
Dear Dr Bert Wouters,  

We would like to thank the three referees for taking the time to review our manuscript and 

provide such constructive feedback, and we are pleased that they all want to see our work 

published. Indeed, we are delighted to have this opportunity to respond and we can confirm 

that we are able to address all the issues they raise. 

In this response, we first provide a detailed point-by-point response to each of the three 

Reviewers, with their comments (verbatim) in blue and our response in black. As a result of 

their suggestions, we have undertaken some additional analysis. A summary of this analysis 

is found in the Appendix at the end of our response, to which we refer throughout.  

We thank you for your editorial work on our manuscript and look forward to hearing from you 

in due course. 

Mel Marochov  

(on behalf of all authors) 

 

Reviewer 1: 

General Comments: 

This paper use a deep-learning-based workflow, termed CNN-Supervised Classification 

(CSC), to map glacial regions into seven classes using Sentinel-2 images. The method 

achieves reasonable results and shows its generalization ability. The author also shows 

significant improvements over traditional pixel-based methods such as band ratio techniques. 

There are some concerns regarding the explanation and technical details of the method, which 

are list below. Given this, I recommend this paper for publication after major revisions with 

attention to comments. We thank the reviewer for their constructive review and 

encouragement. 

 

Specific comments: 

I have two major concerns regarding the explanation and potential issues of the method 

1. The first concern I have relates to the superiority of the second phase model. The author 

mentioned that the second phase model (cCNN and MPL) is trained by the classification 

results of the phase one CNN model (Page 11, Line 310). And the author claimed that the 

second model outperforms the phase one CNN regarding the F1 scores. To me, the network 



cannot outperform the training label. For instance, Baumhoer et al. (2019) and Zhang et al. 

(2019) used the manual-prepared training labels to training the network, and the networks are 

eventually close to human-level performance but not exceed in terms of accuracy. Therefore, 

could the author provide more explanation of why the phase two model outperforms the phase 

one model? This will be easy to clarify in the revised version. The key point is that these are 

two different models and they have different training data. We first train a VGG16 CNN on a 

set of tiles that have a size of 50x50, 75x75 or 100x100 pixels. In phase 1 of CSC, we apply 

this CNN. This will produce a single label for every tile (of 50x50, 75x75 or 100x100 pixels) in 

the target image. We then convert these tile labels to a full-size class raster by giving each 

pixel in the tile the same label value. This gives the pixelated results visible in the bottom left 

panels of Figures 8, 9, 10 and 15 in the Appendix. Then in phase 2 we use these CNN 

predictions to create a new model. Depending on the patch size parameter, this will be an 

MLP (patch size of 1) or a compact CNN (patch size of 3, 5, 7, or 15) (Please see Section 2 

of the Appendix for updates to the cCNN).  The second model will benefit from training data 

bespoke to the actual image it is trying to classify. This is because phase one model 

predictions help account for image heterogeneity and incorporate the specific 

illumination/weather conditions, acquisition angle and seasonal characteristics of the 

individual input image. In other words, one of the critical roles of the phase one CNN is to 

produce training data for phase two, which is locally specific to the image. Also, it has been 

found by Carbonneau et al. (2020) that neural networks are robust to noise.  The first pixelated 

CNN-derived class raster will have very rough object boundaries that will straddle classes.  

This will generate error in the new training data.  But the robustness of the MLP (which 

performed poorly here, but very well in Carbonneau et al., 2020) or the cCNN will overcome 

these errors and the phase 2 pixel-level classification will follow the edges much more closely. 

2. The second concern relates to the method’s performance on the edges of each class. Edges 

are important to glaciologists since that is where changes occur. The author only uses the 

pure tiles (Figure 5) to train the phase one model, which means the model might not have a 

promising performance on tiles with multiple classes (e.g., edges of the glacier or ice 

mélange). For phase two models, cCNN is for patch-based classification. Considering that a 

single patch could also contain multiple classes on edges and the phase two model is 

dependent on the phase one model, this method might have potential issues on the edges. It 

would be better if the author could quantify the method’s performance on the edges or 

document such potential issues.  We have extended validation areas to the edges. We have 

also quantified performance at the most important edge, the calving front, and included this in 

the final algorithm (see Appendix section 4 and the bottom right panels of Figures 8, 9, and 

10). We will include this in the revised manuscript. For the benefit of the reviewers, we also 



demonstrate that the valley walls do not show an edge dilation pattern (Appendix section 4 

and Figure 14). We can therefore safely conclude that the edge detection performance of the 

method is controlled by pixel-level performance. 

3. Page 8, Line 238: (1) How to get the variations of the surface meltwater on the glacier and 

ice mélange? They are not included in the seven classes. (2) It would be interesting to know 

how each characteristic can benefit the study of glaciology, for instance, the snow cover on 

bedrock. (1) This is a good point which is a limitation of CSC that will be clarified in the revised 

version. Given that the initial training requires tiles that are pure-class, CSC does not work 

well for classes that are only slightly bigger than the pixel dimensions. In the current version, 

we find that tiles of 50x50 are optimal (Appendix Section 3), but this means that we must be 

able to train our phase 1 CNN with tens of thousands of tiles of 50x50 that have pure classes. 

The VGG16 CNN we use can use smaller tiles, but the smallest is 32x32. Thus, the CSC 

workflow which has been designed here to produce overall landcover classes cannot directly 

detect these small features. That said, we note that our mélange, bedrock, snow on bedrock 

and glacier ice class are well classified and therefore a subsequent image processing 

approach, focussed on the class could be used. This could be as simple as unsupervised 

classification since the dark water pixels will be distinct from the ice pixels, or the darker rocks 

will be distinct from snow on bedrock. (2) We think there are many potential benefits of 

meaningful landcover classifications for glacial landscapes (such as those produced by CSC), 

and this will be easy to clarify in the revised manuscript.    

 4. Page 11, Line 311: It would be better if the author could provide more information about 

how to reassemble predicted classes to create a class raster. For instance, what is the stride 

size when predicting classes using a pre-trained CNN? How to deal with the overlap if there 

is any (when the stride size is smaller than the tile size)? When we apply an existing CNN to 

a new image for CNN-supervised classification, we use a stride of the tile size, so there is no 

overlap in tiles. The CNN produces labels for each tile. Then when we re-assemble the tiles 

into a class raster, all the pixels in the tile are given the same label value. This is why the lower 

left panels of Figures 8, 9, 10 and 15 in the Appendix have a pixelated appearance. Please 

note that this class raster has the same dimensions as the original images minus a border at 

the lower and right edges if the image size does not divide into the tile size. This will be 

explained more clearly in the revised manuscript. 

5. Figure 2: It would be better if the author could provide information about the median filter. 

What is the median filter for? Why is the median filter 1×1? This filter has been removed in the 

revised analysis. 



6. Figure 2: It would be better if the author could provide more details about vectorizing image 

features. For instance, how to deal with these impure patches (when the patch size is larger 

than 1)? We only vectorise in the case of the MLP.  In the case of patches, we use a stride of 

1. This means that successive patches will be overlapped, but our objective is to classify the 

pixel at the centre of the patch as a function of its neighbours.  

7. Page 14, Line 365: What is the stride size when using the second model to make the final 

classification? The stride size is important cause it influences the resolution (or size) of the 

final classified image. In phase 2, the stride is 1. The phase 2 classifiers are all pixel level. For 

the MLP, we use all pixels, but for the cCNN we use a stride of 1. For each pixel, we extract a 

small tile with square dimensions of the patch size (3x3, 5x5, 7x7 or 15x15 pixels) from the 

image. Then we take the central pixel in the class raster and use this as the associated label.  

The only effective loss of resolution is at the image border where we lose (p-1)/2 pixels (p is 

the patch size). We will make sure this is clear in the revised manuscript.   

