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Abstract. The accurate simulation of heat transfer with phase change is a central problem in cryosphere studies. This is

because the nonlinear behaviour of enthalpy as function of temperature can prevent thermal models of snow, ice and frozen

soil from converging to the correct solution. Existing numerical techniques rely on increased temporal resolution in trying to

keep corresponding errors withing acceptable bounds. Here, we propose an algorithm, originally applied to solve water flow in

soils, as a method to solve these integration issues with guaranteed convergence and conservation of energy for any time step5

size.

We review common modeling approaches, focusing on the fixed-grid method and on frozen soil. Based on this, we develop

a conservative formulation of the governing equation and outline problems of alternative formulations in discretized form.

Then, we apply the nested Newton-Casulli-Zanolli (NCZ) algorithm to a one-dimensional finite-volume discretization of the

energy-enthalpy formulation.10

Model performance is demonstrated against the Neumann and Lunardini analytical solutions and by comparing results from

numerical experiments with integration time steps of one hour, one day, and ten days. Using our formulation and the NCZ

algorithm, the convergence of the solver is guaranteed for any time step size. With this approach, the integration time step can

be chosen to match the time scale of the processes investigated.

1 Introduction

Freezing and thawing of soils affect a wide range of biogeochemical and hydrological (Walvoord and Kurylyk, 2016; Schuur

et al., 2015) processes and interact with engineered structures in cold regions. Correspondingly, the simulation of freezing

and thawing soil is an important an well-researched topic (Streletskiy et al., 2019; Harris et al., 2009). Climate change brings

additional urgency and new phenomena of interest to these studies. It is thus not a surprise that many models of freezing and20
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thawing soil and ice exist, some of which are reviewed in Appendix A. Here, we propose a solution to a central challenge that

these model have in common.

Published models can be categorized as empirical, analytical, or numerical (Riseborough et al., 2008). Empirical methods

relate ground temperature or thawing/freezing depth (TFD) to simple topoclimatic factors (Zhang et al., 2008; Riseborough

et al., 2008) and are relatively simple to apply. By contrast, analytical and numerical models are based on the conservation of25

mass and energy and can be divided in two broad groups (Tan et al., 2011). The first group focuses primarily on freezing and

thawing, commonly known as the Stefan problem. The governing equation describes energy conservation with the heat flux

modelled using the Fourier law. The second group considers the coupled problem of heat transfer and water flow in soils. In this

case energy-entalphy conservation equation includes also the advective heat flux and it is coupled with the mass conservation

equation. For both groups, the latent heat transfer during phase change of water leads to problems related to convergence,30

conservation, and restrictions to discretization of space and time (Bao et al., 2016).

Historically (Hu and Argyropoulos, 1996; Vuik, 1993), the first attempts to solve the problem of heat conduction consider-

ing the phenomena of solidification and melting date back to the studies by Lame and Clapeyron in 1831, and the analytical

solutions presented by Stefan around 1890, and Neumann in 1921. Later, other analytical solutions were proposed in order

to overcome some simplifications that were too restrictive (Zhang et al., 2008; Riseborough et al., 2008; Walvoord and Kury-35

lyk, 2016). These analytical solutions, however, are limited to one dimensional problems and constrained in their initial and

boundary conditions as well as the description of soil characteristics (Kurylyk et al., 2014a).

By contrast, numerical models can accommodate complex processes or configurations, including soil heterogeneities, com-

plicated temperature boundary conditions, intermittent freeze-thaw and temporally variable thermal properties. Accurately

representing phase transitions, however, is a non-trivial task and several different methods have been published. They can be40

broadly cast in two general groups: the so-called front-tracking methods and the fixed-grid methods (Voller et al., 1990). Even

though this contribution is focused on modelling heat transfer in frozen soil or ice, the following review includes, and is relevant

for, other fields of research that involve phase change.

Front-tracking methods are suitable whenever the two phases are divided by a spatially smooth and continuous front and

thus the state of the system can be conveniently described by the position of this interface (Voller et al., 1990). The moving45

front is tracked defining a continuity (’Stefan’) condition on the heat flux across it. For example, the one-dimensional model by

Goodrich (1978; 1982) uses front-tracking in modelling frozen soil and the SICOPOLIS model (Greve, 1997a, b; Greve and

Blatter, 2016) uses it to model polythermal ice sheets.

In frozen soil, however, a significant proportion of water can remain liquid at temperatures well below 0 °C. This depression

of the melting temperature is due to the presence of solutes (Bouyoucos, 1913; Bouyoucos and McCool, 1915; Bouyoucos,50

1920, 1923), surface effects in the interaction between water and soil particles as well as water and ice (Anderson and Tice,

1972; Clow, 2018), and the Gibbs-Thomson effect (Rempel et al., 2004; Watanabe and Mizoguchi, 2002). To some degree, also

polycrystalline ice has a temperature-dependent liquid water content (Langham, 1974). The gradual phase change over a range

of temperatures in soils is commonly described with the soil freezing characteristic curve (SFCC) (Kurylyk and Watanabe,

2013).55
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With phase change occurring over a range of temperatures, rather than at one specific temperature, front-tracking meth-

ods become computationally expensive (Voller et al., 1990) and conceptually ambiguous. This is the case in many industrial

(Voller and Cross, 1981) and environmental problems. Additionally, front tracking is complicated because it requires either a

deforming grid or a transformed coordinate system (Aschwanden and Blatter, 2009). By contrast, fixed-grid methods can accu-

rately describing the thermodynamics of the problem without requiring additional complications in handling the computational60

domain. For these reasons, fixed-grid methods are generally preferable to front-tracking methods when simulating frozen soil.

Fixed-grid methods include the latent heat of fusion in their governing equation, avoiding the necessity to define a continuity

condition across the moving boundary and related implementation problems. All contemporary fixed-grid methods we reviewed

aim to solve the numerical integration using globally convergent algorithms (Appendix G). Three differing approaches for

treating the latent heat of fusion exists: the enthalpy method, using a source term, and using apparent heat capacity. As analytical65

expressions, these methods look the same because their governing equations can be obtained from each other by the chain rule

of derivation. As we will illustrate in the next section, problems can arise in the discrete domain where this rule is not always

valid.

Here we present a numerical model of heat conduction with freezing and thawing in soils without water flow that guarantees

exact energy conservation for any time step size and for a wide range of soil freezing characteristics. It is novel in using the70

nested Newton-Casulli-Zanolli (NCZ) algorithm (Casulli and Zanolli, 2010) for solving the nonlinear system obtained from

discretizing the governing equation, written in terms of the specific enthalpy, using a semi-implicit finite volume scheme. The

NCZ algorithm has previously been applied to solving water flow in soils and to our knowledge this is first application for

solving the heat equation. Long time steps are desirable for example in applications related to permafrost thaw or hydrology.

The remainder of the paper is organized as follows. Section 2 reviews established approaches to study freezing and thawing75

phenomena in soils and points to relevant issues. Section 3 describes the new approach we propose. It details the discretization

of the governing equation and the NCZ algorithm used to solve the resulting nonlinear numerical system. In Section 4, the new

model is tested against analytical solutions and in Section 5, its performance is compared over a range of spatial and temporal

resolutions. Section 6 summarises our findings and concludes this contribution. The Appendix B contains pseudocode to

facilitate the implementation of the method we describe in other models.80

2 The governing equation and their numerical issues

The governing equation of the problem in the first of the three approaches is written in terms of both the total enthalpy and

temperature

∂h(T )
∂t

=∇ · [λ(T )∇T ] (1)

where h(T ) is the specific enthalpy, T is temperature, λ(T ) is the thermal conductivity, and t is the time.85

In the approach relying on apparent heat capacity, the governing equation is

Ca
∂T

∂t
=∇ · [λ(T )∇T ] (2)
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where

Ca =
∂h

∂T
= CT + lf

∂θw
∂T

(3)

is the apparent heat capacity that is the sum of the actual heat capacity CT and a term representing the additional thermal90

capacity arising from phase change with the local derivative of the SFCC (Dall’Amico, 2010).

In the approach using a source term for latent heat, it is considered as a heat source

CT
∂T

∂t
=∇ · [λ(T )∇T ]− lf

∂θw
∂T

, (4)

and in this equation, there are two unknowns: the temperature, and the liquid fraction θw appearing in the source term.

