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Abstract. The polar ice sheets have undergone unprecedented melt events in the recent past years, which have consequences 

for ice sheet mass balance, stability, and sea level. In this study, we employed L-band (1.4 GHz) brightness temperature 

observations collected by NASA’s Soil Moisture Active Passive (SMAP) mission to investigate the extent, duration and 

intensity of melt events on the Antarctic Ice Sheet from 2015 to 2020. Satellite microwave measurements have long been used 

to detect melt events because of their sensitivity to the presence of liquid water in snow and ice. The observed microwave 15 

response depends on the sensor measurement frequency. Our hypothesis for this study is that the relatively long wavelength 

SMAP observations can detect a wider range of surface wetness conditions relative to shorter wavelength microwave 

observations that attain signal saturation at relatively lower wetness levels and within shallower surface layers. SMAP provides 

nearly all-weather surface monitoring over all of Antarctica twice daily with morning and evening overpasses at about 40 km 

spatial resolution. We applied an empirical threshold algorithm using horizontally and vertically polarized microwave 20 

brightness temperature differences to detect surface melt events over Antarctica from 2015 through 2020. The results show 

that the SMAP empirical algorithm can be used to detect melt extent and duration, and the geophysical model-based algorithm 

can be used to detect snow wetness, which can be used as an indicator of melt intensity. Analysis of the melt seasons between 

2015 and 2020 show that even though the melt extent in 2019-2020 was not as large as during the 2015-2016 melt season, it 

was significantly more intense, particularity on the West Antarctic Ice Sheet. 25 

1 INTRODUCTION 

Temperatures are increasing across large parts of Antarctica as a result of climate warming (Steig, et al., 2009). Monitoring 

the melt extent and duration over Antarctic ice shelves and coastal areas is important for documenting climate change impacts 

on ice sheet stability and sea level rise (Liu, et al., 2006; Picard et al., 2007; Golledge, et al., 2015). Shepherd et al. (2018) 

found that the Antarctic ice loss between 1992 and 2017 corresponds to an increase in mean sea level rise of 7.6 mm. Slater et 30 

al. (2020) showed that the Antarctica has been losing ice mass at an increasing rate in the recent decades, while Frederikse et 

al. (2020) showed that the relative significance of Antarctica’s influence on sea level rise will increase in the future. Intense 

melting over multiple years can result in catastrophic ice shelf collapse and disintegration (Scambos, et al., 2000). The 
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Antarctic Peninsula, in particular, has experienced several major ice shelf collapses as a result of a significant annual melt 

cycle (Datta, et al., 2019).  35 

Due to their all-weather operational capability and sensitivity to the presence of the liquid water in snow, both satellite 

microwave radar and radiometer systems are commonly used to detect melt events over Greenland (Ashcraft & Long, n.d.; 

Mote & Anderson, 1995; Mote, et al., 1993; Wismann, 2000). Past studies reporting on melt events over Antarctica commonly 

used 19 GHz and 37 GHz frequencies available from several satellite sensors, such as the Scanning Multichannel Microwave 

Radiometer (SMMR) on the Nimbus 7 satellite or the Special Sensor Microwave/Imager (SSM/I) and Special Sensor 40 

Microwave Imager Sounder (SSMIS) from the Defense Meteorological Satellite Program (DMSP) satellites, since the 

beginning of the satellite era (e.g., (Liu, et al., 2006; Picard et al., 2007; Scambos, et al., 2000; Ridley, 1993; Zwally & S. 

Fiegles, 1994; Torinesi, et al., 2003).  

L-band (1.4 GHz) radiometer systems may provide more comprehensive information on the polar ice sheets because the larger 

characteristic ice penetration and sensing depth at lower microwave frequencies, which can extend up to hundreds of meters 45 

(Jezek et al., 2015),  (Leduc-Leballeur, et al., 2020; Jezek et al., 2018; Macelloni et al., 2019; Miller et al., 2020). In this paper, 

we investigated the response of the L-band radiometer on the NASA SMAP (Soil Moisture Active Passive) satellite, launched 

in January 2015, to Antarctica melt events (Entekhabi, et al., 2010). The objective of the study was to detect dielectric changes 

in the surface composition, such as snow wetness percentage, and relate those changes to melt events. Studies have shown that 

the surface of the ice sheet may warm to depths of about 3 m during melt events (Munneke, et al., 2018). Our hypothesis was 50 

that the long wavelength measurements from SMAP are more sensitive to a higher melt intensity and deeper surface 

snow/firn/ice layers than the shorter wavelength measurements used by more conventional satellite microwave radiometers. 

Our approach was to develop an empirical algorithm to detect melt events and a geophysical model-based algorithm to 

determine spatial and temporal variations in surface wetness over the Antarctica ice sheet using SMAP brightness temperature 

retrievals. This paper is organized as follows. In Sect. 2, we briefly talk about the SMAP data and our approach to detecting 55 

melt events using SMAP microwave observations. In Sect. 3, we introduce our geophysical forward modeling, and Sect. 4 

explains our empirical and model-based melt detection and snow wetness retrieval algorithms. Sect. 5 demonstrates the melt 

detection and snow wetness retrieval results from both the empirical and the model-based algorithms. Sect. 6 presents our 

conclusions.  

 60 

2 Data and Methods 

2.1 SMAP Data 

NASA launched the SMAP mission on January 31, 2015; the science data production began on March 31, 2015. The L-band 

radiometer on-board the satellite includes vertically (V) and horizontally (H) polarized brightness temperature (TB) channels. 

The SMAP TB measurements have a 38 km spatial footprint (defined by the half-power footprint on the Earth’s surface of the 65 

radiometer antenna pattern), and the data are gridded on a 9-km polar equal-area projection grid (Chaubell, et al., 2016). The 
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SMAP satellite has a sun-synchronous 6AM/6PM equator-crossing orbit, a constant 40° sensor incidence angle, and an 

approximate 1000-km swath width (Piepmeier et al., 2017). This enables daily coverage of the Antarctic Ice Sheet with both 

AM and PM overpasses. The radiometric resolution of the gridded SMAP TB product is less than 0.5 K (Piepmeier et al., 

2017). 70 

2.2 Method 

The presence of even a small amount of liquid water in the surface snowpack significantly impacts the electrical properties of 

snow at microwave frequencies (Ulaby & Long, 2014). This results in large changes in the microwave TB measurements, 

which permits melt detection and derivation of melt related characteristics (Ulaby & Long, 2014). Our method is composed of 

detecting melt events from the changes of normalized polarization ratio (NPR) and V-polarized TB with respect to reference 75 

values computed during winter conditions, and subsequently, estimating snow wetness for melt events using a snow model. 