8. Figure 8b: Could the author explain why they have unclassified regions? It seems that the 

edges of classes are usually unclassified (e.g., the black strip at the glacier front), which might 

also potentially influence the method’s performance on the edges (See comment 2). During 

the creation of new validation data to test the workflow further, care was taken to reduce 

unclassified areas as much as possible (see the top right panel of Figure 8 in the Appendix for 

an example of our denser validation polygons). Collection of ground truth (validation) data 

relies on manual digitisation (i.e. drawing polygons in GIS and labelling them by class) which 

makes it difficult to avoid unclassified areas altogether. This will be discussed and made clear 

in the revised manuscript. 

9. Page 24, Line 700: It would be better if the author could provide more a theoretical 

explanation about why some class confusion in phase one can be overcome in phase two 

(See comment 1)? Could the author provide a visual comparison between phase one and 

phase two classifications, like Figure 10 and Figure 11 in Carbonneau et al. (2020). The key 

effect is that neural networks are robust to noise in the training data (Carbonneau et al., 2020).  

When we re-assemble the phase 1 tiled outputs, we get a blocky class raster where each 

50x50 (or 75x75 or 100x100) area has the same class. These blocks will obviously not follow 

the edges of the objects.  However, when we use this as training data for phase 2 (MLP or 

cCNN), the majority of data is correct, and the final pixel-level models (especially the cCNN) 

can find object boundaries and even correct locations where the initial CNN was wrong. We 

have included Figures 8, 9, and 10 in the Appendix which show a visual comparison of phase 

one and phase two classifications and intend to make this clear in the revised manuscript with 

examples. 



10. Page 30, Line 927: The studies based on U-Net (Baumhoer et al., 2019; Mohajerani et 

al., 2019; Zhang et al., 2019) focused on glacier boundaries, where this method might not 

generate promising results (See comments 2 and 8). Although this method could classify 

seven classes, I think it is not fair to conclude that this method has exceeded the U-Net based 

ones. See Appendix Sections 3 for re-analysed results which now include calving front 

detection errors, Section 4 for the performance of CSC on glacier boundaries and calving front 

detection, and Section 5 for a comparison of CSC and FCNs such as those used in previous 

work. We will address these issues in the revised version of the manuscript.  

11. Page 31, Line937: The author only tests two images in summer. If the author test more 

images, it would be more convincing to conclude that the method could handle different 

illumination, weather conditions, or seasonal changes. Thank you for this suggestion. We have 

expanded the validation dataset to improve testing of spatial and temporal transferability. For 

details of the new validation dataset please see Section 1 of the Appendix. The full results 

which show how CSC handles these challenges will be detailed in the revised version and are 

shown in brief in Section 3 of the Appendix. 

12. Page 34, Line 1054: I agree with the author that the combination of deep learning 

methods, Google Earth Engine, and GIS software could remove the need for prior expertise 

in deep learning and coding (Page 33, Line 1025). But that is future work and not included in 

the current workflow. So I suggest removing this part from the conclusion. It is not at all unusual 

for academic papers to include prospects for future research in the conclusion section of a 

paper and we would like to retain this, if possible. 

 

Technical corrections: 

Page 11, Line 311: I suppose it should be predicted classes but not image tiles that are 

reassembled. We will clarify this in the revised version of the manuscript. 

Page 15, Line 396: I suppose it should be a 3D input (width, height, band). We will clarify this 

in the revised version. Individual training tiles are 3D [x, y, bands (channels)] but these tiles 

are stored as tensors in channels last format: [samples, x, y, channels]. 

Page 29, Line 891: Zhang et al. (2019) used TerraSAR-X images. This will be corrected in 

the revised version. 

Page 30, Line 901: Zhang et al. (2019) and Mohajerani et al. (2019) used 2-D inputs (single-

band images). Baumhoer et al. (2019) used 3-D inputs (width, height, band). The author also 

used 3-D input in this work (the band is just one dimension). We will clarify this. 



Reviewer 2: 

General Comments: 

This paper describes a two-phase deep learning approach for the image classification of 

Greenlandic marine-terminating outlet glaciers. Optical Sentinel-2 imagery acquired in 2019 

over Helheim Glacier was used to train a VGG16 model generating training data for the 

multilayer perceptron/cCNN in phase two. The results were tested on two Sentinel-2 scenes 

over Helheim Glacier and Scoresby Sund for summer/autumn 2019. The novelty compared to 

previous studies is the classification of satellite images into seven different classes. Further 

results of this study include the performance testing on different tile sizes, transfer learning, 

and band combinations. The manuscript is well written and explains the study approach in 

every detail. There are some concerns regarding the methodical approach and testing of the 

algorithm which are explained below. Therefore, I recommend a revision of the manuscript 

before publication. We thank the reviewer for their constructive review and are pleased to 

address their points below. 

 

As outlined above, some major concerns exist regarding the following points: 

- The validation labels include unclassified areas especially at the boundaries between two 

classes. Why was that done? What does this mean for the accuracy assessment? It seems 

the accuracy was only calculated over areas where a classified validation label exists. But this 

approach would miss out on the accuracy over regions with boundaries. Additionally, if no 

boundaries between classes exist in the training data I would expect that model predictions 

are inaccurate in those regions. Moreover, your accuracy assessment cannot account for that 

as validation labels include no data areas. Could you please explain how you handled class 

boundaries for training and validating the model? During the creation of new validation data to 

test the workflow further, care was taken to reduce unclassified areas as much as possible. 

Despite this, some unclassified areas were unavoidable as a result of the manual digitisation 

required to create the validation data. For more details on the new validation data please see 

Section 1 of the Appendix. Moreover, we added boundary detection analysis and calving front 

detection to show how CSC performs at the edges of classes. For details on this please see 

Section 3 and 4 of the Appendix. Figures 8 - 10 show example classification outputs for the 

new validation sites and include calving front detections with associated error. Figures 11-13 

show the mean, median and modal error of calving front detections for our new validation data. 

This will be added to the revised version of the manuscript. 



- Testing was performed on only two images acquired temporally close to the training data. 

Training data was used for 07/08/2019, 01/09/2019, and 28/09/201 and tested for 13/09/2019 

and 01/08/2019. This means between testing and training only one to two weeks elapsed. 

Hence, spectral properties of the images as well as the conditions at the glacier terminus were 

very similar in the training and test data and might overestimate the accuracies. To show that 

your approach is transferable in space and time I would recommend testing on a broader 

amount of images as it has been done by previous studies (Baumhoer et al., 2019; Cheng et 

al., 2020; Mohajerani et al., 2019; Zhang et al., 2019). I would recommend taking data from a 

previous/later year e.g. 2018 or 2020 not close to the training data for additional performance 

testing. Please see the Appendix Section 1 for more details on our new validation dataset. In 

summary, the temporal range of validation imagery has been expanded to test the ability of 

CSC to classify seasonally variable imagery more adequately (see Figure 4). We have also 

included two new validation sites from central west Greenland (Jakobshavn Isbræ and Store 

Glacier), both of which have notably different shapes compared to the Helheim site (see 

Figures 2 and 3 in the Appendix) and different ice flow directions. The validation data for 

Jakobshavn and Store glaciers was acquired during 2020 (a year later than the training 

dataset). 

- What was the argument to create a two-phase deep learning model instead of using a fully 

convolutional network (FCN) architecture for semantic segmentation? It would be great if you 

could include some comments on that in your manuscript. Please see Section 5 of the 

Appendix to find a summary comparing CSC to FCNs and our reasoning behind using a two-

phase deep learning workflow. We will provide full details in the revised version of the 

manuscript.  

- Could you provide some information on the computational cost of the here presented two-

phase model compared to semantic segmentation approaches? This is included in Section 5 

of the Appendix which discusses FCNs. Our CSC approach has a much lower computational 

cost with much simpler pre-processing requirements. We will clarify this in the revised 

manuscript and include information about computational costs. 

