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Interannual variability in Transpolar Drift summer sea ice thickness
and potential impact of Atlantification

H. Jakob Belter!, Thomas Krumpen', Luisa von Albedyll', Tatiana A. Alekseeva?, Gerit Birnbaum',
Sergei V. Frolov?, Stefan Hendricks', Andreas Herber', Igor Polyakov®*>, Ian Raphael®, Robert Ricker!,
Sergei S. Serovetnikov?, Melinda Webster’, and Christian Haas'®

T Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
2 Arctic and Antarctic Research Institute, St. Petersburg, Russian Federation

3International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, US

4College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, US
SFinnish Meteorological Institute, Helsinki, Finland

®Thayer School of Engineering at Dartmouth College, Hanover, US

7Geophysical Institute, University of Alaska Fairbanks, Fairbanks, US

8Physics/Electrical Engineering (Faculty 1), University of Bremen, Bremen, Germany

Correspondence: H. Jakob Belter (jakob.belter @awi.de)

Abstract. Changes in Arctic sea ice thickness are the result of complex interactions of the dynamic and variable ice cover
with atmosphere and ocean. Most of the sea ice exiting the Arctic Ocean does so through Fram Strait, which is why long-term
measurements of ice thickness at the end of the Transpolar Drift provide insight into the integrated signals of thermodynamic
and dynamic influences along the pathways of Arctic sea ice. We present an updated summer (July/August) time series of
extensive ice thickness surveys carried out at the end of the Transpolar Drift between 2001 and 2020. Overall, we see a more
than 20% thinning of modal ice thickness since 2001. A comparison of this time series with first preliminary results from
the international Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAIC) shows that the modal
summer thickness of the MOSAIC floe and its wider vicinity are consistent with measurements from previous years at the
end of the Transpolar Drift. By combining this unique time series with the Lagrangian sea ice tracking tool, ICETrack, and a
simple thermodynamic sea ice growth model, we link the observed interannual ice thickness variability north of Fram Strait
to increased drift speeds along the Transpolar Drift and the consequential variations in sea ice age. We also show that the
increased influence of upward-directed ocean heat flux in the eastern marginal ice zones, termed Atlantification, is not only
responsible for sea ice thinning in and around the Laptev Sea, but also that the induced thickness anomalies persist beyond the
Russian shelves and are potentially still measurable at the end of the Transpolar Drift after more than a year. With a tendency
towards an even faster Transpolar Drift, winter sea ice growth will have less time to compensate the impact processes, such as
Atlantification have on sea ice thickness in the eastern marginal ice zone, which will increasingly be felt in other parts of the

sea ice covered Arctic.
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1 Introduction

The Arctic sea ice cover is undergoing rapid changes. Besides the continuous decline in annual mean sea ice extent by almost
14% per decade from 1979 to 2010 (Cavalieri and Parkinson, 2012; Stroeve et al., 2012), sea ice volume has decreased as
well. Based on a combination of submarine sea ice draft and satellite sea ice thickness (SIT) measurements from ICESat and
CryoSat-2 from 1958 to 2018, Kwok (2018) found that central Arctic summer mean SIT decreased by about 60% over six
decades. This thinning was accompanied by a reduction in second-year and multi-year ice (SYI and MYI) fraction of more
than 50%, which resulted in substantial sea ice volume loss (Kwok, 2018; Spreen et al., 2020).

The importance of continuous measurements of Arctic SIT change is demonstrated by the implications these changes have
on the Arctic summer sea ice energy and mass balance. Changing optical properties and thinning of sea ice allow increased
penetration of solar energy into the ocean (Nicolaus et al., 2012; Katlein et al., 2019), with implications for ocean heat deposi-
tion (Perovich et al., 2007; Pinker et al., 2014) and primary productivity (Assmy et al., 2017; Horvat et al., 2017). Thinning of
Arctic sea ice also impacts the pathways of sea ice from the major source regions on the Russian shelves. Due to the thinner ice
cover sea ice drift is increased and sea ice is transported faster along the Transpolar Drift system (Spreen et al., 2011; Krumpen
et al., 2019). However, the intensified summer melt and the initially thinner ice cover in the Siberian Arctic also lead to more
frequent interruptions of the long-range transports of ice and ice-rafted matter from the shallow Russian shelves to the central
Arctic Ocean (Krumpen et al., 2019). In order to predict the future development of these mechanisms reliable measurements
of sea ice parameters, like SIT, are vital.

Satellite-based radar altimeters provide the means to investigate Arctic-wide SIT changes, but due to the influence of warm
snow and ice and the formation of melt ponds during the melt season, these data sets are only available from October through
April (Ricker et al., 2017; Hendricks and Ricker, 2019). However, in light of recent model predictions of a nearly ice-free
Arctic in summer (Johannessen et al., 2004; Holland et al., 2006; Wang and Overland, 2009; Overland and Wang, 2013;
Overland et al., 2019), long-term and large-scale melt season SIT observations are more important than ever. Melt season
SIT measurements from upward-looking sonars (Hansen et al., 2013; WHOI, 2014; NPI, 2018; Belter et al., 2020; Spreen
et al., 2020), ground-based and airborne electromagnetic induction (EM) measurements (Haas, 2004; Haas et al., 2008, 2010),
airborne remote sensing (Kurtz et al., 2013) and in situ drill holes (Kern et al., 2018) are spatially or temporally limited and
therefore not sufficient for the investigation of long-term and large-scale variability.

Here we present an extended long-term summer SIT time series with data obtained within the framework of the IceBird,
TIFAX and previous summer air- and shipborne campaigns between 2001 to 2020. These summer campaigns, led by the Alfred
Wegener Institute, Helmholtz Centre for Polar and Marine Research, were designed to provide a long-term time series of large-
scale SIT measurements in, but not limited to, the vicinity of the main exit gate of Arctic sea ice - Fram Strait. The extensive
airborne and ground-based survey activities provide a unique basis for the investigation of large-scale SIT distributions. In
this framework, SIT is measured using airborne EM (AEM) and ground-based EM (GEM) devices, which make use of the

contrasting electromagnetic conductivities between sea ice and sea water (Haas et al., 2008). Since data are only available from
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Figure 1. a) Map showing all EM-based summer (July/August/September) SIT measurements (dark blue circles) obtained between 2001 and
2020, as well as July/August mean sea ice concentration (OSI-450 and OSI-430-b, 2525 km) for the period from 2000 to 2019 (Lavergne
et al., 2019). Enclosed area (red, 80.5-86°N and 30°W-20°E) indicates the selected area of interest (AOI, see Table 1 for an overview of the
corresponding expeditions and basic SIT statistics for the selected AOT). The black line (86 - 90°N, 50°E) shows the transect of Russian sea
ice observations. b) Summer (July/August) mean (red circles) and modal (light blue circles) SIT based on EM measurements conducted in
the AOI (dark blue circles in a)). Diamond shows modal EM SIT measured on the MOSAIC floe in July 2020 and filled circles indicate mean
and modal EM SIT values obtained during the IceBird MOSAiC campaign in September 2020. Vertical lines indicate standard deviations of
mean (red) and modal (light blue) SIT values of the individual profiles from each year. c¢) shows the fractional occurrence of first-year (FYI,
white), second-year (SYI, grey), and multi-year ice (MYI, black, ice older than two years) for the individual years. The age classification is

based on ICETrack calculations of the number of days the ice particles travelled along their trajectories.

a number of years and the area covered during these campaigns (Fig. 1 a)) includes a wide range of different ice types from
various sources, a careful analysis is required for the investigation of interannual SIT variability.