We use snow wetness as an indicator of melt intensity. The NPR is computed as follows:  

NPR =
𝑇𝐵𝑣

− 𝑇𝐵ℎ

𝑇𝐵𝑣
+ 𝑇𝐵ℎ

 (1) 

 

where 𝑇𝐵𝑣
 and 𝑇𝐵ℎ

 are V- and H-polarized TB, respectively. The advantage of using NPR in addition to 𝑇𝐵𝑣
 is that it does not 

depend on the physical temperature of the snow and ice, but is a function of dielectric changes, which vary between different 80 

seasons. 

Fig. 1 (a) and (b) show the regional pattern of the NPR reference value (NPRref) and the maximum NPR seasonal difference 

from reference conditions for the 2015-2016 austral melt season (Oct 31, 2015 – May 31, 2016), respectively. The NPRref is 

the temporal mean of the 𝑁𝑃𝑅 from Oct 17 to Oct 31 in each calendar year. The analysis showed that the NPR value both 

increased and decreased from the winter season average at different locations. The positive NPR change is expected for dry 85 

snow conditions or areas that typically experience limited seasonal melting. These areas consist of layered snow and firn, and 

penetration depths can be up to hundreds of meters (Jezek et al., 2015). The NPR is relatively low in these areas, and Melt 

events cause the NPR to increase because the presence of meltwater causes a greater V and H polarization difference than 

under dry snow/ice conditions. The case for the negative NPR change is somewhat more complex. In areas that experience 

seasonal melting with complex subsurface structures like ice pipes and lenses, the penetration depth is reduced to tens of meters 90 

(Miller et al., 2020). The NPR is relatively high for these areas, and the presence of meltwater during the melt events causes 

the NPR to decrease because it extinguishes signals with a large polarization difference emanating from structures inside the 

ice sheet. 

After detecting the melt areas, we retrieve snow wetness based on a geophysical multi-layer snow emission model. The model 

relates observed TB changes to the amount of liquid water in the surface layers of the ice sheet. The model is formulated 95 

somewhat differently for the increasing and decreasing NPR cases as is detailed in Sect. 3.  
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(a) (b) 

Fig. 1. (a) The maximum of the SMAP 𝚫𝑵𝑷𝑹 and (b) 𝑵𝑷𝑹𝒓𝒆𝒇  for an austral melt season (Oct 31, 2015 – May 31, 2016) over 

Antarctica. 

3 Forward Geophysical Modelling 

In this section, we calculate the H- and V-polarization TB (𝕋𝐵ℎ, 𝕋𝐵𝑣) for a multi-layer medium using the incoherent approach 100 

of radiative transfer (RT) theory (Ulaby & Long, 2014; Tsang, et al., 2000). As the 𝑁𝑃𝑅 increases and decreases during the 

melt season depending on the location, we developed two separate models for each of these scenarios. One scenario has a 

three-layer medium (air, wet snow, and dry snow layers) for the case of increasing NPR, and one with a four-layer medium by 

adding a middle layer between the wet and dry snow layers of the three-layer model for the case of a decreasing NPR. 

3.1 Three-Layer Model (Increasing NPR) 105 

Fig. 2(a) shows the configuration of the three-layer model, which consists of air, wet snow, and semi-infinite dry snow layers 

with two boundaries at 𝑧 = −𝑑1 = 0 and 𝑧 = −𝑑2 = −𝑑𝑤𝑒𝑡2, where 𝑑𝑤𝑒𝑡2  is the thickness of the wet snow layer. In this 

schematic diagram,  𝜃2 and 𝜃3 are the angles of the wave propagation inside layers 2 and 3, respectively, which can be found 

from the known observation angle, 𝜃1, using Snell’s law. The dielectric constant of the wet snow and dry snow layers are 

estimated as explained in (Ulaby & Long, 2014). 110 

Because of the long wavelength of L-band, the model does not include volume and surface scattering, which are critically 

important at higher frequencies. For simplicity, the model assumes ideal conditions for the environment, and therefore ignores 

other complicating factors such as radio frequency interference and atmospheric attenuation. The upward and downward 

traveling components of the TB in the 𝑛-th layer are given by 

 115 

𝕋𝐵2𝑝
𝑢 (𝜃2, 𝑧) = 𝕋𝐵2𝑝

𝑢 (𝜃2, −𝑑2)𝑒−𝑘𝑎2
(𝑧+𝑑2) sec 𝜃2 + (1 − 𝑒−𝑘𝑎2

(𝑧+𝑑2) sec 𝜃2)𝑇02
 (2) 
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𝕋𝐵2𝑝
𝑑 (𝜃2, 𝑧) = 𝕋𝐵2𝑝

𝑑 (𝜃2, −𝑑1)𝑒𝑘𝑎2
(𝑧+𝑑1) sec 𝜃2 + (1 − 𝑒𝑘𝑎2

(𝑧+𝑑1) sec 𝜃2)𝑇02
 (3) 

 

where the subscript 𝑝 = (ℎ, 𝑣) stands for the polarization, 𝑇02
 is the physical temperature of the second layer, and 𝑘𝑎2

=

−2ℑ{𝜔√𝜇2𝜖2} is the power absorption coefficient of the layer 2, where 𝜇2 = 𝜇1 (nonmagnetic material), and  𝜖2 = 𝜖2
′ − 𝑗𝜖2

′′. 

