

1 Behavior of Saline Ice under Cyclic Flexural Loading

2 Andrii Murdza¹, Erland M. Schulson¹, Carl E. Renshaw^{1,2}

3 ¹Thayer School of Engineering, Dartmouth College, Hanover, NH, USA, 03755

4 ²Department of Earth Sciences, Dartmouth College, Hanover, NH, USA, 03755

5 *Correspondence to:* Andrii Murdza (Andrii.Murdza@dartmouth.edu)

6 **Abstract.** New systematic experiments reveal that the flexural strength of saline S2 columnar-grained ice loaded
7 normal to the columns can be increased upon cyclic loading by about a factor of 1.5. The experiments were
8 conducted using reversed cyclic loading over ranges of frequencies from 0.1 to 0.6 Hz and at a temperature of -10 °C
9 on saline ice of two salinities: 3.0±0.9 and 5.9±0.6 %. Acoustic emission hit rate during cycling increases with an
10 increase of stress amplitude of cycling. Flexural strength of saline ice of 3.0±0.9 % salinity appears to increase
11 linearly with increasing stress amplitude, similar to the behavior of laboratory-grown freshwater ice (Murdza et al.,
12 2020b) and to the behavior of lake ice (Murdza et al., 2020a). The flexural strength of saline ice of 5.9±0.6 %
13 depends on the vertical location of the sample within the thickness of an ice puck; i.e., the strength of the upper
14 layers, which have a lower brine content, was found to be as high as three times that of lower layers. The fatigue life
15 of saline ice is erratic. Cyclic strengthening is attributed to the development of an internal back stress that opposes
16 the applied stress and originates possibly from dislocation pileups.

17 1. Introduction

18 Fatigue of materials is a subject of practical importance in engineering and has been widely studied
19 (Bathias and Pineau, 2013; Broek, 1986; Schijve, 2009; Suresh, 1998). Fatigue refers to changes in material
20 properties resulting from cyclic loading. Fatigue strength of crystalline materials is typically controlled by
21 microcrack initiation and subsequent growth that leads to failure.

22
23 It is not surprising that fatigue appears to play an important role in sea ice mechanics. For example, the
24 Arctic and Antarctic floating ice covers and ice shelves are subjected to cyclic loading from ocean swells that can
25 penetrate deeply into an ice pack and potentially result in the breakup of the ice cover (Squire, 2007). Such events,
26 where under the action of surface waves a floating ice cover exhibited sudden breakup into smaller pieces, have
27 been repeatedly witnessed and described (Shackleton, 1982; Liu and others, 1988; Prinsenberg and Peterson, 2011;
28 Aspin and others, 2012; Collins and others, 2015; Kohout and others, 2016; Hwang and others, 2017). Ice cover
29 breakup leads to a decline in albedo (Pistone and others, 2014; Zhang and others, 2019) and to the acceleration of
30 melting. Also, smaller ice floes attenuate ocean waves less effectively than does the parent solid ice cover, thereby
31 endangering coastal zones to erosion. Given the retreat of the sea ice cover and the attendant increase in oceanic
32 fetch, larger waves are expected to develop; correspondingly, the remaining ice cover is expected to be subjected to
33 episodes of greater cyclic loading. The potential for fatigue failure is thus increasing.

34

35 Cyclic loading may also play an important role in other scenarios. For instance, during ice-structure
36 interactions (Jordaan, 2001; Hendrikse and Metrikine, 2016; O'Rourke and others, 2016; Jordaan and others, 2008)
37 the structure itself, such as a light-house, may be weakened **or damaged** to a degree that depends on the strength of
38 the ice. Other examples are runways and roads that are built by freezing water on cold oceans, rivers and lakes and
39 subsequently subject to cyclic loading. Therefore, it is important to understand the behavior of ice under cyclic
40 loading.

41

42 Currently, the effects of cyclic loading on the physical and mechanical properties of sea ice and on the
43 susceptibility of the material to fatigue are poorly constrained. Tabata and Nohguchi (1980) conducted experiments
44 on sea ice sampled from Lake Saroma, Hokkaido, Japan and from Barrow, Alaska. They loaded the ice cyclically
45 under uniaxial compression between two specified stress levels under a variety of combinations of strain rate (from
46 10^{-5} s^{-1} to 10^{-2} s^{-1}), temperature (from -2°C to -24°C) and orientation (horizontal and vertical). They found that
47 with a decrease of average stress and with a decrease of amplitude, the time to failure increases; and by lowering the
48 temperature, the time to failure and the number of cycles also increases.

49

50 Other evidence of the weakening of sea ice under wave-driven in situ cyclic loading is discussed by
51 Haskell and others (1996), Bond and Langhorne (1997), Langhorne and others (1998), (1999), (2001). In these
52 works the authors obtained an S-N fatigue curve (S, upper peak stress of cycling; N, number of cycles imposed to
53 failure), typical of curves obtained from engineering materials, i.e. for lower stress amplitude more cycles are
54 needed for failure. The authors stated that the endurance limit, that is the stress amplitude below which the sea ice
55 can withstand an unlimited number of cycles, is approximately one-half the failure stress of non-cycled ice.

56

57 The constitutive behavior of saline ice under cyclic loading was also investigated previously (Cole, 1995,
58 1998; Cole et al., 1998, 2002; Cole and Dempsey, 2004; Cole and Durell, 1995; Dempsey et al., 2003; Wei et al.,
59 2020); specifically, inelastic deformation of sea ice was explored and interpreted in terms of a dislocation-based
60 mechanism. In these works the authors investigated the effect of temperature (from -5 to -50°C), microstructure
61 (total porosity varied from 14 to 104 ppt), cyclic stress amplitude (from 0.04 to 0.8 MPa), loading frequency (from
62 10^{-3} to 1 Hz), and dry isothermal vs floating specimens on the response of the ice. However, the strength of ice after
63 it had been cycled was not measured.

64

65 Nothing more (to our knowledge) has been reported on the fatigue of sea ice. The topic is absent from a
66 critical review by Squire (2007) and from two recent books on ice (Schulson and Duval, 2009; Weeks, 2010).

67

68 The behavior summarised above indicating the weakening of ice under cyclic loading, obtained from
69 experiments conducted on saline and sea ice, might possibly account for the sudden breakup of natural ice covers.
70 However, this behavior appears in conflict with the behavior of freshwater ice under cyclic loading (Cole, 1990;

71 Gupta et al., 1998; Iliescu et al., 2017; Iliescu and Schulson, 2002; Murdza et al., 2019, 2020b, 2020a). In those
72 experiments, it was discovered that the ice flexural strength increases upon repetitive loading, followed by the
73 recovery of the cyclic-induced increment in strength to the original non-cycled strength upon post-cycling annealing.
74 This difference in the behavior of the two kinds of ice could perhaps be attributed to the presence of defects in
75 sea/saline ice, such as brine pockets, brine channels and non-penetrating microcracks. Such defects serve as stress
76 concentrators, thereby lessening the need to nucleate cracks to the degree that fatigue life may be governed primarily
77 by crack propagation. **The strengthening of ice is of more than scientific interest, reflected, perhaps in an**
78 **interesting comment of an arctic engineer who reported that builders of ice roads never trust the ice until it**
79 **had been “worked in” (Masterson, 2018).**

80

81 Therefore, given that limited information about the behavior of sea/saline ice under cyclic loading and
82 given the discrepancy in behavior of fresh and sea/saline ice, we conducted a study under controlled conditions in
83 the laboratory on the flexural behavior of saline ice. In this paper, we describe the experiments in which beams of S2
84 columnar-grained saline ice of two salinities (3.0 ± 0.9 and 5.9 ± 0.6 ‰) were subjected at -10 °C to four-point, reverse
85 cycling at ~ 0.1 - 0.6 Hz and then, after several hundred or more cycles, were bent to failure, provided the beams did
86 not break during cycling. We chose the rate of cycling to simulate the vibration frequency of a natural sea ice cover
87 (Collins et al., 2015).