For the current study we focus on the SIT measurements from a selected area of interest (AOI, enclosed area in Fig. 1 a))
north of Fram Strait. Sea ice reaching Fram Strait originates from multiple regions of the Arctic, which means long-term
observations of SIT in its vicinity provide insight into integrated Arctic-wide thermodynamic and dynamic changes in the sea
ice cover (Hansen et al., 2013). While previous studies recorded substantial thinning in Fram Strait in summer (Hansen et al.,
2013; Spreen et al., 2020) and across Fram Strait (79°N) SIT gradients in spring during the first decade of the 21st century
(Renner et al., 2014), we focus on the evolution of summer (July/August) SIT further upstream of the Transpolar Drift. With
the AEM being towed by a fixed-wing aircraft longer transects and ultimately a greater areal distribution of the measurements
are achieved as compared to other in situ observations.

The objectives of this study are to extend the summer SIT time series (from 2012 to 2020), first published by Krumpen et al.
(2016), at the end of the Transpolar Drift and investigate the interannual variability in SIT in the selected AOI close to the

export gate of Arctic sea ice. We will use the Lagrangian sea ice tracking tool, ICETrack (Krumpen, 2018) to determine the
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source regions and drift trajectories of the sea ice sampled in the AOI. In order to provide insight into the driving mechanisms
of the observed SIT variability a thermodynamic model is applied along the determined sea ice trajectories to reconstruct the
AOI-sampled SIT. In addition we will compare the SIT changes in the AOI to long-term observations gathered during regular
Russian cruises from Franz Josef Land to the North Pole. This additional comparison is conducted to discuss whether the
observed changes are limited to the AOI or induced during ice formation and transit through the Arctic Ocean. Finally, we will
use the unique opportunity to compare the long-term SIT time series to IceBird and GEM measurements conducted within the
framework of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAIC). At 85°N and 136°E the
German icebreaker RV Polarstern (Alfred Wegener Institute, 2017) moored to a 2.8 x 3.8 km sized ice floe in October 2019
(Krumpen et al., 2020). After about 9 months of drifting through the Arctic Ocean, RV Polarstern and the MOSAIC floe reached
the selected AOI in summer 2020. This allows us to consider the MOSAIC floe in the context of the long-term time series, and

determine whether the SIT of the MOSAIC floe in 2020 was exceptional or in agreement with historical observations.

2 Data and methods
2.1 EM sea ice thickness measurements

Electromagnetic induction (EM) SIT measurement systems take advantage of contrasting electrical conductivities between sea
ice and sea water to determine the distance between the ice-water interface and the EM device (Kovacs and Morey, 1991; Haas
et al., 1997). In 2001, measurements were conducted using a Geonics EM31 ground-based EM instrument (GEM). The GEM
was pulled over the ice on a sledge and obtained the distance to the ice-water interface (Haas, 2004). GEM measurements
included SIT values over melt ponds and pressure ridges, however, open water and thin ice were not adequately represented
in the data sets due to the practical limitations of sampling those areas on foot (Haas, 2004). The 2020 GEM measurements
on the MOSAIC floe were taken with the Geophex GEM-2, a broadband EM sensor used for advanced thickness observations
(Hunkeler et al., 2016). After 2001, SIT was obtained using the airborne EM system (AEM), EM Bird, that was towed by a
helicopter (in 2004) and the research aircrafts Polar 5 and 6 (from 2010 onwards). The EM Bird was operated between 12
and 20 m above the ice surface (Krumpen et al., 2016). Following Pfaffling et al. (2007), SIT was calculated as the difference
between EM-derived distance to the ice-water interface and laser altimeter-recorded distance between EM device and the air-
snow interface. EM measurement accuracy is within 0.1 m to drill-hole measurements over level sea ice, while water inclusions
within pressure ridges lead to a general underestimation of ridges by as much as 40 to 50% (Pfaffling et al., 2007; Haas et al.,
2009).

Thickness measurements using the ground-based and airborne EM methods always represent the total combined sea ice and
snow thickness (Haas et al., 1997). Given the study period from mid-July to mid-August and following climatological values
of snow depth (Warren et al., 1999; Renner et al., 2014; Krumpen et al., 2016), we assume a 0.1 m snow or weathered layer
thickness, which is negligible for the EM measurements. More snow may still have been present during episodic precipitation

events, but likely melted within a few days.
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In order to ensure comparability of the available EM-based measurements from 2001 to 2020 only data taken between 80.5
to 86°N and 30°W to 20°E (AOI, Fig. 1 a)) were selected for the analysis. Following Krumpen et al. (2016), the AOI was
also selected to be north of Fram Strait to concentrate the analysis on sea ice that was shaped along its pathways through the
Arctic rather than by local melt phenomena in Fram Strait. Finally the selected AOI allows for a more reliable analysis of
the trajectories of the sampled sea ice since low resolution sea ice motion products used for Lagrangian tracking are highly
uncertain in Fram Strait (Krumpen et al., 2019). Expedition logistics and the prevailing weather conditions prevented us from
acquiring continuous and overlapping measurements over the full AOI each year. However, following Rabenstein et al. (2010)
the lengths of the conducted EM profiles were adequate to consider the data to be sufficiently homogeneous in time and
space and representative for the sampled region and time of year. Table 1 provides an overview of all relevant field campaigns,
duration, profile lengths, basic statistics and references for the measurements from within the selected AOI.

The analysis of trends and interannual variability of summer SIT in the AOI is based on temporal and spatial averages
and the most frequently occurring EM SIT - the mode of the distribution. Modal SIT is a representation for the thickness of
thermodynamically grown level ice, while mean SIT includes thermodynamically and dynamically grown sea ice and therefore
is an indication for the general variability of SIT (Haas, 2017). Prior to the calculation of summer mean and modal SIT
values from all available data points within the predefined AOI (Fig. 1), SIT values < 0.1 m, including open water values, were

excluded to avoid biases due to different fractions of open water areas in the data sets.
2.2 Seaice pathways and source regions

In order to determine the pathways and source regions of the ice that was sampled in the selected AOI we utilized the Lagrangian
ice tracking tool, ICETrack (Krumpen, 2018). The starting points for the backward tracking of AOI-sampled sea ice were
derived based on the positions of the EM measurements. EM SIT data were gridded to a 25x25km Equal-Area Scalable
Earth Grid. For a minimum of 2000 AEM SIT values within a single grid cell the respective grid point was selected to be a
starting point for the backward tracking with ICETrack. Due to the limited number of measurements available from the short
GEM surveys ICETrack starting points for the year 2001 were calculated also for less than 2000 SIT values per grid cell. The
MOSAIC floe trajectory is based on position records from RV Polarstern and backward tracking of the floe from the MOSAIiC
starting point at 85°N and 136°E in October 2019.