The superscripts 𝑢 and 𝑑 show upward and downward dwelling components of the TB. The boundary conditions at the top 120 

and lower boundary are given by 

𝕋𝐵2𝑝
𝑑 (𝜃2, 𝑧 = −𝑑1) = Γ𝑝12

𝕋𝐵2𝑝
𝑢 (𝜃2, 𝑧 = −𝑑1) (4) 

  

𝕋𝐵2𝑝
𝑢 (𝜃2, −𝑑2) = Γ𝑝23

𝕋𝐵2𝑝
𝑑 (𝜃2, −𝑑2) + (1 − Γ𝑝23

) 𝑇03
 (5) 

 

where 𝑇03
 is the physical temperature of the third layer, and Γ𝑝12

 and Γ23 are the Fresnel reflectivity at the top and lower 

boundaries, respectively. It is assumed that there is no horizontal variation, and the boundaries are locally flat within the 

antenna footprint. Using equations (2)-(5), the upward and downward emission are given by 125 

𝕋𝐵2𝑝
𝑑 (𝜃2, 𝑧) =

𝛤𝑝12
𝛤𝑝23

𝑒𝑘𝑎2
(𝑧−𝑑2) 𝑠𝑒𝑐 𝜃2

1 − 𝛤𝑝12
𝛤𝑝23

𝑒−2𝑘𝑎2𝑑2 𝑠𝑒𝑐 𝜃2
[𝛤𝑝12

(1 − 𝛤𝑝23
)𝑇03

𝑒−2𝑘𝑎2𝑑2 𝑠𝑒𝑐 𝜃2

+ 𝛤𝑝12
(𝑒−𝑘𝑎2𝑑2 𝑠𝑒𝑐 𝜃2 − 𝑒−2𝑘𝑎2𝑑2 𝑠𝑒𝑐 𝜃2)𝑇02

+ (1 − 𝑒−𝑘𝑎2𝑑2 𝑠𝑒𝑐 𝜃2)𝑇02
]

+ 𝛤𝑝12
(1 − 𝛤𝑝23

)𝑇03
𝑒𝑘𝑎2

(𝑧−𝑑2) 𝑠𝑒𝑐 𝜃2 + 𝛤𝑝12
(𝑒𝑘𝑎2𝑧 𝑠𝑒𝑐 𝜃2 − 𝑒𝑘𝑎2

(𝑧−𝑑2) 𝑠𝑒𝑐 𝜃2)𝑇02

+ (1 − 𝑒−𝑘𝑎2𝑑2 𝑠𝑒𝑐 𝜃2)𝑇02
 

 

(6) 

 

𝕋𝐵2𝑝
𝑢 (𝜃2, 𝑧) = 𝛤𝑝23

 𝕋𝐵2𝑝
𝑑 (𝜃2, −𝑑2)𝑒−𝑘𝑎1

(𝑧+𝑑2) 𝑠𝑒𝑐 𝜃2 + (1 − 𝛤𝑝23
)𝑇03

𝑒−𝑘𝑎2
(𝑧+𝑑2) 𝑠𝑒𝑐 𝜃2 + (1 − 𝑒−𝑘𝑎2

(𝑧+𝑑2) 𝑠𝑒𝑐 𝜃2)𝑇03
 (7) 

 

Finally, the estimated TB at the radiometer antenna (𝕋𝐵𝑝) is given by (8), which is approximately equal to the TB just above 

the top boundary (air-snow) as the atmospheric attenuation is assumed to be negligible in the SMAP L-band frequency (1.41 

GHz). 130 

𝕋𝐵𝑝(𝜃1) ≈ 𝕋𝐵1𝑝
𝑢 (𝜃1, 0) = [1 − 𝛤12

𝑝 (𝜃1)]𝕋𝐵2𝑝
𝑢 (𝜃2, 0) (8) 
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(a) 

 

(b) 

 

Fig. 2. Configuration of the (a) three-layer medium and (b) four-layer medium model design. 

3.2 Four-Layer Model (Decreasing NPR) 

Fig. 2(b) shows the configuration of the four-layer model, which consists of air, wet snow, a high absorptive layer, and a semi-135 

infinite dry snow layers with boundaries at 𝑧 = −𝑑1 = 0 and 𝑧 = −𝑑2 = −𝑑𝑤𝑒𝑡2 , and 𝑧 = −𝑑3 = −(𝑑𝑤𝑒𝑡2 + 𝑑3
′ )  where 

𝑑𝑤𝑒𝑡2 and 𝑑3
′  are the thicknesses of the layers 2 and 3. As the medium 3 does not fall into the category of the wet snow or the 

dry snow models, its real and imaginary parts are considered as two independent parameters in our model. 

To streamline the TB estimation, an effective reflectivity Γ𝑝𝑒𝑓𝑓
(𝜃2) and effective physical temperature 𝑇0𝑒𝑓𝑓

 are used for a 

composite medium combining layer 3 and 4 similar to (Tan, et al., 2019). Then, after introducing the top layer 2, the boundary 140 

conditions are given by 
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𝕋𝐵2𝑝
𝑑 (𝜃𝑛, 𝑧 = −𝑑1) = Γ𝑝12

𝕋𝐵2𝑝
𝑢 (𝜃2, 𝑧 = −𝑑1) (9) 

  

𝕋𝐵2𝑝
𝑢 (𝜃2, −𝑑2) = Γ𝑝𝑒𝑓𝑓

(𝜃2)𝕋𝐵2𝑝
𝑑 (𝜃2, −𝑑2) + (1 − Γ𝑝𝑒𝑓𝑓

(𝜃2)) 𝑇0𝑒𝑓𝑓
 (10) 

 

The Γ𝑝𝑒𝑓𝑓
(𝜃2) is equal to the Fresnel reflectivity of layered media with electrically smooth boundaries, which also consists of 

the coherent interactions, and 𝑇0𝑒𝑓𝑓
 is related to the TB of the composite medium of layers 3 and 4, 𝕋𝐵𝑐𝑜𝑚𝑝

(𝜃2), as given by 

(11). The 𝕋𝐵𝑐𝑜𝑚𝑝
(𝜃2) for this composite medium of layers 3 and 4 can be found using equations (6)-(8), as given in the Sect. 145 

3.1. 

𝑇0𝑒𝑓𝑓
=

𝕋𝐵𝑐𝑜𝑚𝑝
(𝜃2)

1 − Γ𝑝𝑒𝑓𝑓
(𝜃2)

 (11) 

Finally, the observed TB can be calculated using equations (6)-(8) similar to Sect. 3.1, as it is now a three-layer medium with 

the above effective reflectivity and temperature.  