Specific & Technical Comments 

P2L60: For clarification, it would be great if you could give some more detail on the difference 

between semantic segmentation by an FCN and the pixel-based segmentation performed 

here. If I understood you correctly, your first CNN performs image classification, hence 

assigning one class to the entire image. The second cCNN performs a classification for each 

pixel. If patch size 1x1 is used, only the spectral properties of one-pixel are used for the 

classification. In the case of bigger patch sizes, also information on textural features of 



neighboring pixels can be used for the classification. But semantic segmentation by an FCN 

would also consider the spatial relationship between pixels of different classes which your 

approach does not. The first CNN classifies the image by assigning a class to each tile within 

the image (of 50x50, 75x75, or 100x100 pixels). Examples of this can be seen in Figures 8-

10 and 15 in the Appendix, where the phase one CNN outputs are shown in the bottom left 

panels and have a pixelated appearance. We will clarify this in the revised version. We agree 

that the FCN has the advantage of considering inter-class relationships, but as highlighted in 

Section 5 of the Appendix, our 2-phase patch-based approach has other advantages in terms 

of processing and it produces high F1 scores.   

P4L117: I think the spatial transferability is not yet proved by only testing on one outsample 

scene. For applications elsewhere in Greenland and Antarctica more spatially diverse training 

data would be required. Please mention that or show on a more diverse test image set the 

spatial transferability of your approach. Please see Section 1 of the Appendix. We have now 

expanded the validation data to two out-of-sample validation sites elsewhere in Greenland. 

We will clarify in the revised version that to classify images with different classes, such as 

glacial landscapes seen in Antarctica, training data should include samples of these classes, 

and model architectures should be modified to change/increase the number of output classes 

accordingly. The CSC workflow that has been trained on a single glacier in Greenland and 

designed to classify marine-terminating outlet glaciers in Greenland cannot be expected to 

correctly classify images with completely new classes.  

P9L266: How did you differentiate between snow on ice and snow on rock? Class descriptions 

and example class images were shown in Table 1 of the original manuscript which will be 

modified and kept in the revised version. The ‘Snow on Ice’ class has a smooth appearance 

which contrasts the ‘Snow on Rock’ class where snow typically covers bedrock structures. 

The key difference in this case being the texture of the surface. 

P11L311: Please describe the term “class raster” more precisely. A class raster is a 1-channel 

(1 band) raster where each pixel has a label corresponding to class. We will make sure this is 

clear in the revised manuscript. 

P12 Figure2: What does the 1x1 median filter do? Please describe. This will be removed. 

P14L348: I would expect that the optimal hyperparameters (epochs, batch sizes, learning rate, 

etc.) for training are different depending on tile size. Did you experience that? We did, which 

is why we have moved to the use of early stopping to control hyperparameters. We also use 

a fine tuning stage where a pre-trained CNN is trained again with a smaller number of samples 

(5000 per class as opposed to 30 000 in the initial stage), a lower learning rate of 10E-5 as 

opposed to 10E-4 in the initial stage and smaller batch sizes of just 10 (as opposed to 30). For 



more details on this please see Section 2 of the Appendix. For the results of this approach 

see Section 3.3 of the Appendix. The full details of these methods will be explained in the 

revised manuscript. 

P15L396: What is the fourth dimension of your 4D tensor? Only three are listed. We store our 

tensors in channels last format: [samples, X, Y, channels]. This will be clarified in the revised 

version of the manuscript. 

P16L420: Please explain the normalization by 16384 in detail. Usually, the min/max values 

(normalization) or mean/standard deviation values (standardization) of the data set are used 

for scaling input images. As far as we are aware, the dominant normalisation procedure in 

computer vision is simply to divide by 255, which is the maximum of the RGB imagery 

commonly used.  We have extended this to Sentinel-2 values which have a theoretical 

maximum of 16384. However, Sentinel-2 images are very un-saturated, so this maximum 

value is never reached.  That said, in the new data analysis we are using a new GPU with a 

Turing architecture (see Appendix Section 5). This chip has so-called ‘tensor cores’ that are 

designed for tensor operations which use of 16-bit floating point data as opposed to 32-bit. 

Thus, we now normalise by 8192 in order to also use the integer part of the numbers and this 

has worked well for us. This will be explained clearly in the revised manuscript. 

The method mentioned by the reviewer using unit scaling does work and would be 

inconvenient. Carbonneau et al. (2020) obtained very bad results when an image was subject 

to bespoke normalisation and concluded that CNN require that the same transform be applied 

to new images. Perhaps this was due to the fact that Carbonneau et al. (2020) used airborne 

imagery with a more variable radiometry when compared to atmospherically corrected satellite 

data. The scaling transform then needs to be saved and this is not as simple as just using a 

single factor.  

P16L429: It is not true that your dataset is larger than the previously used ones. The number 

of tiles might be higher as you use small single class tiles but the number of images (13) is 

less than from Zhang et al. 2019 (75), Cheng et al. 2020 (20188), and Baumhoer et al. (38 

scenes). You state this on P29L878. We will make our comparison to datasets in previous 

work clearer in the revised version. We agree with the reviewer that our initial description was 

confusing. If, in fact, we consider the number of satellite acquisitions used in training, our 

results actually required less training data and we now argue that this is an advantage of our 

method. 

P28L840: Be careful with comparing your F1-score directly with the one of Xie et al. (2020) 

and Baumhoer et al. (2019). Both studies used a more diverse set of test data. Moreover, Xie 

et al. calculated the accuracy also over the boundary between two classes and this is the area 



where errors occur. Additionally, Baumhoer et al. performed their accuracy analysis on a 1 km 

buffer at the calving margin to account for inaccuracies at the frontal area, where again, the 

inaccuracies occur. We will take care to compare to previous work within reason and with 

improved clarity. We have now improved our validation data and added calving front detection. 

See also Section 4 of the Appendix for more information about classification accuracy at class 

boundaries and Section 3 for examples of the outputs of this analysis. 

P28L849: I guess for future potential applications (e.g. glacier terminus tracking, snow line 

extraction, coastline mapping, etc.) especially the edges between classes are of major 

importance. Is it possible to get clear class boundaries from your classification result? Yes. 

See Sections 3 and 4 of the Appendix.  

P29L898: You are right, that optical imagery is easier to pre-process but please also mention 

that SAR data has many advantages. Especially in polar regions, optical data availability is 

very limited due to cloud cover and polar night. SAR data overcomes those drawbacks and 

allows continuous time series with plenty of data. We agree and appreciate the benefits of 

both optical and SAR data and will discuss both appropriately in the revised version. 

P30L902: Be again careful with not confusing tensor size with the number of input channels. 

Thank you, this will be clarified in the revised version. 

P30L912: Maybe re-phrase or delete this sentence. Arguing by the number of bands whether 

a model mimics human visual performance is confusing. Thank you for this suggestion, we 

will re-phrase/delete from the revised manuscript.  

P30L915: The paragraph comparing your classification approach to the U-Net architecture is 

slightly misleading. The U-Net allows semantic segmentation of images by delineating 

features. The U-Net learns shapes and forms but is not limited in variability unless the training 

dataset is restricted by too little data and missing augmentation. In natural landscape images, 

the challenge of color is often given by the fact that two classes (e.g. snow on ice and snow 

on rock) have similar spectral reflectance but a different texture and/or shape. That is why the 

U-Net is so powerful as it also considers the spatial context besides pixel values. To show that 

your approach exceeds the U-Net architecture you would need to prove that it is as suitable 

for delineation on a larger test set. Therefore, I think it is problematic to conclude that the 

“compact CNN architecture has exceeded the results from the U-Net architecture”. Your 

approach concentrates on the pixel-based classification of classes (and was tested for that) 

whereas the U-Net based approaches concentrated on the correct delineation between 

classes. We are going to change our discussion on FCNs in the revised version and base it 

on the arguments detailed in Section 5 of the Appendix. 



P33L1028: Again, I would be careful with class boundaries unless your approach was tested 

for it. Again, see Section 3 and 4 of the Appendix. Our additional analysis shows how CSC 

performs at class boundaries and the results shown in Section 3 show the ability of CSC to 

detect calving fronts with good accuracy. We will of course add this to the revised version of 

the manuscript. 