88 **2. Experimental procedure**

89 **2.1 Ice growth and characterization**

90 We studied saline ice of two melt-water salinities: 3.0 ± 0.9 and 5.9 ± 0.6 ppt, where \pm sign indicates standard
91 deviation. We produced the ice in the laboratory **in an 800 L circular polycarbonate tank** in the manner described
92 previously (Golding et al., 2014). Briefly, solutions containing 17.5 ± 0.2 ppt and 35 ± 0.2 ppt (parts per thousand,
93 or ‰) of the commercial product “Instant Ocean” salt mixture were prepared and then frozen unidirectionally
94 downward over a period of about 7 days **by using a top-placed cold plate maintained at a temperature $T = -20 \pm 0.1$ °C.** **Before bringing the cold plate into contact with the salt-water solution, the top surface of the**
95 **solution was seeded with freshwater ice fragments of ~ 0.3 - 1 mm in diameter.** This procedure produced pucks
96 ~ 1 m in diameter and ~ 0.3 m thick. **For practical considerations,** the bottom, skeletal layer of ice of about 7-10 cm
97 was discarded as it was slushy and weak; **we also believe that the skeletal layer does not play a significant role in**
98 **supporting load. The top layer of ice of a few centimeters was also discarded because it was seeded and its**
99 **grain size was considerably smaller and its microstructure thus different from the rest of the ice puck.** Melt-
100 water salinity was measured using a calibrated YSI Pro30 conductivity and salinity probe.

102

103 Figure 1 shows the microstructure of the ice. Table 1 lists its density and the **average grain size of the test**
104 **specimens described below.** Figure 2 shows stereographic projections of the orientation of the crystallographic c-
105 axes. The ice is characterized by columnar-shaped grains whose growth texture is marked by c-axes confined within

106 about 15° of the horizontal plane of the parent ice puck and randomly oriented within that plane. In other words, the
107 ice is termed S2, after Michel and Ramseier (1971), and is similar to natural first-year sea ice (for comparison, see
108 Figure 3.7 of Schulson and Duval (2009)). The grain size noted above is the average diameter of the columnar-shaped
109 grains, **ranging from about 2 to 7 mm in Figure 1.**

110 **2.2. Growth features**

111 The ice contained both sub-mm sized brine pockets and supra-mm sized drainage channels, reminiscent of
112 natural sea ice. Figures 3 and 4 show examples. The ice of lower salinity (3.0 ± 0.9 ppt) had fewer defects of both
113 kinds. Some of the ice of higher salinity (5.9 ± 0.6 ppt) possessed channels whose size was almost as large as the
114 grain diameter. The defects scattered light to the degree that in bulk form the ice had an overall opaque appearance.
115 When observed in thin section (~ 1 mm) the ice exhibited to the naked eye distinct linear whitish features which we
116 took to be sets of interconnected brine pockets **that could possibly be filled with very fine-grained ice**. The ice of
117 higher salinity possessed more of these features, especially near the bottom of the parent puck (which was the last
118 part to solidify). Our sense is that these features served as stress concentrators, particularly ones that traversed the
119 width of the test specimen (described below), thereby weakening the ice. Indeed, as will become apparent, samples
120 obtained from near the bottom of a puck of higher salinity (5.9 ± 0.6 ppt) had relatively low flexural strength.

121
122 Because the ice of both salinities exhibited a different appearance from the top and bottom of the parent
123 puck, in preparing test specimens for flexing we distinguished them by their position (depth from top surface) within
124 the ice puck from which they were prepared,

125
126
127 Table 2.

128 **2.3. Sample preparation and test setup**

129 Once the ice had been grown, it was cut into blocks of dimensions $\sim 10 \times 30 \times 20$ cm 3 , **where the longest**
130 **and the shortest dimensions are in the horizontal plane of the original ice puck, perpendicular to the direction**
131 **of growth.** The blocks were stored in a cooler (at -10 ± 0.5 °C) on their side (such that columnar-shaped grains were
132 oriented horizontally) to reduce brine drainage **for periods of time of about 1-10 weeks.**

133
134 Specimens for flexing were manufactured from the ice blocks in the form of thin beams of dimensions
135 $h \sim 16$ mm in thickness (parallel to the long axis of the grains), $b \sim 85$ mm in width, and $l \sim 300$ mm in length. The
136 test specimens were allowed to equilibrate to the test temperature of -10 ± 0.5 °C for at least 24 hours before testing.
137

138 A detailed description of the specimens' preparation and loading can be found elsewhere (Iliescu et al.,
139 2017; Murdza et al., 2018, 2019, 2020b). To summarize: The ice beams were flexed up and down under 4-point
140 loading under constant displacement rate using a servo-hydraulic loading system (MTS model 810.14) to which we

141 attached a custom-built 4-point loading frame, Figure 5. A load cell, calibrated for both tension and compression,
142 and a linear variable differential transformer (LVDT) gauge were used for measurements of load and displacement
143 of the upper surface of the ice beam during cycling.

144

145 Acoustic emissions were recorded during cycling using a PCI-2 18-bit A/D system; its frequency response
146 was 3 kHz–3 MHz and its minimum acoustic emission (AE) amplitude detection threshold was set to 45 dB. We
147 used a micro 30STC sensor (9.5 mm diameter, 11 mm thickness) which was attached to the top surface of an ice
148 beam with a rubber band. Vacuum grease was used as the coupling agent between the sensor and the ice surface.

149

150 The experiments were performed in a cold room at a temperature of -10°C and at an outer-fiber center-
151 point displacement rate of 0.1 mm s⁻¹ (or outer-fiber strain rate of about 1.4 x 10⁻⁴ s⁻¹). This displacement rate
152 resulted in an outer-fiber stress rate in the range from ~ 0.3 to 0.5 MPa s⁻¹, outer-fiber stress amplitude in the range
153 from 0.35 to 1.2 MPa, outer-fiber strain amplitude in the range from ~ 1 to 5 x 10⁻⁴ and frequencies in the range
154 from 0.1 to 0.6 Hz (i.e. periods from ~10 to 1.5 sec). The period, as already noted, is similar to the period of ocean
155 swells (Collins et al., 2015). The major outer-fiber stress σ_f was calculated from the relationship:

$$\sigma_f = \frac{3PL}{4bh^2} \quad (1)$$

156

157

158 where P is the applied load and L is the distance between the outer-pair of loading cylinders (shown in Figure 5b)
159 and is set by the geometry of the apparatus to be $L = 254$ mm.

