3 Brief communication:

4 Mapping Greenland's perennial firn aquifers using enhanced-5 resolution L-band brightness temperature image time series

Julie Z. Miller^{1,2}, David G. Long³, Kenneth C. Jezek⁴, Joel T., Johnson⁵, Mary J. Brodzik^{1,6}, Christopher A. Shuman⁷, Lora S. Koenig^{1,6}, & Theodore A. Scambos^{1,2}

9 10 ¹ Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA

11 ² Earth Science and Observation Center, University of Colorado, Boulder, Colorado, USA

- 12 ³ Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah, USA
- 13 ⁴ Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- 14 ⁵ Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio, USA
- 15 ⁶ National Snow and Ice Data Center, University of Colorado, Boulder, Colorado, USA

16 7 University of Maryland, Baltimore County, Joint Center for Earth Systems Technology at Code 615, Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

17 Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
 18

19 **Correspondence to: jzmiller.research@gmail.com** 20

21 Abstract

Enhanced-resolution L-band brightness temperature (T_B) image time series generated from observations collected over the Greenland ice sheet by NASA's Soil Moisture Active Passive (SMAP) satellite are used to map Greenland's perennial firn aquifers from space. Exponentially decreasing L-band T_B signatures are correlated with perennial firn aquifer areas identified via the Center for Remote Sensing of Ice Sheets (CReSIS) Multi-Channel Coherent Radar Depth Sounder (MCoRDS) flown by NASA's Operation IceBridge (OIB) campaign. An empirical algorithm to map extent is developed by fitting these signatures to a set of sigmoidal curves. During the spring of 2016, perennial firn aquifer areas are found to extend over ~66,000 km².

29

1

2

6 7

8

30 1 Introduction

Firn is a porous layer of recrystallized snow near the surface of a glacier or an ice sheet. Under certain climate conditions, firn can host a laterally unconfined aquifer and thereby buffer meltwater flow across the near-surface to the periphery. Given sufficiently high surface melting, firn aquifers form, or recharge, in the percolation facies as a result of vertical and lateral percolation of meltwater into the pore space of firn layers overlying impermeable ice layers. If a firn aquifer is adjacent to, or is crossed by, a crevasse, mobile meltwater can initiate meltwater-driven hydrofracture, drain into the subglacial hydrological system, and accelerate ice flow (Fountain and Walder, 1998).

38

39 Although common on glaciers, firn aguifers were unknown on ice sheets until their discovery during an April 40 2011 field expedition to the percolation facies of southeastern Greenland (Forster et al., 2014). Greenland's 41 firn aquifers store meltwater seasonally, intermittently, or perennially, depending on location and climate. 42 They range from shallow water-saturated firn layers that perch on top of near-surface ice layers, to deeper 43 water-saturated firn layers that extend from the ice sheet surface to the firn-ice transition. Simulations using 44 a simple firn model suggest that high snowfall thermally insulates water-saturated firn layers, allowing 45 meltwater to be stored in liquid form throughout the freezing season (i.e., the time between surface freeze-46 up to melt onset) if the overlying snow laver is sufficiently deep (Munneke et al., 2014).

47

The existence and approximate extent of Greenland's perennial firn aquifers has been demonstrated using shallow firn cores and ground penetrating radar surveys collected at several sites in southeastern Greenland during recent field expeditions, (Forster et al., 2014; Koenig et al., 2014; Miller et al., 2017) as well as locations detected using ice-penetrating radar surveys collected by the CReSIS Accumulation Radar flown by NASA's OIB campaign (Miège et al., 2016). Additional locations have more recently been detected using ice penetrating radar surveys collected by the MCoRDS instrument. However, these airborne observations are not comprehensive over the Greenland Ice Sheet, occur only during the spring months, and are often non-repeating in space and time. The 2019 conclusion of NASA's OIB campaign ended even
 these sparse mapping activities.

Initial studies have shown that C-band radar backscatter collected by satellite radar scatterometers (Miller et al., 2013), and more recently, by satellite synthetic aperture radar (Brangers et al., 2020), are sensitive to subsurface meltwater storage in the upper snow and firn layers. However, the C-band penetration depth in the frozen snow and firn layers of Greenland's percolation facies is on the order of several meters, and the mean depth of the upper surface of meltwater in Greenland's perennial firn aquifers just prior to melt onset is ~22 m (Miège et al., 2016).