3.3 Simulations 

Figs. 3(a) and (b) illustrate an example where the simulated TB decreases and the 𝑁𝑃𝑅 increases with increasing snow wetness 150 

(three-layer model). Table 1 shows the layer properties for this three-layer model. In Figs. 4(a) and (b) the simulated TB 

increases and the 𝑁𝑃𝑅 decreases with increasing snow wetness (four-layer model). Table 2 shows the layer properties for this 

four-layer model. 

  

(a) (b) 

Fig. 3. (a) Estimated brightness temperature (TB) and (b) normalized polarization ratio (NPR) changes with snow wetness as derived 

from the three-layer model. 155 

https://doi.org/10.5194/tc-2020-297
Preprint. Discussion started: 20 November 2020
c© Author(s) 2020. CC BY 4.0 License.



8 

 

 

Table 1. Layer Properties for the three-layer model. 

Layer Density Thickness Physical Temperature 
Dielectric 

Constant 

Medium 2 

(Wet Snow) 
450 kg/m3 𝑑2 − 𝑑1 = 3 cm 273 K 

From (Ulaby & 

Long, 2014) 

Medium 3 

(Semi-infinite Dry Snow) 
450 kg/m3 Not Required 240 K 

From (Ulaby & 

Long, 2014) 

 

  

(a) (b) 

Fig. 4. (a) Estimated brightness temperature (TB) and (b) normalized polarization ratio (NPR) changes with snow wetness as derived 

from the four-layer model. 160 

Table 2. Layer properties for the four-layer model. 

Layer Density Thickness Physical Temperature 
Dielectric 

Constant 

Medium 2 

(Wet Snow) 
450 kg/m3 𝑑2 − 𝑑1 = 25 cm 273 K 

From (Ulaby & 

Long, 2014) 

Medium 3 

(High Absorptive Layer) 
Not Required 𝑑3 − 𝑑2 = 50 cm 270 K 3.5 − 9𝑗 

Medium 4 

(Semi-infinite Dry Snow) 
450 kg/m3 Not Required 240 K 

From (Ulaby & 

Long, 2014) 
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4 Melt Detection and Snow Wetness Retrieval Algorithm 

4.1 Empirical Threshold Algorithm 

An empirical threshold algorithm is used to detect melt events. The algorithm determines that a melt event has occurred if both 165 

Δ𝑁𝑃𝑅 (= 𝑁𝑃𝑅𝑑𝑎𝑖𝑙𝑦 − 𝑁𝑃𝑅𝑟𝑒𝑓) and Δ𝑇𝐵𝑉 (= 𝑇𝐵𝑉𝑑𝑎𝑖𝑙𝑦
− 𝑇𝐵𝑉 𝑟𝑒𝑓

) are greater than an empirically found threshold value, as 

given by (12) and (13), respectively.  

𝑚1(𝑡) = {
1 (𝑇𝑟𝑢𝑒) |Δ𝑁𝑃𝑅| ≥ 𝑍𝑛𝑝𝑟 × 𝐸[𝑆𝐷[𝑁𝑃𝑅]|𝑊𝑅𝐸𝐹]𝐴𝑙𝑙 𝑃𝑖𝑥𝑒𝑙𝑠

0 (𝐹𝑎𝑙𝑠𝑒) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (12) 

 

𝑚2(𝑡) = {
1 (𝑇𝑟𝑢𝑒) |ΔTBV| ≥ 𝑍𝑡𝑏𝑣 × 𝐸[𝑆𝐷[𝑇𝐵𝑉]|𝑊𝑅𝐸𝐹]𝐴𝑙𝑙 𝑃𝑖𝑥𝑒𝑙𝑠

0 (𝐹𝑎𝑙𝑠𝑒) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

 

where E[] stands for the mean estimator; SD[] stands for the temporal standard deviation estimator; WREF refers to the time 170 

period from Oct 17 to Oct 31; All Pixels refers to taking the spatial average over all Antarctic pixels; and 𝑍𝑛𝑝𝑟 and 𝑍𝑡𝑏𝑣 are 

constant real numbers. This formulation relates the threshold to the variance of the NPR and 𝑇𝐵𝑉, while 𝑍𝑛𝑝𝑟 and 𝑍𝑡𝑏𝑣 are used 

as tuning parameters to determine appropriate threshold levels for each grid cell. A melt event will be detected at time t if both 

𝑚1(𝑡) and 𝑚2(𝑡) indicate a melt event, which corresponds to a bitwise AND operation (⋀) on 𝑚1(𝑡) and 𝑚2(𝑡) binary states. 

A logic truth table is shown in Table 3, where 𝑚(𝑡) is a dimensionless binary state variable designating melt (1) and frozen 175 

(0) conditions.  

The Z parameters dictate how much the NPR and TBV need to deviate from the reference level in order to result in a positive 

indication for melt. Conversely, the 𝑍 parameter determines the false alarm rate (FAR) which can be defined as (De Roo, et 

al., 2007; Mousavi, et al., 2018): 

FAR =
1

2
(1 − erf(𝑍/√2)) (14) 

 180 

where erf(𝑍) is the error function (Mousavi, et al., 2018). For example, the FAR will be about 2.2% and 15.8% for 𝑍 = 2 

and 𝑍 = 1, respectively. Since the FAR for each day in a melt season is independent of other days, the FAR for all days in a 

melt season is related to the FAR for a single day, as given by 

1 − FAR(for all days in a melt season) = (1 − FAR(for one day))
𝑛𝑚𝑠

 (15) 

 

where 𝑛𝑚𝑠 is the total number of days in a melt season, which is from Oct 31 of each calendar year to the May 31 of the 185 

following year, and 𝑛𝑚𝑠 = 212 (assuming February is 28 days). Because we want to keep the FAR small, it can be assumed 

that 𝑍 is selected such that FAR ≪ 1. Therefore, (15) can be simplified to 
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FAR(for all days in a melt season) = 𝑛𝑚𝑠 FAR(for one day) =
𝑛𝑚𝑠

2
(1 − erf(𝑍/√2)) (16) 

 

Since the melt detection is based on a bitwise AND operation, the lower value of the 𝑍 parameter will dictate the final FAR. 

Using these conditions for the 𝑁𝑃𝑅 and 𝑇𝐵𝑉, the right value for the minimum number of days for the winter reference, 𝑁𝑟𝑒𝑓 , 190 

and the 𝑍 parameters can be found by simultaneously satisfying (17a) and (17b). 