 

 

Reviewer 3: 

General Comments: 

Marochov et al. develop a two-stage machine-learning pipeline to automatically segment 

glacier calving fronts into seven distinct classes. The initial phase of the pipeline uses a 

VGG16 convolutional architecture to label whole tiles as one of the seven classes (using a 

fully-connected layer at the end). Phase two uses the output of the initial labeling to perform 

pixel-level classification of the landscape into the seven classes. The authors explore a range 

of training regimes and find state-of-the-art performance for multi-class segmentation of 

glacier calving fronts. I believe this manuscript provides timely and suitable results for the 

community. However, there remain a number of major and minor issues that need to be 

addressed before the manuscript can be considered for publication. Again, we thank this 

reviewer for taking the time to review our manuscript and their constructive comments that will 

help improve the revised manuscript.  

 

Major Comments: 

• There needs to be more justification as to why a two-stage pipeline is necessary. What 

happens if you directly start with a pixel-level classification of the features? It seems to me the 

point is that by using a pre-trained VGG16 to first classify the tiles and then using those 

classification as the training for the second phase, you are cutting down on the amount of 

required training labels to directly train on pixel-level classification. Is that true? And is this 

really the only reason? This needs to be communicated better. We will add more details and 

clarify this in the revised version of the manuscript. One of the critical roles of the phase one 

CNN is to produce training data for phase two which is locally specific to the input image, thus 

accounting for heterogeneity in individual images (which is beneficial when considering the 

wide-ranging seasonal differences seen in glacial landscape imagery). Please also see 

Section 5 of the Appendix where we discuss the advantages of CSC. 



• Statements regarding generalizability: 

– Lines 118-119: “they are also applicable to mapping outlet glaciers anywhere in the world, 

including Antarctica” 

– Lines 998-990: “once the phase one models are trained and weights are saved, no further 

training is required to apply the workflow to other marineterminating outlet glaciers.” 

– Lines 1018-1019: “our adapted CSC workflow is transferable and capable of maintaining a 

high level of performance on other unseen outlet glaciers in Greenland and likely other 

glaciated regions such as Antarctica.” 

These statements need justification. You haven’t shown how this pipeline performs in outside 

of Greenland, and delineating calving fronts in Antarctica can indeed be very different due to 

differences in the glacier sizes and mélange. 

In fact, Helheim glacier is a rather non-representative area given the shape of the calving front 

and the fjord. I recommend testing the pipeline in more out-ofsample areas including major 

fjords like Jakobshavn that are both important and have significant independent studies over 

time for context. We now have a wider validation set in terms of sites and seasons and we 

included Jakobshavn. See Section 1 of the Appendix for details of the increased validation 

dataset and Section 3 which shows some of the results for that imagery. 

• Table 1: As mentioned in the caption, there is some class imbalance due to the geographical 

extent of the different features.You mention you tried to even out the imbalance in the selection 

as much as possible, but how is the remaining imbalance dealt with and how is this affecting 

your results? You mention this in section 5.4, but the study will be significantly improved if the 

class imbalance is addressed. Can this be addressed in the construction of the loss function? 

Do you think it’s not necessary or that the results won’t be significantly affected to justify 

implementing a more nuanced loss function? We balanced the training datasets for the 

production of the revised results, with each class now having 30 000 training samples. The 

details of this can be found in Section 2 of the Appendix and we will describe this in detail in 

the revised version of the manuscript. 

• Lines 348, 379-380: You mention the training hyper-parameters were kept constant for all 

nine model variations. But no justification is provided that the different models would require 

the same hyperparameters for optimal training. In fact, one would expect the different models 

to have different requirements. If this is the case, then comparing the model performances is 

not fair given that they have not all been optimally trained. Please see Section 2 of the 

Appendix. We now use early stopping to adjust the training epochs of MLP and cCNN models. 



Similarly, we use early stopping with a threshold callback to train the initial CNN. This will be 

described in full detail in the revised manuscript.  

• Figure 4: In phase-two, instead of doing pixel-level classification for one patch at a time 

using an architecture with a fully-connected layer at the end, why not use a fully convolutional 

architecture that provides a different class for each pixel directly and convolves over the whole 

image, skipping the need for feeding in patches? Please refer to Section 5 of the Appendix 

which provides a summary of our reasoning behind using a 2-phase approach in comparison 

to the use of FCNs. 

• Section 4.1: when reporting the performance of the pipeline with respect to manually 

classification, it is important to also report the uncertainty associated with manual classification 

at the pixel level. The exact boundaries of surfaces may differ from person to person, but this 

is not discussed in your performance evaluation. In our experience, unless you have a very 

large number of users, the results of such a test are wholly dependent on the experience your 

subjects have with imagery. Individual perception of details in a zoomed image can vary 

hugely depending on training, which renders this sort of test un-representative unless you put 

in the effort to do really large samples, which we’ve never seen in a remote sensing paper.  

Clearly, there is a 3-5 pixel error in manual digitising. This will be clarified in the manuscript. 

 

Minor Comments: 

Lines 89-92: The comparison between previous efforts and the conclusion that the Baumhoer 

study has the most accurate results seems unjustified. These studies are each on different 

geopgraphical areas and use different input data that have different resolutions. The 

delineation accuracy of the models in distance units (meters) is not a fair comparison when 

the inputs have different resolutions. Instead, a pixel-based comparison seems more 

appropriate here. Also, it is a bit confusing why the statistics of the test data are reported for 

the first two studies, but both the test and training statistics are reported for the Baumhoer 

study (this confuses the reader in terms of which numbers should be compared). Thank you 

for this suggestion, we agree that the application of models on different geographical regions 

is an important consideration when making comparisons. In the revised version of the 

manuscript, we will improve the clarity of comparisons and provide information on delineation 

accuracy with both pixel- and distance-based units as far as possible.  

Line 114: training size of 13 images. But how large are these tiles in terms of pixels? The 

number by itself doesn’t convey any information. This will be made clearer in the revised 



version. We included the number of training tiles in Table 1 in the original manuscript and will 

modify this accordingly as well as providing more information about training images. 

Line 116: “resulting class predictions are then used as training data specific to the unseen 

input image”. This sentence is hard to understand. I’m assuming you mean that the 

classification of the first stage is used as training in the second stage, even if regions where 

the first stage wasn’t trained on. But it needs to be stated more clearly. Yes, this will be 

clarified. 

Line 311: “The image tiles are then reassembled to creates a class raster which is used as 

training data for the second model in phase two”. Again this sentence is hard to understand 

until further on into the paper. If you explain what you mean by class raster earlier, it will be 

much easier to understand. We will clarify this accordingly. 

Line 325: “[. . .] typical of CNN architectures” This is not true. Not all CNN architectures have 

a fully connected layer. In fact that’s what sets fully-convolutional networks like U-Net apart. 

We were referring to the dense top which is a fully connected MLP and which is fairly standard.  

We can't recall seeing a CNN architecture where the outputs of convolution and/or max pooling 

go straight into the SoftMax layer. 

Line 341: “only the weights in the final layers of the NN are retrained”. Which layers exactly 

are retrained? How far back does one have to go in the layers to adjust the pre-trained 

network? We decided to discard transfer learning. We only needed 16-19 Sentinel-2 

acquisitions and the transfer learning approach did not yield significant benefits. Given that 

the paper is a bit on the long side, we decided to remove all usage and reference to transfer 

learning. 

Line 414-415: how does removing tiles with mixed classes (with a 95  It is not clear to us what 

the reviewer is asking here, but we can restate that, in the process of generating training 

samples for the VGG16 model, we only choose pure class tiles (defined as 95% of a single 

class). We do this because the method rests on the idea that internal spectral and textural 

properties can define a semantic class. As noted elsewhere in this response, this does have 

a disadvantage in that the raw training data must have large patches of pure class areas where 

a large sample of 100x100 pixel tiles can be mined. This means that this method is not well 

suited to classifying objects with spatial dimensions comparable or slightly larger than the 

spatial resolution of the image. 