The specific enthalpy per unit mass is defined as95

h= u+ pv (5)

where u is the specific internal energy, p is pressure, and v is the specific volume, the inverse of density. Assuming that the heat

transfer occurs at constant pressure and volume the differential of the specific energy and of the specific enthalpy are equal

(Appendix C). However, since the term enthalpy method is commonly used in the literature, we will refer to enthalpy instead

of internal energy.100

The specific enthalpy of a control volume of soil Vc can be calculated as the sum of the enthalpy of the soil particles, liquid

water and ice (Dall’Amico et al., 2011):

h= hsp +hw +hi (6)

Defining a reference temperature Tref the above terms becomes

hsp = ρspcsp(1− θs)(T −Tref )

hw = ρwcwθw(T )(T −Tref ) + ρwlfθw(T )

105

hi = ρiciθi(T )(T −Tref ) (7)

where lf is the specific latent heat of fusion, ρsp, ρw and ρi are the densities of the soil particles, water, and ice, csp, cw, ci are

the specif heat capacity of the soil particles, water, and ice, θw(T ) is the unfrozen water content, and θi(T ) is the ice content.

The liquid water content and the ice content are evaluated using SFCCs (Dall’Amico et al., 2011) which are dependent on

temperature and, in the general case, on temperature and water saturation. Usually the reference temperature, Tref , is set to110

273.15 K, the melting temperature of pure water at standard atmospheric pressure. By using Eq. (7) the enthalpy Eq. (6) can

be rewritten as

h= CT (T −Tref ) + ρwlfθw(T ) (8)

where CT = ρspcsp(1− θs) + ρwcwθw(T ) + ρiciθi(T ) is the bulk heat capacity of the soil volume Vc.
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SFCCs have an inflection point (Bao et al., 2016) causing a sharp change in their derivative. This nonlinear behaviour gives115

rise to convergence problems during the solution of the system of equations resulting from the numerical approximation of

the governing equation (Voller, 1990; Casulli and Zanolli, 2010). This is true for any method used such as finite differences

(Westermann et al., 2016; Bao et al., 2016; Sergueev et al., 2003), finite elements (McKenzie et al., 2007), and finite volumes

(Dall’Amico et al., 2011). As a consequence, the robustness (stability) of the numerics used is a fundamental and important

issue in frozen soil models.120

There is a more subtle aspect in the integration though. Analytically, Eq. (1, 2, and 4) are equivalent because Eq. (2 and 4)

are derived from Eq. (1) by applying the chain rule of derivative on the enthalpy under the general assumption that the enthalpy

is a differentiable variable. However, this is not necessarily so in the discrete domain where the derivative chain rule is not

always valid. This is a known issue when dealing with hyperbolic equations (Roe, 1981), but often overlooked when treating

the parabolic ones.125

The apparent heat-capacity approach (Eq. 2) can suffer from large balance errors in the presence of high nonlinearities

and strong gradients (Casulli and Zanolli, 2010). The key to deriving a conservative numerical method here concerns the

discretization of the apparent heat capacity, and Nicolsky et al. (2007b) as well as Voller et al. (1990) discussed suitable

techniques.

Referring to the work by Roe (Roe, 1981), it can be proven that, the discrete operator of Ca has to satisfy the requirement130

C̃n+1/2
ai

(Tn+1
i −Tni ) = h(Tn+1

i )−h(Tni ) , (9)

ensuring preservation of the chain rule at the discrete level. Approximating the time derivative in Eq. (2) using a backward

Euler scheme we obtain

C̃n+1/2
ai

Tn+1
i −Tni

∆t
, (10)

and substituting the condition Eq. (9)135

h(Tn+1
i )−h(Tni )
Tn+1
i −Tni

Tn+1
i −Tni

∆t
=
hn+1
i −hni

∆t
(11)

This shows that solving Eq. (2) with a conservative numerical method, i.e. by making use of Eq. (9), is equivalent to solving

the enthalpy formulation, Eq. (1). Roe’s condition, however, is often not checked in numerical models.

The source-term approach presents problems analogous to those of the apparent heat-capacity formulation. Specifically,

Eq. (4) is derived from Eq. (2) by moving the latent heat term to the right-hand-side of the equation. Equation (4) can be140

solved numerically using an iterative procedure (Voller et al., 1990) or the Decoupled Energy Conservation Parametrization

method (DECP) (Zhang et al., 2008). As pointed out by Voller et al. 1990, the numerical solutions based on an iterative

procedure may suffer from non-convergence problem unless under-relaxation is wisely applied, and additionally, it necessary

to guarantee that the liquid fraction is in the range (0,1). With DECP, the energy equation is first solved without latent heat.

Then, soil temperature and the liquid and solid fractions are readjusted to ensure energy conservation during phase change.145

This method is mainly used in land-surface models (LSMs) (Dai et al., 2003; Foley et al., 1996; Verseghy, 1991). In this case,
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Nicolsky et al. (2007a) showed that it results in an artificial stretch of the phase change region, with consequent inaccuracies

in the simulation of active-layer thickness. A summary of relevant models is given in Table 1 and in Appendix A.

In summary, the governing equation can be written using three different approaches that are equivalent analytically, but not

in their discrete formulation. Of the three, the enthalpy approach remains conservative, even when discretized, and should be150

preferred. An additional fundamental problem is the solution of the nonlinear system of equations. Current algorithms either

require time step adaptation or may fail to converge, leading to unstable simulations and reduced computational efficiency

(Casulli and Zanolli, 2010). Here we address this fundamental challenge by using the NCZ algorithm to solve the nonlinear

system of equations. Compared to other algorithms, it guarantees convergence of the solution for any integration time step.

When the time step is not constrained by numerical issues, it can be chosen to better match the time scale of the process under155

investigation.

3 A soil heat-transfer model using the NCZ algorithm

Frozen soil models are typically solved with time steps between seconds and hours. This may be motivated by the desire to

resolve diurnal phenomena near the ground surface, and also, this often arises from limitations of the numerical schemes used.

Many applications related to permafrost (Erum et al., 2019), on the other hand, only require the representation of seasonal and160

multi-annual variation, which can be accomplished using time steps of one or more days if permitted by the numerical schemes

employed. In order to have a numerical scheme that does not suffer from time step restriction due to a stability condition, a

semi-implicit time integration is required. A semi-implicit formulation includes the necessity of solving a nonlinear system

of equations and the algorithm used for this is of great importance. Existing linearization algorithms such as the Picard or

the Newton, require a sufficiently accurate initial guess. As reported by Casulli and Zanolli (2010) this can be obtained by165

using small time steps, often requiring an empirical criterion for time-step adaptation. Therefore, even if the numerical scheme

does not require a time step restriction, one may still be required to solve the nonlinear system of equations. Moreover, to the

knowledge of the authors and colleagues (F. Gugole, M. Dumbser, G. Stelling, personal communication, 2019), the currently

used algorithms to solve nonlinear system do not offer a mathematically guaranteed convergence. This is important, because

an inexact solution of the nonlinear system is not conservative (Casulli and Zanolli, 2010).170

3.1 Discretization of the domain

The domain is partitioned using an unstructured orthogonal grid (Casulli and Walters, 2000), consisting of a set of nonoverlap-

ping convex volumes Ωi, i= 1,2, ..,Nv , separated by M internal faces Γj , j = 1,2, ...,M . Let Aj denote the nonzero jth face

area. Within each control volume a centre must be identified in such a way that the segment joining the centres of two adjacent

volumes and the face shared by the two volumes have a nonempty intersection, are hortogonal to each other and have distance175

δj . Each control volume Ωi may have an arbitrary number of faces. Let Fi denote the nonempty set of faces of the ith volume,

with the exclusion of boundary faces. Moreover, let P(i, j) be the neighbour of volume i that shares face j with the ith control

volume so that 1≤ P(i, j)≤Nv for all j ∈ Fi. The discrete variables hi and Ti are located at centre of each element Ωi. Using
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Table 1. Summarizing table of relevant existing freezing models.

Model Form Time discretization Nonlinear solver Limitation

CLM N. L. Ha Crank-Nicolson Decoupled Energy

Conservation Parametrization

Non-convergence problems

associated with the DECP.

Monotonicity time step restriction.

CoupModel A. H. Cb. Explicit Not required Stability time step restriction.

