associated pixel-level CSC outputs (using Single 

training). Figure 11a shows an input image from 5 March 2019 where the landscape is covered in snow and the illumination 

angle has resulted in some areas of deep shadow. The corresponding classification in Fig. 11b has an F1 of 93.3% and calving 650 

front error of 10 m (equivalent to 1 pixel). The image acquired on 5 June 2019 shown in Fig. 11c is notably different in terms 

of seasonal characteristics and illumination. Snow covers fewer areas of the landscape and meltwater is also apparent on 

Helheim Glacier. The corresponding CSC classification has an F1 of 94.5% and calving front error of 36.06 m (equivalent to 

3.6 pixels). The image acquired on 1 October 2019 shown in Fig. 11e also has different characteristics, with a larger ice sheet 

ablation area, little to no snow cover resulting in bare bedrock, and some shadows along the fjord edge similar to Fig. 11a. The 655 

corresponding classification in Fig. 11f has an F1 score of 95.5% and calving front error of 40 m (equivalent to 4 pixels) with 

one small area of glacier ice near a nunatak which has been misclassified as mélange, possibly due to very little textural 

difference (i.e., no crevassing).  

 

Similarly, Fig. 12 9 shows examples of CSC with Single training applied to seasonally variable imagery of Store Glacier from 660 

the (out-of-sample) study site which includes Store Glacier. The F1s shown for the out-of-sample examples in Fig. 9 are 

slightly lower compared to the in-sample examples (Fig. 8). This is because the out-of-sample site is more prone to 

misclassification. For example, Figure 12a shows an image from 28 June 2020 where mélange was present at the terminus and 

the glacier ice has surficial meltwater. The corresponding classification shown in Fig. 12 9b has an F1 of 86.3% withshows 

several areas of glacier ice which have been misclassified as mélange. Additionally, The calving front error is 14.14 m, 665 

equivalent to 1.4 pixels. in Figure. 912c shows an image from 14 September 2020, with little to no melange and less meltwater 

visible on the glacier surface. There d there are also areas of bedrock which are deeply shadowed, resulting in some 

misclassifications of bedrock areas as open water in the corresponding CSC output (Fig. 12d). These misclassifications did not 

increase calving front error which ranged from 10 to 14.1 m (Figs. 9b, d, f),  but lower F1 scores prompted The resulting 

classification has an F1 score of 89.9% and calving front error of 10 m (1 pixel). The image from 8 October 2020 shown in 670 

Fig. 12e has more snow cover, no mélange, and a lower angle of illumination with the resulting classification (Fig. 12f) 

producing an F1 of 91.1% and calving front error of 14.14 m (1.4 pixels). The CSC outputs for the out-of-sample site using 
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Single training are more prone to misclassification compared to the in-sample site, which prompted testing of of the Joint fine-

tuning method.  

 675 
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Figure 811: Examples of pixel-level classification outputs for seasonally variable imagery from the in-sample test site showing input 

RG B images of Helheim in the first column, which were acquired on (a) 5 March 2019, (c) 5 June 2019, and (e) 1 October 2019 

withand the associated CSC outputs shown in (b), (d), and (f). The F1 scores and calving front error are shown next to each 

classification. These classifications were produced using Single training with RGB+NIR 50x50 tiles and a phase two patch size of 7. 

 680 
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Figure 912: Examples of pixel-level classification outputs for seasonally variable imagery from the out-of-sample test site showing 

input RGB images of Store in the first column, which were acquired on (a) 23 June 2020, (c) 14 September 2020, and (e) 8 October 

2020 with the associated CSC outputs shown in (b), (d), and (f). The F1 scores and calving front error is shown next to each 

classification. These classifications were produced using Single training with RGB+NIR 50x50 tiles and a phase two patch size of 5. 

 685 

The Joint training method improved classification performance (Table 2). Results were only marginally improved for the in-

sample study site which was to be expected since phase one models were already trained on data from Helheim. An example 

comparingA comparison of classification outputs usingfrom Single and Joint training for an image of Store Glacier can be 

found in Fig. S3 which is shown in Fig. 15 which shows an image of the out-of-sample Store site acquired on 22 August 2020. 
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The phase one CNN with Single training misclassified a large area of the glacier as mélange (Fig. 15c) and as a result the 690 

subsequent phase two classification also had large areas of misclassified glacier ice (Fig. 15d).  shows that Tthe addition of 

Joint fine-tuning rectified thisareas of misclassification seen in results which used Single training, and led to fewer glacier ice 

tiles being misclassified as mélange in the phase one predictions (Fig. 15e). The robustness of the phase two model resulted in 

a final classification with correct classification for the majority of the glacier, with anthe overall F1 score increasing from 

84.7% (Single training) ofto 97.5% as opposed to(Joint training) 84.7% with Single training. Figures S4 and S5 also show 695 

examples of Joint training classifications. These examples suggest that digitising two additional images for the purposes of 

fine-tuning an existing pre-trained CNN for glacier-specific classification is worth the improvements in classification accuracy. 

Results were only marginally improved for the in-sample study site (Fig. 14a), which was to be expected since phase one 

models were already trained on data from Helheim. 

Table 2: Optimum F1 scores for classifications produced with Single and Joint training (50x50 RGBNIR tiles). Note the Joint 700 
approach improves classification F1 scores, with biggest improvement for out-of-sample sites. 

Phase 2 F1 scores (%) Helheim Jakobshavn Store 

Single training 93.3 95 87.1 

Joint training 94 97.3 94.6 

 

Confusion matrices which show the relationship between CSC class predictions and validation data for each test glacier are 

shown in Fig. S6. In summary, Fig. S6 shows good agreement between predicted and actual classes for all glaciers, with the 

exception of the open water class for Helheim and Jakobshavn where confusion occurs between the iceberg water and bedrock 705 

classes. Open water is the smallest class for both sites, with open water often covering only small areas in each individual 

image. There is still class confusion in Joint results (Fig. S7), however better overall F1s suggest that improvements are made 

in class prediction despite a different pattern of inter-class confusion. Overall, these examples show the ability of CSC to 

classify in- and out-of-sample imagery of marine-terminating glacial landscapes in Greenland with different seasonal 

characteristics. Additionally, it was noted that CSC did not produce very accurate classifications for images with extremely 710 

low illumination angles. This is most likely because images with very low illumination angles occurred most frequently at the 

beginning or ends of the image availability season and made up a smaller proportion of phase one training data. To improve 

the ability of CSC to classify imagery with deep shadow and extremely low illumination angles, the proportion of imagery 

containing these qualities could be increased in training data for phase one CNNs. 