64

65 Here, we demonstrate the potential for mapping Greenland's perennial firn aquifers from space using 66 satellite L-band microwave radiometry. These instruments are capable of detecting L-band perennial firn 67 aguifer emissions from tens of meters beneath the firn, deep enough to directly observe the upper surface 68 of stored meltwater over the entire depth range (~1 m-40 m) mapped by airborne ice-penetrating radar 69 surveys (Miège et al., 2016). We use recently released enhanced-resolution L-band T_R image time series 70 collected over the Greenland Ice Sheet by the microwave radiometer on the SMAP satellite (Long et al., 71 2019) together with coincident thermal infrared (TIR) T_B image time series collected by the Moderate 72 Resolution Imaging Spectroradiometer (MODIS) on the Terra and Agua satellites (Hall et al., 2012) to 73 develop an empirical algorithm to map extent. 74

75 2 Methods

76 2.1 Enhanced-resolution L-band T_B image time series

The SMAP satellite was launched 31 January 2015 and carries a microwave radiometer that operates at a frequency of 1.41 GHz (L-band). It is currently collecting global observations of vertically and horizontally (V- and H-pol, respectively) polarized T_B . The surface incidence angle is ~40°, and the radiometric accuracy is ~1.3 K.

81

The microwave radiometer form of the Scatterometer Image Reconstruction (rSIR) algorithm generates T_B on a fine posting grid using satellite observations (Long et al., 2019). The rSIR algorithm exploits the measurement response function (MRF) for each observation, which is a smeared version of the antenna pattern. Using the overlapping MRF's, the rSIR algorithm reconstructs T_B from the spatially filtered, lowresolution sampling provided by the observations. In effect, it generates an MRF deconvolved T_B image. Combining multiple passes increases the sampling density, which further improves the accuracy and resolution of the rSIR reconstruction.

89

90 Given converging orbital passes in the polar regions, the SMAP satellite passes over Greenland several 91 times each day, and provides nearly complete coverage during two distinct local time-of-day intervals. The 92 rSIR algorithm combines orbital passes that occur between 8 a.m. and 4 p.m. (+/-2 hours) local time-of-day 93 to reconstruct twice-daily (i.e., morning and evening orbital pass interval, respectively) T_B images. T_B image 94 data are projected on the Equal-Area Scalable Earth Grid (EASE-Grid 2.0) (Brodzik et al., 2012) at a 3.125 95 km posting resolution or grid cell spacing. The effective resolution for each grid cell is dependent on the 96 number of observations used in the rSIR reconstruction and is coarser than the grid cell spacing. While the 97 effective resolution of conventionally processed T_B images posted on a 25 km grid is ~30 km, the effective resolution of enhanced resolution T_B images posted on a 3.125 km grid is ~18 km, an improvement of 98 99 ~60%.

100

Fig. 1 demonstrates the improvement in the effective resolution provided by the rSIR reconstruction. It shows an MRF deconvolved T_B image posted on a 3.125 grid versus a conventionally processed T_B image posted on a 25 km grid. These images were generated using V-pol T_B observations collected during the evening orbital pass interval on 15 April 2016, coincident with airborne ice-penetrating radar surveys, and are projected on the Northern Hemisphere *EASE-Grid 2.0* over Greenland. The enhanced-resolution T_B image clearly captures many ice sheet features not captured in the conventionally processed T_B images,

107 particularly in Greenland's percolation facies where perennial firn aquifer areas have been mapped.

108 Figure 1

109 (a) Gridded (25 km) and (b) enhanced-resolution (3.125 km) V-pol L-band $T_{\rm B}$ images collected 15 April 2016 by the microwave radiometer on the SMAP satellite during the evening orbital pass 110 interval over Greenland (Long et al., 2019). Black and dark grey regions of low L-band T_{B} values 111 are Greenland's percolation facies. Zoom areas (red boxes, c and d) are 2016 MCoRDS-derived 112 113 perennial firn aquifer locations (small blue circles) in the southeastern percolation facies along OIB flight lines (yellow lines). Test Site 1 (blue circle); Test Site 2 (cyan circle); Test Site 3 (red 114 115 circle); Test Site 4 (green circle); Test Site 5 (orange circle); Test Site 6 (yellow circle); GIMPderived ice extent (white lines, Howat et al., 2014); and coastlines (black lines, Wessel and Smith, 116 117 1996). Several shallow firn core sites where meltwater was found stored at depths of 10 m. 12 m. and 25 118 m throughout the freezing season (Forster et al., 2014; Koenig et al., 2014) are within the Test Site 1 grid 119 cell.

We analyzed SMAP 2015-2016 morning and evening V- and H-pol T_B images together with coincident MODIS 2016 TIR T_B -derived surface meltwater maps (described in section 2.2) in Greenland's percolation facies. Although sharp increases in T_B delineate the extent of surface melting and provide a qualitative indication of the volumetric fraction of near-surface meltwater, a distinct subsurface meltwater signal is not easily distinguishable in any of the T_B images during the freezing season.

125

To discriminate between L-band perennial firn aquifer emissions and background ice sheet emissions, we used T_B image time series analysis. We used the Greenland Ice Mapping Project (GIMP) Land Ice and Ocean Classification Mask (Howat et al., 2014) to construct an ice-masked V- and H-pol T_B image time series that alternate morning and evening observations collected between 31 March 2015 (i.e., the beginning of the SMAP data record) and 31 December 2016. These T_B image time series provide sufficient detail to analyze spatiotemporal differences in exponentially decreasing L-band T_B signatures over perennial firn aquifer areas as compared to other percolation facies areas where seasonal meltwater is refrozen and stored exclusively as embedded ice.