CryoGrid A. H. Cb. Implicit Newton based

algorithm

Convergence is not guaranteedf.

GEOtop A. H. Cb. Implicit Globally convergent

Newton algorithm

Convergence is not guaranteedf.

GIPL-2.0 E. F.c Implicit Newton algorithm with

Godunov splitting

Convergence is not guaranteedf.

Goodrich N. L. H.a Implicit Front tacking method Computationally expensive.

Problems arise when the phase

change occurs over a range of

temperatures.

Hydrus 1D A. H. Cb. Implicit Picard iteration Convergence is not guaranteedf.

MarsFlow E. F.c Implicit Newton-Raphson algorithm Convergence is not guaranteedf.

NEST S. T.d Explicit Not required Stability time step restriction.

SoilVision A. H. Cb. Explicit & implicit Newton-Raphson algorithm Convergence is not guaranteedf.

SUTRA A. H. Cb. Implicit Picard iteration Convergence is not guaranteedf.

Crocus E. F.c Implicit Decoupled Energy

Conservation Parametrization

Non-convergence problems

associated with the DECP.

SNOWPACK S. T.d Implicit Not required Non-convergence problems

related to the source-sink term.

Aschwanden

Blatter

E. G. M.c Implicit Newton based algorithm Convergence is not guaranteedf.

SICOPOLIS N. L. H.a Implicit Front tracking method with a

transformed coordinate system

Computationally expensive

aThe governing equation is written in only in terms of temperature and the latent heat is not included. bApparent heat capacity formulation.
cEnthalpy formulation. dSource term formulation. eThe heat flux is written in terms of enthalpy and not of temperature as in the enthalpy

formulation. fThere are no guarantees that the nonlinear solver converge.

a semi-implicit finite volume method, the discretization of Eq. (1) reads as

hi(Tn+1
i ) = hi(Tni ) + ∆t


∑

j∈Fi

Λn+1
j

Tn+1
P(i,j)−Tn+1

i

δj
+Sni


 (12)180
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where ∆t is the time step size,

Λn+1
j :=Ajmax

[
λi(Tni ),λP(i,j)(T

n
P(i,j)

)
]

(13)

and

Si =
∫

Ωi

SdΩ (14)

is an optional source/sink term in volume, and hi(T ) is the ith enthalpy given by185

hi(T ) =
∫

Ωi

h(T )dΩ. (15)

Eq. (12) can be written in matrix form as

h(T ) + AT = b (16)

where T = {Ti} is the vector of unknowns, h(T ) = hi(Ti) is a vectorial function representing the discrete enthalpy, A is

the energy flux matrix, and b is the right-hand-side vector of Eq. (12), which is properly augmented by the known Dirichlet190

boundary condition when necessary. For a given initial condition T 0
i , at any time step n= 1,2, . . . Eq. (12) constitutes a

nonlinear system for Tn+1
i , with the nonlinearity affecting only the diagonal of the system and being represented by the

enthalpy hi(Tn+1
i ). This set of equations is a consistent and conservative discretization of Eq. (1). Therefore, regardless of the

chosen spatial and temporal resolution, Tn+1
i is a conservative approximation of the new temperature.

3.2 Solution of the nonlinear system195

Difficulties in solving the nonlinear system of Eq. (16) arise from the non-monotonic behaviour of the derivative of the enthalpy,

h(T ), with respect to temperature. The NCZ algorithm used here was discovered by Casulli and Zanolli (2010) and overcomes

these difficulties with a nested Newton algorithm, two subsequent Newton-type iterations. It is based on Jordan decomposition

(Chistyakov, 1997) of the enthalpy function, rewriting it as the difference of two monotonic functions on which the Newton

algorithm can be applied in a nested iteration. A mathematical proof of convergence exists for NCZ (Brugnano and Casulli,200

2008, 2009; Casulli and Zanolli, 2010, 2012).

For each control volume the enthalpy function hi(T ) can be defined as

hi(T ) =

T∫

Tref

Ca,i(ξ)dξ (17)

where Ca,i(T ) is is defined as Ca,i(T ) =
∫

Ωi
Ca,i(T )dΩ. Ca,i(T ) has to fulfil two requirements. The first one, C1, is that

Ca,i(T ) is defined for every T and that it is a nonnegative function function with bounded variations. The second one, C2, is205

that there exist a T ∗ such that Ca,i(T ) is strictly positive and non decreasing in (0,T ∗) and nonincreasing in (T ∗,+∞).
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Since Ca,i(T ) are nonnegative functions with bounded variations, they are almost everywhere differentiable, admit only

discontinuities of the first kind, and can be expressed by using the Jordan decomposition (Fig.1) as the difference of two

nonnegative, nondecreasing, and bounded functions:

pi(T ) = Ca,i(T ) qi(T ) = 0 if T ≤ T ∗ (18)210

pi(T ) = Ca,i(T ∗) qi(T ) = pi(T )−Ca,i(T ) if T > T ∗

Using Eq. (18) the enthalpy hi(T ) can be written as hi(T ) = h1,i(T )−h2,i(T ) where:

h1,i(T ) = hi(T ) if T ≤ T ∗

h1,i(T ) = hi(T ∗) +Ca,i(T ∗)(T −T ∗) if T > T ∗

(19)215

h2,i(T ) = 0 if T ≤ T ∗

h2,i(T ) = h1,i(T )−hi(T ) if T > T ∗

By making use of Eq. (19) the algebraic system, Eq. (16), can be written as

h1(T )−h2(T ) + AT = b (20)

and solved first by linearizing h2 with the NCZ algorithm as the outer iteration and then h1 as the inner iteration. The initial220

guess for the NCZ algorithm must be chosen such that T 0 ≤ T ∗.

The most commonly used constitutive SFCCs (McKenzie et al., 2007; Kozlowski, 2007; Dall’Amico et al., 2011; Sheshukov

and Nieber, 2011; Watanabe et al., 2011), used to define the enthalpy of frozen soil, satisfy the assumptions C1 and C2. In

particular, the NCZ approach can be successfully applied to SFCCs models derived from the combination of existing SWRC

models and the Clapeyron equation that in general are difficult to implement in numerical models based on the apparent heat225

capacity (Kurylyk and Watanabe, 2013). Functions describing the internal energy of other substances, for instance pure water

(Andreas et al., 2005), satisfy the assumptions C1 and C2 and, therefore, the NCZ method can be successfully used to model

phase change problems as it will be shown for the original Stefan problem, Sections (4.1, Appendix E).

4 Analytical Benchmarks

The numerical model is compared with the analytical solution presented by Neumann (cited in Kurylyk et al. (2014b)) for the230

problem of freezing water, i.e. the Stefan problem, and the three-zone analytical solution presented by Lunardini (1988).

4.1 Neumann analytical solution

Kurylyk et al. (2014b) recommended the Neumann solution due to its ability to represent differences between the thermal

diffusivities of the thawed and frozen zones. Here we consider the freezing of pure water instead of soil since it is more
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Figure 1. Graphical representation of the Jordan decomposition for the enthalpy of soil using the SFCC model for a silty soil (Dall’Amico,

2010). (a) shows the Jordan decomposition of Ca(T ), Eq. (18). For T = T ∗, Ca(T ) presents a maximum: for T < T ∗ it is increasing, and

for T > T ∗ it is decreasing. This non monothonic behaviour causes problems when solving the nonlinear system. Ca(T ) is thus replaced by

p(T ) and q(T ), two monotonic functions. Consquently, (b), h(T ) is replaced by h1(T ) and h2(T ), Eq. (19)

numerically demanding. The domain is divided in two parts, the thawed and frozen zones, characterised by different thermal235

properties. Referring to the scheme in Fig. (2) the governing equations are

∂h

∂t
= λ

∂2T

∂z2
(21)

T (ζ, t) = Tm (22)

λi
∂T

∂z

∣∣∣∣∣
z=ζ−

dt= λw
∂T

∂z

∣∣∣∣∣
z=ζ+

dt+ lfρdζ (23)

At the moving boundary ζ(t), the temperature is equal to the melting temperature of water, and the time evolution of ζ(t) is240

described by the third equation, the Stefan condition. This condition states that the difference of the heat fluxes at the interface

of the two substances is consumed for the phase change. The initial condition is T (z,0) = T0 where T0 > Tm, the surface

boundary condition is T (z = 0, t) = Ts, with Ts < Tm, and the bottom boundary condition is defined as T (z→∞, t) = T0.