Ice parcels were tracked backward in time on a daily basis. Termination criteria for the tracking were either met when the ice
reached a coastline or when SIC dropped to 25% or less. When SIC reaches 25% or less ICETrack assumes that ice is formed.
The applied SIC product is provided by the Center for Satellite Exploitation and Research (CERSAT) and is based on 85 GHz
SSM/T brightness temperatures, using the ARTIST Sea Ice algorithm (Ezraty et al., 2007). The number of days from the first
day of tracking until ice formation provided the age of the sea ice sampled in the AOI. The tracking was based on a weighted
approach to determine the most appropriate of the three available low resolution sea ice motion products (Krumpen et al.,
2019): (i) motion estimates from scatterometer and radiometer data from CERSAT (Girard-Ardhuin and Ezraty, 2012), (ii)
the OSI-405-c motion product produced by the Ocean and Sea Ice Satellite Application Facility (OSISAF) (Lavergne, 2016)
and (iii) Polar Pathfinder Daily Motion Vectors from the National Snow and Ice Data Center (NSIDC) (Tschudi et al., 2019).
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CERSAT was prioritized as it provides the most consistent time series of motion vectors (from 1991 onwards). However, when
CERSAT data were missing (especially during summer months), OSISAF data were used. Prior to 2012 or when OSISAF data
were not available NSIDC data were utilized (Krumpen et al., 2019). A detailed description of the three motion products is
given by Sumata et al. (2014). Beside sea ice trajectories, ICETrack provided information about satellite-derived SIT and sea
ice concentration (SIC) as well as atmospheric parameters, like surface air temperature, 10 m wind speed and surface pressure
in daily increments along the trajectories (Krumpen, 2018). Due to this comprehensive approach to analyse sea ice along its
trajectories through the Arctic and its accuracy (Krumpen et al., 2019), ICETrack has been widely used in previous studies,
e.g. Damm et al. (2018); Peeken et al. (2018).

2.3 Thermodynamic sea ice model

In order to investigate the driving mechanisms of interannual variability in modal SIT in the AOI, ICETrack was combined
with a simple one-dimensional thermodynamic sea ice model developed by Thorndike (1992). Parallel to retrieving SIC, SIT,
atmospheric parameters, and sea ice motion from ICETrack, the model calculated daily sea ice growth and melt along the
determined sea ice trajectories. Latent heat of melting/freezing, ocean heat flux, and conductive heat loss are balanced to
model ice growth at the bottom AH (Thorndike, 1992; Pfirman et al., 2004):

N
(kice : ksnow) )
(kice : Hsnow + ksnow : Hice)

AH -1
— = <F+(T5u7’f_TO) :

At L ey

The model used along-track snow depth, Hg,,4., computed daily from the Warren climatology (Warren et al., 1999) as
well as the NCEP/NCAR re-analysis sea surface temperature (T, r) data (Kalnay et al., 1996) that were extracted along the
trajectories by ICETrack (Krumpen et al., 2019). T is the temperature at the ice-water interface (-1.9°C) and k is the thermal
conductivity (kjee = 2Wm 'K, k0w = 0.33 Wm—1K—1). Latent heat of fusion, L, was constant at 3 - 108 Jm—3. At equals
86400 s for daily increments of ice growth. Ocean heat flux, F', was assumed to be constant at 2 Wm~2. Based on these input
parameters the model computed daily changes in SIT along the trajectories. When melt occurred (negative growth for any
given day) the model reduces the thickness by an additional 0.005 m for that day to parametrise surface melt (Thorndike, 1992;
Pfirman et al., 2004). Modelled SIT values at the end of each track were used to calculate AOI summer mean thermodynamic
SIT for each year. This modelled value provides SIT excluding the snow layer that is inherently included in the EM SIT
values. We therefore added the Warren snow depth value from the position and time of the relevant EM SIT measurements
to the final model SIT averages for the comparison to EM SIT. Like modal EM SIT, the modelled SIT is a representation of
thermodynamically grown level sea ice.

Snow depth is an important parameter in modelling sea ice growth, and due to the limitations of the Warren snow depth cli-
matology (Warren et al., 1999), a major source for uncertainty (Merkouriadi et al., 2020) in the modelled SIT values calculated
for each trajectory ending in the AOI. Following Laxon et al. (2013) and Ricker et al. (2014) we reduced Warren snow depth by
50% over FYI and based on comparisons of the Warren snow depth with snow buoy data also over SYI. This step accounts for
the fact that Warren et al. (1999) snow depth is based on observations during a period where Arctic sea ice was dominated by

MYTI with thicker snow. Root mean square errors of Warren snow depth values (Warren et al., 1999) were utilised to calculated
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the model SIT equivalent of the snow depth errors and provide an estimate of uncertainty of the modelled SIT as a result of the
applied Warren snow climatology.

Another major source of uncertainty of the modelled SIT is the selected ocean heat flux value. However, due to the simplicity
of the selected sea ice model (Thorndike, 1992) and the lack of long-term and Arctic-wide data, for this current study the input
of a constant ocean heat flux value was required. We followed previous studies (Maykut and Untersteiner, 1971; Pfirman et al.,
2004; Peeken et al., 2018; Krumpen et al., 2019) and selected a constant ocean heat flux value of 2W m~—2. This value was

applied to the sea ice growth model along each trajectory from ice formation to the AOL
2.4 Shipborne sea ice thickness observations

In general, ship-based observations of SIT benefit from the increasing number of regular ship transits through the Arctic Ocean.
SIT data used here were either observed visually (uncertainty of + 0.1 m, Frolov et al. (2007); AARI (2011)) by a group
of Arctic and Antarctic Research Institute (AARI) sea ice scientists using the traditional unified methodological principles
in accordance with the requirements of the regulatory guidance (AARI, 2011; Alekseeva et al., 2019), or by the so-called
shipborne television complex (STK). The STK consists of a high resolution telecamera, a computer for camera control and
processing, and a GPS recorder. The system records images of overturning sea ice floes in the vicinity of the moving ship as
well as GPS time and coordinates. After manual selection of appropriate images the software is able to measure the detailed
geometry of single ice blocks from the ice camera feed and retrieve ice and snow thickness data. The STK system provides SIT
with an uncertainty of approximately 4% of the thickness of each floe (Frolov et al., 2007; AARI, 2011).The purpose of this
system is to provide navigation data for following ships and reliable SIT data for the validation of satellite- and model-derived
SIT. Over the last decades the AARI conducted visual and STK observations regularly during summer (June-August) tourist
cruises from Franz Josef Land to the North Pole (Table 2). The SIT data used here are based on STK (2006 to 2011) and visual
observations (1977 to 1996 and 2012 to 2019) in July on a transect from 86 to 90°N along the 50°E meridian. Sea ice was
categorized as FYI or MYI (including SYI) and mean SIT was calculated for both. Depending on the fractional occurrence of