160

161

162 We used two different loading procedures, as we did earlier in our study of S2 freshwater ice. Type I
163 loading was a completely reversed stress cycle with constant stress amplitude and mean stress of zero. Type II was
164 similar to Type I but incorporated an increasing multi-level (or step-level) stress amplitude. This second type of
165 loading essentially consisted of several Type I steps of increasing stress amplitudes. In the present study for stress
166 amplitudes below 0.7 MPa we used Type I loading. To cycle ice samples at stress amplitudes above 0.7 MPa, we
167 first pre-conditioned specimens through step-loading Type II procedure at progressively higher stress amplitude
168 levels, **i.e. we cycled specimens for ~300 times at each of the following stress amplitudes: 0.7, 0.75, 0.8,**
169 **0.85 MPa and so on either until failure occurred or until a specific value of stress amplitude set by the**
170 **operator** (see Iliescu et al. (2017) and Murdza et al. (2018) for details). To change stress amplitude the loading was
171 stopped for ~15 sec to change settings. After pre-conditioning, the specimens were cyclically loaded according
172 Type I loading at least 300 times and generally for ~2000 times, since no change in strength was observed beyond a
173 few hundred cycles (see below).

174

175 Figure 6 shows measurements of load and of displacement versus time at the beginning and near the end of
176 cycling before specimen failure **of a lower-salinity specimen (3.0±0.9 ppt)**. The measurements detected no

177 **softening. According to Bažant et al. (1984) softening is a decline of stress at increasing strain or, in our case,**
178 **an increase of strain during cycling at constant stress amplitude during the tests).** The absence of detectable
179 softening during cycling of the saline ice is reminiscent of the absence of softening during the cycling of freshwater
180 ice (Ilieșcu et al., 2017; Murdza et al., 2020b).

181 **3. Results and Observations**

182 **3.1. Flexural strength of non-cycled ice**

183 The flexural strength of non-cycled saline ice of both salinities was measured at -10 °C and at a nominal
184 outer-fiber center-point displacement of 0.1 mm s⁻¹. The results are listed in

185
186

187 **Table 2. Failure more often occurred at random locations between the two inner loading cylinders**
188 **and less often either below or slightly outside the loading cylinders. The reason for the latter location was the**
189 **presence prior to testing of a significant concentration of whitish features at loading cylinders which served as**
190 **stress concentrators and along which the failure ultimately occurred (similar to Figure 4).** The average and
191 standard deviation of the measured flexural strength of saline ice of lower salinity (3.0±0.9 ppt) are 0.96±0.13 MPa.
192 The strength of the lower salinity ice did not correlate systematically with the depth of the parent puck from which
193 ice beams were prepared. The measured strength compares favorably with the value of 0.85±0.20 MPa reported by
194 Timco and O'Brien (1994) for sea ice of similar salinity, as can be seen in Figure 7. Brine volume fraction ν_b was
195 calculated according to Frankenstein and Garner (1967):

196

$$\nu_b = 0.001 * S \left(\frac{49.185}{|T|} + 0.532 \right), \quad (2)$$

197
198 where T is temperature in degrees Celsius between -0.5 °C and -22.9 °C and S is melt-water salinity (in ppt) of the
199 ice.

200
201 The average and standard deviation of the measured flexural strength of saline ice of higher salinity
202 (5.9±0.6 ppt) are 0.98±0.36 MPa. The measured values (Figure 7) deviate slightly towards higher values compared
203 to the data of Timco and O'Brien (1994), although scatter is significantly greater than is the scatter in the strength of
204 the ice of lower salinity (3.0±0.9 ppt). This may be explained by the greater degree of interconnectivity of brine
205 pockets at the bottom of an ice puck (discussed above and shown in Figures 3 and 4). **Indeed, the flexural strength**
206 **of the higher-salinity specimens appears to depend on the depth of ice from which beams were prepared,**
207 **Table 2.** This result shows how much the strength of ice is sensitive to flaws and defects. Given that **larger bodies**
208 usually contain larger defects, the flexural strength of sea ice on the medium and large scale, in the field (Karulina et
209 al., 2019) for instance, is expected to be lower than on the smaller scale of the present experiments.

210

211 We also compare our measurements of flexural strength with the tensile strength of sea ice. For this
 212 purpose, and as we did in our previous work on freshwater ice (Ilieșcu et al., 2017; Murdza et al., 2020b), flexural
 213 strength is divided by 1.7 (Ashby and Jones, 2012). This factor reflects the fact that the volume of the material
 214 which is subjected to the highest stress in bending is smaller than in uniaxial tension; thus, the largest defect which
 215 governs the failure may not be near the surface of a bent specimen. Upon dividing the flexural strength of the non-
 216 cycled saline ice of lower salinity by 1.7, we found the average across-column tensile strength from our experiments
 217 to be $0.96 \pm 0.13 \text{ MPa} / 1.7 = 0.56 \pm 0.08 \text{ MPa}$. This value compares favorably with the values $0.56 \pm 0.06 \text{ MPa}$ and
 218 $0.63 \pm 0.12 \text{ MPa}$ reported by Richter-Menge and Jones (1993) for the tensile strength of columnar-grained first-year
 219 sea ice of $4.1 \pm 0.3 \text{ ppt}$ salinity loaded uniaxially across the columns at a temperature of -10°C and strain rates of 10^{-5}
 220 and 10^{-3} s^{-1} . Recall that in the present experiments the outer-fiber strain rate was about $1.4 \times 10^{-4} \text{ s}^{-1}$ which is within
 221 the range reported by Richter-Menge and Jones (1993). This agreement between direct and indirect measurements of
 222 tensile strength lends confidence that our lab-grown saline ice is a reasonably faithful analogue of natural sea ice.

223 **3.2. Flexural strength versus number of reversed cycles under constant low stress amplitude**

224 To determine whether there is a relationship between flexural strength and number of cycles imposed under
 225 a constant low stress amplitude, we performed via Type-I loading a series of experiments on saline ice of lower
 226 salinity ($3.0 \pm 0.9 \text{ ppt}$) at -10°C at an outer-fiber center-point displacement rate of 0.1 mm s^{-1} at a low stress
 227 amplitude of 0.35 MPa ; i.e., at an amplitude less than one-half the flexural strength of non-cycled ice. Figure 8
 228 shows the results. The number of cycles varied from about 100 to 14000. The average strength and standard
 229 deviation of all data from Figure 8 are $0.96 \pm 0.23 \text{ MPa}$. As noted above the strength and standard deviation of non-
 230 cycled ice are $0.96 \pm 0.13 \text{ MPa}$. In other words, no strengthening was detected upon cycling up to 14000 times at a
 231 stress amplitude of 0.35 MPa . For freshwater ice (Murdza et al., 2020b), we found that once the number of cycles at
 232 a given low stress amplitude exceeded 300, the number of cycles had no significant effect on the flexural strength,
 233 implying that a kind of saturation of strength developed. Given that result and the new results for saline ice, we
 234 followed the practice in the present study of cycling more than 300 times, often as many as 2000 times, before
 235 bending the ice to failure.