The parameters used in the comparison are given in Table D1. The numerical model is able to simulate the freezing problem

of water well as seen in Fig. (3) and Fig. (4).245

For comparison, Kurylyk et al. 2014b tested the numerical model SUTRA against the Neumann analytical solution consid-

ering a soil porosity of 0.50 m3m−3. For their test the time step was of 0.04−0.4 s, the vertical spatial discretization 0.001 m,

and the parameter ε was increased to −0.01 °C to match the analytical solution. The maximum absolute error of the freezing

front position was 0.00099 m.

In our model, the choice of a small melting temperature range ε= 0.0001 °C does not affect the quality of the numerical250

solution even at a large time step of 3600 s. Looking at Table 2 it is clear that the choice of the time step size is somehow
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z → ∞ : T = T0

Figure 2. Scheme showing the setting of the Neumann solution for the freezing case. Initially water is liquid, T0 > Tm. Because of the

surface boundary condition, Ts < Tm, a freezing front, ζ, propagates downward.

Table 2. Maximum error m of the freezing front position from the numerical solution with the NCZ algorithm for different space and time

discretizations relative to the Neumann analytical solution.

∆t= 60 s ∆t= 300 s ∆t= 3600 s

∆z = 0.001 m 0.00737 0.00153 0.00739

∆z = 0.005 m 0.00271 0.00302 0.00714

∆z = 0.01 m 0.00536 0.00553 0.00905

related to the choice of the spatial discretization: using a small time step with a coarse grid does not necessarily improve the

accuracy of the position of the freezing front. In Appendix E we report a comparison between the Neumann solution and the

numerical solution for melting ice. Furthermore, Appendix G outlines the robustness of the NCZ algorithm in comparison with

the Newton-Raphson and globally-convergent Newton methods. It has higher accuracy and tolerance for long time steps while255

avoiding the need for arbitrary additional parameters.

4.2 Lunardini analytical solution

Lunardini (1988) derived an analytical solution (Appendix F) for the temporal evolution of temperature during the freezing of

a semi-infinite and initially unfrozen soil column. In contrast to the Neumann analytical solution, in the Lunardini analytical

solution the domain is divided into three regions (Fig. 5): unfrozen, partially frozen (or mushy), and fully frozen. The domain is260

initially unfrozen with T = T0. At the left boundary condition a Dirichlet boundary condition is imposed with T (x= 0, t) = Ts,

and the right boundary temperature is kept equal to the initial condition, T (z→∞, t) = T0.
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Figure 3. Propagation of the freezing front compared between the Neumann analytical and the numerical solution with the NCZ algorithm.

Two space discretizations are used: (a) ∆z = 0.005 m, and (b) ∆z = 0.01 m. The integration time step is ∆t= 3600 s.
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Figure 4. Temperature evolution for the Neumann analytical and the numerical solution with the NCZ algorithm at various depths. The space

discretizations are used: (a) ∆z = 0.005 m, and (b) ∆z = 0.01 m. The integration time step is ∆t= 3600 s.

We computed benchmark T1 proposed by the InterFrost project (InterFrost Project), parameters are given in Table (F1). The

model agrees well with the analytical solution for all the three cases of Tm in terms of both the temperature profile, Fig. (6)

and Tab. (3), and the freezing front position, Fig. (7) and Tab. (4), even with an hourly time step.265

For comparison, McKenzie et al. (2007) compared the numerical model SUTRA against the Lunardini analytical solution for

the cases Tm =−4 °C and Tm =−1 °C using a time step size of 900 s and a space resolution of 0.01 m. For the first test case

the maximum absolute error was 0.01 °C, and for the second 0.1 °C. Their parameters, however, differ from those suggested by
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Figure 5. Scheme showing the setting of Lunardini problem (Ruhaak et al., 2015). Initially the domain is unfrozen with T = T0. X1(t) and

X(t) identify respectively the isotherm corresponding to Tm and Tf , i.e. the mushy region.
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Figure 6. Comparison between the Lunardini solution and the numerical solution with the NCZ algorithm for the three cases of T1 bench-

mark: (a) Tm =−4 °C, (b) Tm =−1 °C, (c) Tm =−0.1 °C. The colours represent different times frame. The integration time step is

∆t= 3600 s, and the space resolution is ∆x= 0.01 m.

the InterFrost consortium, making performance comparisons difficult. In particular, their porosity was 0.05 m3m−3, whereas

InterFrost uses 0.336 m3m−3. As this determines the amount of latent heat involved in phase change, smaller errors are to be270

suspected to occur with the parameters used by McKenzie et al. (2007).
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Figure 7. Propagation of the zero-isotherm for the Lunardini solution and the numerical solution with the NCZ algorithm for the three cases

of T1 benchmark: (a) Tm =−4 °C, (b) Tm =−1 °C, (c) Tm =−0.1 °C. The integration time step is ∆t= 3600 s, and the space resolution

is ∆x= 0.01 m.

Table 3. Maximum absolute error °C of the temperature after 24 h from the numerical solution with the NCZ algorithm relative to the

Lunardini analytical solution. The space resolution is ∆x= 0.01 m.

Tm =−4 °C Tm =−1 °C Tm =−0.1 °C

∆t= 300 s 0.00683 0.01419 0.11436

∆t= 900 s 0.01496 0.02448 0.11565

∆t= 3600 s 0.05115 0.08286 0.12116

5 Numerical test

In the previous sections, we have demonstrated that the proposed method can reproduce the Neumann analytical solution, as

well as the Lunardini analytical solution, even when using larger time steps than other numerical models.

After comparing simulation results with analytical solutions, we now analyse the difference between solutions using hourly,275

daily, and 10-day time steps. The domain is a soil column of 20 m depth that is uniformly at T =−3 °C, initially. The bottom

boundary condition is adiabatic and at the surface, we use a Dirichlet boundary condition. The original forcing has hourly

resolution and for longer time steps, corresponding averages are computed. As temperature gradients and the influence of

phase change are usually greatest near the soil surface, the thickness ∆x is parameterized with an exponential function (Gubler

et al., 2013)280

∆xi = ∆xmin(1 + b)i−1 (24)
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Table 4. Maximum error m of the freezing front position from the numerical solution with the NCZ algorithm relative to the Lunardini

analytical solution. The space resolution is ∆x= 0.01 m.

Tm =−4 °C Tm =−1 °C Tm =−0.1 °C

∆t= 300 s 0.00032 0.00051 0.00001

∆t= 900 s 0.00043 0.00027 0.00016

∆t= 3600 s 0.00062 0.00057 0.00047

where ∆xmin is the thickness of the first layer, b is the growth rate and i is the layer index, being one at the ground surface and

increasing downward. The parameters used are reported in Table H1. All three simulations were spun-up for a period of 1400

years to reach a stable thermal regime. After spin-up, we performed a simulation of 100 years.

Figure (8) compares the zero-isotherm position computed after 100 years for the three different time steps. Interestingly, there285

are no significant deviations in the results. The larger deviations occur when the zero-isotherm is shallow: at the beginning of

the thawing season as well as the freezing one, Fig. (H1, H2). This can be attributed on one side to the diurnal cycles of

surface boundary condition, and on the other side that using a larger time step we lose accuracy in capturing the timing of

thawing/freezing even if we use the same boundary condition.

With larger time steps, we lose some of the information of the boundary conditions and the accuracy of the numerical model290

decreases because it is first-order accurate in time. The overall performance relative to simulations with smaller time steps,

however, is largely preserved. While the order of accuracy can be increased to second order in time using the Crank-Nicholson

method, this would incur a time step restriction to guarantee the monotonicity of the solution. As this restriction is proportional

to the square of the space discretization, ∆x2, the Crank-Nicholson method would represent a severe constrain whenever high

spatial resolution is required.295

Figure (9) compares the minimum, mean, and maximum temperature profile respectively for the three simulations. (a) shows

the ground temperature envelope for the hourly simulation. The maximum envelop presents an ’elbow’ that is due to the phase-

change effects Fig. (H3). As can be seen in (b) and (d), close to the soil surface the hourly simulation presents larger values for

both the minimum and maximum temperature due the fact that the hourly boundary condition presents a greater amplitude that

is smoothed computing the daily and 10-day average.300

In the mean temperature profile, the 10-day simulation presents a larger deviation from the hourly simulation than the daily

simulation. The large deviation can be explained with the interaction of the time-step size with the thermal offset effect (Fig.