FYI and MY along the transect a mean summer SIT value was calculated.
3 Results and Discussion
3.1 Processes driving interannual SIT variability between 2001 and 2018

3.1.1 IceBird surveys: sea ice thickness, origin and age

Figure 1 b) provides an overview of the interannual variability and changes of summer SIT in the AOI from 2001 to the
MOSAIC year 2020. Modal summer SIT, which is a measure for the fraction of sea ice that grew thermodynamically, decreased
by approximately 24% from 2001 (approximately 2 m) to 2018 (approximately 1.5 m). The decrease of modal SIT was not
gradual but showed an 11% drop after 2004 and an absolute minimum of approximately 1 m in 2016. The change in modal SIT

was accompanied by a change in the fractional occurrences of FYI, SYI, and MYI. This categorization of different ice ages is



Figure 2. Drift trajectories of sea ice sampled in the AOI (enclosed area). Starting points of the backtracking (blue crosses) correspond to
the positions where EM SIT measurements were conducted during summer (July/August/September) from 2001 to 2020. Backward tracking
ended when sea ice concentration dropped to 25% or less, which is defined as the time and location of ice formation (red crosses). Black dots
present sea ice position on September 21 of each year, when ice particles are considered to have survived the summer, becoming second-year
or multi-year ice, respectively. The blue trajectory in 2020 represents the MOSAIC floe trajectory. The MOSAIC trajectory consists of GPS
positions recorded during the drift (from October 4, 2019 until July 21, 2020) and backward tracked position (ICETrack) from the MOSAiC
starting point (October 4, 2019) to the position of ice formation (Krumpen et al., 2020).
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Figure 3. a) Mean sea ice age (black) and mean number of days with surface temperatures below -1.9°C (grey, FDs) of AOI-sampled sea
ice. Error bars indicate one standard deviation of age and FDs for each year. b) Modal EM SIT (light blue, see Fig. 1 b)) and reconstructed
modal SIT from the Thorndike (1992) thermodynamic sea ice model. Error bars show maximum modelled SIT error resulting from root
mean square errors of Warren et al. (1999) snow values. Circles indicate larger area measurements, while diamonds show values referring to
the MOSAIC floe.

based on the ICETrack-derived lengths of the sea ice trajectories. While the sampled sea ice almost exclusively consisted of
MYT in 2001 and 2004, the fractions of SYI and even FYI increased notably between 2010 and 2018 (Fig. 1 ¢). In 2012 and
especially 2016 sea ice in the AOI was dominated by SYI.

Mean SIT decreased by a similar percentage (23%) from 2001 (approximately 2.6 m) to 2018 (approximately 2 m). The
difference between mean and modal SIT was in the order of 0.5 m in 2001, 2004, 2012, and 2018 and showed a decrease to
values of 0.2 to 0.3 m in 2010/2011. During the modal minimum in 2016 the mean-mode-difference peaked at about 1 m and
showed its minimum of 0.1 m in the following year 2017. The differences between the time series of modal and mean SIT are
likely caused by the interannual variability in ridged sea ice (see SIT distributions in Fig. S1 and the mean of the upper 10% of
the EM SIT distribution in Table 1).

To some degree the interannual modal thickness variability can be explained by the variability in source regions of the ice

(Fig. 2), its age and the number of days with surface temperatures below freezing (-1.9°C, FDs) the ice experienced during the
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transit through the Arctic Ocean (Fig. 3 a)). Figure 2 indicates that about 65% of all analysed tracks of the ice surveyed in the
AOI originated in the Laptev Sea (70 to 81.5°N, 100 to 145°E). Even though most of the surveyed ice can be linked to the
Laptev Sea the actual places of ice formation differed within this shallow shelf sea. While ice surveyed in 2001, 2004, 2011,
and 2018 was formed close to the coast in the western Laptev Sea, the ice sampled in 2012 and 2016 was formed in the northern
and eastern Laptev Sea, respectively. The sea ice surveyed in the AOI in 2001 and 2004 took, on average, approximately 3 years
from its origin in the Laptev Sea to the AOL. In the following years, ice that originated in similar regions of the Laptev Sea took
less time to reach the AOI (2011 and 2018). The decrease in sea ice age is linked to the observed increase in sea ice drift speed
after 2004 (Spreen et al., 2011). With an average age of about 1.7 years, the ice sampled in the AOI in 2016, which showed the
minimum modal SIT, was by far the youngest during the period from 2001 to 2018. The on average oldest ice was sampled in
the AOI in 2017 and originated mostly from the Beaufort Sea. It has to be noted that ice of strongly varying ages was sampled
in the AOI in 2017. These variations in age and FDs in 2017 are likely the reason why maximum modal and mean SIT values
do not coincide with the on average oldest ice in 2017. Apart from the year 2017 variations in modal SIT of the ice sampled
in the AOI can be largely explained by the variations in age and number of FDs. Older ice showed larger modal SIT values in
the AOI, while younger ice was thinner. However, the unknown magnitude of melt during days with surface air temperatures
above freezing also contributes to the observed variability.

It has to be noted that the varying number of EM surveys each year and the variation in areal coverage within the AOI of the
different surveys makes the analysis of SIT trends challenging. However, large-scale and year-to-year overlapping surveys as
well as sampling during the same season each year strengthen the assessment that sea ice sampled in the AOI is changing in

thickness and age.
3.1.2 Reconstruction of observed SIT using a thermodynamic model

To further investigate the processes driving interannual variability of modal SIT we compare observed AOI values with mod-
elled SIT values of thermodynamically grown sea ice. Sea ice growth along the ICETrack sea ice trajectories was calculated
using the thermodynamic sea ice model by Thorndike (1992). The modelled SIT values at the end of the trajectories provide the
AOI-mean modelled SIT for each year. Figure 3 b) indicates that the modelled SIT time series shows similar values compared
to the modal EM SIT time series. Except in 2016, all July/August EM SIT values are within the estimated uncertainty of the
modelled SIT, that is based on the root mean square error of snow depth provided by Warren et al. (1999). The value in 2016 is
significantly smaller than the modelled value compared to the other years of the time series. While the modelled SIT slightly
overestimates modal EM SIT values in 2001, 2004, it is similar to the observed values from 2010 to 2012 and from 2017 to
2018 and underestimates EM SIT in 2020. In 2016 the model overestimates the AOI modal EM SIT by almost 0.6 m.