 715 
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Moreover, Tthe size of input imagery to the CSC workflow is not limited to a specified set of dimensions. Since collection of 

validation labels for each test image required manual digitisation, the test sites were restricted to ~20 to 50 km to allow 

collection of seasonal data for individual glacial landscapes. Despite this, CSC can also be applied to entire Sentinel-2 tiles, so 

validation labels were also collected for a whole Sentinel-2 tile of the landscape surrounding Helheim Glacier. . The outputs 

of the CSC workflow applied to thean entire Sentinel-2 image are shown in Fig. 13 S8. Figure 13a shows the input image 720 

collected on 13 September 2019. The tiled phase one predictions are shown in Fig. 13c and the final pixel-level classification 

is shown in Fig. 13d. The overall F1 score of this classification was 92%. This suggests that CSC has good classification 

performance at the level of individual glaciers as well as whole glacial landscapes. 

  

Overall, these examples show the ability of CSC to classify in- and out-of-sample imagery of marine-terminating glacial 725 

landscapes in Greenland with different seasonal characteristics. Using the optimum CSC input parameters produces 
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classifications with good F1 scores and subsequent calving front predictions that vary by only a few pixels from manual 

delineations.  

 

Additionally, it was noted that CSC did not produce very accurate classifications for images with extremely low illumination 730 

angles. This is most likely because images with very low illumination angles occurred most frequently at the beginning or ends 

of the image availability season and made up a smaller proportion of phase one training data. To improve the ability of CSC 

to classify imagery with deep shadow and extremely low illumination angles, the proportion of imagery containing these 

qualities could be increased in training data for phase one CNNs. 
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3.2 Time series of Helheim GlacierFigure 11: Examples of pixel-level classification outputs for seasonally variable 735 

imagery from the in-sample test site showing input RGB images of Helheim in the first column, which were acquired 

on (a) 5 March 2019, (c) 5 June 2019, and (e) 1 October 2019 with the associated CSC outputs shown in (b), (d), and (f). 

The F1 scores and calving front error are shown next to each classification. These classifications were produced using 

Single training with RGB+NIR 50x50 tiles and a phase two patch size of 7. 

A time series produced using CSC results showing calving front position and changes in mélange area at Helheim throughout 740 

2019 can be seen in Fig. 10. Figure 10a and c show fluctuation in calving front position between March and October 2019 

with an overall pattern of retreat. Two predicted calving fronts which had error of over 4.2 pixels were removed from the time 
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series and frontal position change was quantified using the rectilinear box method to account for cross-glacier variation (Lea 

et al., 2014). Figure 10b and c illustrate the variation in mélange area for all nine in-sample test images. Taken together, these 

results show the robustness of CSC and usefulness of multi-class outputs for holistic analysis of marine-terminating glacial 745 

environments.Figure 12: Examples of pixel-level classification outputs for seasonally variable imagery from the out-of-sample 

test site showing input RGB images of Store in the first column, which were acquired on (a) 23 June 2020, (c) 14 September 

2020, and (e) 8 October 2020 with the associated CSC outputs shown in (b), (d), and (f). The F1 scores and calving front error 

is shown next to each classification. These classifications were produced using Single training with RGB+NIR 50x50 tiles and 

a phase two patch size of 5. 750 

 

Figure 10: (a) time series of Helheim calving front positions produced from CSC outputs of the 2019 test data. (b) Frequency of 

CSC-predicted mélange pixels from Helheim test dataset showing the seasonal variation in mélange extent. (c) Cumulative retreat 

of the calving front relative to 5 March 2019 and mélange area for each test image.  

 755 

 

Overall, these examples show the ability of CSC to classify in- and out-of-sample imagery of marine-terminating glacial 

landscapes in Greenland with different seasonal characteristics. Using the optimum CSC input parameters produces 

classifications with good F1 scores and subsequent calving front predictions that vary by only a few pixels from manual 

delineations.  760 
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3.1.4 Performance of CSC on an entire Sentinel-2 tile 

The size of input imagery to the CSC workflow is not limited to a specified set of dimensions. Since collection of validation 

labels for each test image required manual digitisation, the test sites were restricted to ~20 to 50 km to allow collection of 

seasonal data for individual glacial landscapes. Despite this, CSC can also be applied to entire Sentinel-2 tiles, so validation 

labels were also collected for a whole Sentinel-2 tile of the landscape surrounding Helheim Glacier. The outputs of the CSC 765 

workflow applied to the entire Sentinel-2 image are shown in Fig. 13. Figure 13a shows the input image collected on 13 

September 2019. The tiled phase one predictions are shown in Fig. 13c and the final pixel-level classification is shown in Fig. 

13d. The overall F1 score of this classification was 92%. 

Figure 13: CSC performance on (a) an entire Sentinel-2 tile. (b) Shows validation labels. (c) Shows the tiled classification output of 

phase 1 which was used as training data for phase 2, producing a final pixel-level classification shown in (d). The final classification 770 
was produced using RGB+NIR tiles with a size of 50x50 pixels and a cCNN patch size of 7 using Single training. 
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3.1.5 Performance of CSC using Joint fine-tuning 
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The addition of a small number of extra image tiles (5,000 per class) from two glacier-specific images (one from winter and 

one from summer) used for the Joint fine-tuning of phase one models significantly improved classification accuracy for both 

out-of-sample study sites (Fig. 14b and c). Results were only marginally improved for the in-sample study site (Fig. 14a), 775 

which was to be expected since phase one models were already trained on data from Helheim. An example comparing 

classification outputs using Single and Joint training is shown in Fig. 15 which shows an image of the out-of-sample Store site 

acquired on 22 August 2020. The phase one CNN with Single training misclassified a large area of the glacier as mélange (Fig. 