H4). If the thermal conductivity of water is set equal to that of ice, the maximum difference between the three profiles is

reduced to 0.003 °C with a maximum deviation of 0.003 °C from the initial condition, that is also equal to the mean of the

forcing boundary condition.305

Regarding the spatial discretization Fig. (H5) reports a comparison of the zero-isotherm position obtained using an hourly

time step, a daily time step, and a 10 day time step. The results are still in good agreement, but is it interesting to note that the

zero-isotherm presents some steps, independently on the size of the time step, and some details are missed, such as the joining
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Figure 8. Comparison of the position of the zero-isotherm after 100 years of three simulations: using an hourly boundary condition with

time step of ∆t= 1 h, using a daily boundary condition with a time step of ∆t= 1 day, and a 10-day boundary condition with a time step

of ∆t= 10 day.

of the downward and upward freezing fronts captured with the finer grid. These steps are caused by the greater thickness of

the grid elements. Because temperature is computed in the middle of each control volume, more time is required to achieve310

complete phase change of water, resulting in slower variation of the zero-isotherm position.

These synthetic experiments demonstrate that spatial and temporal discretization can be chosen to match the the aim of a

study without constrains due to the convergence and stability issues of the numerical scheme.

6 Conclusions

We have presented a new model for simulating the ground thermal regime in the presence of freezing and thawing based on315

the heat-transfer equation and the application of the NCZ algorithm. To our knowledge, this is the only method that guarantees

convergence while also permitting large time steps. The numerical model was implemented and verified against the Neumann

and Lunardini analytical solutions. In both cases, the results were in good agreement even with an hourly integration time step.

For the Neumann solution, we considered pure water instead of saturated soil since it is more numerically demanding, and no

convergence problems were encountered despite choosing a narrow temperature range (0.0001 °C) over which phase change320

occurs.

Numerical experiments demonstrated the robustness of the model by comparing results at differing temporal and spatial

resolutions. Results obtained with time steps of 1 h, 1 day, and 10 days are consistent. The robustness of the numerics allows
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Figure 9. (a) The minimum, mean, and maximum temperature profile for the hourly simulation. (b), (c), (d) show the comparison of the

minimum, mean, and maximum temperature profile respectively for the three simulations: with an hourly air temperature boundary condition

and ∆t= 1 h, with a daily air temperature boundary condition and ∆t= 1 day, with a ten day air temperature boundary condition and

∆t= 10 day. All three simulations last 100 years. The maximum difference of Tmean between the hourly, and daily simulation is of 0.04

°C, while between the hourly, and ten-days simulation is of 0.3 °C.

the user to choose both the space and time discretization without any restriction due to stability and convergence issues. As

a consequence, this method is effective for simulating permafrost thaw, a phenomenon that occurs at depth, in response to325

seasonal and multi-annual cycles, and often over tens, hundreds or even thousands of years. Furthermore, phenomena like

hysteresis or the variation of solute concentration upon freezing (Clow, 2018) can be included in the numerical model if the

enthalpy function (i.e. its parameters) does not change within the current time step of integration.

While we presented a finite volume method, the NCZ algorithm can be also for finite differences and finite elements methods.

Beyond applications to frozen soil, it can be used to study other geophysical phenomena that involve phase change of a330

substance simply by changing the definition of the enthalpy function and the thermal conductivity function. Examples include,

glacier dynamics (Aschwanden et al., 2012), snow pack evolution (Brun et al., 1992; Lehning et al., 1999), and magma bodies

(De Lorenzo et al., 2006). This may be even further expanded to industrial problems involving phase change materials used

in energy recovery systems (Mongibello et al., 2018; Nazzi Ehms et al., 2019) or casting problems of pure metals and alloys

(Lewis and Ravindran, 2000).335

Code availability. The model theory is developed for the general three-dimensional case, the software developed, at present, performs one

dimensional integration. The source code is written in Java using the object-oriented programming paradigm. The solver, FreeThaw1D, is de-

ployed as an open source code to work alone or inside the Object Modelling System version 3 framework (David et al., 2013). In the latter case

it can be connected at run time with the many other components developed along with the GEOframe system (Formetta et al., 2014; Bancheri,

2017) for providing hydrometeorological forcings and other fluxes, like the evapotranspiration. The source code can be found at https:340
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//github.com/geoframecomponents/FreeThaw1D (Tubini, c). The OMS3 project can be found at https://github.com/GEOframeOMSProjects/

OMS_FreeThaw1D (Tubini, b). The results presented here can be found at http://dx.doi.org/10.5281/zenodo.4017668 (Tubini, a).

Appendix A: Commonly used simulation software

The heat equation can be written in different forms that are analytically equivalent, but subject to differing numerical advan-

tages and disadvantages. In the scientific literature, several simulators, i.e. software that implements a particular model (set345

of equations), for solving the heat equation with freezing and thawing have been presented. Here we review commonly used

frozen soil models in terms of their governing equations and methods of finding numerical solutions.

Heat transfer with phase change of water is a cross-cutting problem existing in many geophysical phenomena other than

frozen soil. This includes, for example, the seasonal snow pack, glaciers, and ice-sheets. Our contribution does not seek to

present an improvement in the description of these problems and we ignore typical processes such as metamorphism and350

settling in seasonal snow or strain heating and deformation in glaciers and ice sheets. Nevertheless, corresponding models may

benefit from the NCZ algorithm in the treatment of the nonlinearity arising from phase change and, furthermore, broadening

our review to also include some snow and glacier models supports the generalisation of our findings.

A1 CLM

The Community Land Model (CLM) is the LSM for the Community Earth System Model (Oleson et al., 2004). It includes a355

module to simulate the ground temperature considering freezing and thawing. The governing equation is written in the non-

conservative form and does not include the latent heat term (Oleson et al., 2004) (Lawrence et al., 2019). The heat conduction

equation is solved using a Crank-Nicholson method. The temperature profile is calculated adopting the DECP approach. This

approach does not require to solve a nonlinear system, since the latent heat is treated in an explicit way, but Nicolsky et al.

(2007a) have pointed out that this two-step procedure can overestimate the region where the phase change occurs, resulting in360

inaccuracies in the simulation of active-layer thickness.

A2 CoupModel

The CoupModel (Jansson and Karlberg, 2011) is a one-dimensional numerical model to simulate the heat and water flow as

well as carbon and nitrogen budgets in a soil-plant-atmosphere system (Hollesen et al., 2011). The governing equation for heat

flow in the soil is defined using the apparent heat capacity, and solved with an explicit numerical method. This does not require365

to solve a non-linear system but sets a time step restriction to avoid numerical oscillation.

A3 CryoGrid

CryoGrid 2 simulates the ground thermal regime based on conductive heat transfer in the soil and in the snowpack (Westermann

et al., 2013). The heat equation is written using the apparent heat capacity and solved using the method of lines (Westermann

et al., 2013). The resulting system of ordinary differential equations is solved numerically with the package CVODE of Sundials370
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that implements a modified Newton method, and Inexact Newton method, or a fixed-point solver to linearize the algebraic

system resulting from the discretization of the heat transfer equation. To our knowledge there is no mathematical proof that

these algorithm converge to the exact solution.

A4 GEOtop

GEOtop (Rigon et al., 2006; Endrizzi et al., 2014) is a physically based distributed model of the mass and energy balance of the375

hydrological cycle. It includes a module for solving the energy equation in freezing soil (Dall’Amico et al., 2011); this module

can also be linked with the solver for the Richards equation. The governing equation for heat transfer is written in conservative

form, but when solving the equation the apparent heat capacity formulation is used. A globally convergent Newton algorithm

is used to deal with the non-linearities arising from phase change (Dall’Amico et al., 2011). The globally convergent Newton

represents an improvement over the Newton-Rapshon algorithm but it does not guarantee convergence of the solution, and as380

presented in Appendix (G), the choice of the parameter δ is non trivial.

A5 GIPL-2.0

GIPL-2.0 simulates the ground thermal regime by solving the heat equation with phase change numerically (Marchenko et al.,

2008). The governing equation is written in the conservative form and Newton’s method is used to linearize the energy equation.