134

135 **2.2** Thermal infrared T_B -derived surface freeze-up and melt onset dates

136 The Ice Surface Temperature (IST) algorithm (Hall et al., 2012) retrieves a clear-sky ice surface skin 137 temperature (i.e., the temperature at radiative equilibrium) over the Greenland Ice Sheet accurate within 138 $\pm 1^{\circ}$ C using a split window technique and satellite observations collected by MODIS TIR T_{R} channels 31 139 (10.78 µm–11.28 µm) and 32 (11.77 µm–12.27 µm) during daily orbital passes that occur between 12 a.m. 140 and 12 p.m. local time-of-day. The resolution is 0.78 km. For temperatures that are close to 0°C, IST values 141 are closely compatible with contemporaneous NOAA near-surface air temperature data (Shuman et al., 142 2014). IST data use the standard MODIS 1 km resolution cloud mask ('MOD35') that uses up to 14 spectral 143 bands and multiple spectral and thermal tests to identify clouds.

144

145 We projected the IST image data onto the EASE-Grid 2.0 at a 3.125 km grid cell spacing using rigorous orthorectification and cubic convolution, and then used the GIMP mask (Howat et al., 2014) to construct 146 147 ice-masked IST image time series between 31 March 2015 and 31 December 2016. Using the IST image 148 time series, we retrieved surface meltwater maps for the 2015 and 2016 melting season. We set a threshold 149 of IST \geq -1°C for surface meltwater detection (Nghiem et al., 2012), consistent with the ±1°C accuracy of 150 the IST image data (i.e., surface meltwater is inferred when IST is as low as -1°C). This threshold represents 151 a penetration depth from ~2 µm beneath the snow. We constructed a 2015 surface meltwater mask by 152 identifying each grid cell in which surface meltwater was detected in at least one time step. We estimated 153 the 2015 surface freeze-up date for each grid cell as the time step following the last time step at which 154 surface meltwater was detected. For each grid cell that melted in 2015, we estimated the 2016 melt onset 155 date as the first time step at which surface meltwater was detected. 156

157 2.3 Airborne ice-penetrating radar surveys

158 In April and May of 2016, MCoRDS was flown over the Greenland Ice Sheet on a NOAA P-3 aircraft as part 159 of NASA's OIB campaign (Leuschen et al, 2014). The instrument operated at center frequencies ranging 160 between 125 MHz and 210 MHz. For a P-3 flying at a height of 500 m over a smooth surface (i.e., the ice 161 sheet surface over Greenland's percolation facies), the along-track resolution is 323 m, and the across 162 track resolution is 25 m at a 14 m grid cell spacing (i.e., the extent of one grid cell is ~0.005 km²). The 163 penetration depth is as deep as several kilometers. Perennial firn aquifer locations were detected along 164 flight lines using radar echograms collected by MCoRDS and the semi-automated methodology described 165 in Miège et al., (2016). Strong non-conformal upper reflectors in radar echograms were interpreted as the 166 upper surface of stored meltwater. The total number of mapped perennial firn aquifer grid cells is 78,343 167 corresponding to an extent of ~354 km² (Fig. 1).

168

We projected the MCoRDS-derived perennial firn aquifer locations on the *EASE-Grid 2.0* at a grid cell spacing of 3.125 km. Each grid cell has an extent of ~10 km. The total number of grid cells with at least one location is 780 corresponding to an extent of ~7617 km²; however, less than ~5% of this extent is an actual detection. The maximum number of detections in a grid cell is 50, corresponding to an extent of ~0.25 km²

173 or ~8% of a grid cell. These three locations are along crossing flight lines near Test Site 1 (Fig. 1). The

remaining detections are along linear flight lines. The mean number of detections in a grid cell is 18,
 corresponding to ~0.09 km² or ~1% of a grid cell.