15c) and as a result the subsequent phase two classification also had large areas of misclassified glacier ice (Fig. 15d). The 

addition of Joint fine-tuning rectified this and led to fewer glacier ice tiles being misclassified as mélange in the phase one 780 

predictions (Fig. 15e). The robustness of the phase two model resulted in a final classification with correct classification for 

the majority of the glacier, with an overall F1 score of 97.5% as opposed to 84.7% with Single training.  

Figure 14: Comparison of CSC performance using Single vs Joint training approaches for (a) Helheim, (b) Jakobshavn, and (c) 

Store. F1s shown as a function of image bands and patch size using a tile size of 50x50 pixels. 

Figure 15: Comparison of Single and Joint training methods for (a) an image of Store glacier acquired on 22 August 2020. (b) shows 785 
the manually collected validation labels. (c) Shows the phase 1 tiled output using Single training and (d) shows the resulting CSC 
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output. Note the area of glacier ice which has been misclassified using Single training. (e) Shows the phase 1 output using Joint 

training with the associated pixel-level phase 2 output shown in (f). A tile size of 50, patch size of 5 and RGB+NIR bands were used 

in the examples shown here. The Joint training method rectifies the misclassified area of glacier ice. 

 790 

In terms of per-glacier improvements, the best overall F1 score for Helheim went from 93.3% with Single training to 94% 

with Joint training (improvement of +0.7%), both using 50x50 RGB+NIR tiles with 15x15 patches. An example classification 

using Joint training is shown in Fig. 16 with a resulting classification F1 score of 94.9% and calving front error of 50m. 
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Figure 16: Example of CSC using Joint training for (a) an unseen image of Helheim acquired on 18 June 2019. (b) Shows the 

manually collected validation labels. (c) Shows the tiled output of the phase 1 CNN and (d) shows the final pixel-level classification 795 
with an associated calving front detection. The optimum classification parameters with a tile size of 50, patch size of 15 and RGB + 

NIR bands were used in this example. 

For Jakobshavn, the best F1 score went from 95% with Single training (50x50 RGB+NIR tiles and 15x15 patches) to 97.3% 

with Joint training (50x50 RGB+NIR tiles and 5x5 patches). An example of one of the Jakobshavn test images and the 
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corresponding output classification using Joint training can be seen in Fig. 17. The final classification (Fig. 17d) had an F1 800 

score of 98.1% and an average calving front error of 50 m.  

Figure 17: Example of CSC using Joint training for (a) an unseen image of Jakobshavn acquired on 21 May 2020. (b) Shows the 

manually collected validation labels. (c) Shows the tiled output of the phase 1 CNN and (d) shows the final pixel-level classification 

with an associated calving front detection. The optimum classification parameters with a tile size of 50, patch size of 5 and RGB + 

NIR bands were used in this example. 805 

For the Store study site, the best overall F1 increased from 91.4% with Single training (using 100x100 RGB+NIR tiles and 

3x3 patches) to 94.6% with Joint training (using 50x50 RGB+NIR tiles and a patch size of 15x15 pixels). An example of a 

CSC output with Joint training is shown in Fig. 15. In summary, this suggests that digitising an additional 2 images for the 

purposes of fine-tuning an existing pre-trained CNN for glacier-specific classification is worth the improvements in 

classification accuracy. 810 

3.2 Calving front error estimation 

Since the predictions of CSC phase two are pixel-level, this allows the implementation of a calving front detection algorithm 

which uses morphologic active contours and other binary morphology operators to establish a calving front. The error of 

calving front predictions was calculated based on the distance from manually delineated fronts. Overall, the optimal CSC input 

parameters which produced the lowest mean error were 50x50 tiles, RGB+NIR bands, and 5x5 patches with Single training. 815 

Using these parameters resulted in a mean calving front error of 56.17 m (equivalent to 5.6 pixels) for the test dataset as a 

whole (with individual mean errors of 58.81 m for Helheim, 70.6 m for Jakobshavn, and 39.1 m for Store). For the same 

parameter set, median error was 24.7 m (30 m for Helheim and Jakobshavn, and 14.1 m for Store), suggesting that mean values 

are increased by extreme values. Figure 18 shows the full error distribution for every predicted calving front pixel detected in 

classifications produced with RGB+NIR bands and 50x50 tiles. The data shown is for all glaciers combined.   820 
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Figure 18: A kernel density estimate (KDE) plot of the full error distribution for all calving front predictions derived from all test 

sites using classifications produced with RGB+NIR bands and 50x50 pixel tiles using (a) Single CNN training or (b) Joint CNN 

training. Error values above 1000 m are grouped into a single bin to prevent long tails in the plots and show a second peak which 

represents catastrophic errors in calving front prediction. Note that low calving front errors occur most often with 5x5 patches, 

followed by 7x7 and 3x3 patches, with highest error occurring for 15x15 patches and 1x1 patches (pixel-based).  825 

Figure 18 shows that minimal error is achieved using 5x5 patches, followed by 7x7, 3x3, 15x15 patches with pixel-based 

results producing the worst calving front errors. Firstly, we note that small classification errors of a few pixels (often caused 

by shadows at the front) can lead to errors in the range of 5 to 10 pixels. On this front, the smaller scale information provided 

in a 5x5 pixel patch is clearly optimal in comparison to overall classification accuracy which achieves good results with patch 

sizes from 5x5 to 15x15 pixels. Secondly, we note a small tail of data where large errors can occur. In Fig. 18, a secondary 830 

peak which represents calving front errors of 1000 m and above shows where calving front predictions were catastrophically 

erroneous. In all of our test data, one of the 27 test images severely failed to detect the calving front (despite a high F1). 

Nonetheless, a mean calving front error of 56.17 m derived from classifications using Single CNN training with RGB+NIR 

bands, 50x50 tiles and 5x5 patches suggests that CSC has the ability to detect calving fronts with reasonable accuracy. 

 835 
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Furthermore, Fig. 19 shows calving front errors as a function of tile size and patch size for each glacier using RGB+NIR bands 

with Single CNN training while Fig. 20 shows the calving front errors as a function of patch size for Joint training. The modal 

error for both Single and Joint training (Fig. 19a and 20a) ranges from 10 to 50 m. Median errors fall below 100 m for the 

majority of calving front detections, especially those produced using optimal parameters (Fig. 19 b). Crucially, these figures 

do not show a systematic increase of error with the patch size which suggests that calving front errors can be attributed to 840 

classification errors at glacier fronts. 