To overcome convergence problems when solving the non-linear system, GIPL-2.0 implements a fractional time step approach,385

Godunov splitting. The key point of the solution regards the treatment of the enthalpy time derivative: in case of a non zero

gradient of temperature exists the time derivative is approximated with a difference derivative, otherwise using the analytical

representation.

A6 Goodrich

Goodrich (1982) presented a one-dimensional model to simulate the ground thermal regime considering the phase change of390

water. The governing equation is written in the non conservative form and does not include the latent heat of fusion. Phase

change is treated with the front tracking method, which offers good accuracy for problems in which phase change occurs at

a fixed temperature (Goodrich, 1982). This model does not use a SFCC, and instead, the soil is represented as homogeneous

layers with distinct frozen and thawed thermal properties.

A7 Hydrus 1D395

Hydrus 1D includes a module to simulate water flow and heat transport in frozen soil. The governing equation is written using

the apparent heat capacity formulation and Picard iteration is used to linearize the algebraic nonlinear system. In their paper,

Hansson et al. (2004) explain that during the Picard iteration the solution can easily oscillate whenever the temperature decrease

below the melting temperature. To avoid these oscillation the temperature is reset to the critical value and iteration restarted.

Hydrus 1D adopts an empirical time-step adaptation criterion. It is worthwhile to notice that the modified Picard iteration was400
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proposed by Celia et al. (1990) to solve the Richards equation – problem for which the NCZ algorithm was originally proposed

(Casulli and Zanolli, 2010).

A8 MarsFlo

MarsFlo is a three-phase numerical model to simulate the heat transfer and water flow in partially frozen, partially saturated

porous media (Painter, 2011). The heat equation is written in the conservative form. The equation is solved using an implicit405

finite difference method, and the resulting nonlinear system is solved using a Newton-Raphson method. To overcome con-

vergence and stability problems, three modification were introduced (Painter, 2011). There is no mathematical proof that this

modified Newton-Raphson algorithm converges.

A9 NEST

Zhang et al. (2003) developed a one-dimensional physically based model of Northern Ecosystem Soil Temperature (NEST).410

The heat equation is written in the source term formulation and solved with the DECP approach. The numerical method is

explicit in time, thus the maximum time step is of 30 minutes to prevent oscillations in the solution.

A10 Sergueev et al.

This is a two dimensional model and the governing equation is written in the enthaply form (Sergueev et al., 2003). This model

implements a fractional time step approach (Godunov splitting): each time step is divided into two steps and at each step, a415

different dimension is treated implicitly. The system of finite difference equations is non-linear and is solved with the Newton’s

method. As in GIPL-2.0, the time derivative of enthalpy is computed either using the difference derivative or the analytical

derivative according with the gradient of the temperature field.

A11 SoilVision

The heat equation is written using the apparent heat capacity. The equation are solved using a finite element solver, FlexPDE420

suite, both explicit and implicit in time. In case of implicit methods, the resulting non-linear system is solved using the Newton-

Raphson method. In the presence of nonmonotic functions, the Newton-Raphson method may fail to converge to the exact

solution.

A12 SUTRA

SUTRA is an established USGS groundwater flow and coupled transport model (Voss and Provost, 2002). McKenzie et al.425

(2007) and McKenzie and Voss (2013) have extended the model to simulate freezing and thawing processes in the soil. The

heat equation is written using the apparent heat capacity formulation and nonlinearities are solved using Picard iteration. Picard

iteration does not guarantee to converge to the exact solution.
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A13 Crocus

Crocus is a one-dimensional finite difference model that solves the mass and energy balance within the snowpack taking430

into account metamorphism and settling. The first versions of Crocus (Brun et al., 1989, 1992) were not enthalpy-based. The

governing equation was written in terms of temperature and water content. It is solved by using the Crank-Nicholson method,

and the phase change is treated by using the DECP approach (Brun et al., 1992). After the integration within SURFEX (Vionnet

et al., 2012), Crocus uses the enthalpy formulation and the numerical scheme is fully implicit, based on the numerics of ISBA-

ES (Boone and Etchevers, 2001). Similarly to the previous version, the heat balance equation is solved adopting the DECP435

approach (Boone and Etchevers, 2001). D’Amboise et al. (2017) implemented a routine for water flow in the snowpack based

on the Richards equation, which is characterized by nonlinear behaviour like the enthalpy equation. To solve it, they adopted

an approach based on Picard iteration with variable time steps (Paniconi and Putti, 1994).

A14 SNOWPACK

SNOWPACK (Lehning et al., 1999) solves the heat transfer and creep/settlement equations using a Lagrangian finite element440

method. The governing equation is written using the source/sink formulation and the phase change between ice and water

components are accounted for as volumetric heat sinks (melting) and sources (refreezing) (Bartelt and Lehning, 2002; Lehning

et al., 1999). Regarding the water flow, SNOWPACK implements three different schemes: a simple bucket-type approach, an

approximation of Richards equation, and the full Richards equation cite(Wever). The full Richards equation is solved using

Picard iteration with variable time steps (Paniconi and Putti, 1994).445

A15 Ice-sheet models

For glacier and ice-sheet models it is necessary to distinguish between cold and temperate ice. Following Aschwanden and

Blatter (2005), “ice is treated as temperate if a change in heat content leads to a change in liquid water content alone, and is

considered cold if a change in heat content leads to a temperature change alone.” This means that cold ice is always below the

melting temperature and thus the phase change does not occur. As result, present-day ice sheet models can be classified into:450

’cold-ice method’ models and polythermal models.

’Cold-ice method’ does not consider the phase change of ice. Because of this the heat capacity can be assumed to be constant

and therefore the governing equation can be written in terms of only temperature. These models are easy to implement, but their

applicability is restricted since in general temperate zones can be present (Aschwanden and Blatter, 2009). In fact, since the

phase change of ice is overlooked, locally, the ’cold-ice method’ violates the energy conservation, overestimates the temperate455

region (Aschwanden and Blatter, 2009), and can not quantify the liquid water content that affects viscosity in temperate ice

(Lliboutry and Duval, 1985).

By contrast, polythermal ice-sheet models consider the phase change of ice. Similar to freezing soil models, the polythermal

ice-sheet models can be classified in two groups on the base of the treatment of the phase change: front tracking method

and enthalpy method (Nedjar, 2002). SICOPLOIS (Greve, 1997a, b; Greve and Blatter, 2016) is the only ’truly’ polythermal460
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ice sheet model. It employs the polythermal two-layer scheme (Greve, 1997b): the temperature field and the water content

field are computed separately for the ice and temperate domain and a Stefan-type condition is applied at the cold-temperate

surface (CTS). This model defines the CTS for both energy flux and mass flux. The drawback of this method relate to the

implementation and restriction on the geometry and topology of the CTS (Aschwanden et al., 2012).

Aschwanden and Blatter (2009) presented an enthalpy gradient method. This is a fixed-grid method that differs from the465

enthalpy method commonly used for freezing soil in its definition of the energy flux. In the enthalpy method, the heat flux is

expressed in terms of the temperature gradient, whereas in the enthalpy gradient method it is expressed in terms of enthalpy,

assuming that the heat capacity is constant (Aschwanden and Blatter, 2009). The enthalpy approach combines the advantage of

solving one equation for the entire domain, cold-ice models, and the correct description of the thermodynamics of temperate

ice (front tracking model). This model is implemented in COMSOL Multiphysics (Aschwanden and Blatter, 2009), where470

nonlinear problems are solved using either a Newton algorithm or a damped Newton algorithm. Also in this case the NCZ may

represent a valid option to solve the nonlinear system. To the authors’ knowledge, the enthalpy gradient method has not be

used in freezing soil models.

Appendix B: Pseudocode

We present the pseudocode for a one-dimensional implementation of the NCZ algorithm. Since the matrix A in Eq. (16)475

is tri-diagonal we can efficiently compute only the non-zero diagonal: the upper diagonal, the main diagonal, and the lower

diagonal. We use the generic expression Discretize the governing equation since here, we can choose to adopt either a finite

volume method, as presented in this paper, a finite element method, or a finite difference method. Moreover, the matrix A is

symmetric and positive definite thus within the nested Newton algorithm the linearized algebraic system can be easily solved

with the Thomas algorithm. Here, it is worthwhile to point out that when we move to the two-dimensional or three-dimensional480

problem, the linearized algebraic system cannot be solved with the Thomas algorithm as the matrix is no longer tri-diagonal.