𝑁𝑟𝑒𝑓 > (
𝑍𝑛𝑝𝑟

max{Δ𝑁𝑃𝑅}
)

2

× ∑ (𝑁𝑃𝑅𝑖 − 𝑁𝑃𝑅𝑟𝑒𝑓)
2

𝑁𝑟𝑒𝑓

𝑖=1

 

 

(17a) 

𝑁𝑟𝑒𝑓 > (
𝑍𝑡𝑏𝑣

max{Δ𝑇𝐵𝑉}
)

2

× ∑ (𝑇𝐵𝑉 𝑖
− 𝑇𝐵𝑉𝑟𝑒𝑓

)
2

𝑁𝑟𝑒𝑓

𝑖=1

 (17b) 

 

A spatial average of the 𝑁𝑟𝑒𝑓  over all pixels can be performed to find a unique and fixed number for the required winter 

reference days for a given 𝑍 parameter. As an example, for the 2015-2016 austral melt season, Figs. Fig. 5(a) and (b) show the 

region of values that make the inequalities in (17a) and (17b) true (shaded green), respectively. The false region is shown in 195 

red. It can be observed that a higher 𝑍 value would require a higher 𝑁𝑟𝑒𝑓  value. Even though choosing a higher 𝑍 value will 

decrease the FAR, it will decrease the number of melt days, which results in missing days. Our proposed two week interval 

from Oct 17-31 for the winter reference period has enough samples to satisfy these conditions with 𝑍𝑁𝑃𝑅 = 5 and 𝑍𝑇𝐵𝑉
= 10. 

The threshold values for |Δ𝑁𝑃𝑅|  and |Δ𝑇𝐵𝑉|  using these proposed 𝑍  parameters are 0.010-0.011 and 6.97-7.31 K, 

respectively, for all the austral melt seasons from 2015 to 2020. 200 

Table 3. Logic truth table for the 𝒎(𝒕) dimensionless binary state variable. Green is for logic 1 (True), and red is for logic 0 (False). 

𝒎𝟏(𝒕) 𝒎𝟐(𝒕) 
𝒎(𝒕) = 

𝒎𝟏(𝒕) ∧ 𝒎𝟐(𝒕) 

1 (True) 1 (True)  1 (Melt) 

1 (True) 0 (False) 0 (Frozen) 

0 (False) 1 (True) 0 (Frozen) 

0 (False) 0 (False) 0 (Frozen) 
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(a) (b) 

Fig. 5. The region of values that make the inequalities in (a) (17a) and (b) (17b) true (green) and false (red) during the 2015-2016 

austral melt season. 

The main purpose of monitoring 𝑇𝐵𝑉 is to avoid false melt detection, because the 𝑁𝑃𝑅 may change in some cases due to the 205 

changes in the snow/ice vertical structure rather than due to a melt event (because 𝑇𝐵𝐻  is more sensitive to the vertical structure 

changes than 𝑇𝐵𝑉), while 𝑇𝐵𝑉 mainly changes from snow wetness and temperature variations. As an example, Figs. 6 and 7 

show 𝑇𝐵𝑉 and 𝑁𝑃𝑅, respectively, measured by SMAP over the Southern George VI ice shelf (71.31𝑜 S, 68.32𝑜 W) during 

the first austral melt season (Oct 31, 2015 - May 31, 2016). The figures also show in-situ air temperature measurements from 

the Fossil Bluff site located at the George VI sound. Around January 2016, there is a significant change in the measured 𝑁𝑃𝑅 210 

(decrease) and 𝑇𝐵𝑉 (increase), and they both fall outside their corresponding thresholds (cyan shaded region), indicating melt 

detection. The SMAP derived melt detection also coincides with a substantial increase in surface air temperatures to within 

±5ºC, indicating conditions conducive to melt. 
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Fig. 6. Measured 𝑵𝑷𝑹 by SMAP for the Southern George VI ice shelf (𝟕𝟏. 𝟑𝟏𝒐 S, 𝟔𝟖. 𝟑𝟐𝒐 W) during the first austral melt season 215 
(Oct 31, 2015 - May 31, 2016) of the study period. The temperature is measured at the Fossil Bluff station. Daily maximum, minimum 

and average air temperatures are denoted by respective red, blue and black dots. 
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Fig. 7. Measured V-pol brightness temperature by SMAP for the Southern George VI ice shelf (𝟕𝟏. 𝟑𝟏𝒐 S, 𝟔𝟖. 𝟑𝟐𝒐 W) during the 220 
first austral melt season (Oct 31, 2015 - May 31, 2016). The temperature is measured at the Fossil Bluff station. Daily maximum, 

minimum and average air temperatures are denoted by respective red, blue and black dots. 

4.2 Model Based Snow Wetness Retrieval (SnoWR) Algorithm 

The snow wetness retrieval (SnoWR) algorithm uses the microwave emission models explained in Sect. 3 for either decrease 

(NPR-DECR) or increase (NPR-INCR) scenarios of the 𝑁𝑃𝑅 during the melt season (MS). Four different look-up-tables 225 

(LUTs) were made by sweeping the model parameters over specified realistic ranges. Separate LUTs are computed for the 

frozen (LUT-FS-INCR) and melt (LUT-MS-INCR) seasons for both NPR-INCR and NPR-DECR cases. The LUT-MS-INCR 

uses the three-layer model, while the LUT-FS-INCR uses a two-layer model where the wet snow layer (medium 2) in Fig. 2(a) 

is entirely absent during the frozen season. The LUT-MS-DECR uses the four-layer model, while the LUT-FS-DECR uses a 

customized three-layer model where the wet snow layer (medium 2) in Fig. 2(b) is absent. The high-absorptive layer is assumed 230 

to remain unchanged between the frozen and melt seasons. 

The algorithm first separates the pixels for NPR-INCR and NPR-DECR scenarios using the statistics of 𝑁𝑃𝑅 and 𝑇𝐵𝑉  and 

equation (12) and (13) in Sect. 4.1. These conditions should be evaluated without their absolute values so that the positive and 

negative changes can separate NPR-INCR and NPR-DECR pixels. In NPR-INCR pixels, 𝑁𝑃𝑅 and 𝑇𝐵𝑉 change in positive and 

negative directions, respectively, while in NPR-DECR pixels, 𝑁𝑃𝑅 and 𝑇𝐵𝑉 change in negative and positive directions. After 235 

selecting and separating the melt pixels for the NPR-INCR and NPR-DECR cases, the algorithm starts to estimate the layer 
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properties, such as thickness and dielectric constant, in each case separately, by comparing the LUT and measured 𝑇𝐵𝐻  and 

𝑇𝐵𝑉  values. 