Line 426: “new satellite image of the training area”. Are you stating that the validation data 

used during training is never used as one of the actual training images, and therefore it is a 

more stringent test? But are you using the same “unseen” validation image in every epoch? 



This needs to be explained more clearly. If the validation loss is being tracked for stopping the 

training, then it’s in essence a part of your training and is different from a novel image during 

the testing stage that was never used in training as either training or validation data. We are 

suggesting that the seen validation (not training) data is a stringent test because it is an image 

of the same site but acquired on a completely different date to any image used in training. We 

did not test CSC on any imagery that was used to train the phase one CNN. We define ‘seen’ 

or ‘in-sample’ validation data as an image from the same glacier site that was used to train the 

CNN (Helheim) but has not been used in training. We will clarify this in the revised version of 

the manuscript. 

Line 428: Do the reported numbers of tiles include additions due to augmentation? Needs to 

be stated more clearly. If this is the case, then it may not be a fair comparison to the 

aforementioned studies in terms of comparing the volume of input data as they may not report 

the numbers after augmentation. This will be clarified, and we will make sure to compare 

volumes of training data with this in mind in the revised manuscript. 

Lines 877-878: Comparing the number of training images to the previous studies here is not 

a fair comparison because the image sizes are different. In addition to the number of images, 

it is important to also mention how big (in terms of pixels and resolution) these images are. 

How do your 13 images compare to e.g. the 38 images of Baumhoer et al. or the 123 images 

of Mohajerani et al.? As stated above we will make sure that training data comparisons are 

clarified, indeed with reference to the size and resolution of training images. In fact, our results 

were obtained with fewer satellite acquisitions and we think this is an advantage. 

Line 923: “Furthermore, the U-Net architecture will learn shapes that have a limited variability 

of both form and scale”. This statement is not justified, and arguable false. Better justification 

and citation is needed for such a strong claim, especially given that U-Net has been 

successfully used in many contexts across many scientific fields from biomedical imaging to 

glaciology. See Section 5 of the Appendix. Statements in the old manuscript will be removed 

and the discussion on FCN will be based on the points detailed in this letter.  

Line 955-957: “It is interesting to note that the transfer learning technique benefited from using 

a larger number of smaller tiles compared to the preferred smaller number of large tiles for the 

fully trained CNN.” Is this because pre-trained networks are less versatile in learning more 

diverse and spatially connected features across a larger spatial domain? Maybe you can 

explore and explain this relationship better. As stated above, we felt that the transfer learning 

approach did not have enough impact to warrant pursuing. It's been dropped in the new 

analysis. 

 



Technical Comments: 

Lines 178-187: This is just a soft suggestion and feel free to ignore, but given the relatively 

long length of the manuscript and the scope of The Cryosphere, the context behind the 

biological inspiration of neural networks may be unnecessary here. We agree and intend to 

condense the section on CNNs.  

Line 192: “series of layers containing solutional, non-linearity, and pooling functions”. 

Technically non-linearities are included as part of the convolutional layer given the activation 

function, whereas the pooling layer is a separate layer. This is easy to correct. 

Line 199: In addition to differences in orientation, you can also mention pooling helps with 

translational invariance. This is easy to correct. 

Line 1052: Missing parenthesis at the end of list of references. This is easy to correct. 

This will all be corrected in the revised version. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX: New analysis undertaken to address reviewer comments that are 

noted above  

 

1. Re-acquired validation data with new sites and a wider seasonal range 

1.1. New ‘seen’ validation site 

The ‘seen’ validation site has been changed to a smaller area (47.1 x 39.9 km, or 4711 x 3986 

pixels) which includes Helheim Glacier, replacing the previous use of an entire Sentinel-2 tile 

(Figure 1). This allowed production of seasonal validation data for a larger number of images 

to improve testing of temporal transferability. It is also a better representation of a ‘seen’ study 

site in the traditional sense, due to its spatial extent within the phase one CNN training area.  

Figure 1: New validation study sites, including (a) Helheim (acquired 18/06/2019), (b) 

Jakobshavn Isbræ (see Figure 2), and (c) Store glacier (see Figure 3).    

 

1.2. New ‘unseen’ validation sites 

To test the spatial transferability of CSC more adequately, our ‘unseen’ validation data has 

been expanded to include two new glacial landscapes, containing Jakobshavn Isbræ 

(a) 



(Jakobshavn) and Store Glacier (Store) in central west (CW) Greenland (Figure 1). Both 

Jakobshavn and Store glaciers are major outlets of the CW Greenland Ice Sheet (GrIS) and 

replace the Sentinel-2 tile which previously represented ‘unseen’ validation (Scoresby). 

Jakobshavn is the largest (by discharge volume) and fastest flowing outlet of the GrIS overall, 

despite periods of fluctuation (Bindschadler et al., 1989; Mouginot et al., 2019). Jakobshavn 

discharges 45% of the CW GrIS (Mouginot et al., 2019) and has been undergoing terminus 

retreat, thinning, and acceleration over the past few decades (Howat et al., 2007; Joughin et 

al., 2008). Comparatively, Store is responsible for 32% of discharge from the CW GrIS 

(Mouginot et al., 2019) but has remained relatively stable over the past several decades 

(Catania et al., 2018). Both glaciers have been subject to substantial independent study (e.g., 

Joughin et al., 2008; 2020; Cook et al., 2020). 

 

1.3. Characteristics of new ‘unseen’ validation sites 

 

1.3.1. Jakobshavn Isbræ 

At its current extent, Jakobshavn has notably different characteristics compared to Helheim in 

terms of glacier, terminus, and fjord shape (Figure 2). For example, the terminus region of 

Helheim is currently bound by fjord walls, whereas the retreated terminus position of 

Jakobshavn means it no longer occupies Ilulissat Fjord in a manner similar to Helheim. The 

terminus itself also has a substantially different shape composed of two distinct branches. 

Since the glacier and terminus have a particularly different shape to Helheim, we suggest that 

applying CSC to Jakobshavn imagery helps provide a more adequate test of spatial 

transferability. 

Jakobshavn imagery also contains all the classes identified at the Helheim study area, 

including mélange which often makes terminus delineation challenging. Mélange has 

previously been observed to develop at the terminus of Jakobshavn and has been coincident 

with several periods of terminus advance (Joughin et al., 2008; 2020). Indeed, in the new 

validation imagery acquired during 2020, there was a substantial area of mélange adjacent to 

the glacier terminus. Thus, the site provides a sufficient test area for CSC’s ability to 

differentiate between the glacier terminus and mélange, where there is often little contrast. 

The Jakobshavn validation site spans 35.7 x 23 km (3566 x 2265 pixels). 



 

Figure 2: The new ‘unseen’ validation site: Jakobshavn, as shown by (b) in Figure 1. Showing 

validation image acquired on 21/05/2020. Note the area of mélange occupying Ilulissat Fjord 

and two distinct branches of Jakobshavn terminus.   

 

1.3.2. Store Glacier 

Similarly, the new Store validation site has different fjord and glacier geometry to that of 

Helheim. In contrast to Jakobshavn, the terminus region of Store glacier extends between the 

walls of Ikerasak Fjord (Figure 3), and the new validation imagery collected throughout 2020 

shows variable fjord conditions with sporadic seasonal changes in mélange. Moreover, since 

both Jakobshavn and Store sites are on the west coast of Greenland, they also represent 

different ice flow directions compared to Helheim. The Store validation site spans 27.8 x 20.9 

km (or 2797 x 2089 pixels). 

 



Figure 3: The new ‘unseen’ validation site: Store, located at (c) in Figure 1.  

 

Since the phase one CNN was trained using data solely from Helheim, we chose to only 

expand validation sites within Greenland. Glacial landscapes elsewhere, for example in 

Antarctica, are often substantially different and likely contain a range of different classes 

beyond the seven classes identified from a single glacier in south east Greenland. We 

therefore suggest that to apply CSC on glacial landscapes which contain other classes, the 

diversity of training data should be increased, and the output classes modified to account for 

this. Even within Greenlandic marine-terminating glaciers, there are a range of different 

settings and characteristics which make classification challenging. Due to this, we have also 

employed and tested training techniques to improve spatial transferability, without significant 

manual labour (discussed in Section 2).  

