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Abstract. The accurate simulation of heat transfer with
phase change is a central problem in cryosphere studies. This
is because the nonlinear behaviour of enthalpy as function
of temperature can prevent thermal models of snow, ice and
frozen soil from converging to the correct solution. Existing5

numerical techniques rely on increased temporal resolution
in trying to keep corresponding errors withing acceptable
bounds. Here, we propose an algorithm, originally applied
to solve water flow in soils, as a method to solve these inte-
gration issues with guaranteed convergence and conservation10

of energy for any time step size.
We review common modeling approaches, focusing on

the fixed-grid method and on frozen soil. Based on this, we
develop a conservative formulation of the governing equa-
tion and outline problems of alternative formulations in dis-15

cretized form. Then, we apply the nested Newton-Casulli-
Zanolli (NCZ) algorithm to a one-dimensional finite-volume
discretization of the energy-enthalpy formulation.

Model performance is demonstrated against the Neumann
and Lunardini analytical solutions and by comparing results20

from numerical experiments with integration time steps of
one hour, one day, and ten days. Using our formulation and
the NCZ algorithm, the convergence of the solver is guaran-
teed for any time step size. With this approach, the integra-
tion time step can be chosen to match the time scale of the25

processes investigated.

Copyright statement. © Author(s) 2020. This work is distributed
under the Creative Commons Attribution 4.0 License.

1 Introduction

Freezing and thawing of soils affect a wide range of biogeo- 30

chemical and hydrological (Walvoord and Kurylyk, 2016;
Schuur et al., 2015) processes and interact with engineered
structures in cold regions. Correspondingly, the simulation of
freezing and thawing soil is an important an well-researched
topic (Streletskiy et al., 2019; Harris et al., 2009). Climate 35

change brings additional urgency and new phenomena of in-
terest to these studies. It is thus not a surprise that many mod-
els of freezing and thawing soil and ice exist, some of which
are reviewed in Appendix A. Here, we propose a solution to
a central challenge that these models have in common. 40

Published models can be categorized as empirical, ana-
lytical, or numerical (Riseborough et al., 2008). Empirical
methods relate ground temperature or thawing/freezing depth
(TFD) to simple topoclimatic factors (Zhang et al., 2008;
Riseborough et al., 2008) and are relatively simple to apply. 45

By contrast, analytical and numerical models are based on
the conservation of mass and energy and can be divided in
two broad groups (Tan et al., 2011). The first group focuses
primarily on freezing and thawing, commonly known as the
Stefan problem. The governing equation describes energy 50

conservation with the heat flux modelled using the Fourier
law. The second group considers the coupled problem of heat
transfer and water flow in soils. In this case energy-entalphy
conservation equation includes also the advective heat flux
and it is coupled with the mass conservation equation. For 55

both groups, the latent heat transfer during phase change of
water leads to problems related to convergence, conservation,
and restrictions to discretization of space and time (Bao et al.,
2016).
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Historically (Hu and Argyropoulos, 1996; Vuik, 1993), the
first attempts to solve the problem of heat conduction con-
sidering the phenomena of solidification and melting date
back to the studies by Lame and Clapeyron in 1831, and
the analytical solutions presented by Stefan around 1890, and5

Neumann in 1921. Later, other analytical solutions were pro-
posed in order to overcome some simplifications that were
too restrictive (Zhang et al., 2008; Riseborough et al., 2008;
Walvoord and Kurylyk, 2016). These analytical solutions,
however, are limited to one dimensional problems and con-10

strained in their initial and boundary conditions as well as the
description of soil characteristics (Kurylyk et al., 2014a).

By contrast, numerical models can accommodate complex
processes or configurations, including soil heterogeneities,
complicated temperature boundary conditions, intermittent15

freeze-thaw and temporally variable thermal properties. Ac-
curately representing phase transitions, however, is a non-
trivial task and several different methods have been pub-
lished. They can be broadly cast in two general groups: the
so-called front-tracking methods and the fixed-grid methods20

(Voller et al., 1990). Even though this contribution is focused
on modelling heat transfer in frozen soil or ice, the following
review includes, and is relevant for, other fields of research
that involve phase change.