 

Figure 19: (a) modal and (b) median calving front errors as a function of patch and tile size for each glacier using Single training. 

 

 845 

 

Figure 20: (a) modal and (b) median calving front error as a function of patch size for each glacier using Joint training. 
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4 Discussion 

4.1 Performance of CNN-Supervised Classification 850 

The results reported here demonstrate that the CSC workflow adapted for landscapes containing marine-terminating outlet 

glaciers in Greenland produces state-of-the-art pixel-level classifications for seasonally variable imagery. By testing the 

performance of different band combinations, tile sizes, and patch sizes on seasonally variable test imagery, we find that 

classifications reach F1 scores of up to 93.3% for in-sample test imagery, and 91% for out-of-sample test imagery when using 

a phase one CNN trained only with data from Helheim Glacier and the overall optimal input parameters (of 50x50 RGB+NIR 855 

tiles with 15x15 patches). With the addition of Joint fine-tuning, F1 scores increased to 94% for in-sample test data and 96% 

for out-of-sample test data. In terms of calving front accuracy, a mean error of 56.17 m (5.6 pixels) and median error of 24.7 

m (2.5 pixels) was achieved from classifications produced with Single training, 50x50 tiles, RGB+NIR bands and a patch size 

of 5x5 pixels. In comparison, manually digitised calving fronts usually have error of up to 2-3 pixels. For example, Carr et al. 

(2017) calculated a mean frontal position error of 27.1 m using repeat digitisations. Overall, this suggests that the accurate 860 

multi-class outputs of CSC are capable of producing datasets with sufficient levels of accuracy, for example to monitor calving 

front change. Given that CSC can identify seven different semantic classes, this also provides scope for analysis in other 

research areas, beyond calving front monitoring. For example, changes in other class boundaries could be monitored, for 

instance to detect changes in snowline position and quantify ablation area change (Noël et al., 2019). Similarly, the multi-class 

outputs could be used to quantify seasonal changes in the area of a specific class, for example to monitor changes in the area 865 

and extent of mélange(Foga et al., 2014; Cassotto et al., 2015) (Foga et al., 2014; Cassotto et al., 2015). Moreover, while CSC 

operates at the scale of overall landcover classes, outputs could potentially be used to isolate a specific target class for detection 

of smaller scale features such as supraglacial lakes (Hochreuther et al., 2021) and subglacial plumes (How et al., 2017; Everett 

et al., 2018)(Barbat et al., 2021). In addition, the outputs of the CSC script retain the geospatial information of the input data, 

meaning classification and calving front outputs can be manipulated in GIS software, for example to produce time series data 870 

of seasonal change with ease.  

 

4.2 Sensitivity of CSC performance to tile size, image bands, and patch size 

From both phase one and phase two results showing the sensitivity of classification performance to image bands and tile size, 

we see a trade-off between the use of spatial and spectral data. In summary, the increased spectral data provided by the 875 

RGB+NIR band combination is optimal with the smaller 50x50 pixel tiles, but performance declines with larger tile sizes (Fig. 

10). In contrast, the performance of CSC using RGB bands is low for 50x50 tiles but increases with tile sizes of 75x75 and 

100x100, suggesting that the increased spatial data in larger tiles is beneficial when only using three image bands. Overall, 

50x50 tiles and RGB+NIR bands produce optimal results for the whole test dataset, suggesting that the combination of spectral 

and spatial information contained within a four-band 50x50 tile is ideal for detecting class-specific features at the scale of 10 880 
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m resolution imagery for marine-terminating glacial landscapes in Greenland. Testing the use of additional image bands to 

increase spectral data may be advantageous in future work. For example, Xie et al. (2020) used a CNN trained with 17 input 

bands derived from Landsat 8 imagery and DEM data and found that using more bands produced higher accuracy than using 

fewer bands for mapping debris-covered mountain glaciers. However, this may not necessarily be the case with marine-

terminating outlet glaciers and using additional input channels is likely to increase processing time which should also be taken 885 

into account when considering that accurate results can be achieved using only RGB+NIR bands. 

 

We proposed that adopting a patch-based technique which includes contextual information surrounding a pixel would aid 

classification of complex and seasonally variable outlet glacier landscapes, as it has in other applications (Sharma et al., 2017) 

and found thatIn phase 2 pixel-level classification, the patch-based method significantly outperformed the pixel-based method. 890 

The reason for testing pixel- and patch-based techniques was due to our use of medium resolution satellite imagery which 

tends to have spectral variations across images, making it difficult to distinguish class from the spectral characteristics of a 

pixel alone (Maggiori et al., 2016). We proposed that adopting a patch-based technique which includes contextual information 

surrounding a pixel would aid classification of complex and seasonally variable outlet glacier landscapes, as it has in other 

applications (Sharma et al., 2017) and found that this was true. This also validates similar findings that patch-based CNNs 895 

outperform standard pixel-based neural networks and CNNs (Sharma et al., 2017). Moreover, while a patch size of 15x15 

pixels produced classifications with the highest F1s for all data combined, there was only a 3.3% range in F1s for all patch 

sizes (for classifications produced with 50x50 RGB+NIR tiles and Single training), suggesting that the patch-based method in 

general produces good results. This demonstrates that aside from the benefit of using patches instead of individual pixels for 

pixel-level classification, classification performance overall is not particularly sensitive to which patch size is used. However, 900 

for calving front detection, a patch size of 5x5 pixels was optimal, suggesting that the smaller scale contextual information 

contained within a 5x5 pixel patch in comparison to a 15x15 pixel patch is beneficial for classification at the glacier front 

where small areas of shadow can impact front prediction at the scale of a few pixels. 