In these cases, iterative schemes such as the Conjugate Gradient Method need to be used (Shewchuk, 1994).

Appendix C: Enthalpy and internal energy

Following the work by Dall’Amico (2010), the internal energy in its canonical form, Uc, can be written as

Uc = Uc(S,V,M) (C1)485

where S is the entropy, V is the volume, andM the mass of the constituents. These are the independent variables and are called

extensive variables since they depend linearly on the mass of the substance. The first differential of Eq. (C1) is

dUc =
(
∂Uc
∂S

)
dS+

(
∂Uc
∂V

)
dV +

(
∂Uc
∂M

)
dM (C2)

According to Callen (1985) it is possible to define
(
∂Uc
∂S

)
≡ T , the temperature (C3)490
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Algorithm 1 Program flow

1: Read inputs

2: for time= 1,2, . . . do

3: read boundary conditions

4: compute enthalpy and thermal conductivity at time level time

5: Discretize the governing equation

6: for i= 1,2, . . . ,Nv do

7: Compute the matrix entries and rhs of the system applying the boundary condition when i== 1 and i==Nv

8: end for

9: Solve the non-linear system: nested Newton algorithm

10: Choose the initial guess

11: T 0
i = min(Tn

i ,T
∗)

12: for k = 1,2, . . ., outer iteration do

13: linearize h2

14: for m= 1,2, . . ., inner iteration do

15: linearize h1

16: for i= 1,2, . . . ,Nv do

17: compute

18: dk =−H1(T i,m−1
k ) + (H2(T i

k)−Q(T i
k)(T i,m−1

k −T i
k)) + rhsk

19: end for

20: solve the linear system with the Thomas algorithm

21: (A +P k,m−1−Qk−1)T k,m = D

22: compute the residual of the inner iteration

23: innerRes= P k,m−1(T k,m−1−T k,m)− (H1
k,m−1−H1

k,m)

24: if innerRes < tolerance then

25: T k = T k,m

26: end if

27: end for

28: compute the residual of the outer iteration

29: outerRes= Hk−1(T k−1−T k)− (H2
k−1−H1

k)

30: if outerRes < tolerance then

31: T = T k

32: end if

33: end for

34: end for
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−
(
∂Uc
∂V

)
≡ p , the pressure (C4)

(
∂Uc
∂M

)
≡ µ , the chemical potential (C5)

With this notation, Eq. (C2) becomes495

dUc = TdS− pdV +µdM (C6)

By making use of the Legendre transformation it is possible to define the enthalpy potential Hc as

Hc(S,p,M) = Uc(S,V,M) + pV (S,p,M) (C7)

The differential of the enthalpy is
500

dHc = d[Uc + pV ] = TdS− pdV +µdM +V dp+ pdV =

TdS+µdM +V dp (C8)

If we assume that the transformation occurs at constant pressure and volume then Eq. (C6) becomes

dUc = TdS+µdM (C9)

and Eq. (C8)505

dHc = TdS+µdM (C10)

Hence, from Eq. (C9) and Eq. (C10) the differential of the internal energy and the differential of enthalpy are equal. Therefore

the governing equation, Eq. (1), can be equivalently written in term of either the specific enthalpy or the specific internal energy.

Appendix D: Neumann analytical derivation

In this section we report the derivation of the Neumann analytical. The enthalpy is defined as510

h(T ) =





ρwcw(T −Tref ) + ρwlf if T ≥ Tm
ρici(T −Tref ) if T < Tm− ε

ρici(T − ε−Tref ) +h
′
(T − (Tm− ε)) otherwise

(D1)

where the singularity of the enthalpy function at T = Tm has been linearized with

h
′
=
ρwcw(Tm−Tref ) + ρwlf − ρici(Tm− ε−Tref )

ε
(D2)
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Figure D1. Comparison between the enthalpy fucntion of pure water and the enthalpy function used in the numerical model. Note that the

energy jump due to the latent heat at Tm = 0 °C has been linearized and the steepness is controlled by the parameter ε.

and ε is a parameter defining the temperature range over which the phase change of water occurs, Fig. (D1). In the following

tests ε is set to be equal to 0.0001 °C. Even though the internal energy function is very steep, the code used does not suffer of515

convergence problem with a time step of 3600 s. The thermal conductivity is defined as:

λ(T ) =




λw if T ≥ Tm
λi if T < Tm

(D3)

Defining the following constant:

αw =
λw
ρwcw

αi =
λi
ρici

(D4)

520

A=
Tm−Ts
erf(γ)

B =
Tm−T0

erf
(
γ

√
αi
αw

) (D5)

the moving boundary function is

ζ(t) = 2γ
√
αit for t > 0 (D6)

where the coefficient γ can be found solving the following equation

γ
√
αilfρ−

λi√
παi

Ae−γ
2 − αw√

παw
Be

γ2
αi
αw = 0 (D7)525
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Table D1. Input parameters for the comparison between Neumann analytical solution and the numerical solution.

Symbol Parameter Value Unit

∆t time step 60, 300, 3600 s

∆z control volume size 0.001, 0.005, 0.01 m

lf latent heat of fusion 333700 J kg−1

cw specific heat capacity of water 4187 J m−3 °C−1

ci specific heat capacity of ice 2108 J m−3 °C−1

ρw water density 1000 kg m−3

ρi ice density 970 kg m−3

λw thermal conductivity of water 0.6 W m−1 °C−1

λi thermal conductivity of ice 2.09 W m−1 °C−1

ε melting temperature range 0.0001 °C

T0 initial temperature −5, +5 a °C

Ts surface temperature +5, −5 a °C

a We tested the code both for the freezing case and the thawing case. The thawing case is

reported in the Appendix. The first value refers to the freezing case and the second one to the

thawing case.

Finally the analytical solution for problem with Dirichlet boundary condition for the thawed and frozen zones are:




T (z, t) = Ts +
Tm−Ts
erf(γ)

erf
(

z

2
√
αi t

)
0< z < ζ(t)

T (z, t) = T0 +
Tm−T0

erfc
(
γ

√
αi
αw

) erfc
(

z

2
√
αw t

)
z > ζ(t)

(D8)

Appendix E: Neumann solution for melting ice

Kurylyk et al. (Kurylyk et al., 2014b) recommended to include as benchmark the Neumann solution with initial temperature530

less than 0 °C.

Appendix F: Lunardini analytical derivation

The Lunardini solution as described by McKenzie (McKenzie et al., 2007) is given by the following set of equations:

T1 = (Tm−Ts)
erf
(

x

2
√
α1t

)

erf(ψ)
+Ts (F1)
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Figure E1. Comparison between the Neumann analytical solution and the numerical solution with the nested Newton algorithm for two

different space discretization: (a) ∆z = 0.005 m (b) ∆z = 0.01 m. The integration time step is ∆t= 3600 s.
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Figure E2. Propagation of the thawing front for the Neumann solution and the numerical solution with the nested Newton algorithm for two

different space discretization: (a) ∆z = 0.005 m, (b) ∆z = 0.01 m. The integration time step is ∆t= 3600 s.

535

T2 = (Tm−Tf )
erf
(

x

2
√
α4t

)
− erf(γ)

erf(γ)− erf
(
ψ

√
α1

α4

) +Tf (F2)
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Table E1. Maximum error m of the thawing front position for different space and time discretizations.