236 **3.3. Flexural strength versus stress amplitude**

237 The flexural strength increases with stress amplitude. Figure 9 shows measurements obtained from saline
 238 ice of both salinities cycled at -10°C at an outer-fiber displacement rate of 0.1 mm s^{-1} . For comparison, data from
 239 laboratory grown freshwater ice (Murdza et al., 2020b) of S2 character and from lake ice of the same character
 240 (Murdza et al., 2020a) are also shown. The relationship between the flexural strength, σ_{fc} and cycled stress
 241 amplitude, σ_a , for saline ice appears to be a linear one and, within experimental scatter, to have essentially the same
 242 sensitivity to stress amplitude as freshwater ice; namely:

243

$$\sigma_{fc} = \sigma_{f0} + k\sigma_a , \quad (2)$$

244
 245 where $k = 0.68$ is a constant. For freshwater ice the non-cycled flexural strength is $\sigma_{f0} = 1.75$ MPa compared with
 246 $\sigma_{f0} = 0.96$ MPa for the saline ice. There is, perhaps, in Figure 9 a hint that for saline ice there is a threshold of
 247 about 0.4 MPa that must be exceeded to detect strengthening. **Interestingly, this apparent threshold is similar in**
 248 **magnitude to the stress that marks the onset of significant AE activity under cyclic loading of sea ice cores**
 249 **(Cole and Dempsey, 2006).** Although saline ice is weaker than freshwater ice, it appears that upon cycling its
 250 strength increases at the same rate as freshwater ice.

251
 252 Although the rate of strengthening with stress amplitude appears to be the same for saline ice and freshwater
 253 ice, the maximum increase in strength in the case of saline ice of lower salinity (3.0 ± 0.9 ppt) is significantly lower.
 254 We were able to strengthen saline ice by about 50% of the non-cycled strength compared with about 100% for
 255 freshwater ice (Murdza et al., 2020b). Another point is that we almost were not able to cycle specimens at stress
 256 amplitudes greater than the flexural strength of non-cycled material, whereas in the case of freshwater ice we were
 257 able to cycle at stress amplitudes significantly greater than flexural strength of non-cycled ice. Indeed, the maximum
 258 cycled stress amplitude we were able to reach in the case of saline ice of lower salinity (3.0 ± 0.9 ppt) during all tests
 259 was 1.1 MPa, which is not statistically different from the non-cycled flexural strength of 0.96 ± 0.13 MPa.

260
 261 For saline ice of lower salinity (3.0 ± 0.9 ppt), there is no evidence that the flexural strength of both non-
 262 cycled and cycled ice is significantly affected by the depth of ice from which ice beams were harvested. For saline
 263 ice of higher salinity (5.9 ± 0.6 ppt), however, the flexural strength of both non-cycled and cycled ice appears to
 264 depend on the depth of ice from which beams were prepared, Figure 10. Indeed, the flexural strength of specimens
 265 from the bottom and from the top of an ice puck of higher salinity (5.9 ± 0.6 ppt) differs by ~3 times (~0.4 MPa vs
 266 ~1.4 MPa).

267 **3.4. Fatigue behavior**

268 Although the specimens from which the data in Figure 9 were obtained did not fail during cycling, other
 269 specimens cycled under similar conditions did fail while being cycled. Results from such tests (on of saline ice of
 270 lower salinity (3.0 ± 0.9 ppt) at -10°C and 0.1 mm s^{-1} outer-fiber displacement rate) allowed us to construct S-N
 271 fatigue curve , shown in Figure 11. The number of cycles here is the number of cycles to failure during cycling at
 272 the last stress amplitude level and not the total number of cycles. At most the S-N curve showd only a weak
 273 systematic dependence of the number of cycles to failure on stress amplitude. Indeed, for the same stress amplitude
 274 of ~ 0.9 MPa, fatigue failure occurred after as few as <10 cycles and after as many as a few thousand cycles.
 275 Statistical analyses to test the hypothesis that the slope in Figure 11 is zero resulted in a p-value equal ~0.06.
 276 Therefore, there is only a marginally significant effect of number of cycles on the stress at which failure occurred.
 277 We attribute this variability in fatigue life to the variability in microstructure from specimen to specimen.

278

279 That said, a note of caution is appropriate. The data in Figure 11 should not be viewed as fatigue data in the
280 usual sense; i.e., in the way such data are viewed when obtained from other materials (e.g., metals and alloys) that
281 exhibit classical fatigue behavior. In those cases, before cycling, all specimens are assumed to have the same
282 thermal-mechanical history. That was not the case here for the saline ice, as most of the samples were pre-
283 conditioned according to Type II procedure before they were cycled at the last stress level where they failed while
284 cycling. In other words, in order to get fatigue failure, we were increasing stress amplitude by small increments of
285 ~0.05 MPa and allowed a sufficient number of cycles at each stress level (~500-1000) before we reached a fatigue
286 failure.

287

288 The question to address here is why we did not obtain a classical S-N curve? We suggest that the classical
289 mechanism of fatigue, i.e. accumulation of damage, is not in play in our tests and some other process is controlling
290 fatigue life.

291 **3.5 Microstructural observations of samples after fatigue failure**

292 In an attempt to reveal deformation damage in the form of microcracks, we examined using thin-section
293 optical microscopy (up to 50x magnification) the microstructure of specimens of the lower salinity ice (3.0 ± 0.9 ppt)
294 after they had failed during cycling; i.e., failed in fatigue. Three thin sections were prepared from four specimens in
295 order to ensure a greater probability of observing microcracks growing from brine pockets or brine channels, should
296 they be present. The plane of the thin section was parallel to the long axis of the columnar grains and parallel to the
297 direction of the greater normal stress. This plane was taken as the best plane to observe possible cracks. Thin
298 sections were observed using non-polarized light. We found no evidence of microcracks starting from brine pockets
299 or from other defects. In fact, we found no microcracks at all. **It appears, therefore, that slow crack growth is not**
300 **a significant contribution to the fatigue life of the beams of the laboratory-grown saline ice that we studied.**

301 **3.6. Acoustic emissions**

302 Acoustic emissions (AE) during repetitive loading of ice have been previously recorded and analyzed in
303 laboratory and in situ (Langhorne and Haskell, 1996), (Cole and Dempsey, 2006, 2004; Lishman et al., 2020;
304 Murdza et al., 2020b). Langhorne and Haskell (1996) suggested that the emissions originate either from dislocation
305 breakaway or from microcracking associated with dislocation motion.

306

307 In contrast to freshwater ice, where no sound was detected until failure (Murdza et al., 2020b), continuous
308 emission was detected while cycling at constant stress amplitude. Figure 12 shows the cumulative acoustic
309 emissions, or “hits”, as a function of time for ice that was cycled reversely at a constant stress amplitude of 0.5 MPa.
310 As can be seen, the hit rate (or hits per unit time), which is the slope of the curve in Figure 12, is about the same for
311 the duration of the experiment.

312

313 Interestingly, the hit rate depends on stress amplitude during cycling. Figure 13 shows this behavior . The
314 greater is the stress amplitude, the greater is the hit rate. However, during cycling below about 0.2 MPa no hits were
315 detected.

316

317 Figure 13 also indicates that the hit rate is independent of the sequence of different stress amplitudes.The
318 numbers in Figure 13 show the order of cycling at different stress amplitudes; i.e., firstly we cycled ice at higher
319 stress amplitudes (0.5-0.8 MPa), then at lower stress amplitudes (0.2-0.4 MPa). The results showed an increase in
320 the hit rate as stress amplitude increases, regardless of the sequence of cycling.