4.3 Impact of Joint fine-tuning for out-of-sample sites 

Since phase one CNNs were initially only trained on data from one site, when the CSC workflow was applied to out-of-sample 905 

test images with Single training, outputs were more prone to misclassification in comparison to in-sample test imagery. As a 

result, Joint fine-tuning was tested, and we found that the method significantly improved classifications with the addition of 

training data from only two glacier-specific images. Considering the improvements to classification performance for out-of-

sample sites made by fine-tuning the phase one CNNs, we suggest that the manual labour required to collect 5,000 additional 

samples per class derived from only two images is not substantial and may be worthwhile if a glacier is identified for 910 

monitoring. Despite this, the application of CSC using Single CNN training still produced an F1 score of up to 91% for out-

of-sample test data, providing sufficient classification quality to detect calving fronts with a mean error of 54.86 m (5.5 pixels). 
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4.14. Comparison to previous work 

Our results build on the work of deep learning-based classification methods for ice front delineation (Baumhoer et al., 2019; 915 

Mohajerani et al., 2019; Zhang et al., 2019; Cheng et al., 2021)(Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 

2019; Cheng et al., 2021), with several key innovations and variations of note. Firstly, the it is important to note that the CSC 

workflow produces multi-class outputs using seven semantic classes rather than the binary outputs of previous methods. This 

fulfils the aim to provide meaningful information which could be used for a variety of applications at the scale of entire outlet 

glacier landscapes in Greenland. In terms of classification accuracy, CSC produces marginally better F1s in comparison to 920 

previous methods applied to marine-terminating glacial environments. Previous studies which focus on outlet glaciers of the 

GrIS do not provide F1 scores for their classification outputs. However, Baumhoer et al. (2019) apply their method to Antarctic 

marine-terminating environments and produce overall F1s of 89.5% for training areas (in-sample) and 90.5% for test areas 

(out-of-sample). In comparison, CSC produces F1 scores of up to 93.3% for in-sample test imagery, and 91% for out-of-sample 

test imagery when using a phase one CNN trained only with data from Helheim Glacier. By applying Joint CNN training to 925 

fine-tune the phase one CNN to each test glacier, F1 scores increased to 94% for in-sample test data and 96% for out-of-sample 

test data. It is worth noting that the characteristics of Antarctic outlet glacier environments can vary substantially from 

Greenlandic outlet glacier environments, potentially presenting different classification challenges. As such, this is a tentative 

comparison, especially given that CSC outputs contain seven classes at the scale of the whole landscape, rather than just two 

classes focused at the ice front.  930 

 

FurthermoreAdditionally, since previous deep learning studies which produce binary classifications for Greenlandic outlet 

glaciers do not provide F1 scores, for further comparison we also integrated a calving front detection method into the CSC 

workflow which produced a mean error of 56.17 m (5.6 pixels) for all test images using Single training and optimal input 

parameters (RGB+NIR bands, 50x50 tiles and 5x5 patches). T. Table 2 3 shows the mean calving front errors produced in this 935 

study and each of the previous deep learning studies designed to detect calving fronts using binary classifications. Mean calving 

front errors for test imagery from both training sites (in-sample) and test sites (out-of-sample) are provided, however not all 

studies specified these values. In terms of the number of metres that predicted fronts deviate from manual digitisations, the 

predictions of CSC are comparable to those of previous studies. However, in terms of the equivalent number of pixels, CSC 

predictions deviate from manual digitisations by a few more pixels compared to previous studies (apart from Zhang et al., 940 

2019), indicating that if a given application solely requires accurate calving front localisation of a known glacier, the method 

presented here is not necessarily the optimal choice.  

Table 3: Mean calving front errors from previous deep learning methods designed specifically to detect ice fronts in comparison to 

the mean calving front errors produced by CSC in this study. 

 945 
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Table 2: Mean calving front errors from previous deep learning methods designed specifically to detect ice fronts in comparison to 

the mean calving front errors produced by CSC in this study. 

 

 

The second major difference between CSC and previous methods is the deep learning architecture. All previous deep learning 950 

classification methods for delineating ice fronts in marine-terminating glacial environments (Baumhoer et al., 2019; 

Mohajerani et al., 2019; Zhang et al., 2019; Cheng et al., 2021) use FCN/U-Net architectures (Ronneberger et al., 

2015)(Ronneberger et al., 2015). (Hoeser et al., (2020)Hoeser et al. (2020) reviewed image segmentation and object detection 

in remote sensing and whilst they do conclude that FCN/U-Net architectures are dominant, they still find about 30% of 

published work uses patch-based approaches which are akin to the second phase of the CSC method presented here. This 955 

suggests that FCN architectures need not be considered the de facto algorithm for glacial landscape classification. Moreover, 

the advantage of CSC over one-stage patch-based methods using FCNs is that the initial phase one CNN in CSC provides 

transferability and delivers a bespoke training set labels for the pixel-level patch-based operator (as described in Section 2.1). 

We discuss the other major implications of the architectural differences between our work and FCNs in the following sections. 

 960 

4.14.1 Data pre-processing and computational loads 

CSC has certain practical advantages over FCNs in terms of data processing and computational loads. Firstly, the CSC method 

has low pre-processing requirements. In effect, test Sentinel-2 images were cropped  to areas of ~2000-5000 by 2000-5000 

pixels in order to produce large images containing whole marine-terminating glacier landscapes, yet still within a workable 

size for detailed digitisation of validation labels. Then, for CSC the only other pre-processing step required is normalisation 965 

by a constant factor of 8192 to convert raw Sentinel-2 data to 16-bit floating point data. Once this is done, CSC has a low 

computational load. Training the initial VGG16 model can be done in under one hour using an I7 processor at 5.1Ghz, and an 

Nvidia RTX 2060 GPU. When CSC is subsequently applied to a sample image of ~3000x3000 pixels using optimal phase one 

parameters of RGB+NIR bands and tiles of 50x50 pixels for the phase one CNN, and a phase two patch size of 7x7 pixels for 

the phase two cCNN, classification requires 4 minutes. We also coded a low-memory usage pathway in the main script that 970 

classifies a large image row-by-row with a threshold to define ‘large’ set by the user. Using this, we can classify a stack 

Study Ice sheet 

No. of 

test 

images 

Mean calving front error (and equivalent in pixels) 

Training site(s) 
Test site(s) (sites not 

used in training) 

Both training and 

test sites combined 

Baumhoer et al. (2019) Antarctic 11 78.25 m (< 2 pix.) 107.75 m (2.69 pix.) 93 m (2.33 pix.) 