 

 

 

 



1.4. Wider seasonal range 

Additionally, to further test the temporal transferability of CSC and the method’s ability to 

handle seasonal changes in imagery, we have expanded the temporal range of validation data 

for both the Helheim study site, and the new ‘unseen’ validation sites (Figure 4). We aimed to 

acquire imagery with varying seasonal conditions, spanning the available timespan of optical 

Sentinel-2 imagery (i.e. obtained between February and October). In total, this resulted in 9 

‘seen’ validation images, and 18 ‘unseen’ validation images. 

 

Figure 4: New imagery used for validation of CSC. 

 

1.5. Training and validation image format 

Due to the complete revision of validation imagery and since the CSC workflow can handle a 

range of input image sizes, we removed the pre-processing step which tiles Sentinel-2 images 

into 3000x3000 pixel PNGs in favour of using raw GeoTIFFs as inputs. This also allows the 

creation of an output GeoTIFF which retains the spatial information of the input image and 

means output classifications can be manipulated in GIS software.  

Reflecting this change, the format of phase one CNN training data was also changed from 

PNG to TIFF format. In brief, we start with sub-images of Helheim extracted from 13 Sentinel-

2 acquisitions and we stack bands 4,3,2,8 in order to get an RGB+NIR image. Then, we run 

a script that will extract tiles of 100x100 using digitised training areas. This script is run with a 

high-overlap using a stride factor of 20. Once a tile for a given class is extracted, it is 

augmented by 3 successive rotations of 90 degrees and each resulting tile is saved to disk as 

a .tif image in 16 bit integer format. This resulted in a dataset upwards of 1 million tiles with a 

large imbalance that ranged from 50k tiles in class 1 to 900k tiles in class 4. So, we then 

drastically cut the tile population and randomly subsample 30k tiles from each class, thus 

resulting in a balanced training dataset. The final number, 30k per class, was chosen after trial 



and error revealed that we could run all needed CNN models with all the tiles loaded in an 

available ram space of 64Gb with a 32Gb paging file. Finally, later in the work it was decided 

to implement a joint fine tuning of the models that added 5k samples per class drawn from one 

winter and one summer image for each of the 3 glaciers. These populations of 100x100 tiles 

in RGB+NIR can then be sliced as needed to create the tiles of 50x50 or 75x75 in either RGB 

or RGB+NIR. 

The full methods of training data preparation will be explained in detail in the revised version. 

 

2. Minor changes to network architectures and training approaches 

The revised version has 2 changes in training procedures and compact CNN (cCNN) 

architectures. In terms of network training, we now employ early stopping to inhibit overfitting. 

At the phase 1 CNN stage, we designed a custom callback that trains a network until the 

validation data (20% set aside with a train-test-split) reaches a desired target accuracy. These 

targets ranged from 92.5 to 99%. At the phase 2 stage where either an MLP or cCNN is 

applied, we used conventional early stopping with a patience parameter and a minimum 

improvement threshold. The minimum improvement was set as 0.5%. For the MLP, we found 

that training did not stabilise for at least 20 epochs and we set the patience to 20. This means 

that if training does not improve the validation accuracy by 0.05% after a period of 20 epochs, 

the training will stop. For the cCNN using patch sizes of 3, we used a patience of 15 and for 

patches of 7 and 15, a patience of 10.   

Furthermore, when applying CSC to multiple sites, we came to a similar conclusion to 

Carbonneau et al. (2020) which found that model transferability was improved when the phase 

1 CNN was trained with data from more than 1 site. We have therefore deployed a joint fine 

tuning training procedure where a CNN initially trained only on data from Helheim was trained 

with a small set of extra tiles using only two images (one from winter and one from summer) 

for all 3 glaciers. This fine tuning was done at a low learning rate of 10E-5 and with smaller 

batch sizes. This improved the final results. The rational for this is that if a glacier is identified 

for monitoring, the addition of 2 available scenes to produce data used to fine-tune an existing 

CNN is not an onerous task and can deliver significant improvements to the final results. For 

clarity, we will refer to CNN training without this extra level of fine-tuning as ‘Single’ training 

and CNN training with this added fine-tuning as ‘Joint’ training. We test the Joint training by 

applying it with tile sizes of 50x50 and RGB+NIR bands due to the good general performance 

of these parameters during Single training. 

We have also slightly changed the architecture of the cCNN and now use a deepening series 

of convolution layers. As before, the cCNN trains to learn the class of a central pixel in a patch 



as a function of a neighbourhood. But instead of using increasingly large filters that have the 

same size as the input image patch, we now use as many 3x3 filters as can be accommodated 

by the patch size without the recourse to padding.  Therefore, for 3x3 image patches, we use 

a single 2D convolution layer since the convolution of a 3x3 image with a 3x3 kernel returns a 

single scalar value. For the 5x5 image patch, we use two 2D convolution layers. The first 

convolution of the 5x5 image with a 3x3 kernel leaves a 3x3 image which is rendered to a 

scalar after a second 3x3 convolution. For the 7x7 image patch size, we use three 2D 

convolution layers. Finally, for the 15x15 patch size we use seven 2D convolution layers. In 

all cases, each convolution layer uses 32 filters and therefore passes 32 equivalent channels 

to the following layer, with the exception of the final layer which passes a set of 32 scalar 

predictors. These scalars are flattened and fed into a dense top which terminates in the usual 

softmax layer for class prediction. 

 

3. Complete re-analysis of the data 

Given the revision of validation data and the minor modifications to network architectures and 

training approaches, a complete re-analysis of the new classification results has been 

undertaken. In summary, average F1 scores reached 94% for Helheim, 97.3% for 

Jakobshavn, and 94.6% for Store. Details and example output classifications from these new 

results are shown in the following sections but will be explored in greater detail in the revised 

version.  

 

3.1. Phase 1 Tile Sizes and Bands 

From re-analysing the results based on our expanded validation dataset, we see in phase one 

that for tile sizes of 50x50 and 75x75 pixels, the addition of the NIR band during training often 

substantially improved on overall F1 scores (Figure 5). For tile sizes of 100x100, the addition 

of the NIR band becomes less important as models trained with RGB bands produce better 

F1 scores than models trained on RGB+NIR tiles. We suggest a theoretical explanation for 

this is the trade-off between spatial and spectral data. In simple terms, larger tile sizes contain 

more spatial data in comparison to smaller tiles. This will be explored in greater detail in the 

revised version. 

 



Figure 5: The new results showing F1s from phase one, comparing all classes to the Glacier 

Ice class.  

 

3.2. Phase 2 Pixel- vs Patch-based approaches 

The re-analysed results also show a more distinct improvement in classification performance 

going from pixel-based classification using an MLP to patch-based classification using a cCNN 

in phase two (Figure 6). This reinforces the proposal that per-pixel classification benefits from 

detecting the class of a pixel as a function of its neighbourhood rather than the individual pixel 

alone. 

For the Helheim site using Single training, we see best overall results using RGB+NIR bands, 

with a tile size of 50x50 pixels (as in phase one: Figure 5) and patch sizes of 7x7 and 15x15. 

A patch size of 15 produced an average F1 score of 93.3%, while a patch size of 7 produced 

an average F1 of 92.9% (tile size:50, RGB+NIR bands). 

Similarly, with Single training for Jakobshavn, we see best overall results using RGB+NIR 

bands, with a tile size of 50x50 pixels (as also seen in phase one: Figure 5). A patch size of 

15 produces the highest average F1 of 95%, closely followed by a patch size of 5 with an 

overall F1 of 94.9%, and a patch size of 7 with an F1 of 94.5% (Figure 6). 

Conversely, with Single training for Store, we see best overall results using RGB+NIR bands, 

and a tile size of 100x100 pixels with a patch size of 3 (F1: 91.4%) in phase 2 (Figure 6). 