The general agreement between modal EM and modelled SIT supports the hypothesis that sea ice age and freezing degree
days govern the modal SIT in the AOI. However, it is evident that the exceptional modal SIT observed in 2016 can not be
explained by the model i.e. atmospheric processes alone, indicating that additional factors contributed to this minimum in
modal SIT in the AOL

10
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3.2 Possible impact of Atlantification on SIT in 2016

The major sources for uncertainty of the reconstructed SIT time series are snow depth and the assumptions of constant ocean
heat flux and surface melt. While modal SIT values are within the range of the reconstructed SIT values & snow depth error in
most years, the model significantly overestimates the modal SIT in 2016. The sea ice sampled in the AOI in 2016 was about
0.6 m thinner than the modelled SIT, which suggests an additional heat source, unaccounted for by the model, that reduced
ice growth along the trajectories. Following Eq. 1 bottom sea ice growth/melt are the result of the heat fluxes from either the
atmosphere or the ocean. Considering that the variability of the atmospheric component of the model was accounted for along
the trajectories, the other parameter potentially responsible for the overestimation of modal SIT is the insufficient assumption
of constant ocean heat flux along the trajectories of the AOI-sampled ice in 2016.

Ocean heat flux is the main source of bottom melting (Lin and Zhao, 2019); it is a parameter that is widely debated and still
being investigated. It is the sum of heat that enters the surface mixed layer from the deep ocean and heat that enters the surface
mixed layer through leads and openings in the ice cover (Zhang et al., 2000; McPhee et al., 2003; Perovich et al., 2011; Wang
et al., 2016). Multiple existing studies have shown that Arctic ocean heat flux is highly variable in time and space (Maykut,
1982; Maykut and McPhee, 1995; McPhee et al., 2003; Krishfield and Perovich, 2005; Lin and Zhao, 2019). Nevertheless,
the assumption of a constant average ocean heat flux value seemed sufficient for thermodynamic sea ice modelling in the past
(Peeken et al., 2018; Krumpen et al., 2020) and is confirmed in this study by the agreement between modelled and modal SIT
in all years except 2016.

The studies by Polyakov et al. (2017, 2020) showed that the observed decline in sea ice extent and increased open water
area enables increased ocean ventilation and weakening of the upper ocean stratification in the eastern marginal ice zones. The
resulting change in stratification, warming of the upper pycnocline and shoaling of the Atlantic Water (AW) layer result in
enhanced upward AW heat flux in winter, which leads to further thinning of the overlaying ice cover. This process of so-called
Atlantification is considered to be a positive feedback mechanism (Polyakov et al., 2020) and was mainly observed at the
inflow gates of AW into the Arctic Ocean in the Barents Sea (Smedsrud et al., 2013) and north of Svalbard (Ivanov et al., 2012;
Onarheim et al., 2014). However, based on mooring and buoy data, Polyakov et al. (2017, 2020) showed that Atlantification is
progressing eastward, impacting ocean stratification and sea ice growth even in the main regions of Arctic sea ice formation in
and around the Laptev Sea.

Figure 4 summarizes the relevant parameters and conditions for the observed modal SIT minimum in the AOI in 2016 and
the potential linkage to intensified AW heat flux events along the Russian shelf. Polyakov et al. (2017) observed a significant
Atlantification event with increased upward transport of AW heat at multiple mooring sites in the northern and eastern Laptev
Sea (Fig.4 a)) between January and May 2015 (Fig.3 A in Polyakov et al. (2017)). These moorings were part of a larger
network and measured ocean properties between autumn 2013 and autumn 2015. The red coloured sections of the sea ice drift
trajectories in Fig. 4 a) indicate that the ice sampled in the AOI in 2016 passed the region around the Laptev Sea moorings
during the exact period of the observed Atlantification event, exposing the ice to increased ocean heat from below. As a result

of the observed upward ocean heat flux, Polyakov et al. (2017) suggested reduced sea ice growth of approximately 0.4 m for
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Figure 4. a) Drift trajectories of AOI-sampled (enclosed area) sea ice in 2016. Starting points for the backtracking (blue crosses) correspond
to the positions where EM SIT measurements were conducted during July and August 2016. Tracking ended when sea ice concentration
dropped to 25% or less, which is defined as time and position of ice formation (red crosses). Black dots present sea ice position on September
21, when ice particles are considered to have survived the summer, becoming second-year and multi-year ice, respectively. The sections
of the trajectories coloured in red indicate sea ice position between January to through May 2015. Green markers indicate the positions of
oceanographic moorings operated between summer 2013 and summer 2015 (Polyakov et al., 2017). b) January to April 2015 SIT anomaly
(compared to the January to April mean from 2003 to 2020) from the ESA CCI-2 SIT climate data record (Hendricks et al., 2018a, b). ¢c) Mean
SIT modelled along the drift trajectories of the sea ice sampled in the AOI in 2016. Solid blue line indicates the mean modelled thickness
over all trajectories using a constant ocean heat flux value of 2 Wm ™2, Dotted (dashed) blue line shows average modelled SIT using 2 Wm ™2
ocean heat flux along the black parts of the trajectories (Fig.3a)) and 4 Wm ™2 (8 Wm™2) along the red parts of the trajectories (shaded red
area). Light blue marker indicates the observed modal EM SIT in the AOI in 2016. d) 2016 May to August surface air temperature anomaly

in comparison to the 2000 to 2019 long-term mean (data source (last accessed: July 08, 2020): www.esrl.noaa.gov/psd/products).

the 2015 winter period. Satellite-derived mean SIT from the ESA Climate Change Initiative Phase 2 (CCI-2) climate data
record confirms that a negative SIT anomaly existed in the Laptev Sea during this Atlantification event in 2015 (Fig. 4 b)). This
anomaly is likely a result of multiple factors, including increased upward ocean heat fluxes due to Atlantification, but also the
observed increase in ice export from the Russian shelves (Krumpen et al., 2013; Itkin and Krumpen, 2017) and ocean heat as