Front-tracking methods are suitable whenever the two25

phases are divided by a spatially smooth and continuous front
and thus the state of the system can be conveniently de-
scribed by the position of this interface (Voller et al., 1990).
The moving front is tracked defining a continuity (’Stefan’)
condition on the heat flux across it. For example, the one-30

dimensional model by Goodrich (1978; 1982) uses front-
tracking in modelling frozen soil and the SICOPOLIS model
(Greve, 1997a, b; Greve and Blatter, 2016) uses it to model
polythermal ice sheets.

In frozen soil, however, a significant proportion of water35

can remain liquid at temperatures well below 0 °C. This de-
pression of the melting temperature is due to the presence of
solutes (Bouyoucos, 1913; Bouyoucos and McCool, 1915;
Bouyoucos, 1920, 1923), surface effects in the interaction
between water and soil particles as well as water and ice (An-40

derson and Tice, 1972; Clow, 2018), and the Gibbs-Thomson
effect (Rempel et al., 2004; Watanabe and Mizoguchi, 2002).
To some degree, also polycrystalline ice has a temperature-
dependent liquid water content (Langham, 1974). The grad-
ual phase change over a range of temperatures in soils is com-45

monly described with the soil freezing characteristic curve
(SFCC) (Kurylyk and Watanabe, 2013). Moreover the pres-
ence of a partially frozen region is also common in ice and
snow where liquid and solid phase coexist in thick isotherm
layers.50

With phase change occurring over a range of temperatures,
rather than at one specific temperature, front-tracking meth-
ods become computationally expensive (Voller et al., 1990)
and conceptually ambiguous. This is the case in many in-
dustrial (Voller and Cross, 1981) and environmental prob-55

lems. Additionally, front tracking is complicated because it
requires either a deforming grid or a transformed coordinate
system (Aschwanden and Blatter, 2009). By contrast, fixed-
grid methods can accurately describing the thermodynamics
of the problem without requiring additional complications in 60

handling the computational domain. For these reasons, fixed-
grid methods are generally preferable to front-tracking meth-
ods when simulating frozen soil.

Fixed-grid methods include the latent heat of fusion in
their governing equation, avoiding the necessity to define 65

a continuity condition across the moving boundary and re-
lated implementation problems. All contemporary fixed-grid
methods we reviewed aim to solve the numerical integra-
tion using globally convergent algorithms. Three differing
approaches for treating the latent heat of fusion exists: the 70

enthalpy method, using a source term, and using apparent
heat capacity. As analytical expressions, these methods look
the same because their governing equations can be obtained
from each other by the chain rule of derivation. As we will il-
lustrate in the next section, problems can arise in the discrete 75

domain where this rule is not always valid.
Here we present a numerical model of heat conduction

with freezing and thawing in soils without water flow that
guarantees exact energy conservation for any time step size
and for a wide range of soil freezing characteristics. It is 80

novel in using the nested Newton-Casulli-Zanolli (NCZ) al-
gorithm (Casulli and Zanolli, 2010) for solving the nonlinear
system obtained from discretizing the governing equation,
written in terms of the specific enthalpy, using an implicit fi-
nite volume scheme. The NCZ algorithm has previously been 85

applied to solving water flow in soils and to our knowledge
this is the first application for solving the heat equation. Long
time steps are desirable in several applications including per-
mafrost thaw, or surface components of climate models, and
models dedicated to avalanche prediction. 90

The remainder of the paper is organized as follows. Sec-
tion 2 reviews established approaches to study freezing and
thawing phenomena in soils and points to relevant issues.
Section 3 describes the new approach we propose. It details
the discretization of the governing equation and the NCZ al- 95

gorithm used to solve the resulting nonlinear numerical sys-
tem. In Section 4, the new model is tested against analyti-
cal solutions and in Section 5, its performance is compared
over a range of spatial and temporal resolutions. Section 6
summarises our findings and concludes this contribution. The 100

Appendix B contains pseudocode to facilitate the implemen-
tation of the method we describe in other models.

2 The governing equation and their numerical issues

The governing equation of the problem in the first of the three
approaches is written in terms of both the total enthalpy and 105
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temperature

∂h(T )

∂t
=∇ · [λ(T )∇T ] (1)

where h(T ) is the specific enthalpy, T is temperature, λ(T )
is the thermal conductivity, and t is the time.