176

177 **2.4 Algorithm**

178 **2.4.1 L-band perennial firn aquifer signatures**

179 We analyzed V- and H-pol T_B time series over and around the MCoRDS-derived perennial firn aquifer locations projected on the EASE-Grid 2.0. These time series were overlaid with TIR T_B-derived surface 180 181 freeze-up and melt onset dates to partition the freezing season. Throughout Greenland's percolation facies, 182 T_B magnitudes over perennial firn aquifer areas are radiometrically warm, ranging from ~200 K to 240 K (V-183 pol channel) and ~160 K to 200 K (H-pol channel). L-band T_B signatures exhibit relatively slow (i.e., time 184 scales of ~months) exponential decreases that approach or achieve relatively stable T_R magnitudes late in 185 the freezing season. Exponential decreases are the slowest in the physically warmer southern regions of 186 the Greenland Ice Sheet, and increase moving toward the colder northern regions. In contrast, T_{R} 187 magnitudes over other percolation facies areas where seasonal meltwater is refrozen and stored 188 exclusively as embedded ice are radiometrically colder, ranging from ~130 K to 200 K (V-pol channel) and 189 ~ 100 to 160 K (H-pol channel). L-band T_B signatures exhibit relatively rapid (i.e., time scales of ~weeks to days) exponential decreases, subsequently achieve relatively stable T_B magnitudes early in the freezing 190 191 season, and remain relatively stable until melt onset the following year. Exponentially decreasing signatures 192 transition smoothly between these two areas – there is no distinct T_B signature that delineates a boundary. 193

194 2.4.2 Continuous logistic model

We seek a simple mathematical relation that can be fit to the exponentially decreasing L-band T_B signatures 195 196 observed over Greenland's percolation facies. The continuous logistic model satisfies this requirement. It 197 is based on a differential equation that models the increase or decrease in many types of physical systems 198 as a set of simple S shaped or 'sigmoidal' curves. These curves begin with an initial interval of increase or 199 decrease that is approximately exponential. Then, as the function approaches its limit, the increase or 200 decrease slows to approximately linear. Finally, as the function asymptotically reaches its limit, the increase 201 or decrease exponentially tails off and achieves stable values. The continuous logistic model is described 202 by a differential equation known as the logistic equation 203

$$\frac{dx}{dt} = \zeta x (1-x),$$

208 209

214 215 216

204

205

207

$$x(t) = \frac{1}{1 + \left(\frac{1}{x_0} - 1\right)e^{-\zeta t}},$$
(2)

where x_o is the function's initial value, ζ is the function's exponential rate of increase or decrease, and *t* is time. The function x(t) is also known as the sigmoid function. We use the sigmoid function to model the observed exponentially decreasing L-band T_B signatures as a set of decreasing sigmoidal curves. To simplify the analysis, the T_B time series for each grid cell is first normalized

$$T_{B,N}(t) = \frac{T_B(t) - T_{min}}{T_{max} - T_{min}}.$$
(3)

where T_{min} is the minimum brightness temperature and T_{max} is the maximum brightness temperature. The sigmoid fit is then applied as

 $T_{B,N}(t \in [t_{sfu}, t_{mo}]) = \frac{1}{1 + \left(\frac{1}{T_{B,N}(t_{sfu})} - 1\right)e^{-\zeta t}}.$ (4)

221

220

Here $T_{B,N}(t \in [t_{sfu}, t_{mo}])$ is the normalized brightness temperature during the freezing season on the time interval $t \in [t_{sfu}, t_{mo}]$, where t_{sfu} is the surface freeze-up date, and t_{mo} is the melt onset date. The initial normalized brightness temperature is the function's value at the surface freeze-up date, $T_{B,N}(t_{sfu})$, while

(1)

the final normalized brightness temperature is the function's value at the melt onset date $T_{B,N}(t_{mo})$. Note that $T_{B,N}(t_{mo})$ can be set by an appropriate selection of a ζ value.

228 An example set of simulated sigmoidal curves generated using eq. 3 and eq. 4 is shown in Fig. 2a. For 229 these simulated curves, the normalized brightness temperature at surface freeze-up is fixed at a value of 230 $T_{B,N}(t_{sfu}) = 0.9$, and the freezing-season duration is set to a value of $t \in [t_{sfu}, t_{mo}] = 300$ days, which is within the TIR T_B -derived freezing season duration range t = [178 days, 364 days]. The function's exponential rate 231 232 of normalized brightness temperature decrease is set to values between $\zeta = [-1, 0]$, incremented by steps 233 of 0.004. This interval represents our model of exponentially decreasing L-band T_B signatures over 234 Greenland's percolation facies. The blue lines correspond to the interval $\zeta \in [-0.04, -0.008]$, and produce 235 curves similar to those over perennial firn aquifer areas identified via airborne ice-penetrating radar surveys. 236 This interval is used to calibrate the curve fitting algorithm (described in section 2.5). The grey lines 237 correspond to the interval $\zeta \in [-1, -0.04]$, and produce curves similar to those over percolation facies areas 238 where seasonal meltwater is refrozen and stored exclusively as embedded ice.