321 **4. Discussion**

322 The results obtained from the experiments described in this paper show that the flexural strength of saline
323 ice can be increased upon reversed cyclic loading. Therefore, the same set of questions as for the freshwater ice
324 should be addressed here, i.e.: What governs the flexural strength of saline ice? Does crack propagation or crack
325 nucleation control the tensile strength? First of all, to understand the behavior of saline ice, it is important to
326 recognize that flexural strength in the present experiments is governed by the tensile strength, although greater by a
327 factor of about 1.7 (Ashby and Jones, 2012). Secondly, the apparent absence of remnant microcracks within the two
328 parts of broken samples (Section 3.5) indicates that crack nucleation controls the flexural strength, just as it appears
329 to do for freshwater ice. Indeed, this seems reasonable given the fact that freshwater ice comprises of ~95% by
330 volume of the saline ice we studied. Within the freshwater component, there is almost no solubility of salts (Weeks
331 and Ackley, 1986). The remainder of the saline ice is a mixture of air and brine. As was shown earlier, the
332 microstructure of saline ice that we grew is closely similar to the microstructure of sea ice. Pores lower the saline ice
333 strength (Sammis and Ashby, 1986). However, the behavior of S2 saline ice under cyclic loading is essentially the
334 same as the behavior of S2 freshwater ice (Murdza et al., 2020b), i.e. its strength increases at the same rate as
335 freshwater ice upon cycling under a given amplitude of the outer fiber stress. Hence, it is reasonable to assume that
336 the strengthening mechanism for the saline ice is similar to that for the freshwater ice. In our earlier work (Murdza
337 et al., 2020b) we proposed that strengthening might be due to the development of an internal back stress that
338 originates from either dislocation pileups or grain boundary sliding. **However, one reviewer suggested the**
339 **possibility of a different strengthening mechanism. Due to the inherent weakness of the saline ice**
340 **microstructure, the microstructural stress relief may occur through localized damage via microcracking**
341 **mentioned above. More research, however, is needed to examine this hypothesis.**

342

343 The maximum degree of strengthening in the case of saline ice is significantly lower than that for the
344 freshwater ice, although the slopes of the two data sets (rate of strength increase with increasing cyclic amplitude) in
345 Figure 9 are nearly equivalent. That difference may be explained by the structure of saline ice which limits
346 maximum possible strengthening. **Given the significantly greater number of stress concentrators in saline ice,**
347 **such as brine pockets and channels, the propensity for failure during cycling is greater in saline ice** (Sammis

348 and Ashby, 1986), thereby **limiting the development of the back stress. Indeed, in the present study failure of**
349 **specimens during cycling occurred more frequently than in the study on freshwater ice** (Murdza et al., 2020b).

350

351 Flexural experiments conducted on saline ice of higher salinity (5.9 ± 0.6 ppt) showed the importance of
352 brine features. Samples that were manufactured from the bottom of the ice puck were characterized by more
353 frequent whitish interconnected features (taken to be interconnected brine pockets) that often were the path for easy
354 crack propagation. Often samples were so weak that they failed before testing simply by handling. Interestingly,
355 there were no interconnected features in samples prepared from the top of an ice puck, which resulted in a difference
356 of more than a factor of three in strength between samples from top and bottom. Samples produced from saline ice
357 of lower salinity (3.0 ± 0.9 ppt) also had whitish features; however, these features were spread more uniformly (on a
358 macroscopic scale) across the sample, resulting in little difference in strength between the bottom and top samples.

359

360 It is worth noting again that a significantly greater fraction of saline ice samples failed in fatigue while pre-
361 conditioning compared with freshwater ice. This may be explained by the fact that freshwater ice was essentially
362 free from pores, brine pockets and other defects. Based on this observation, it appears that crack growth is not a
363 significant contribution to the fatigue life of saline ice under the conditions of our experiments.

364

365 **On the origin of the acoustic emissions, there are at least four possible sources of the noise detected.**
366 **One is from microcracking.** We imagine that microcracks form in regions of mechanical weakness which
367 results in accumulation of damage that we detected via the AE method. Specifically, the brine drainage
368 whitish features discussed above in the test specimens constitute regions of high porosity and thus provide
369 favorable sites for the concentration of such damage. Failure may occur when one of these sites can no longer
370 support the applied stress and a microcrack emerges from the damage zone and propagates. It is possible
371 that newly formed microcracks are stable until a critical length is reached (Cannon et al., 1990; Schulson et
372 al., 1991), at which point the crack growth ensues. The reason that microcracks were not observed under the
373 optical microscope may be because they filled up with liquid brine upon formation which results in a loss of
374 contrast. A second possible explanation for the acoustic emissions is the motion and friction of very fine
375 particles of ice which may have been entrapped inside brine drainage features, as mentioned above. A third
376 possibility is microcracking along grain boundaries due to grain boundary sliding (Elvin and Shyam Sunder,
377 1996; Goldsby and Kohlstedt, 1997; Mulmule and Dempsey, 1997; Schulson et al., 1997; Weiss and Schulson,
378 2000). A fourth possible explanation consistent with the non-history dependence of the hit rate (Figure 13) is a
379 kind of water-hammer effect in which brine entrapped within pockets impacts the wall, first in one direction
380 and then another. None of these possibilities can be evaluated based upon the limits of the present
381 observations. We refrain, therefore, from further speculation on this point.

382

383 Returning to the observations noted in the Introduction, and to the results obtained from imposed, in situ
384 cyclic loading experiments on sea ice beams by (Bond and Langhorne, 1997; Haskell et al., 1996; Langhorne et al.,

385 1998, 1999), the question is: Why does ice fail in the field under wave action and under imposed cyclic loading, but
386 strengthen upon cycling in our experiments in the laboratory? Although we do not know the process through which
387 the ice sheet failed in the field, we expect that there are many micro and macro cracks in natural sea ice. Indeed,
388 thermally-induced tensile stresses can induce thermal cracking in floating ice sheets (Evans and Untersteiner, 1971).
389 Therefore, our sense is that the difference in ice behavior under cyclic loading *in situ* in the field (Bond and
390 Langhorne, 1997; Langhorne et al., 1998) and in the laboratory in the present study is due to other types of defects
391 other than brine channels and pockets that are generated in the field as a result of thermo-mechanical history of ice.

392 **5. Conclusions**

393 From new, systematic experiments on the flexural strength of sub-meter sized beams of S2 columnar-
394 grained saline ice stressed principally across the columns through reversed cyclic loading at a temperature of -10 °C
395 and frequencies in the range from 0.1 to 0.6 Hz, it is concluded that:

396 (i) The flexural strength of saline ice can be increased upon reversed cyclic loading by as much as 1.5 times.
397 (ii) The flexural strength of ice subsequent to cycling scales linearly with the amplitude of the outer-fiber
398 stress.
399 (iii) The fatigue life of saline ice is erratic and does not obey classical S-N behavior.
400 (iv) Crack growth is not a significant contribution to the fatigue life of saline ice.
401 (v) There is high variability in structure and strength through the thickness of a saline ice puck of higher
402 salinity (5.9 ± 0.6 ppt).
403 (vi) **Given the lack of definitive proof of the underlying failure mechanism in saline ice, the increase in
404 flexural strength of freshwater ice and saline ice attributable to pre-failure load cycling is roughly
405 equivalent.**
406 (vii) Acoustic emission hit rate during cycling at a constant stress amplitude is about constant.
407 (viii) Acoustic emission hit rate during cycling increases with an increase of stress amplitude of cycling.

408 **Acknowledgements**

409 We acknowledge helpful discussions/communications with Prof. Harold Frost, Dr. Robert Gagnon, and
410 Dr. Daniel Iliescu. We acknowledge thoughtful and helpful critical comments from two anonymous reviewers. This
411 work was supported by the US Department of the Interior-Bureau of Safety and Environmental Enforcement
412 (BSEE), contract no. E16PC00005 and by National Science Foundation (FAIN 1947-107).