Mohajerani et al. (2019) Greenland 10 - 96.31 m (1.97 pix.) - 

Zhang et al. (2019) Greenland 84 38 m (6 pix.) - - 

Cheng et al. (2021) Greenland 162 - - 86.76 m (2.25 pix.) 

This study Greenland 27 58.81 m (5.9 pix.) 54.86 m (5.5 pix.) 56.17 m (5.6 pix.) 
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consisting of full bands 4, 3, 2, and 8 (RGB+NIR) for Sentinel-2 images can be classified at native resolution (10980x10980 

pixels each) in 12 minutes with a peak RAM consumption of 11GB. This makes CSC suitable for use in free cloud-based 

solutions such as Google Colaboratory, providing the potential to build on existing cloud-based tools for glacial mapping (e.g., 

Lea, 2018)(e.g. Lea, 2018). Moreover, given the simplicity of data pre-processing steps required for CSC, the workflow has 975 

good accessibility and can be implemented easily by new users. 

 

In contrast, for several of the previous studies which implement FCN architectures, a larger number of pre-processing steps 

are required, including but not limited to rotation for consistent glacier flow direction, edge enhancement, and pseudo-HDR 

toning (Mohajerani et al., 2019; Zhang et al., 2019; Cheng et al., 2021). Similarly, FCN architectures can be very demanding 980 

in terms of computer RAM and GPU RAM, especially when large images are used as inputs. When we tested this by 

implementing the popular FCN8 based on VGG16 which has ca.~ 130 million trainable parameters, we found that the largest 

dyadic image size that could be processed was 512x512 pixels. This general problem has been resolved in different ways in 

the Earth observation (EO)-facing literature. Baumhoer et al. (2019) used 40 m Sentinel-1 Synthetic Aperture Radar (SAR) 

data and a DEM at 90 m resolution as their base. Using a smaller FCN with ca ~7.8 million parameters, they used image tiles 985 

of 780x780 pixels with 4 channels (HH, HV, DEM, HH/HV polarisations) on a GTX 1080 GPU (8GbB vs 6GbB for the 

RTX2060). However, it is important to note that with 40 m data, 780 pixels still covers 31.2 km. If this were Sentinel-2 optical 

data, with a resolution of 10 m, the sample tiles would only cover 7.8 km. In contrast, the calving front of Jakobshavn in test 

imagery used in this work has a width of ~11 km. In order toTo get around this sort of issue using FCNs, downsampling is 

used. For example, Mohajerani et al. (2019) used an advanced pre-processing routine that involved a re-orientation and then a 990 

resampling of the scene to 200x300 pixels. This resampling resulted in imagery with varied resolutions across glaciers used in 

training and test data. In the end, the FCN they used only had 240x152 pixels in a single post-processed channel which was 

tested at a single site (Helheim Glacier) with a resampled spatial resolution of 49 m (from Landsat data with 15/30 m 

resolution). In contrast, the spatial resolution of the input images and resulting classification outputs using CSC always remains 

native to raw Sentinel-2 data (i.e., 10 m). 995 

 

4.14.2 Training data volume  

In terms of the number of training samples used for deep learning models, Goodfellow et al. (2016) note that, as a general rule, 

each class should contain at least 5,000 samples to reach satisfactory performance, but models can reach and exceed human-

level performance when trained on at least 10 million samples. With this in mindConsidering this, the number of labelled 1000 

samples produced by manually labelled training images and data augmentation in the datasets used here (210,000 tiles) makes 

them relatively small. However, in comparison to pre-trained models such as VGG16 which were trained on the ImageNet 

database using over 1000 classes, our adapted VGG16 architecture only uses seven classes, and therefore can be trained 

sufficiently with ‘only’ a few 100 thousand samples. This suggests that relatively few images are needed to produce highly 
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accurate image classifications using our workflow, reducing the time required for initial creation of manually labelled training 1005 

data. Furthermore, the number of satellite acquisitions used to produce the training data for the phase one CNN in CSC is 

smaller than that used to train models in previous FCN-based studies. Given that our basic optimal phase one CNN training 

sample is no larger than 100x10050x50 pixels, a very large number of samples can be extracted from a full Sentinel-2 tile of 

10980x10980 pixels. In our initial training of the phase one CNN, we used sub-images of 6875 x 3721 pixels extracted from 

13 Sentinel-2 acquisitions. In the joint-fine tuning step, we added data from six Sentinel-2 acquisitions (one winter and one 1010 

summer for each of the three glaciers). So, in total, this work used data from 13 to 19 Sentinel-2 acquisitions. Comparatively, 

Baumhoer et al. (2019) used 38 Sentinel-1 satellite acquisitions, Zhang et al. (2019) used 75 TerraSAR-X acquisitions, 

Mohajerani et al. (2019) used 123 Landsat 5-8 acquisitions, and Cheng et al. (2021) used 1,872 images (1,541 from Landsat 

and 232 from Sentinel-1). So, overall, we argue that our results were obtained with less training data than those from 

comparator FCN-facing works.  1015 

 

 

4.14.3 Size of input imagery 

The size of input imagery also represents an area where CSC has advantages over FCNs. In FCN architectures, the instance 

that must be classified must be well framed in the input image. Often in the case of higher resolution images where such 1020 

framing would lead to image sizes in excess of 1000x1000 pixels, downsampling must be used unless extremely powerfully 