239

227

240 **2.5 L**-band **T**_B-derived perennial firn aquifer maps

241 The curve fitting algorithm proceeds by smoothing V-pol T_B time series that have been partitioned by TIR 242 T_{B} -derived surface freeze-up and melt onset dates, and then iteratively applying the sigmoid fit. This results 243 in a reduced chi-squared error statistic when fitting V-pol T_B time series to the sigmoid function. The V-pol 244 channel exhibits decreased sensitivity to changes in the volumetric fraction of meltwater as compared to 245 the H-pol channel. We attribute these differences to reflection coefficient differences between channels. 246 We note, however, that both channels provide reasonable results. Normalized brightness temperature at 247 surface freeze-up is fixed at a value of $T_{B,N}(t_{sfu}) = 0.9$. Fixing this parameter provides a uniform parameter 248 space in which we can simply analyze ζ values. Although several fixed parameters were tested, this value 249 minimized the influence of meltwater detection (i.e., sharp increases in T_{R} time series) resulting from 250 observational gaps and cloud contamination in the surface freeze-up dates, and provided more robust curve 251 fittina. 252

253 To distinguish between perennial firn aguifer areas and percolation facies areas where seasonal meltwater 254 is refrozen and stored exclusively as embedded ice, we calibrated the curve fitting algorithm using the 255 MCoRDS-derived perennial firn aquifer locations projected on the EASE-Grid 2.0. For each grid cell we 256 extracted V-pol T_B time series and ζ values, and for each of these calibration parameters we calculated the 257 standard deviation (σ). We set thresholds of $\pm 2\sigma$ in an attempt to eliminate peripheral grid cells near the ice 258 sheet edge and near the upper perennial firn aquifer boundary where L-band emissions are influenced by 259 morphological features, such as crevasses and exposed glacial ice, and mix with emissions from rock, land, 260 the ocean, and adjacent percolation facies areas. We set a minimum brightness temperature threshold of 261 T_{min}=200, and a maximum brightness temperature threshold of T_{max}=240, and an exponential rate of 262 normalized brightness temperature decrease threshold of $\zeta \in [-0.04, -0.008]$. If the calibration parameters 263 are within the threshold intervals, the grid cell is converted to a simple binary parameter to map extent. V-264 pol T_B time series iteratively fit to the sigmoid function converge quickly (i.e., algorithm iterations $I \in [5, 19]$), 265 and observations are a good fit (i.e., chi squared error statistic is $\chi^2 \in [0, 0.06]$), indicating our algorithm 266 provides a plausible satellite-derived map of the extent of Greenland's perennial firn aquifers. 267

268 We note, however, that the lack of a distinct L-band T_R signature that delineates the boundary between 269 perennial firn aquifer areas and adjacent percolation facies areas, and the limited extent the of MCoRDS-270 derived perennial firn aquifer locations as compared to the grid cell size and effective resolution of the V-271 pol T_B time series results in significant uncertainty in the mapped extent. If V-pol T_B time series are not quite 272 within the calibration intervals, it does not necessarily indicate that a perennial firn aquifer is not present 273 over at least a percentage of a grid cell. A sensitivity analysis suggests that even small changes in the calibration intervals (i.e., several Kelvin for T_{min} and T_{max} values, and several hundredths of a percentage point for ζ values) can result in extent changes of hundreds of square kilometers. Thus, the mapped extent 274 275 276 should simply be considered a rough estimate. 277

Fig. 2b illustrates examples of V-pol T_B time series over Test Sites 1-6 (Fig. 1) that have been iteratively fit to the sigmoid function using the curve fitting algorithm. Test Sites 1-4 (blue, cyan, green, and yellow circles

280

281

282 Figure 2

283 (a) Example set of simulated sigmoidal curves corresponding to the interval $\zeta \in [-1, 0]$ which represents 284 our model of exponentially decreasing L-band T_{R} signatures over Greenland's percolation facies. Blue lines 285 correspond to the MCoRDS-derived calibration interval $\zeta \in [-0.04, -0.008]$ used to map Greenland's 286 perennial firn aquifers; grey lines correspond to the interval $\zeta \in [-1, -0.04)$, which represents percolation facies areas where seasonal meltwater is refrozen and stored exclusively as embedded ice. (b) Examples 287 288 of T_R time series over Test Sites 1-6 that have been iteratively fit to the sigmoid function using the curve fitting algorithm. Test Site 1 (blue circles and line); Test Site 2 (cyan circles and line); Test Site 3 (red circles 289 290 and line); Test Site 4 (green circles and line); Test Site 5 (orange circles and line); Test Site 6 (yellow circles 291 and line); associated curve fitting parameters (i.e., I, χ^2 , ζ)(upper right table). 292

and lines) are examples of the relatively slowly exponentially decreasing L-band T_B signatures exhibited over perennial firn aquifers areas. Test Sites 4 and 5 (red and orange circles and lines) are examples of the relatively rapidly exponentially decreasing L-band T_B signatures exhibited over other percolation facies areas. The associated curve fitting parameters (i.e., I, χ^2, ζ) for each of the Test Sites are given in the upper right table.