413

414 **Author contributions:** AM, ES and CR designed the experiments and AM carried them out. AM prepared the
415 manuscript with contributions from all co-authors.

416

417 **Competing interests:** The authors declare that they have no conflict of interest.

418 **References**

419 Ashby, M. M. and Jones, D. R. H.: *Engineering Materials 1: An Introduction to Properties, Applications and*
420 *Design.*, 2012.

421 Asplin, M. G., Galley, R., Barber, D. G. and Prinsenberg, S.: Fracture of summer perennial sea ice by ocean swell as
422 a result of Arctic storms, *J. Geophys. Res. Ocean.*, 117(6), 1–12, doi:10.1029/2011JC007221, 2012.

423 Bathias, C. and Pineau, A.: *Fatigue of Materials and Structures*, edited by C. Bathias and A. Pineau, John Wiley &
424 Sons, Inc., Hoboken, NJ, USA., 2013.

425 Bažant, Z. P., Belytschko, T. B. and Chang, T.: Continuum Theory for Strain-Softening, *J. Eng. Mech.*, 110(12),
426 1666–1692, doi:10.1061/(asce)0733-9399(1984)110:12(1666), 1984.

427 Bond, P. E. and Langhorne, P. J.: Fatigue behavior of cantilever beams of saline ice, *J. Cold Reg. Eng.*, 11(2), 99–
428 112, doi:10.1061/(ASCE)0887-381X(1997)11:2(99), 1997.

429 Broek, D.: *Elementary engineering fracture mechanics*, 1st ed., Springer, Dordrecht., 1986.

430 Cannon, N. P., Schulson, E. M., Smith, T. R. and Frost, H. J.: Wing cracks and brittle compressive fracture, *Acta*
431 *Metall. Mater.*, 38(10), 1955–1962, doi:10.1016/0956-7151(90)90307-3, 1990.

432 Cole, D. and Dempsey, J.: Laboratory observations of acoustic emissions from antarctic first-year sea ice cores
433 under cyclic loading, in 18th International POAC Conference, p. Vol 3, 1083-1092., 2006.

434 Cole, D. M.: Reversed direct-stress testing of ice: Initial experimental results and analysis, *Cold Reg. Sci. Technol.*,
435 18(3), 303–321, doi:10.1016/0165-232X(90)90027-T, 1990.

436 Cole, D. M.: A model for the anelastic straining of saline ice subjected to cyclic loading, *Philos. Mag. A*, 72(1),
437 231–248, doi:10.1080/01418619508239592, 1995.

438 Cole, D. M.: Modeling the cyclic loading response of sea ice, *Int. J. Solids Struct.*, 35(31–32), 4067–4075,
439 doi:10.1016/S0020-7683(97)00301-6, 1998.

440 Cole, D. M. and Dempsey, J. P.: In situ Sea Ice Experiments in McMurdo Sound: Cyclic Loading, Fracture, and
441 Acoustic Emissions, *J. Cold Reg. Eng.*, 18(4), 155–174, doi:10.1061/(ASCE)0887-381X(2004)18:4(155), 2004.

442 Cole, D. M. and Durell, G. D.: The cyclic loading of saline ice, *Philos. Mag. A Phys. Condens. Matter, Struct.*
443 *Defects Mech. Prop.*, 72(1), 209–229, doi:10.1080/01418619508239591, 1995.

444 Cole, D. M., Johnson, R. A. and Durell, G. D.: Cyclic loading and creep response of aligned first-year sea ice, *J.*
445 *Geophys. Res. Ocean.*, 103(C10), 21751–21758, doi:10.1029/98JC01265, 1998.

446 Cole, D. M., Dempsey, J., Kjestveit, G., Shapiro, S., Shapiro, L. and Morley, G.: The cyclic and fracture response of
447 sea ice in McMurdo Sound. Part I, in *Proceedings of the 16th IAHR International Symposium on Ice*, Dunedin, New
448 Zealand., 2002.

449 Collins, C. O., Rogers, W. E., Marchenko, A. and Babanin, A. V.: In situ measurements of an energetic wave event
450 in the Arctic marginal ice zone, *Geophys. Res. Lett.*, 42(6), 1863–1870, doi:10.1002/2015GL063063, 2015.

451 Dempsey, J., Cole, D. M., Shapiro, S., Kjestveit, G., Shapiro, L. and Morley, G.: The cyclic and fracture response of
452 sea ice in McMurdo Sound. Part II, in *Proceedings of the 17th International Conference on Port and Ocean*
453 *Engineering under Arctic Conditions, Trondheim, Norway.* [online] Available from:
454 https://www.researchgate.net/publication/303460064_The_cyclic_and_fracture_response_of_sea_ice_in_McMurdo

455 _Sound_Part_II (Accessed 14 January 2020), 2003.

456 Elvin, A. A. and Shyam Sunder, S.: Microcracking due to grain boundary sliding in polycrystalline ice under
457 uniaxial compression, *Acta Mater.*, 44(1), 43–56, doi:10.1016/1359-6454(95)00157-1, 1996.

458 Evans, R. J. and Untersteiner, N.: Thermal cracks in floating ice sheets, *J. Geophys. Res.*, 76(3), 694–703,
459 doi:10.1029/JC076i003p00694, 1971.

460 Frankenstein, G. and Garner, R.: Equations for Determining the Brine Volume of Sea Ice from -0.5° to -22.9°C ., *J.*
461 *Glaciol.*, 6(48), 943–944, doi:10.3189/S0022143000020244, 1967.

462 Golding, N., Snyder, S. A., Schulson, E. M. and Renshaw, C. E.: Plastic faulting in saltwater ice, *J. Glaciol.*,
463 60(221), 447–452, doi:10.3189/2014JoG13J178, 2014.

464 Goldsby, D. L. and Kohlstedt, D. L.: Grain boundary sliding in fine-grained ice I, *Scr. Mater.*, 37(9), 1399–1406,
465 doi:10.1016/S1359-6462(97)00246-7, 1997.

466 Gupta, V., Bergström, J. and Picu, C. R.: Effect of step-loading history and related grain-boundary fatigue in
467 freshwater columnar ice in the brittle deformation regime, *Philos. Mag. Lett.*, 77(5), 241–247,
468 doi:10.1080/095008398178372, 1998.

469 Haskell, T. G., Robinson, W. H. and Langhorne, P. J.: Preliminary results from fatigue tests on in situ sea ice beams,
470 *Cold Reg. Sci. Technol.*, 24(2), 167–176, doi:10.1016/0165-232X(95)00015-4, 1996.

471 Hendrikse, H. and Metrikine, A.: Edge indentation of ice with a displacement-controlled oscillating cylindrical
472 structure, *Cold Reg. Sci. Technol.*, 121, 100–107, doi:10.1016/j.coldregions.2015.10.013, 2016.

473 Hwang, B., Wilkinson, J., Maksym, E., Graber, H. C., Schweiger, A., Horvat, C., Perovich, D. K., Arntsen, A. E.,
474 Stanton, T. P., Ren, J. and Wadhams, P.: Winter-to-summer transition of Arctic sea ice breakup and floe size
475 distribution in the Beaufort Sea, *Elem Sci Anth*, 5, 40, doi:10.1525/elementa.232, 2017.