In the case of NPR-INCR during the FS, by comparing the LUT-FS-INCR with the temporal maximum of the measured 𝑇𝐵𝑉, 

the density and temperature of the medium 4 is retrieved. Only 𝑇𝐵𝑉 is used here, as there is no vertical layer structure during 240 

the FS in the dry snow layers. During the MS, LUT-MS-INCR is compared with the maximum of 𝑇𝐵𝐻  and 𝑇𝐵𝑉 , as the 

snowpack starts to have vertical layer structures. Hence, the properties of the wet snow layer are estimated by averaging their 

retrieved values from tuning for only 𝑇𝐵𝐻  and 𝑇𝐵𝑉 cases; the estimated properties include snow/ice density, thickness, and 

maximum wetness percentage (𝑚𝑣2𝑚𝑎𝑥
). 

Next, another LUT is made by sweeping the wetness range of the wet layer (𝑚𝑣2) over [0 𝑚𝑣2𝑚𝑎𝑥
]. The resulting LUT is used 245 

to derive two different daily snow wetness values (𝑚𝑣2𝑇𝐵𝐻
, 𝑚𝑣2𝑇𝐵𝑉

) by minimizing the difference between the LUT and SMAP 

observed 𝑇𝐵𝐻  and 𝑇𝐵𝑉 values. Using 𝑚𝑣2𝑇𝐵𝐻
and 𝑚𝑣2𝑇𝐵𝑉

, two different sets of daily brightness temperatures can be simulated. 

By comparing the temporal mean of the error between the LUT and SMAP values, the best snow wetness value can be retrieved 

as follows: 

𝑚𝑣2𝑑𝑎𝑖𝑙𝑦
= {

𝑚𝑣2𝑇𝐵𝑉
𝑖𝑓 𝐸𝑅𝑅𝑇𝐵𝑉

(𝑚𝑣2𝑇𝐵𝑉
) <  𝐸𝑅𝑅𝑇𝐵𝐻(𝑚𝑣2𝑇𝐵𝑉

)
𝑚𝑣2𝑇𝐵𝐻

𝑜. 𝑤
 (18) 

 250 

where 𝐸𝑅𝑅𝑇𝐵𝑉
(𝑚𝑣2𝑇𝐵𝑉

) is the temporal mean of the estimated 𝑇𝐵𝑉 using 𝑚𝑣2𝑇𝐵𝑉
, and 𝐸𝑅𝑅𝑇𝐵𝐻

(𝑚𝑣2𝑇𝐵𝑉
) is the temporal mean 

of the estimated 𝑇𝐵𝐻  using 𝑚𝑣2𝑇𝐵𝑉
. This step will correct for any possible bias in the modeled TB, and may be excluded if 

there is minimal bias in the measured values. 

After retrieving the daily snow wetness values (𝑚𝑣2𝑑𝑎𝑖𝑙𝑦
), the reliability of the retrieval can be assessed by simulating TB 

using the retrieved 𝑚𝑣2𝑑𝑎𝑖𝑙𝑦
.  255 

Using a threshold value 𝑚𝑣2𝑇𝐻
= 𝑚𝑣2𝑟𝑒𝑓

+ 𝑍𝑚𝑣
× √𝑉𝑎𝑟 [𝑚𝑣2𝑟𝑒𝑓

], the corrected retrieved snow wetness, 𝑚𝑣2𝑑𝑎𝑖𝑙𝑦

𝐶𝑂𝑅 , is given 

by equation (19). The parameter 𝑍𝑚𝑣
 determines an independent FAR using equation (14). 

𝑚𝑣2𝑑𝑎𝑖𝑙𝑦

𝐶𝑂𝑅 = {
0 𝑚𝑣2𝑑𝑎𝑖𝑙𝑦

≤ 𝑚𝑣2𝑇𝐻

𝑚𝑣2𝑑𝑎𝑖𝑙𝑦
− 𝑚𝑣2𝑇𝐻

𝑚𝑣2𝑑𝑎𝑖𝑙𝑦
> 𝑚𝑣2𝑇𝐻

 (19) 

 

In the case of NPR-DECR, daily snow wetness (𝑚𝑣2𝑑𝑎𝑖𝑙𝑦
) is retrieved, and 𝑇𝐵𝐻  and 𝑇𝐵𝑉 simulated similar to the NPR-INCR 

case with two differences. First, the temporal minimum and maximum of the measured TB are used during the FS and MS, 260 

respectively, as the TB increases during the MS in this scenario. Second, both 𝑇𝐵𝑉 and 𝑇𝐵𝐻  are used in the tuning as the NPR-

DECR pixels have vertical layer structure in both FS and MS. The remaining steps are similar to the NPR-INCR scenario. Fig. 

8 shows the SnoWR algorithm flowchart. 
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 265 

Fig. 8. Processing flow of the SMAP TB snow wetness retrieval (SnoWR) algorithm. The main output is 𝒎𝒗𝒆𝒔𝒕
. 

 

As an example, Figs.  9 and 10 show the measured and simulated 𝑇𝐵𝐻 and 𝑇𝐵𝑉, respectively, for the Wilkins Ice Shelf  (70.25𝑜 

S, 73.00𝑜 W)  during 2015-2020. The simulated 𝑇𝐵𝑉 is better matched to the measured values (Fig. 10) compared to 𝑇𝐵𝐻  (Fig. 