a result of increased solar energy input during ice free periods (Perovich et al., 2011; Wang et al., 2016).
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In order to quantify the impact of increased upward ocean heat flux on sea ice in the Laptev Sea and in the AOI we adjusted
the thermodynamic model to provide a constantly higher ocean heat flux value along the 2016 sea ice trajectories during the
Atlantification event observed by Polyakov et al. (2017) in winter 2015 (Fig. 3 c¢)). Conservative estimates of ocean heat flux
during the Atlantification event between January and May 2015 (shaded red area) vary between averages of 4 Wm™2 from
moorings closer to the Laptev Sea shelf (Polyakov et al., 2020) and averages of 8 Wm ™2 estimated for the moorings further
north (Polyakov et al., 2017). Based on these estimates we adjusted the model to provide both values along the red parts of the
sea ice trajectories (Fig. 4 a)), which resulted in a mean reduction of SIT of 0.06 (4 Wm ™2 run) and 0.20 m (8 Wm ™2 run) at the
end of the winter (May 2015, Fig. 4 c)). These values are significantly lower than the 0.4 m reduced sea ice growth suggested
by Polyakov et al. (2017), which indicates that our adjusted heat fluxes might still be too low. However, the model confirms
that increased ocean heat flux reduces sea ice growth in the Laptev Sea. In the AOI, modelled SIT reduced by 0.03 (4 Wm 2
run) and 0.10m (8 Wm~—2 run) in July 2016 (Fig. 4 c)). Although the adjusted model runs show that SIT anomalies induced
by increased upward-directed ocean heat fluxes at the beginning of the drift trajectories persist, they are not able to fully
overcome the overestimation of observed SIT in the AOI. The adjusted model assumptions about ocean heat fluxes are still too
crude and also neglect the influence of ocean heat resulting from solar energy input through open water areas. It is clear that
a more realistic representation of ocean heat fluxes along sea ice trajectories is required. Additionally, more data are needed
to determine the spatial extent on which Atlantification and ocean heat fluxes in general affect sea ice growth. Nevertheless,
the presented downstream EM measurements of SIT and our model analyses suggest that the winter 2015 SIT anomaly in the
Laptev Sea persisted into the central Arctic Ocean and was ultimately recorded in the AOI as late as summer 2016. In general,
atmospheric influences are able to induce SIT anomalies similar to the one measured in the AOI in 2016. However, there is no
indication that increased air temperatures at the sea surface between May to August 2016 (Fig. 4 d)), or along the trajectories
of the ice sampled in the AOI in 2016 (Fig. S2) resulted in the measured AOI modal SIT minimum. We therefore consider
the ice conditions measured in the AOI in 2016 to be partially the result of extreme events of intensified upward ocean heat
fluxes that occurred between ice formation in autumn 2014 and sampling in July/August 2016. Our adjusted upward-directed
ocean heat fluxes were not able to explain the entire offset between modelled and measured modal SIT in the AOI, which is
likely the result of conservative estimates, insufficient temporal and spatial representation of upward-directed AW heat fluxes,
and the negligence of ocean heat resulting from solar energy input during open water periods in the model. Additionally, snow
and surface melt processes altering SIT are likely responsible for a considerable fraction of the observed difference between
modelled and observed SIT in the AOI in 2016 as well. Both snow depth (Merkouriadi et al., 2017, 2020) and surface melt
(Perovich et al., 2014) can vary substantially from year to year and also from the assumptions applied for the presented model.
Especially a thick snowpack, like it has been observed during the 2015 N-ICE campaign (Granskog et al., 2016; Merkouriadi
et al., 2017) could significantly limit sea ice bottom growth through thermal insulation (Merkouriadi et al., 2020). However,
with limited observations of long-term snow depth and surface melt processes along the investigated sea ice trajectories, we
resorted to available climatologies and parametrisations.

We argue that the analysis of the 2016 IceBird SIT data allow for a first estimation of the impact of Atlantification on sea

ice, its thickness and the time-scale on which these signals can persist. However, it has to be noted that the upward AW heat
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fluxes vary in strength from year to year, but Atlantification is a process that continuously increases in the eastern marginal
ice zone. In fact, Polyakov et al. (2020) showed that the influence of AW heat flux on the ice in the Laptev Sea showed a
dramatic increase during the last decade. The upward-directed AW heat fluxes in the Laptev Sea showed an increase during
winter periods between 2007/2008 to 2018, that resulted in a more than two-fold reduction of winter ice growth in the last
decade (Polyakov et al., 2020).

The example of the 2016 minimum in modal SIT in the AOI is a first indication that the increasing influence of Atlantification
potentially persists far beyond the eastern Arctic shelf regions due to its preconditioning effect on SIT. However, to further
confirm this discovery it is vital to build continuous long-term SIT time series in the Laptev Sea as well as in the vicinity of the
Fram Strait. The current IceBird SIT time series in the AOI is not sufficiently continuous to fully confirm that the AW heat flux
preconditioning of sea ice in the Laptev Sea is still measurable in Fram Strait. The measurement gap between 2012 and 2016
prevented us from potentially discovering the influence of Atlantification on SIT in the AOI earlier. The ice sampled in the
AOIl in 2017 originated largely from the Beaufort Sea and accordingly did not show the signature of Atlantification. The 2018
ice was formed in the Laptev Sea in autumn 2015. However, it passed the shelf region where Atlantification was prominent in
previous years in winter 2016 when the stratification was strong, and upward AW heat flux was anomalously weak for the new
regime discovered by Polyakov et al. (2020). According to Polyakov et al. (2020) the strongest recorded upward AW heat flux,
so far, occurred in winter 2018. The averages of AOI sea ice age indicate that the ice influenced by this event likely reached the
AOI in 2019. Unfortunately, no IceBird campaign was conducted in the AOI in summer 2019. These missing measurements
only confirm the importance of yearly IceBird campaigns in the AOI to further investigate the strength of the preconditioning

of sea ice, as well as the persistence of SIT anomalies due to oceanic influences.
3.3 Interpretation of sea ice surveys from the MOSAIC year

The continuation of the IceBird SIT time series in the MOSAIC year 2020 was aggravated by the COVID-19 pandemic which
only allowed for survey flights over the AOI from Longyearbyen (Svalbard) and after the usual sampling period from mid-July
to mid-August (Table 1). Mean and modal SIT were obtained over the AOI in September 2020 and are shown in Fig. 1 b). The
pathway analysis (Fig. 2) confirms the trend, that ice reaching the AOI in summer is increasingly dominated by SYI (Fig. 1 ¢)).
Although the modal SIT is similar to the 2016 value, it has to be noted that measurements were conducted considerably later
in the melt season, which makes a direct comparison difficult and shows that summer melt has a considerable impact on SIT
in the AOL

Due to the late IceBird MOSAIiC campaign in 2020 and the ensuing limitations for the comparability to the existing IceBird
time series we turn to the only other available SIT data set that was obtained in the AOI during the relevant period between mid-
July and mid-August of 2020 - GEM SIT measurements from the MOSAIC floe. Compared to the areal coverage achievable
with the AEM, GEM SIT values provide point measurements that are only partly representative for a larger area. Nevertheless,
these floe-scale measurements provide the means for an important first estimation of whether the MOSAIC floe is thicker or