476 Iliescu, D. and Schulson, E. M.: Brittle compressive failure of ice: Monotonic versus cyclic loading, *Acta Mater.*,
477 50(8), 2163–2172, doi:10.1016/S1359-6454(02)00060-5, 2002.

478 Iliescu, D., Murdza, A., Schulson, E. M. and Renshaw, C. E.: Strengthening ice through cyclic loading, *J. Glaciol.*,
479 63(240), 663–669, doi:10.1017/jog.2017.32, 2017.

480 Jordaan, I. J.: Mechanics of ice–structure interaction, *Eng. Fract. Mech.*, 68(17–18), 1923–1960, doi:10.1016/S0013-
481 7944(01)00032-7, 2001.

482 Jordaan, I. J., Xiao, J., Wells, J. and Derradji-Aouat, A.: Ice crushing and cyclic loading in compression, in 19th
483 IAHR International Symposium on Ice, pp. 1097–1106., 2008.

484 Karulina, M., Marchenko, A., Karulin, E., Sodhi, D., Sakharov, A. and Chistyakov, P.: Full-scale flexural strength
485 of sea ice and freshwater ice in Spitsbergen Fjords and North-West Barents Sea, *Appl. Ocean Res.*, 90,
486 doi:10.1016/j.apor.2019.101853, 2019.

487 Kohout, A. L., Williams, M. J. M., Toyota, T., Lieser, J. and Hutchings, J.: In situ observations of wave-induced sea
488 ice breakup, *Deep. Res. Part II Top. Stud. Oceanogr.*, 131, 22–27, doi:10.1016/j.dsr2.2015.06.010, 2016.

489 Langhorne, P. J. and Haskell, T. G.: Acoustic emission during fatigue experiments on first year sea ice, *Cold Reg.*
490 *Sci. Technol.*, 24(3), 237–250, doi:10.1016/0165-232X(95)00021-3, 1996.

491 Langhorne, P. J., Squire, V. A., Fox, C. and Haskell, T. G.: Break-up of sea ice by ocean waves, *Ann. Glaciol.*, 27,

492 438–442, doi:10.3189/S0260305500017869, 1998.

493 Langhorne, P. J., Squire, V. A. and Haskell, T. G.: Role of fatigue in wave-induced break-up of sea ice- a review, in

494 Ice in Surface Waters: Proceedings of the 14th International Symposium on Ice, pp. 1019–1023, Rotterdam, The

495 Netherlands., 1999.

496 Langhorne, P. J., Squire, V. A., Fox, C. and Haskell, T. G.: Lifetime estimation for a land-fast ice sheet subjected to

497 ocean swell, *Ann. Glaciol.*, 33, 333–338, doi:10.3189/172756401781818419, 2001.

498 Lishman, B., Marchenko, A., Sammonds, P. and Murdza, A.: Acoustic emissions from in situ compression and

499 indentation experiments on sea ice, *Cold Reg. Sci. Technol.*, 172, 102987, doi:10.1016/j.coldregions.2019.102987,

500 2020.

501 Liu, A. K., Mollo-Christensen, E., Liu, A. K. and Mollo-Christensen, E.: Wave Propagation in a Solid Ice Pack, *J.*

502 *Phys. Oceanogr.*, 18, 1702–1712, doi:10.1175/1520-0485(1988)018<1702:WPIASI>2.0.CO;2, 1988.

503 Masterson, D.: The Story of Offshore Arctic Engineering - Dan Masterson - Google Books, Cambridge Scholars

504 Publishing. [online] Available from: https://books.google.com/books/about/The_Story_of_Offshore_Arctic_Engineering.html?id=y9N1DwAAQBAJ

505 (Accessed 4 March 2021), 2018.

506 Michel, B. and Ramseier, R. O.: Classification of river and lake ice, *Can. Geotech. J.*, 8(1), 36–45, doi:10.1139/t71-

507 004, 1971.

508 Malmule, S. V. and Dempsey, J. P.: Stress-Separation Curves for Saline Ice Using Fictitious Crack Model, *J. Eng.*

509 *Mech.*, 123(8), 870–877, doi:10.1061/(asce)0733-9399(1997)123:8(870), 1997.

510 Murdza, A., Schulson, E. M. and Renshaw, C. E.: Hysteretic behavior of freshwater ice under cyclic loading :

511 preliminary results, in 24th IAHR International Symposium on Ice, pp. 185–192, Vladivostok., 2018.

512 Murdza, A., Schulson, E. M. and Renshaw, C. E.: The Effect of Cyclic Loading on the Flexural Strength of

513 Columnar Freshwater Ice, in Proceedings of the 25th International Conference on Port and Ocean Engineering under

514 Arctic Conditions, Delft, Netherlands., 2019.

515 Murdza, A., Marchenko, A., Schulson, E. M. and Renshaw, C. E.: Cyclic strengthening of lake ice, *J. Glaciol.*,

516 67(261), 182–185, doi:10.1017/jog.2020.86, 2020a.

517 Murdza, A., Schulson, E. M. and Renshaw, C. E.: Strengthening of columnar-grained freshwater ice through cyclic

518 flexural loading, *J. Glaciol.*, 66(258), 556–566, doi:10.1017/jog.2020.31, 2020b.

519 O'Rourke, B. J., Jordaan, I. J., Taylor, R. S. and Gürtner, A.: Experimental investigation of oscillation of loads in ice

520 high-pressure zones, part 1: Single indentor system, *Cold Reg. Sci. Technol.*, 124, 25–39,

521 doi:10.1016/J.COLDREGIONS.2015.12.005, 2016.

522 Pistone, K., Eisenman, I. and Ramanathan, V.: Observational determination of albedo decrease caused by vanishing

523 Arctic sea ice, *Proc. Natl. Acad. Sci. U. S. A.*, 111(9), 3322–3326, doi:10.1073/pnas.1318201111, 2014.

524 Prinsenberg, S. J. and Peterson, I. K.: Observing regional-scale pack-ice decay processes with helicopter-borne

525 sensors and moored upward-looking sonars, *Ann. Glaciol.*, 52(57), 35–42, doi:10.3189/172756411795931688,

526 2011.

527 Richter-Menge, J. A. and Jones, K. F.: The tensile strength of first-year sea ice, *J. Glaciol.*, 39(133), 609–618,

529 doi:10.3189/S0022143000016506, 1993.

530 Sammis, C. G. and Ashby, M. F.: The failure of brittle porous solids under compressive stress states, *Acta Metall.*,
531 34(3), 511–526, doi:10.1016/0001-6160(86)90087-8, 1986.

532 Schijve, J.: *Fatigue of Structures and Materials*, 2nd ed., Springer Netherlands., 2009.

533 Schulson, E. M. and Duval, P.: *Creep and Fracture of Ice*, Cambridge University Press, Cambridge., 2009.

534 Schulson, E. M., Kuehn, G. A., Jones, D. A. and Fifolt, D. A.: The growth of wing cracks and the brittle
535 compressive failure of ice, *Acta Metall. Mater.*, 39(11), 2651–2655, doi:10.1016/0956-7151(91)90081-B, 1991.

536 Schulson, E. M., Qi, S., Melton, J. S. and Gratz, E. T.: Across-column cracks and axial splits in S2 saline ice under
537 compression, *J. Glaciol.*, 43(145), 411–414, doi:10.3189/s0022143000034997, 1997.