9) because 𝑚𝑣2𝑑𝑎𝑖𝑙𝑦
= 𝑚𝑣2𝑇𝐵𝑉

, see (18). The error values are 𝐸𝑅𝑅𝑇𝐵𝑉
(𝑚𝑣2𝑇𝐵𝑉

) = 0.58 K and 𝐸𝑅𝑅𝑇𝐵𝐻
(𝑚𝑣2𝑇𝐵𝑉

) = 12.62 K. 270 

The snow wetness variation is well retrieved during different seasons, as shown in Fig. 11. The estimated snow wetness values 

are based on the model physical parameters used to match with the SMAP measurements. Because the tuning process includes 

an empirical adjustment of the layer parameters and in-situ snow wetness values are unavailable for an assessment and 

comparison, a quantitative accuracy measure of the snow wetness retrieval is not reported in this paper. However, the estimated 

snow wetness range is similar to measured values reported from previous studies (Willatt, et al., 2010). The retrieved snow 275 

wetness in Fig. 11 is the corrected snow wetness as given by (19) for 𝑍𝑚𝑣
= 2. 
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Fig. 9. The estimated TBH from the SnoWR algorithm (red dashed line) and measured by SMAP (blue solid line) for the Wilkins 

ice shelf (𝟕𝟎. 𝟐𝟓𝒐 S, 𝟕𝟑. 𝟎𝟎𝒐 W) as a function of time (2015-2020). 

 280 

 

Fig. 10. The estimated TBV from the SnoWR algorithm (green dashed line) and measured by SMAP (black solid line) for the Wilkins 

ice shelf (𝟕𝟎. 𝟐𝟓𝒐 S, 𝟕𝟑. 𝟎𝟎𝒐 W) as a function of time (2015-2020). 
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 285 

Fig. 11. The estimated snow wetness percentage from the SnoWR algorithm for the Wilkins ice shelf (𝟕𝟎. 𝟐𝟓𝒐 S, 𝟕𝟑. 𝟎𝟎𝒐 W) as a 

function of time (2015-2020). 

5 Results 

5.1 Empirical Threshold Algorithm Results 

Fig. 12 shows the most recent Antarctica digital elevation model (DEM) with various ice shelves denoted (Howat, et al., 2019). 290 

The Antarctica ice mask used in this study is obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

for the 2013-2104 (Scambos, et al., 2007; Haran, et al., 2018, updated 2019). This ice mask matches the outline of the 

Antarctica DEM in Fig. 12. Table 4 shows the melt seasons and winter reference periods used in this study. The potential melt 

seasons start on the last day of their winter reference period. 

 295 

Table 4. The austral melt seasons and their corresponding proposed winter references periods. 

Melt Season No. Melt Season Period Winter Reference Period 

1 Oct 31, 2015 - May 31, 2016 Oct 17, 2015 - Oct 31, 2015 

2 Oct 31, 2016 - May 31, 2017 Oct 17, 2016 - Oct 31, 2016 

3 Oct 31, 2017 - May 31, 2018 Oct 17, 2017 - Oct 31, 2017 

4 Oct 31, 2018 - May 31, 2019 Oct 17, 2018 - Oct 31, 2018 

5 Oct 31, 2019 - May 31, 2020 Oct 17, 2019 - Oct 31, 2019 
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Fig. 12. Antarctica digital elevation model. 

 

Fig. A1 in Appendix A shows the maximum Δ𝑁𝑃𝑅 and 𝑁𝑃𝑅𝑟𝑒𝑓 measured by the SMAP L-band microwave radiometer for 300 

each austral melt season. Similarly, Fig. A2 shows the Δ𝑇𝐵𝑉 and 𝑇𝐵𝑉𝑟𝑒𝑓
. Melt events are then detected by using the empirical 

melt detection threshold given in equations (12) and (13) and Table 3. Fig. A1 and Fig. A2 show that there is very little inter-

annual variability in the 𝑁𝑃𝑅𝑟𝑒𝑓  and 𝑇𝐵𝑉𝑟𝑒𝑓
 values. 

Fig. 13 shows the melt detection results overlaid on the Antarctica DEM. The maps show that MS 1 overall experienced the 

largest melt extent as a result of the exceptional Ross Ice Shelf (81.50∘ S, 175.00∘ W) melt event (Nicolas, et al., 2017). A 305 

narrow strip along the Transantarctic mountains to the east of the Ross Ice Shelf also experienced melt events in MS 2. The 

Brunt ice shelf (75.55∘ S, 25.00∘ W) experienced melt events during all melt seasons except MS 1. Ice shelves along periphery 

of the Antarctic Peninsula (Larsen C, Wilkins, George VI, Bach) experienced consistent melt events during each MS. In 

addition, ice shelves along the Amundsen-Bellingshausen Sea coast (~90.00∘ W), such as Abbot and Cosgrove, experienced 

melt events in MS 1 and 5.  310 

The Ross Ice Shelf experienced a short period of melt (~14 days) during MS 1, while the ice shelves along the periphery of 

the Antarctic Peninsula experienced about 40 melt days on average between MS 1 and 5 and a long-duration of melt in MS 5, 

even though it has overall lower melt extent compared to MS 1. Hence, the maps indicate that MS 1 and 5 exhibited the most 

extensive and longest duration melt events during the SMAP observation period, respectively. The other melt seasons 
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experienced more typical melt extent and duration (Tedesco, 2009; Tedesco, et al., 2007). The exceptions are an approximate 315 

10-day melt even over the narrow strip along the Transantarctic mountains to the east of the Ross Ice Shelf during MS 2, and 

the recurring melting on the Amery Ice Shelf.  

In comparison, previous melt detected areas with the number of melt days derived using higher frequency SMMR and SSM/I 

TB retrievals (Munneke, et al., 2012; Picard, et al., 2007; Picard et al., 2006; Anon., 2003) are also shown compared to the 

SMAP melt detection results for each season in Fig. 13. The melt areas are in general the same across the continent for both 320 

frequencies in each melt season. However, the lower frequency of the SMAP L-band radiometer provides additional spatial 

information due to its deeper penetration depth. Because even a small fraction of surface melt will quickly saturate the higher 

frequency signals, they exhibit a larger uniform melt area. For example, the Ross Ice Shelf in MS 1Fig. 15 shows the evolution 

of the melt extent over Antarctica from Oct 31, 2015 till May 31, 2020. While the timing of the maximum melt and the overall 

duration of the melt season is fairly consistent from year to year, the curves show how MS 1 has a large spike in the extent 325 

whereas the curve for MS 5 is broader corresponding to the longer duration of the large-scale melt. The curves also clearly 

show the lower melt extent of MS 3 and MS 4. 