299 3 Results

300 Fig. 3 shows the 2015-2016 L-band T_B-derived perennial firn aquifer extent generated by the curve fitting 301 algorithm (Fig. 3a) versus the 2016 MCoRDS-derived perennial firn aquifer locations (Fig. 3b). The GIMP-302 derived ice sheet extent (~1.8 x 10⁶ km²) is delineated via the peripheral white line. During the 2015 melting season, the TIR T_B -derived seasonal surface meltwater extent (~1.0 x 10⁶ km²) is delineated via the red 303 304 lines, and extends over ~57% of the total ice sheet extent. During the spring of 2016, the L-band T_R -derived 305 perennial firn aquifer extent (66,000 km²) is mapped in blue, and extends over ~7% of the seasonal surface 306 meltwater extent, and ~4% of the total ice sheet extent. Perennial firn aquifer areas are mapped in 307 northwestern Greenland along the Lauge Koch Coast, in southern Greenland near Narsag, in southeastern 308 Greenland along the King Frederick VI Coast and in King Christian IX's Land, and in central eastern 309 Greenland along the Blosseville Coast, on the Geike Plateau, and in King Christians X's Land.

310

311 The L-band T_{B} -derived perennial firn aguifer extent is generally consistent with previous C-band (5.3 GHz) 312 satellite radar scatterometer-derived extents mapped using the Advanced SCATterometer (ASCAT) on the 313 European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Meteorological 314 Operational A (MetOP-A) satellite (2009-2016, ~52,000 km²-153,000 km², Miller, 2019), and the Active 315 Microwave Instrument in scatterometer mode (ESCAT) on ESA's European Remote Sensing (ERS) satellite 316 series (1992-2001, ~37,000 km² -64,000 km², Miller, 2019) as well as with the C-band (5.4 GHz) synthetic 317 aperture radar-derived extent mapped using the synthetic aperture radar on ESA's Sentinel-1 satellite 318 (2014-2019, 54,000 km², Brangers et al., 2020). 319

320 4 Discussion and future work

321 Our results indicate satellite L-band microwave radiometry is an effective tool for mapping the extent of 322 Greenland's perennial firn aquifers. We have derived an empirical algorithm by analyzing spatiotemporal 323 differences in exponentially decreasing T_B signatures over Greenland's percolation facies. We have found 324 that by correlating exponentially decreasing T_B signatures with perennial firn aquifer areas identified via 325 airborne ice-penetrating radar surveys that this algorithm can be calibrated, however, with significant 326 uncertainty in the boundary between perennial firn aquifer areas and other percolation facies areas where 327 seasonal meltwater is refrozen and stored exclusively as embedded ice.

While in this study we converted the exponential rate of T_B decrease to a simple binary mapping parameter and normalized T_B time series, an improved understanding of the physics controlling L-band perennial firm aquifer emissions is critical for the development of more sophisticated retrieval techniques to map an accurate extent as well as other parameters, such as physical temperature (Jezek et al., 2015) and depth to the upper surface of stored meltwater. Depth is a key control on meltwater-driven hydrofracture (van der Veen, 2007) and thus, the retrieval of this parameter from space has important implications for monitoring ice sheet-wide instability and ongoing mass loss.

337 Perennial firn aquifers represent a radiometrically cold subsurface reservoir, similar to subglacial lakes, as 338 suggested by Jezek et al., (2015). Field measurements suggest that the volumetric fraction of meltwater 339 within Greenland's perennial firn aquifers may be as high as ~25% (Koenig et al., 2014), resulting in high 340 permittivity ($\varepsilon_r \approx 9 + 1i$) which limits the transmission of electromagnetic radiation (~10%). Upwelling L-band 341 emissions from deeper glacial ice, and from below the upper surface of stored meltwater, are extinguished 342 by reflection at water-saturated layer interfaces. While radiometrically cold, the slow refreezing of deeper 343 firn layers saturated with large volumetric fractions of meltwater represents a significant source of latent 344 heat that is continuously released throughout the freezing season. Refreezing of seasonal meltwater by the 345 descending winter cold wave, and the subsequent formation of embedded ice structures within the upper 346 firn layers, represents a secondary source of latent heat. Perennial firn aquifer areas are physically, and thus radiometrically, warmer than other percolation facies areas where the single source of latent heat isvia refreezing of seasonal meltwater, and the formation of embedded ice structures.

349

350 We hypothesize the key control on the relatively slow exponential rate of T_B decrease in perennial firm 351 aquifer areas is physical temperature at depth. L-band emissions from radiometrically warm firn layers are 352 decreased over time as embedded ice structures slowly refreeze at increased depths below the ice sheet 353 surface. Refreezing of seasonal meltwater results in the formation of an intricate network of embedded ice 354 structures (i.e., ice pipes, lenses, and layers) that are large (~10-100 cm long, ~10-20 cm wide, Jezek et 355 al., 1994) relative to the L-band wavelength (~21 cm) and induce strong volume scattering (Rignot, 1995). Simulating the exponential rate of T_B decrease and the associated changes in T_B magnitudes over perennial 356 357 firn aquifer areas by combining electromagnetic forward models that include embedded ice structure 358 parametrizations (Jezek et al., 2018) with plausible models of depth dependent physical properties can test 359 this hypothesis and is the focus of ongoing studies. Of particular interest is understanding the relationship 360 between the exponential rate of T_B decrease, and changes in the depth to the upper surface of stored 361 meltwater over time. 362