thinner compared to the sea ice that was sampled in the AOI in the years prior to 2020.
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The MOSAIC Central Observatory (CO) and the ice in its immediate vicinity (radius of approximately 40km), which
accommodated the Distributed Network (DN) of various autonomous measurement stations (Krumpen and Sokolov, 2020),
was formed during a polynya event north of the New Siberian Islands (Fig. 2) in early December 2018 (Krumpen et al., 2020).
The ice originated in shelf waters less than 10 m deep, drifted eastward along the shallow shelf and ultimately reached deeper
waters in February 2019. By the time the German icebreaker RV Polarstern (Alfred Wegener Institute, 2017) moored to the
floe in October 2019 (begin of the drift at 85°N and 136°E, see Fig. S3) the CO and DN regions (DNR) were surrounded by
thicker residual ice that was formed in early November 2018 (Krumpen et al., 2020). Due to the comparably fast drift along
the Transpolar Drift (the floe was only about 1.65 years old when it was sampled in the AOI, Fig. 3 a)) the DNR reached the
southernmost border of our selected AOI already in the second half of July 2020 (Fig. 2 and S2). Along its trajectory through
the Arctic Ocean DNR SIT was continuously measured using ground-based and airborne EM devices. Unfortunately, technical
problems and unfavourable weather conditions limited the availability of SIT measurements covering larger areas in the vicinity
of the floe in the second half of July 2020. However, regular GEM measurements were conducted on the remainders of the
CO. The GEM thickness results shown here are based on the rapid-release quickview thickness data, have undergone initial
quality control, and have been calibrated against manual observations. In order to ensure the best possible comparability to
the IceBird SIT time series, we only consider GEM measurements that were conducted while the floe was in the AOI and
during the sampling period of the previous measurements. The resulting preliminary AOI SIT values are based on a total of
four surveys obtained between July 16 and July 21. Although GEM measurements were only conducted on the central, more
stable part of the MOSAIC floe, large-scale AEM measurements conducted over the DNR in April 2020 indicate that modal
and mean SIT values measured on the extended MOSAIC floe were representative for the DNR (Fig. S3 and S4). Additional
AEM measurements conducted in the beginning of July 2020 confirm that the modal SIT derived from the GEM surveys is in
fact reliable and representative for the wider area (Fig. S3 and S5).

On the basis of AEM surveys conducted over the DNR in April and early July 2020 and the already existing IceBird time
series we argue that the modal SIT of 1.71 m measured on the MOSAIC floe is not just representative for the wider area around
the floe but also in line with measurements from previous years (Fig. 1 b)). The modal thickness of the MOSAIC floe is within
one standard deviation of the long-term average over all modal SIT values derived for the AOI. This agreement indicates that
the MOSAIC floe and its wider vicinity are not exceptional in terms of modal thickness compared to the long-term time series.
The comparison of the MOSAIC floe modal SIT with SIT values reconstructed by the thermodynamic model from Thorndike
(1992) confirms that the MOSAIC floe was not exceptionally thin. In fact, Fig. 3 b) shows an underestimation of modal SIT by
the model. Despite the fact that when the MOSAIC floe reached the AOI it was of a similar age as the ice in 2016, modal SIT
was considerably thicker. This indicates that the MOSAIiC floe might have been less impacted by oceanic heat, among other
factors, than the ice that reached the AOI in 2016.

Nevertheless, it is important to note that these results are preliminary. Detailed studies of the ice thickness development of

the MOSAIC floe along its drift path through the Arctic and its surroundings are the basis for future studies.
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Figure 5. Sea ice thickness observations conducted on regular tourist cruises from Franz Josef Land to the North Pole in July/August. SIT
was determined using visual observations from AARI ice specialists or TV-complex calculations and averaged over a transect from 86 to
90°N, along the 50°E meridian (see black line Fig. 1 a)). Measurement uncertainty is given by the black bars. Light blue markers indicate
the time series of modal AOI EM SIT (Fig. 1 b)).

3.4 Comparison to Russian shipborne SIT observations

Due to the position of the selected AOI just north of the Fram Strait the presented SIT time series provides the possibility to
investigate interannual variability of the time-integrated signal of Arctic-wide SIT changes. Nevertheless, the selected AOI is
a highly variable, and small excerpt of the Arctic Ocean. Additionally, the presented time series is interrupted and still too
short to provide insight into SIT changes on climatological scales. For example, the transition from a MYI-dominated towards
a FYI/SYI-dominated Transpolar Drift (Kwok, 2018) that was accompanied by a drastic reduction in Arctic SIT and sea ice
volume (Kwok, 2018; Spreen et al., 2020) and accelerated drift speeds along the Transpolar Drift (Spreen et al., 2011; Krumpen
et al., 2019) between 2005 and 2007 is hardly recognisable in the presented IceBird time series. In order to determine whether
the reduction in SIT in the AOI is also observed upstream in the central Arctic we turn to the only continuous long-term
SIT observational data set available close to the North Pole. Visual and STK July SIT observations obtained during Russian
tourist cruises from Franz Josef Land to the North Pole (86 to 90°N along the 50°E meridian, see black line in Fig. 1a))
confirm a step-wise decrease in SIT between 2005 and 2007 (Fig.5), which is hardly visible in the AOI time series. The
Russian observations in fact indicate that a similar regime shift already occurred between 1992 and 1993. Although SIT shows
interannual variability, no trends are observed during each of the three regimes (prior to 1993, between 1993 and 2006 and
from 2006 onwards). In years where both time series provide mean SIT values (2010 to 2012 and 2018) Russian observations
tend to show thinner sea ice compared to IceBird measurements. Considering that the Russian observations were conducted

during the same season as the IceBird measurements and upstream of the AOI one would expect those values to be thicker
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than the downstream measurements. However, we also attribute the lower estimates of SIT from the Russian observations to
the inherent differences between the observation techniques. While visual and STK SIT observations are largely dependent on
the ships route and the avoidance of thicker ice patches for faster navigation through the ice, AEM measurements provide SIT
distributions on larger spatial scales. We would therefore assume a bias towards, on average, thinner sea ice for the Russian
observations compared to AEM measurements. Nevertheless, the Russian observations provide a much longer time series than
the AOI measurements, which allows us to confirm general changes in the overall SIT regime in the central Arctic (Kwok,
2018). While the AOI time series indicates further thinning of sea ice between 2010 and 2020, Russian observations show no
trend at all.

The length of the Russian observational time series and its ability to show the previously observed regime shift in SIT
indicates how valuable consistent long-term time series are. However, the deviations from the AOI measurements also show its
limitations and the importance of joint observations for a better understanding of differences and ultimately a better basis for

the interpretation of past, present and future ship-based observations from Russian sea ice experts.

4 Conclusions

This study provides an important extension of the long-term EM-derived summer SIT time series at the end of the Transpo-
lar Drift presented by (Krumpen et al., 2016). We combine these large-scale summer SIT measurements conducted within the
framework of the IceBird and previous campaigns with Lagrangian ice tracking and a reconstructed SIT time series from a ther-
modynamic sea ice growth model (Thorndike, 1992). With this comprehensive approach we explain the observed interannual
SIT variability within our selected area of interest (AOI, 80.5-86°N and 30°W-20°E) and investigate the driving mechanisms
and source regions of this variability. Based on preliminary results from SIT measurements gathered during the MOSAIC drift
experiment, we also put the MOSAIC floe into a historical context in terms of its thickness.