GPU are available. Another important point is that the Similarly, the pre-processing methods used in FCN-based papers start 

with a user actually knowing where the feature of interest is and performing a suitable clip of the datacropping the image 

accordingly. For example, Mohajerani et al. (2019) crops imagery to within a 300 m buffer area of a pre-defined calving front 

and further crops training images to 150x240 pixels for FCN training inputs. In the resulting images, the calving front must be 1025 

kept within the frame. This type of pre-processing is not required in CSC. Instead, CSC can process entire tiles of Sentinel-2 

data at native resolutions without the need for downsampling, selection and clipping cropping of a known target area, or 

extensive pre-processing (see Fig. 13S8). In order to produce digitised validation labels for a test dataset spanning seasonally 

variable imagery, our test areas were cropped to 2000/3 to 3000 pixels (digitisation of entire Sentinel-2 tiles to near pixel-

levels of detail for seasonally variable test imagery would be a more onerous task), but the CSC method is not sensitive to 1030 

where the data clipcrop boundaries fall, and it performs well even when an image boundary cuts a glacier in half.  It also works 

well when the user does not have previous knowledge of the location of a feature of interest. Admittedly, in the case of glaciers, 

this is arguably less important because we already have high quality glacier inventories. However, in terms of the wider scope 

of image classification in EO, there are many cases where a human user cannot be expected to know a priori the location of 

all features/class instances of interest in order to carry out the level of pre-processing required by FCN architectures. In these 1035 

cases, the lower levels of pre-processing required by CSC are advantageous and has allowed us to produce classifications for 

full Sentinel-2 tiles (Fig. S813) that are absent from other works based on FCNs and U-Nets. 
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4.14.4 Local textures vs object shapes 1040 

Finally, from a theoretical perspective, FCN architectures can be strongly dependent on object shapes and less dependent on 

inner textures. In the final stages of the encoder part of an FCN architecture, the simplified shape of the object will contribute 

to the weights learned in training (as will inter class relations). This means that an FCN must be trained to recognise specific 

shapes. As a result, an FCN trained only on data from Helheim could not be expected to perform well at the task of classifying 

Jakobshavn. There are no published examples where an FCN has been trained on a single glacier and displays transferability 1045 

to very different glaciers. For example, Mohajerani et al. (2019) train their FCN on three glaciers (Jakobshavn, Sverdrup, and 

Kangerlussuaq) and only test it on Helheim Glacier. Similarly, the FCN used by Zhang et al. (2019) is only trained and tested 

on Jakobshavn, providing no test of spatial transferability. Instead, multiple sites must be included in FCN training in order to 

reach good transferability (e.g., Cheng et al., 2021). Contrastingly, in this study, even before the application of Joint fine-

tuning, the phase one VGG16 CNN solely trained on data from Helheim successfully classified large areas of Jakobshavn 1050 

leading to very high performance with final, phase two results with F1s in excess of 95%. This is because CSC is driven by 

spectral and textural properties within the object, whilst the downsampling often required in an FCN pipeline can remove local 

textures. FCNs compensate for this by making use of inter-class relations, which CSC does not consider. However, on the 

terrestrial surface, there is a strong correlation between the ontology of a semantic class and both colour and textural properties. 

This explains why a statistical learning algorithm such as maximum likelihood has been used with reasonable success by the 1055 

EO community for nearly half a century (Lillesand and Kiefer, 1994)(Lillesand and Kiefer, 1994). Furthermore, the learning 

of shapes, a strong point of FCN, is not so relevant in EO since many semantic classes have either variable shapes or no shapes 

at all. Good examples are forest and vegetated patchess/vegetation, water body shapes (including supraglacial lakes), rocky 

outcrop shapes, and sediment patches in rivers.    

 1060 

Overall, the empirical results presented here show that CSC has delivered a state-of-the-art performance for novel multi-class 

pixel-level classification of marine-terminating glacial landscapes in Greenland. In summary, when compared to FCN 

architectures, CSC has lower training data volume requirements and simpler pre-processing steps. AlsoMoreover, the 

workflow produces marginally better F1 scores but marginally poorer calving front detections (in terms of pixel dimensions). 

On balance, we argue that this shows that there is still a place in EO for patch-based classification methods such as CSC. 1065 

 

 

4.2 CSC performance and wider application 

The results reported here demonstrate that the CSC workflow adapted for landscapes containing marine-terminating outlet 

glaciers in Greenland produces state-of-the-art pixel-level classifications for seasonally variable imagery. After testing the 1070 
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performance of different band combinations, tile sizes, and patch sizes on seasonally variable test imagery, we find that 

classifications reach F1 scores of up to 93.3% for in-sample test imagery, and 91% for out-of-sample test imagery when using 

a phase one CNN trained only with data from Helheim Glacier and the overall optimal classification parameters. With the 

addition of Joint fine-tuning, F1 scores increased to 94% for in-sample test data and 96% for out-of-sample test data. In terms 

of calving front accuracy, a mean error of 56.17 m (5.6 pixels) and median error of 24.7 m (2.5 pixels) was achieved from 1075 

classifications produced with overall optimum parameters. Taken together, this suggests that the accurate multi-class outputs 

of CSC are capable of producing datasets with sufficient levels of accuracy, for example to monitor calving front change at a 

high temporal resolution. Indeed, the method could be developed to generate extensive time series data of calving front changes 

with 10s of measurements per year for multiple glaciers and over several years, which is a key advantage over time-consuming 

manual digitisation. 1080 

  

Given that CSC can identify multiple semantic classes, this also provides scope for analysis in other research areas, beyond 

calving front monitoring. Changes in other class boundaries could be monitored, for instance to detect changes in 

snowline/equilibrium line position and quantify ablation area change (Noël et al., 2019). Similarly, the multi-class outputs 

could be used to quantify seasonal changes in the area of a specific class, for example to monitor changes in the area of mélange 1085 

(Foga et al., 2014; Cassotto et al., 2015) as shown in Fig. 10. Moreover, while CSC operates at the scale of overall landcover 

classes, outputs could potentially be used to isolate a specific target class for detection of smaller scale features, for example 

to detect change in the evolution of supraglacial lakes (Hochreuther et al., 2021) and subglacial meltwater plumes (How et al., 

2017; Everett et al., 2018), as well as iceberg tracking (Barbat et al., 2021). Finally, the outputs of the CSC script retain the 

geospatial information of the input data, meaning classification and calving front outputs can be easily manipulated in GIS 1090 

software. 