363 364

365 Figure 3

366(a) 2015-2016 L-band T_B -derived perennial firn aquifer extent (blue shading) overlaid on an enhanced-367resolution (3.125 km) V-pol L-band T_B image collected 15 April 2016 by the microwave radiometer on the368SMAP satellite during the evening orbital pass interval over Greenland (Long et al., 2019). (b) MCoRDS-369derived perennial firn aquifer locations (blue circles, Miège et al., 2016) along OIB flight lines (yellow lines);370MODIS TIR T_B -derived seasonal surface meltwater extent (red lines); and coastlines (black lines, Wessel371and Smith, 1996).

Data availability.

Enhanced-resolution L-band T_B image time series have been produced as part of the NASA Science Utilization of SMAP project and are available at https://doi.org/10.5067/QZ3WJNOUZLFK. IST image time series have been produced as part of the Multilayer Greenland Ice Surface Temperature, Surface Albedo, and Water Vapor from MODIS V001 data set and available are at https://doi.org/10.5067/7THUWT9NMPDK. The NASA MEaSURE's Greenland Ice Mapping Project (GIMP) Land Classification Mask, Version 1 is Ice and Ocean available at https://doi.org/10.5067/B8X58MQBFUPA. The coastline data is available from GSHHG - A Global Selfconsistent, Hierarchical, High-resolution Geography Database http://marine.gov.scot/data/gshhg-globalself-consistent-hierarchical-high-resolution-geography-database.

Author contributions.

JZM initiated the study, performed the analyses, and wrote the manuscript. DGL and MJB generated the enhanced-resolution L-band T_B image time series. JZM and DGL developed the empirical algorithm. CAS provided perspective on the IST data. KCJ and JZM imagined the emissions concept. All authors reviewed and commented on manuscript drafts.

Competing interests.

The authors declare that they have no competing interests.

Acknowledgments.

JZM would like to thank the Byrd Postdoctoral Fellowship Program. This work was supported by the NASA Instrument Incubator Program (grant #NNX14AE68G) and the NASA Cryospheric Science Program (#80NSSC18K0550) under grants to The Ohio State University, and by the NASA Cryospheric Science Program (#80NSSC18K1055) and the NSF Antarctic Glaciology Program (# PLR-1745116) under grants to the University of Colorado. Additional support was provided by NASA Headquarters Cryospheric Science Program. We would like to thank Dorothy Hall for providing the IST image time series very early in the study, and Clement Miège for providing the MCoRDS-derived perennial firn aquifer locations.

Development and production of the enhanced-resolution SMAP data used for this research was supported by the NASA ROSES Program Element "Science Utilization of Soil Moisture Active Passive Mission" under grants to Brigham Young University (#NNX16AN01G) and the University of Colorado at Boulder (#NNX16AN02G).

References

Brangers, I., Lievens, H., Miège, C., Demuzere, M., Brucker, L., and De Lannoy, G. J. M.: Sentinel-1 detects firn aquifers in the Greenland ice sheet. Geophysical Research Letters, 47, e2019GL085192. https://doi.org/10.1029/2019GL085192, 2020.

Brodzik, M. J., Billingsley, B., Haran, T., Raup, B., and Savoie, M. H.: EASE-Grid 2.0: incremental but significant improvements for Earth-gridded data sets. ISPRS International Journal of Geo-Information, 1 (1), 32-45, http://www.mdpi.com/2220-9964/1/1/32/, 2012.

Fountain, A. G., and Walder, J. S.: Water flow through temperate glaciers, Review of Geophysics., 36(3), 299–328, https://doi.org/10.1029/97RG03579, 1998.

Forster, R. R., Box, J. E., Van Den Broeke, M. R., Miège, C., Burgess, E. W., Van Angelen, J. H., Lenaerts, J. T. M., Koenig, L. S., Paden, J., Lewis, C., Gogineni, S. P., Leuschen, C., and McConnell, J. R.: Extensive liquid meltwater storage in firn within the Greenland Ice Sheet, Nature Geoscience, 7(2), 95-98, https://doi.org/10.1038/ngeo2043, 2014.

Hall, D. K., Comiso, J. C., Digirolamo, N. E., Shuman, C. A., Key, J. R., and Koenig, L. S.: A satellite-derived climate-quality data record of the clear-sky surface temperature of the Greenland ice sheet, Journal of Climate, 25 (14), 4785-4798, https://doi.org/10.1175/JCLI-D-11-00365.1, 2012.

Howat, I., A. Negrete, and B. Smith: The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets, The Cryosphere, 8, 1509-1518, https://doi.org/10.5194/tc-8-1509-2014, 2014.