The analysis of pathways and sea ice origin with the Lagrangian ice tracking tool ICETrack reveals that approximately 65%
of the ice sampled in the AOI originated in the Laptev Sea. Sea ice reaching the end of the Transpolar Drift is thinning, which
has also been shown by Hansen et al. (2013); Renner et al. (2014) for sea ice reaching Fram Strait further south. AOI mean
and modal SIT values decreased by about 20% from 2001 to 2020. Most of the observed interannual variability in modal SIT
is explained by the increase in drift speeds along the Transpolar Drift and the ensuing decrease in sea ice age. The fact that
ice has less time to grow is also represented in the increasing fractions of FYI and especially SYI observed in the AOI. SIT
measurements conducted on the MOSAIC floe, when it reached the southern border of the AOI in July 2020, show that the
MOSAIC modal SIT is consistent with IceBird measurements from previous years.

The absolute modal SIT minimum that was measured in the AOI in 2016 is partly attributed to the influence of intensified
upward Atlantic Water (AW) heat flux during a strong Atlantification event in the Laptev Sea in winter 2015. Using ICETrack
we were able to detect that the ice sampled in the AOI in 2016 formed in autumn 2014 and passed the region where Polyakov
et al. (2017, 2020) observed strong Atlantification between January and May 2015. Increased upward-directed ocean heat flux

reduced ice growth in the Laptev Sea during this period. Based on the analysis with the thermodynamic sea ice growth model
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and the AOI EM SIT time series we are able to show how persistent in time and space the impact of Atlantification on Arctic
sea ice potentially is. It seems that, due to the fast drift across the Arctic Ocean, winter ice growth was not able to compensate
the low initial ice thickness after the Atlantification event. With a tendency towards even faster ice drift along the Transpolar
Drift in the future, the impact of Atlantification on sea ice in the eastern marginal ice zone will increasingly be felt in other
parts of the sea ice covered Arctic. The presented model analyses also revealed that the assumption of a constant and also our
adjusted upward-directed ocean heat fluxes along the sea ice trajectories are insufficient to fully explain the observed modal
SIT minimum in 2016. However, it is evident that the influence of oceanic heat, both upward-directed from AW at depth
(Polyakov et al., 2017, 2020) and as a result of solar heating of the upper ocean during open water periods (McPhee et al.,
2003; Wang et al., 2016), on sea ice is drastically increasing. Sea ice models require improved representations of spatial and
temporal variability of ocean heat fluxes but also of melt processes and snow cover to reliably predict SIT changes along the
Transpolar Drift.

Further investigations and measurements are required to monitor the development of Atlantification in the eastern marginal
ice zones. But in order to strengthen our conclusion that Atlantification is able to precondition sea ice and that this precondi-
tioning persists far beyond the eastern Arctic, additional uninterrupted SIT time series are vital along the pathways and at the
exit gates of Arctic sea ice. The presented summer SIT time series at the end of the Transpolar Drift is an important effort to
establish long-term and large-scale measurements of SIT, especially during the melt season. Airborne EM measurements of
SIT during IceBird campaigns provide the necessary accuracy and areal coverage that is unmatched by any other non-satellite
SIT measurement approach. Russian shipborne SIT measurements show significant differences to EM-based measurements,
but their regularity and spatial consistency enable the depiction of regime shifts in SIT that are hardly resolved by the presented
EM SIT time series. Obtaining SIT distributions over large areas and developing and continuing long-term SIT time series will
provide unique input data for modelling efforts, and ultimately will improve predictions of Arctic sea ice and its thickness in
the future. Continuing regular IceBird measurement campaigns in the vicinity of Fram Strait and combining the results with re-
liable models, ice tracking tools, and additional up- but also downstream SIT data sets, like the Russian shipborne observations
and the Fram Strait ULS time series (Hansen et al., 2013; Renner et al., 2014; Spreen et al., 2020), will prove indispensable for

monitoring the complex and radical change of sea ice in the Transpolar Drift system and on an Arctic-wide scale.

Data availability. IceBird EM data are available on request from Thomas Krumpen and Jakob Belter (tkrumpen@awi.de, jbelter@awi.de).

All MOSAiC-related data are archived in the MOSAIC Central Storage (MCS) and will be available on PANGAEA after finalisation of
the respective datasets according to the MOSAIC data policy.

Sea ice concentration data utilized by ICETrack are provided by CERSAT and available here:
(ftp://ftp.ifremer.fr/ifremer/cersat/products/gridded/psi-concentration/data/).

The EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) provided Global sea ice concentration (interim, 2016
onwards) climate data record 1979-2015 (OSI-450 and OSI-430-b, http://osisaf.met.no/p/ice/).
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ESA Sea Ice Climate Change Initiative (Sea_ Ice_ cci): Northern hemisphere sea ice thickness from ENVISAT satellite (Hendricks et al.,
2018b) and from CryoSat-2 satellite (Hendricks et al., 2018a) on a monthly grid (L3C), v2.0 are available from the Centre for Environmental
Data Analysis data base.

Surface air temperature reanalysis data is provided by NOAA/OAR/ESRL PSL, Boulder, Colorado, USA and available from:

https://www.psl.noaa.gov/data/gridded/data.ncep.reanalysis.surface.html.
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Table 2. Summary of used ships, number of cruises, measurement periods, observation types, and mean sea ice thicknesses (SIT) and

uncertainty (Frolov et al., 2007; AARI, 2011) observed during Russian cruises along the 86 - 90°N transect (black line Fig.1 a))

Year Platform Number of Measurement Observation ~ Mean SIT (m)
cruises periods type 86 - 90°N
1977 Arktika 1 Aug 17 - Aug 19 Visual 2.74
1991  Sovetskiy Soyuz 1 Aug 2 - Aug 6 Visual 2.84
1992  Sovetskiy Soyuz 1 Jul 07 - Jul 11 Visual 3.04
1993 Yamal 1 Jul 20 - Jul 21 Visual 1.79
1996 Yamal 1 Jul 26 - Jul 29 Visual 1.78
2006 Yamal 1 Jul5-Jul 8 TV-complex 1.83
2007 Ak. Fedorov 1 Jul 31 - Aug 4 TV-complex 1.29
2008 50 Let Pobedy 1 Jul 10 - Jul 13 TV-complex 1.36
2009 50 Let Pobedy 2 Jul 14 - 18,Jul 28 - 30  TV-complex 1.32
2010 50 Let Pobedy 2 Jul 12 -16,Jul 27-31  TV-complex 1.45
2011 50 Let Pobedy 2 Jul 15-20,Jul 27-30  TV-complex 1.26
2012 50 Let Pobedy 2 Jul 10 - 14, Jul 22 - 27 Visual 1.30
2013 50 Let Pobedy 2 Jul4-7,Jul 19 - 21 Visual 1.47
2018 50 Let Pobedy 2 Jul 12 - 16, Jul 23 - 27 Visual 1.31
2019 50 Let Pobedy 2 Jul 12 - 14, Jul 23 - 24 Visual 1.51
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