538 Shackleton, E. H.: *South: The Story of Shackleton's Last Expedition, 1914–17*, Macmillian, USA., 1982.

539 Squire, V. A.: Of ocean waves and sea-ice revisited, *Cold Reg. Sci. Technol.*, 49(2), 110–133,
540 doi:10.1016/j.coldregions.2007.04.007, 2007.

541 Suresh, S.: *Fatigue of Materials*, Cambridge University Press., 1998.

542 Tabata, T. and Nohguchi, Y.: Failure of Sea Ice by Repeated Compression, in *Physics and Mechanics of Ice*, pp.
543 351–362, Springer Berlin Heidelberg, Berlin, Heidelberg., 1980.

544 Timco, G. W. and O'Brien, S.: Flexural strength equation for sea ice, *Cold Reg. Sci. Technol.*, 22(3), 285–298,
545 doi:10.1016/0165-232X(94)90006-X, 1994.

546 Weeks, W. F.: *On Sea Ice*, University of Alaska Press., 2010.

547 Weeks, W. F. and Ackley, S. F.: The Growth, Structure, and Properties of Sea Ice, in *The Geophysics of Sea Ice*, pp.
548 9–164, Springer US, Boston, MA., 1986.

549 Wei, M., Polojärvi, A., Cole, D. M. and Prasanna, M.: Strain response and energy dissipation of floating saline ice
550 under cyclic compressive stress, *Cryosph.*, 14(9), 2849–2867, doi:10.5194/tc-14-2849-2020, 2020.

551 Weiss, J. and Schulson, E. M.: Grain-boundary sliding and crack nucleation in ice, *Philos. Mag. A*, 80(2), 279–300,
552 doi:10.1080/01418610008212053, 2000.

553 Zhang, R., Wang, H., Fu, Q., Rasch, P. J. and Wang, X.: Unraveling driving forces explaining significant reduction
554 in satellite-inferred Arctic surface albedo since the 1980s, *Proc. Natl. Acad. Sci. U. S. A.*, 116(48), 23947–23953,
555 doi:10.1073/pnas.1915258116, 2019.

556

557

558

559

560

561

562

563

564

565

566
567

568

569 **Table 1. Physical properties of as-grown saline ice.**

Material	Density [kg m ⁻³]	Average salinity [ppt]	Grain size [mm]
Saline ice (lower salinity)	878±11	3.0±0.9	3.8±0.9
Saline ice (higher salinity)	897±10	5.9±0.6	3.6±1.1

570

571

572

573

574 **Table 2. Flexural strength of non-cycled saline ice at -10°C and a displacement rate of 0.1 mm/s.**

Flex strength of ice of lower salinity (3.0±0.9 ppt) [MPa]	Depth [cm]	Flex strength of ice of higher salinity (5.9±0.6 ppt) [MPa]	Depth [cm]
1.08	—	0.45	20 – 22.5
0.86	—	0.53	17.5 – 20
1.06	—	0.62	12.5 – 15
0.96	—	0.98	7.5 – 10
0.83	17 – 21	1.17	5 – 7.5
0.75	13.5 – 17	1.26	5 – 7.5
1.08	10 – 13.5	1.26	2.5 – 5
0.97	6.5 – 10	1.44	1 – 2.5
1.09	3 – 6.5	1.17	—
Average		Average	—
0.96±0.13		0.98±0.36	—

575

576

577
578
579
580

Figure 1. Photographs of a vertically-oriented (a) and a horizontally-oriented (b) thin-sections (~1mm) of columnar-grained, saline ice of lower salinity (3.0 ± 0.9 ppt) as viewed between crossed-polarized filters; photographs of a vertically-oriented (c) and a horizontally-oriented (d) thin-sections of saline ice of higher salinity (5.9 ± 0.6 ppt).

581
582
583

Figure 2. Stereographic projection plots of crystal c-axis {0001} orientations in saline ice of lower (3.0 ± 0.9 ppt) salinity (a) and saline ice of higher (5.9 ± 0.6 ppt) salinity (b).

584
585
586
587
588
Figure 3. Photographs of saline ice samples of lower salinity (3.0 ± 0.9 ppt) from the top (a) and bottom (b) of an ice block
589 and saline ice samples of higher salinity (5.9 ± 0.6 ppt) from the top (c) and bottom (d) of an ice block. The concentration
590 of whitish features along the width of a sample in (d) is shown inside circles which is a predominant place for a crack to
591 initiate. The columnar grains run in and out of the images. Scale bars: 20 mm.

592
Figure 4. Photograph of a sample from the bottom of an ice block of higher salinity (5.9 ± 0.6 ppt) before cycling (a) and
593 after (b) failure. Note a crack that propagated along whitish features in the area in (a) depicted by the circle. Scale bars:
594 20 mm.

(a)

(b)

595
Figure 5. Photograph (a) and sketch (b) of the four-point bending apparatus connected to an MTS hydraulic testing
596 system (Iliescu et al., 2017; Murdza et al., 2020b). The upper part is attached to the frame of the machine while the mobile

596 middle part is attached through a fatigue-rated load cell to the piston. The apparatus is made from an aluminum alloy;
597 the loading cylinders are made from stainless steel.

598
599 Figure 6. Curves of force/load and displacement vs. time for periods of 200 s near the beginning and near the end of
600 cycling before fatigue failure occurred. Marker symbol “x” denotes a moment of specimen failure. Force of ~135 N
601 corresponds to ~1.2 MPa.

602
 603 **Figure 7. Flexural strength of saline ice as a function of root brine volume for the ice grown in the present study and for**
 604 **data from Timco and O'Brien (1994) for comparison.**

605
 606 **Figure 8. Flexural strength and the corresponding number of cycles imposed for saline ice of lower salinity (3.0±0.9) ppt**
 607 **cycled at 0.35 MPa outer-fiber stress amplitude at -10 °C and 0.1 mm s⁻¹ outer-fiber center-point displacement rate.**

608
609 **Figure 9.** Flexural strength of freshwater ice and saline ice of lower (3.0 ± 0.9 ppt) and of higher (5.9 ± 0.6 ppt) salinity as a
610 function of reverse-cycled stress amplitude. Freshwater ice laboratory and lake data are taken from (Murdza et al., 2020b,
611 2020a). Red five-pointed stars and green squares represent tests performed on saline ice of lower and higher salinities,
612 respectively, at 0.1 mm s^{-1} and -10°C . During all depicted tests the ice did not fail during cycling and was broken by
613 applying one unidirectional displacement until failure occurred.

614
615 **Figure 10.** Flexural strength as a function of position of saline ice samples of higher salinity (5.9 ± 0.6 ppt) for different
616 cyclic amplitudes. The imposed number of cycles for specimens cycled at 0.35 and 0.7 MPa is ~2000.

617
618 **Figure 11.** Stress amplitude as a function of the number of cycles to fatigue fracture for saline ice of lower salinity
619 (3.0 ± 0.9 ppt) tested at -10°C and 0.1 mm s^{-1} outer-fiber center-point displacement rate.

621
622 **Figure 12.** Acoustic emissions (hits) against time for saline ice of lower salinity (3.0 ± 0.9 ppt), cycled at a stress amplitude
623 of 0.5 MPa at -10°C at an outer-fiber displacement rate of 0.1 mm s^{-1} .

624
 625 **Figure 13. Hit rate as a function of cycled stress amplitude for saline ice sample of lower salinity (3.0±0.9 ppt). Numbers**
 626 **show the order of cycling at different stress amplitudes.**

627
 628
 629