Jezek, K. C., Johnson, J. T., Drinkwater M. R., Macelloni G., Tsang L., Aksoy M., and Durand M.: IEEE Transactions on Geoscience and Remote Sensing, 53 (1), 134-143, https://doi.org/10.1109/TGRS.2014.2319265, 2015.

Jezek, K. C., Johnson J.T., Tan S., Tsang L., Andrews, M. J., Brogioni M., Macelloni G., Durand M., Chen, C. C., Belgiovane, D. J., Duan, Y., Yardim, C., Li, H., Bringer, A., Leuski, V., and Aksoy, M.: 500–2000-MHz brightness temperature spectra of the northwestern Greenland Ice Sheet, IEEE Transactions on Geoscience and Remote Sensing, 56 (3), 1485-1496, https://doi.org/10.1109/TGRS.2017.2764381, 2018.

Jezek, K. C., P. Gogineni, and M. Shanableh. Radar measurements of melt zones on the Greenland Ice Sheet, Geophysical Research Letters, vol. 21, (1), pp. 33-36, https://doi.org/10.1029/93GL03377, 1994.

Koenig, L. S., C. Miège, R. R. Forster, and L. Brucker: Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer, Geophysical Research Letters, 41, 81–85, https://doi.org/10.1002/2013GL058083, 2014.

Leuschen, C., Gogineni, P., Hale, R., Paden, J., Rodriguez-Morales, F., Panzer B., and Gomez, D.: IceBridge MCoRDS L1B geolocated radar echo strength profiles, version 2 [2010–2014], NASA DAAC at the National. Snow and Ice Data Center, Boulder, Colorado.

Long, D. G., Brodzik, M. J., and Hardman, M. A.: Enhanced–resolution, SMAP brightness temperature image products, IEEE Transactions on Geoscience and Remote Sensing, 57 (7), 4151-4163, https://doi.org/10.1109/TGRS.2018.2889427, 2019.

Miège, C., Forster, R. R., Brucker, L., Koenig, L. S., Solomon, D. K., Paden, J. D., Box, J. E., Burgess, E. W., Miller, J. Z., McNerney, L., Brautigam, N., Fausto, R. S., and Gogineni, S.: Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars, Journal of Geophysical Research: Earth Surface, 121 (12), 2381-2398. https://doi.org/10.1002/2016JF003869, 2016.

Miller, J. Z., Forster, R. R., Long, D. G., Brewer, S.: Satellite observation of winter season subsurface liquid melt water retention on the Greenland Ice Sheet using spectroradiometer and scatterometer data, AGU Fall Meeting, San Francisco, California, USA, 9–13 December 2013, C51A-0508, 2013.

Miller, J. Z.: Mapping Greenland's firn aquifer from space, Ph.D. thesis, Department of Geography, University of Utah, 135 pp., 2019.

Miller, O. L., Solomon, D. K., Miège, C., Koenig, L. S., Forster, R. R., Montgomery, L. N., Schmerr, N., Ligtenberg, S. R. M., Legchenko, A., and Brucker, L.: Hydraulic conductivity of a firn aquifer in southeast Greenland, Frontiers in Earth Science, 5 (38), https://doi.org/10.3389/feart.2017.00038, 2017.

Munneke, P. K., Ligtenberg, S. R. M., Van Den Broeke, M. R., Van Angelen, J. H., and Forster, R. R.: Explaining the presence of perennial liquid water bodies in the firn of the Greenland Ice Sheet: Geophysical Research Letters, 41(2), 476-483. https://doi.org/10.1002/2013GL058389, 2014.

Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan, K., Shuman, C. A., DiGirolamo, N. E., and Neumann, G.: The extreme melt across the Greenland Ice Sheet in 2012, Geophysical Research. Letters, 39, L20502, https://doi.org/10.1029/2012GL053611, 2012.

Rignot, E., Backscatter model for the unusual radar properties of the Greenland Ice Sheet, Journal of Geophysical. Research, 100(E5), 9389–9400,, https://doi.org/10.1029/95JE00485, 1995.

Shuman, C. A., Halle, D. K., DiGirolamo, N. E, Mefford T. K., and Schnaubelt, M. J.: Comparison of nearsurface air temperatures and MODIS ice-surface temperatures at Summit, Greenland (2008–13), J. Appl. Meteor. Climatol., 53, 2171–2180, https://doi.org/10.1175/JAMC-D-14-0023.1, 2014.

van der Veen, C.J.: Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers, Geophysical Research Letters, 34 (1), https://doi.org/10.1029/2006gl028385, 2014.

Wessel, P. and Smith, W.H.F: A global, self-consistent, hierarchical, high-resolution shoreline database. Journal of Geophysical Research, 101, 8741-8743, http://dx.doi.org/10.1029/96JB00104, 1996.