 



Figure 6: F1 scores of final classifications after phase two of CSC in relation to tiles size, 

patch size and image bands. 

 

3.3. Single vs Joint Phase 1 CNN Training 

Figure 7 shows a comparison of overall F1 scores between Single and Joint training for each 

site. To reiterate, Single training refers to the CNN trained on Helheim, and Joint training is a 

fine-tuned version of that CNN with the addition of a small number of training tiles from 2 site-

specific images (one winter and one summer). This tunes CSC to the individual study site. As 

previously mentioned, we tested this Joint training approach using a tile size of 50 and 

RGB+NIR bands. The results show that the addition of extra training data from 2 site-specific 

images significantly improves F1 scores for the unseen sites (Figure 7). 

 



Figure 7: Comparison of results using ‘Single’ and ‘Joint’ training for each site as a function 

of patch size and image bands. 

 

3.3.1. Helheim 

For Helheim, the Joint approach increased the best average F1 score to 94% with a patch 

size of 15, this is only marginally (+0.7%) better than Single training (93.3%) but was largely 

expected since it is the seen site. An example of the Joint training output for the same image 

(a) seen in Figure 1 (acquired 18/06/2019) is shown in Figure 8.  



 

Figure 8: CSC results for image of Helheim (top left) acquired on 18/06/2019 ((a) in Figure 1) 

using Joint training. Note the increased density of validation labels (top right). The tiled class 

raster produced by the phase 1 CNN is shown in the bottom left which was subsequently used 

in training for a phase two cCNN with a patch size of 15x15 pixels. The F1 score for the final 

classification was 94.9% and calving front error (discussed in detail below) was an average of 

50 metres (equivalent to 5 pixels). 

 

3.3.2. Jakobshavn 

In comparison, for Jakobshavn the Joint approach increased the best average F1 score to 

97.3% (an increase of 2.3% compared to Single training) with a patch size of 5. An example 



of the classification output using Joint training is shown in Figure 9. The image used in this 

example classification is also shown in Figure 2. 

 

 

Figure 9: CSC results for image of Jakobshavn (top left) acquired on 21/05/2020 as seen in 

Figure 2. Bottom left shows the phase one classification using Joint training and bottom right 

shows the final pixel-level phase two classification. The F1 score for the final classification 

was 98.3% and average calving front error was 36 m (3.6 pixels). The cCNN used in this 

example had a patch size of 5x5 pixels. 

 

 

 



3.3.3. Store 

For Store the Joint approach increased the best overall F1 score to 94.6% (an increase of 

3.2% compared to Single training) when applied using cCNN with a patch size of 15. Figure 

10 shows an example of the output classification for an image of Store acquired on 28/06/20 

(a larger version of the image can be seen in Figure 3). 

 

Figure 10: CSC results using Joint training on an image of Store glacier (top left) acquired on 

28/06/20 (for a larger version of input image see Figure 3). In this example, a phase two cCNN 

with a patch size of 7 produced the final pixel-level classification seen in the bottom right 

corner. The F1 score of the classification is 98.3% and the calving front error is 28.3 m (2.83 

pixels). Note that in phase one predictions, some small areas of mélange were misclassified 

as glacier ice. But the phase two model is robust to noise, so these misclassified areas were 



significantly reduced in phase two outputs. This explains the better F1 score in the phase two 

output compared to the phase one output.  

3.4. Summary 

Overall, these results can be summarised under the following key points: 

• In reference to the influence of tile size and input bands during phase one, there is an 

important trade-off between spatial and spectral data. This is indicated by the fact that 

tile sizes of 50x50 pixels had improved performance with the addition of the NIR band, 

whereas tiles of 100x100 performed best without the addition of the NIR band. This 

relationship will be explored in more detail in the revised manuscript. 

• In reference to pixel- and patch- based methods in phase two, the patch-based method 

substantially outperforms the pixel-based method in terms of final classification quality 

and resulting F1 scores. 

• In reference to the new training procedures tested (Single vs Joint), as might be 

expected, the Joint procedure shows a notable improvement over the Single training 

procedure, especially for the sites not used in training of the original phase one CNN. 

We suggest that the addition of training data from only two site-specific images for 

Joint training is not a substantial requirement and is worthwhile for the improvements 

we see in final classification outputs. 

 

4. Calving front edge detection and valley margin edge dilation checks 

Reviewers 1 and 2 mentioned the issue of edges. From a theoretical perspective, the critical 

point is that the cCNN is a pixel-level classifier that uses an image patch to classify the central 

pixel in this patch. For example, when using a 5x5 image patch, the cCNN will try to classify 

the central pixel based on information from all 25 pixels in the patch. In training, we select the 

class of the central pixel of the patch as the label.  This is why the cCNN only uses odd-number 

patch sizes since these have a unique central pixel. This will be clarified in the revised 

manuscript. 

From a practical perspective, we have performed 2 new analyses to support our point.  First, 

we have implemented a calving front detection algorithm. Given that we have high quality 

pixel-level predictions, we were able to design a front detection procedure based on classic 

binary morphology operations. We start with the definition that the calving front will be the 

contact area between glacier ice pixels and ‘ocean’ pixels (open water, mélange or ice-berg 

water). Then we use morphologic active contours and other binary morphology operators to 



establish the calving front. The calving front validation consists of a single pixel-wide line 

derived from manual digitisation in GIS. Full methods details will be given in the revised 

version and here we move directly to key results (Figures 11 to 13). 

Figure 11: Modal and median errors as a function of cCNN patch size and glacier for Single 

CNN training. 

Figure 12: Modal and median errors for the fine-tuned (Joint) model (RGB+NIR and tiles of 

50). 



Figure 13: Full error distribution for the optimal parameter set of RGB+NIR, tiles of 50 and a 

cCNN patch size of 7.  Data is for all glaciers combined. 

 

Figure 11 and 12 show that the modal errors are very low. Crucially, these figures do not show 

a systematic increase of error with the patch size. In Figure 12, we see that the behaviour of 

the median error does not follow the same pattern for our different glaciers. Clearly if the cCNN 

patch caused some sort of edge bleeding effect, then calving front errors would be proportional 

to patch size. The variable patterns that we see in Figures 11 and 12 do not show this 

behaviour and instead they reflect the fact that it is pixel-level classification errors that 

dominate calving front errors. This calving front error evaluation will be fully included in the 

revised version and in fact our final algorithm assigns a new class to the calving front. 

In Figure 13, we see the full distribution of errors for our optimal parameter set. Units are 

expressed in metres. Overall, the results are good with modal errors of 10m and medians to 

means ranging from 56 to 98 metres (5.6 to 9.8 pixels). We note a small tail of data where 

large errors can occur. First, we note that small classification errors of a few pixels (often 

caused by shadows at the front) can lead to errors in the 5-10 pixel range. Also, in all our 

validation data 1 of the 24 images severely failed to detect the calving front (despite a high 

F1) which leads to the long tail of errors seen in Figure 13. This shows that CSC can 

successfully detect edges and whilst the data suggests that FCN approaches deliver slightly 



better performance at these edges (error in pixels), the higher F1 scores of CSC make it a 

better choice for projects where the whole glacial landscape needs to be classified. 

Additionally, and only for the purpose of review response, we have examined edge definition 

for the rock and snow on rock classes. Again, if the patch-based cCNN causes a loss of 

definition of edges, we would expect a dilation of objects as the patch size increases. We have 

therefore conducted some basic change detection on the rock classes. Using only our optimal 

parameter set with tiles of 50 and RGB+NIR imagery. We first isolate the rock classes into a 

binary image (1=rock or snow on rock and 0=other classes) and then successively difference 

the patch size of 3 from patch 5, patch size 3 from patch 7 and patch size 3 from patch size 

15.  Figure 14 presents a sample result from Helheim. 

Figure 14: Edge definition for rock and snow on rock classes. 

In all 3 cases, we see a complex pattern of differences (Figure 14). It is not the case that larger 

patch size classifications are dilated when compared to the patch size of 3. Had this been the 

case, Figure 14 would have been dominated by changes of –1 indicating that the patch size 

of 3 has a value of 0 where the map for the larger patch size (5, 7, 15) has a value of 1. 