∆t= 60 s ∆t= 300 s ∆t= 3600 s

∆z = 0.001 m 0.00084 0.00135 0.00614

∆z = 0.005 m 0.00432 0.00437 0.00546

∆z = 0.01 m 0.00853 0.00863 0.00927

T3 = (T0−Tf )
−erfc

(
x

2
√
α3t

)

erfc
(
ψ

√
α4

α3

) +T0 (F3)

where T1, T2, and T3 are the temperatures at distance, x, from the temperature boundary for the frozen, mushy, and unfrozen

zone respectively; erf and erfc are the error function, and the complementary error function respectively; T0, Tm, Tf , and Ts540

are the temperatures of the initial condition; the solidus, the liquidus, and the boundary temperature, respectively; α1 and α3

are the thermal diffusivities for the frozen, and unfrozen zone respectively, defined as λ1/C1 and λ3/C3 where C1 and C3 are

the volumetric bulk-heat capacities of the frozen and unfrozen zones. The thermal diffusivity of the mushy zone is assumed to

be constant across the transition region, and the thermal diffusivity with latent heat term included, α4, is defined as:

α4 =
λ2

C2 +
γdlf∆ξ

(Tf −Tm)

(F4)545

where γd is the dry unit of soil solids, and ∆ξ = ξ0− ξf where ξ0 and ξf are the ratio of unfrozen water to soil solids for the

fully thawed and frozen conditions respectively. For a time, t, in the region 0≤ x≤X1(t) the temperature is T1 and X1(t) is

given by

X1(t) = 2ψ
√
α1t (F5)

and from X1(t)≤ x≤X(t) the temperature is T2, where X(t) is given by550

X(t) = 2γ
√
α4t (F6)

and for x≥X(t) the temperature is T3. The unknowns, ψ and γ, are solving the set of these two equations:

Tm−Ts
Tm−Tf

exp−ψ
2(1−α1/α4) =

λ2

λ1

√
α1

α4
erf(ψ)

erf(γ)− erf
(
ψ

√
α1

α4

) (F7)

(Tm−Tf )
λ2

λ3

Tm−Tf
α3

α4
exp−γ

2(1−α4/α3) =
erf(γ)− erf

(√
α1

α4
ψ

)

erf
(
γ

√
α4

α3

) (F8)555
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Table F1. Input parameters for the comparison between Lunardini analytical solution and the numerical solution.

Symbol Parameter Value Unit

∆t time step 300, 900, 3600 s

∆z control volume size 0.01 m

Lf latent heat of fusion 334560 J kg−1

C1 volumetric heat capacity, frozen 690030 J m−3 °C−1

C2 volumetric heat capacity, mushy 690030 J m−3 °C−1

C3 volumetric heat capacity, unfrozen 690030 J m−3 °C−1

γd dry unit density of soil solids 1680 kg m−3

ξ0 ratio of liq. water to soil solids, unfrozen 0.2 -

ξf ratio of liq. water to soil solids, frozen 0.0782 -

λ1 thermal conductivity, frozen 3.462696 W m−1 °C−1

λ2 thermal conductivity, mushy 2.939946 W m−1 °C−1

λ3 thermal conductivity, unfrozen 2.417196 W m−1 °C−1

γ solution parameter for Eq. (F7) and Eq. (F8) 5.616, 2.060, 1.397 a -

ψ solution parameter for Eq. (F7) and Eq. (F8) 0.158, 0.137, 0.061 a -

T0 initial temperature +4 °C

Ts boundary temperature −6 °C

Tf liquidus temperature 0 °C

Tf solidus temperature −0.1, −1, −4 °C

a The first value refers to Tm =−0.1 °C the second value tTm =−1 °C, and the third value to Tm =−4 °C.

Appendix G: Comparing the nested Newton algorithm with other approaches

As reported by Dall’Amico et al. (2011), Figure (G1) represents a well known case for which the Newton-Raphson algorithm

can not converge. Instead, the solution continuously cycles between the values T i and T i+1. While the Newton-Raphson

algorithm converges to the exact solution if a good initial guess for T i+1 exists, this represents a severe constraint for the560

reliable application of this iterative algorithm in a numerical model. An improvement of the Newton-Raphson algorithm can

be obtained using the globally convergent Newton scheme (Dall’Amico et al., 2011). It uses the Newton-Raphson algorithm

to provide the right search direction and, in order to avoid overshooting, a reduction factor δ is used to find the new estimate.

This represents an improvement over the Newton-Raphson method, but its ability to converge depends on the choice of the

parameter δ and on the treatment of the apparent heat capacity (Hansson et al., 2004; Nicolsky et al., 2007b; Dall’Amico et al.,565

2011). As such, this algorithm does not guarantees to converge for any time step size and the requirements for small time steps
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TT i T i+1

Figure G1. A scheme of problem which illustrates how the Newton-Raphson method can not converge towards T (Dall’Amico, 2010). In

this case, the Newton-Raphson method fails to converge to T since it cycles between T i and T i+1 values.
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Figure G2. Comparison between the Neumann analytical solution and the numerical solution obtained with Newton-Raphson (N. R.),

globally convergent Newton (g. c. N.), and NCZ algorithms. All the numerical simulations use the same spatial discretization ∆z = 0.005

m.

can become a limiting factor. For example, in (Dall’Amico et al., 2011) the comparison between the Neumann solution and

GEOtop has been done with a time step of 10 s.

A comparison of the numerical solutions obtained with the Newton-Raphson algorithm, globally convergent Newton al-

gorithm, and the NCZ algorithm shows significant differences (Fig. G2). Newton-Raphson cannot reproduce the analytical570

solution even if a time step of ∆t= 10 s is used. The globally convergent Newton is in good agreement with the analytical

solution if ∆t= 10 s. With an hourly time step, however, the example with the globally convergent Newton method is not

able to reproduce the position of the freezing front over longer periods of time. By contrast, the NCZ algorithm reproduces

the analytical solution well using ∆t= 3600 s. The quality of the solution obtained with the globally convergent Newton

algorithm depends not only on the time step duration but also on the definition of the parameter δ (Fig. G3). The additional575
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Figure G3. Comparison between the Neumann analytical solution and the numerical solution obtained with globally convergent Newton

algorithm (g. c. N.). All the numerical simulations use the same spatial discretization ∆z = 0.005 m and a time step size of ∆t= 3600 s.

This figure shows as the numerical solution depends on the choice of the parameter δ.

necessity for an arbitrarily chosen parameter in the globally convergent Newton algorithm further underscores the robustness

of the NCZ algorithm, for which convergence only depends on the right definition of Eq. (18) and Eq. (19).

Appendix H: Numerical test
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Figure H1. Detail of the beginning of the thawing season for the year 1999. In (b) there is a time lag of about one month between the

beginning of thawing season for the hourly simulation and the 10-days one, dashed grey line. This can be attributed to the different surface

temperature used to drive the simulations.
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Figure H2. Detail of the freezing season for the year 1999. The joining of the downward and upward freezing front is captured by the hourly

and the daily simulations, (c). It is interesting to note that for the 10 days simulation the joining occurs in-between of two consecutive time

step.
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Figure H3. Hourly temperature at 1.5 m depth for the year 1999. Note the prolonged period (43 days, 11 October until 23 November) when

temperature remained within ±0.1 °C (zero-curtain effect).
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’trumpet profile’. The mean temperature is very close to the initial temperature profile, the maximum error is of 0.003 °C.
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Figure H5. Comparison of the position of the zero-isotherm after 100 years of three simulations: one by using an hourly boundary condition

with time step of ∆t= 1 h, one by using a daily boundary condition with a time step of ∆t= 1 day, and the last one by using a 10-days

boundary condition with a time step of ∆t= 10 day. The ’steps’ are due to a coarser space discretization. Another consequence of this if

that the joining of the downward and upward freezing front is not captured neither by the hourly and by the daily simulations.
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Table H1. Input parameters for the comparison between Neumann analytical solution and the numerical solution.

Symbol Parameter Value Units

∆t time step 3600, 86400, 864000 s

∆za
min thickness of the first control volume 0.002, 0.005 m

ba growth rate ground depth 0.01, 0.1 −
zmax maximal ground depth 20 m

lf latent heat of fusion 333700 J kg−1

cw specific heat of water 4188 J m−3 °C−1

ci specific heat of ice 2117 J m−3 °C−1

csp specific heat of soil particles 1000 J m−3 °C−1

ρw water density 1000 kg m−3

ρi ice density 1000 kg m−3

ρsp soil particles density 2700 kg m−3

λw thermal conductivity of water 0.6 W m−1 °C−1

λi thermal conductivity of ice 2.09 W m−1 °C−1

λsp thermal conductivity of soil particles 3.0 W m−1 °C−1

θs saturation water content 0.46 −
θr residual water content 0.1 −
α Van Genuchten parameter 1.5 m−1

n Van Genuchten parameter 1.2 −
T0 initial temperature −3 °C

SFCC Dall’Amico

Thermal conductivity model Johansen

a We used two different space discretizations. The thickness of the ground layer is parametrized as

dzi = dzmin(1+ b)(i−1) (Gubler et al., 2013).
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