 

4.3 Technical considerations for future work 

The Joint fine-tuning method significantly improved classification F1s with the addition of training data from only two glacier-

specific images. Considering the improvements to classification performance for out-of-sample sites, we suggest that the 1095 

manual labour required to collect 5,000 additional samples per class derived from only two images is not substantial and may 

be worthwhile if a glacier is identified for monitoring. Further work may also benefit from more diverse training data for the 

phase one CNN rather than training from a single glacier. Similarly, CSC did not produce very accurate classifications for 

images with extremely low illumination angles. This is most likely because images with very low illumination angles occurred 

most frequently at the beginning or end of the image availability season and made up a smaller proportion of phase one training 1100 

data. To improve the ability of CSC to classify imagery with deep shadow and extremely low illumination angles, the 

proportion of phase one CNN training data containing these qualities could be increased. Despite this, the application of CSC 

using Single CNN training still produced an F1 score of up to 91% for out-of-sample test data, providing sufficient 
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classification quality to detect calving fronts with a mean error of 54.86 m (5.5 pixels) and a median error of 22.1 m (2.2 

pixels).  1105 

 

CSC performance was optimal when using RGBNIR bands rather than RGB bands alone. Testing the use of additional image 

bands to increase spectral data may be advantageous in future work. For example, (Xie et al., (2020) used a CNN trained with 

17 input bands derived from Landsat 8 imagery and DEM data and found that using more bands produced higher accuracy for 

mapping debris-covered mountain glaciers. However, this may not necessarily be the case with marine-terminating outlet 1110 

glaciers and using additional input channels is likely to increase processing time which should also be taken into account when 

considering that accurate results can be achieved using only RGBNIR bands. 

 

We proposed that adopting a patch-based technique which includes contextual information surrounding a pixel would aid 

classification of complex and seasonally variable outlet glacier landscapes, as it has in other applications (Sharma et al., 2017) 1115 

and found that the phase two patch-based method significantly outperformed the pixel-based method. This also validates 

similar findings that patch-based CNNs outperform standard pixel-based neural networks and CNNs (Sharma et al., 2017). For 

calving front detection, a patch size of 5x5 pixels was optimal, suggesting that the smaller scale contextual information 

contained within a 5x5 pixel patch is beneficial for classification at the glacier front where small areas of shadow can impact 

front prediction at the scale of a few pixels. Overall, for marine-terminating glacier classification we suggest that the patch-1120 

based technique is used instead of pixel-based methods. 

 

 

5 Conclusion 

We develop and evaluate a workflow for novel multi-class image classification of seasonally variable marine-terminating 1125 

outlet glacier scenes using deep learning. The development of deep learning methods for automated classification of outlet 

glaciers is an important step towards monitoring processes at high temporal and spatial resolution (e.g., changes in frontal 

position, mélange extent, and calving events) over several years. While still in its infancy in glacial settings, image 

classification using deep learning provides clear potential to reduce the labour-intensive nature of manual methods and 

facilitate automated analysis in an era of the burgeoning availability of satellite imagery. Our two-phase workflow, termed 1130 

CNN-Supervised Classification, is adapted for classification of medium resolution Sentinel-2 imagery of outlet glaciers in 

Greenland. In phase one, the application of a well-established, pre-trained CNN called VGG16 replicates the way a human 

operator would interpret an image, rapidly producing tiled training datatraining labels for a pixel-levelsecond phase two image-

specific model in phase two. Application of the phase two model produces pixel-level classifications according to seven 

semantic classes characteristic of complex outlet glacier settings in Greenland.  1135 
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Alongside an evaluation of various input parameters and training methods on model performance, we apply and test the 

workflow on 27 seasonally variable unseen images. The test dataset is composed of nine images from the training area of 

Helheim Glacier (in-sample), and 18 images from Jakobshavn and Store glaciers which represent landscapes not previously 1140 

seen  by the phase one CNN during training (out-of-sample). Resulting pixel-level classifications from the test dataset as a 

whole produce high F1 scores up to 94% for in-sample test data and 96% for out-of-sample data with the implementation of a 

joint fine-tuning techniquefor both in- and out-of-sample imagery. Similarly, Tthe calving front detection method built into 

the CSC workflow predicts fronts with a mean error of 56.17 m (5.6 pixels) and median error of 24.7 m (2.5 pixels).  when 

optimal CSC input parameters are used. Overall, this demonstrates that the CSC workflow has good spatial and temporal 1145 

transferability to unseen marine-terminating glaciers in Greenland.  and Moreover, the method can be used to classify entire 

landscapes and produce subsequently produce accurate secondary datasets (such as calving front data) with a good level of 

accuracy. The simplicity of data pre-processing and the low computational costs of CSC make it a useful tool which can be 

accessed and used without having specialised knowledge of deep learning or the need for time-consuming generation of 

substantial new training data. From a wider perspective, the results of this study strengthen the foothold of deep learning in 1150 

the realm of automated processing of freely available medium resolution satellite imagery, especially building on the growing 

body of research using deep learning in glaciology (Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019; Xie et 

al., 2020; Cheng et al., 2021). 

 

Code and data availability: Sentinel-2 imagery is available from the Copernicus Open Access Hub (available at: 1155 

https://scihub.copernicus.eu/dhus/#/home, last accessed: 20/07/20). The Python scripts for the full deep learning workflow and 

instructions on how to apply them are available at: http://doi.org/10.5281/zenodo.4081095 and can be cited as (Carbonneau 

and Marochov, (2020)Carbonneau and Marochov (2020). The pre-trained CNN for phase one of CSC are available for 

download from this institutional repository: http://doi:10.15128/r2gh93gz51k doi.org/10.5281/zenodo.4081095 and can be 

cited as (Marochov and Carbonneau, (2020)Marochov and Carbonneau (2020). The original code for the CSC workflow for 1160 

classification of fluvial scenes is available at: https://github.com/geojames/CNN-Supervised-Classification. 

 

Supplement: The supplement includes descriptions for each of the seven semantic classes (Table S1); the full listthe of 

Sentinel-2 imagery acquisitions used for training and testing the classification workflow (Table S21),; a flow chart of the 

methodology used to produce calving fronts from pixel-level classifications (Fig. S1); phase one F1 scores (Table S3); calving 1165 

front error for the Joint approach (Fig. S2); example outputs using Joint training (Figs. S3 to S5), and the confusion matrices 

for all three glaciers using the optimal classification parameter set with Single CNN trainingconfusion matrices (Figs. S6 and 

S72); and an example of CSC applied to a whole Sentinel-2 image (Fig. S8). 

 

https://scihub.copernicus.eu/dhus/#/home
https://github.com/geojames/CNN-Supervised-Classification
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