 



5. Use of CSC vs FCN. 

All three reviewers queried the need to use a method that does not use fully convolutional 

networks (FCN) and we will therefore address the issue here. Hoeser et al. (2020) reviewed 

object detection in remote sensing and whilst they do conclude that FCN/U-net architectures 

are dominate, they still find about 30% of published work uses patch-based approaches which 

are akin to the second phase of the CSC method presented here. The advantage of CSC over 

the 1-stage patch-based method is that the initial phase 1 CNN provides transferability and 

delivers a bespoke training set for the pixel-level patch-based operator. 

We also argue that CSC has certain practical advantages over U-nets in terms of data 

processing and computational loads. Our CSC method has low pre-processing requirements. 

In the revised version, we have removed the initial median filter. The test images were cropped 

to areas of ca. 2000-3000 by 2000-3000 pixels in order to have areas that are large yet still 

workable for detailed digitisation for validation. Then, the only pre-processing step we need is 

a normalisation by a constant factor. For the new revised version, we have used a GPU with 

a Turing architecture and have enabled the TensorFlow mixed precision training method that 

uses float16 data at input. We therefore decided to normalise our data by a constant 8192.  

This will lead to results that range from [0:2[ thus making use of the integer part of the float16 

data. Once this is done, CSC has a low computational load. Training the initial VGG16 model 

can be done in under 1 hour using an I7 processor at 5.1Ghz, and an Nvidia RTX 2060 GPU. 

Then when we apply CSC to a sample image of 3000x3000 using optimal parameters of 

RGB+NIR, tile sizes of 50 for the phase 1 CNN and a patch size of 7, classification requires 4 

minutes.  We have also coded a low-memory usage pathway in the main script that classifies 

a large image row-by-row with a threshold to define ‘large’ set by the user. Using this, we can 

classify a stack consisting of full bands 4, 3, 2, and 8 for Sentinel 2 at native resolution 

(10960x10960 pixels each) in 12 minutes with a peak ram consumption of 11Gb. This makes 

CSC suitable for use in free cloud-based solutions such as Google Colaboratory. 

In contrast, FCN architectures can be very demanding in terms of computer RAM and GPU 

RAM, especially when large images are used as inputs.  We implemented the popular FCN8 

based on VGG16 which has ca 130 million trainable parameters. We found that the largest 

dyadic image size that we could process was 512x512.  This general problem has been 

resolved in different ways in the EO-facing literature. Baumhoer et al. 2019 used 90m SAR 

data as their base and using a smaller FCN with ca 7.8 million parameters, they used image 

tiles of 780x780 with 4 channels on a GTX 1080 GPU (8Gb vs 6Gb for the RTX2060). 

However, it is important to note that with 90m data, 780 pixels still covers 70km. If this were 

Sentinel 2 optical data, with a resolution of 10m, the sample tiles would only cover 7.8 km. In 



contrast, the front of Jakobshavn used in this work has a width of ca 11km. In order to get 

around this sort of issue, downsampling is used. For example, Mohajerani et al. 2019 have an 

advanced pre-processing routine that involves a re-orientation and then a resampling of the 

scene to 200x300 pixels. In the end, the FCN they use only has 240x152 pixels in a single 

post-processed channel. 

Here we note that our CSC approach requires fewer Sentinel-2 acquisitions for training.  There 

is discussion in the reviews about the actual volume of input data and we agree comparisons 

can be confusing.  Given that our basic phase 1 CNN training sample is no larger than 100x100 

pixels, a very large number of samples can be extracted from a full Sentinel 2 tile with 

10980x10980 pixels.  In our initial training of the VGG16 model, we used sub-images of ca 

3000x3000 pixels extracted from 13 Sentinel-2 acquisitions.  In the joint-fine tuning step, we 

added data from 6 Sentinel-2 acquisitions (1 winter + 1 summer for each of the 3 glaciers).  

So, in total, this work uses data from 13-19 Sentinel-2 acquisitions. So, in fact, we argue that 

our results were obtained with less training data than those from comparator FCN-facing 

works.  

This also illustrates an area where we argue CSC has advantages:  In FCN architectures, the 

instance that must be classified must be well framed in the image.  And often in the case of 

higher resolution images where such framing would lead to image sizes in excess of 

1000x1000, downsampling must be used unless extremely powerfully GPU are available. 

Another important point is that the pre-processing methods used in FCN papers start with a 

user actually knowing where the feature of interest is and performing a suitable clip of the 

data.  These things are not required in CSC. Our method can process entire tiles of Sentinel-

2 data at native resolutions without the need for downsampling, selection and clipping of a 

known target area, or extensive pre-processing (Figure 15). In the paper, we have manually 

clipped study sites in order to produce digitised validations (digitisation of entire Sentinel-2 

tiles to near pixel-levels of detail was beyond the timescale for this revision), but the CSC 

method is not sensitive to where the data clip boundaries fall, and it performs well even when 

an image boundary cuts a glacier in half.  It also works well when the user does not have 

previous knowledge of the location of a feature of interest.  Admittedly, in the case of glaciers, 

this is arguably not important because we already have high quality glacier inventories. But if 

we think of the wider scope of image classification in Earth Observation, there are many cases 

where a human user cannot be expected to know a priori the location of all features/class 

instances of interest in order to carry out the level of pre-processing required by FCN 

architectures.  In these cases, the lower levels of pre-processing required by CSC are 

advantageous. 



 

Figure 15: Whole tile classification for a Sentinel 2 image of the Helheim region acquired on 

13/09/2019.   

 

From a theoretical perspective, the idea that we unsuccessfully tried to convey in the initial 

manuscript is that FCN architectures can be strongly dependent on object shapes and less 

dependent on inner textures.  In the final stages of the encoder part of the FCN architecture, 



the simplified shape of the object will contribute to the weights learned in training (as will inter 

class relations).  This means that an FCN must be trained to recognise specific shapes.  A 

driverless car FCN only trained to recognise walking humans would still hit cyclists.  An FCN 

trained only on data from Helheim could not be expected to perform well at the task of 

classifying Jakobshavn. We cannot find a published example where an FCN has been trained 

on a single site and displays transferability to very different glaciers.  Rather what we see is 

that multiple sites must be included in FCN training in order to reach good transferability (e.g., 

Cheng et al., 2021 [pre-print]). However, in our results, even before the application of joint fine 

tuning, our phase 1 VGG16 CNN solely trained on data from Helheim successfully classified 

large areas of Jakobshavn leading to very high performance with final, phase 2 results in 

excess of 95% F1.  This is because our method is driven by spectral and textural properties 

within the object whilst the downsampling often required in an FCN pipeline will remove local 

textures.  FCN compensate this by making use of inter-class relations and we agree with the 

review comment that our method does not consider these inter-class relations.  However, we 

counter this by arguing that on the terrestrial surface, there is a strong correlation between the 

ontology of a semantic class and it’s colour and textural properties.  This explains why a 

statistical learning algorithm such as maximum likelihood has been used with reasonable 

success by the EO community for nearly half a century.  Furthermore, the learning of shapes, 

a strong point of FCN, is not so relevant in EO since many semantic classes have either 

variable shapes or no shapes at all.  Good examples are forest and vegetated patches, water 

body shapes (including supraglacial lakes), rocky outcrop shapes, and sediment patches in 

rivers, etc.    

Finally, we point to our empirical results.  In the revised data, we have greatly extended the 

surface area of the validation data making it reach to the edges of features. Nevertheless, F1 

scores remain above 90% and often above 95% for all classes.  They can be as high as 98% 

for the glacier ice class. CSC has delivered a state-of-the-art performance. Overall, when 

compared to FCN, we see lower training data volume requirements, simpler pre-processing, 

marginally better F1 scores and marginally poorer calving front detections.  On balance, we 

think this shows that there is still a place in Earth Observation for patch-based classification 

methods.  
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