Columns 3 and 4 of Table 5 show the melt area percentage and median of the number of melt days derived from the empirical 

algorithm over Antarctica in each MS, respectively. Fig. 18 illustrates the results in columns 3 and 4 of Table 5 in a bar chart 

format. The melt maps show the melt extent and duration across Antarctica, but they do not convey the intensity of the melt, 330 

which we derived using the snow wetness retrieval and discuss in the next Section.  
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(d) 

  

(e) 

Fig. 13. Number of melt days derived from the empirical algorithm using SMAP L-band (1.4 GHz) radiometer TB retrievals (left) 

and (right) the higher frequencies (19GHz, 37 GHz) of SMMR and SSM/I over Antarctica (http://pp.ige-335 
grenoble.fr/pageperso/picardgh/melting/) for (a) MS 1 (b) MS 2 (c) MS 3 (d) MS 4, and (e) MS 5austral melt seasons between 2015 

and 2020. 
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Table 5. The total melt area percentage and the median of the number of melt days derived from SMAP L-band TB retrievals using 

the empirical algorithm and the median of the snow wetness percentage retrieved using the SnoWR algorithm over Antarctica. 345 

Melt Season No. Total Melt Area % 
Median of the Number of Melt 

Days 

Median of the Retrieved Snow 

Wetness % 

1 10.17 % 7 0.13 % 

2 8.80 % 20 0.21 % 

3 6.39 % 23 0.15 % 

4 6.33 % 18 0.12 % 

5 8.47 % 24 0.29 % 

 

 

Fig. 14. Total melt area percentage and the median of the number of melt days derived from the empirical threshold algorithm over 

Antarctica for 5 austral melt seasons between 2015 and 2020. 

 350 
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Fig. 15. The daily melt area derived from the empirical algorithm using SMAP L-band microwave radiometry between 2015 and 

2020. The austral melt seasons are color coded. 

 

5.2 Snow Wetness Retrieval Results 355 

Using the SnoWR algorithm, as explained in Sect. 4.2, snow wetness is retrieved over Antarctica for each austral melt season. 

Only the pixels with significant Δ𝑁𝑃𝑅 and Δ𝑇𝐵𝑉 are processed, as explained in Sect. 4.2, while the rest of the pixels did not 

show a detectable melt event. The melt pixels in the SnoWR algorithm here are the same as the empirical algorithm results, as 

described in Sect. 5.1. 

Fig. 16 shows the temporal mean snow wetness percentage retrieved across Antarctica. The figure shows that the Ross Ice 360 

Shelf melt event was less intense as compared to the melting of the ice shelves along the periphery of the Antarctic Peninsula. 

In addition, these ice shelves experienced more intensive melt in MS 5 compared to the other melt seasons, as shown in Fig. 

17. For example, the Larsen C and Larsen D ice shelves experienced intense melting during MS 5 compared to the other melt 

seasons. Even though MS 1 exhibited the most extensive melt area, MS 5 had the longest duration and most intensive melt 

events. Column 5 of Table 5 shows the median of the snow wetness percentage over Antarctica retrieved using the SnoWR 365 

algorithm in each melt season. Fig. 18 illustrates the results in columns 3 and 5 of Table 5 in a bar chart format. The retrieved 

wetness of MS 5 was clearly anomalous compared to the other melt seasons corresponding to the exceptional melt events in 

early 2020 (Robinson, et al., 2020). MS 2 and MS 5 have similar melt extent and duration, but the wetness of MS 5 separates 

it from the more typical seasonal melt of MS 2. In particular, the Antarctic Peninsula and the Amundsen-Bellingshausen Sea 

coast experienced very intensive melting, which corresponded to warm temperature anomalies in February 2020 indicated 370 
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from reanalysis data (Robinson, et al., 2020). There are other satellite-based studies, such as SSM/I, which shows agreement 

in terms of snow wetness extent over the Antarctica Peninsula (Zheng, et al., 2019), as well as some in-situ wetness 

measurements on the east Antarctica in the range of 0 to 4.63% with an average 0f 0.75%. These in-situ measurements were 

collected during September and October 2007 (Willatt, et al., 2010). 

 375 
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(e) 

Fig. 16. The SMAP retrieved temporal snow wetness percentage using the SnoWR algorithm over Antarctica during the (a) MS 1, 

(b) MS 2, (c) MS 3, (d) MS 4, and (e) MS 5 austral melt seasons. 
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(c) (d) 

 

(e) 

 

Fig. 17. The SMAP retrieved temporal snow wetness percentage using the SnoWR algorithm over the Antarctica Peninsula during 380 
the (a) MS 1 (b) MS 2 (c) MS 3 (d) MS 4, and (e) MS 5 austral melt seasons. 
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Fig. 18. Bar chart for the total melt area percentage and the median of the snow wetness percentage over Antarctica retrieved from 

SMAP TB observations using the SnoWR algorithm. 

 385 

6 Conclusion 

The ability of the SMAP L-band radiometry as a powerful passive microwave remote sensing tool to detect ice sheet melt 

events was demonstrated. We introduced a new way of computing Antarctica melt extent, duration and intensity using the 

SMAP L-band brightness temperature observations. The approach exploits the effect of the liquid water in the surface layers 

of the ice sheet on the L-band radiation. The long wavelength allows tracking a range of wetness conditions across the surface 390 

layers, which provides additional value compared to shorter wavelength observations that saturate quickly with the presence 

of liquid water in the shallow layers of ice sheet. The results showed that while the extent and duration of the melt during 

2019-2020 melt season was not exceptional, the intensity was substantially higher than in other years observed by SMAP, 

including 2015-2016 melt season which had an exceptionally large melt extent.  
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Appendix A 
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(e) 

Fig. A1 The temporal maximum 𝚫𝑵𝑷𝑹 (left) and the 𝑵𝑷𝑹𝒓𝒆𝒇  (right) measured by SMAP L-band microwave radiometer over 

Antarctica for the (a) first, (b) second, (c) third, (d) fourth, and (e) fifth austral melt seasons from 2015 till 2020. 
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(d) 

  

(e) 

Fig. A2. The temporal maximum 𝚫𝑻𝑩𝑽  (left) and the 𝑻𝑩𝑽𝒓𝒆𝒇
 (right) measured by SMAP L-band microwave radiometer over 405 

Antarctica for the (a) first, (b) second, (c) third, (d) fourth, and (e) fifth austral melt seasons from 2015 till 2020. 
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