In the approach relying on apparent heat capacity, the gov-5

erning equation is

Ca
∂T

∂t
=∇ · [λ(T )∇T ] (2)

where

Ca =
∂h

∂T
= CT + ρwlf

∂θw
∂T

(3)

is the apparent heat capacity that is the sum of the actual heat10

capacity CT and a term representing the additional thermal
capacity arising from phase change with the local derivative
of the SFCC (Dall’Amico, 2010).

In the approach using a source term for latent heat, it is
considered as a heat source15

CT
∂T

∂t
=∇ · [λ(T )∇T ]− ρwlf

∂θw
∂t

, (4)

and in this equation, there are two unknowns: the tempera-
ture, and the liquid fraction θw appearing in the source term.

The specific enthalpy per unit mass is defined as

h= u+ pv (5)20

where u is the specific internal energy, p is pressure, and v
is the specific volume, the inverse of density. Assuming that
the heat transfer occurs at constant pressure and volume the
differential of the specific energy and of the specific enthalpy
are equal (Appendix D). However, since the term enthalpy25

method is commonly used in the literature, we will refer to
enthalpy instead of internal energy.

The specific enthalpy of a control volume of soil Vc can
be calculated as the sum of the enthalpy of the soil particles,
liquid water and ice (Dall’Amico et al., 2011):30

h= hsp +hw +hi (6)

Defining a reference temperature Tref the above terms be-
comes

hsp = ρspcsp(1− θs)(T −Tref )

hw = ρwcwθw(T )(T −Tref ) + ρwlfθw(T )

hi = ρiciθi(T )(T −Tref ) (7)35

where lf is the specific latent heat of fusion, ρsp, ρw and
ρi are the densities of the soil particles, water, and ice, csp,
cw, ci are the specif heat capacity of the soil particles, water,
and ice, θw(T ) is the unfrozen water content, and θi(T ) is
the ice content. The liquid water content and the ice content40

are evaluated using SFCCs (Dall’Amico et al., 2011) which
are dependent on temperature and, in the general case, on
temperature and water saturation. Usually the reference tem-
perature, Tref , is set to 273.15 K, the melting temperature
of pure water at standard atmospheric pressure. By using Eq. 45

(7) the enthalpy Eq. (6) can be rewritten as

h= CT (T −Tref ) + ρwlfθw(T ) (8)

where CT = ρspcsp(1−θs)+ρwcwθw(T )+ρiciθi(T ) is the
bulk heat capacity of the soil volume Vc.

SFCCs have an inflection point (Bao et al., 2016; Hansson 50

et al., 2004) causing a sharp change in their derivative. This
nonlinear behaviour gives rise to convergence problems dur-
ing the solution of the system of equations resulting from the
numerical approximation of the governing equation (Voller,
1990; Casulli and Zanolli, 2010). This is true for any method 55

used such as finite differences (Westermann et al., 2016; Bao
et al., 2016; Sergueev et al., 2003), finite elements (McKen-
zie et al., 2007), and finite volumes (Dall’Amico et al., 2011).
As a consequence, the robustness (stability) of the numerics
used is a fundamental and important issue in frozen soil mod- 60

els.
There is a more subtle aspect in the integration though.

Analytically, Eq. (1, 2, and 4) are equivalent because Eq. (2
and 4) are derived from Eq. (1) by applying the chain rule
of derivative on the enthalpy under the general assumption 65

that the enthalpy is a differentiable variable. However, this is
not necessarily so in the discrete domain where the deriva-
tive chain rule is not always valid. This is a known issue
when dealing with hyperbolic equations (Roe, 1981), but of-
ten overlooked when treating the parabolic ones. 70

The apparent heat-capacity approach, Eq. (2) can suffer
from large balance errors in the presence of high nonlineari-
ties and strong gradients (Casulli and Zanolli, 2010). The key
to deriving a conservative numerical method here concerns
the discretization of the apparent heat capacity, and Nicolsky 75

et al. (2007b) as well as Voller et al. (1990) discussed suitable
techniques.

Referring to the work by Roe (Roe, 1981), it can be proven
that, the discrete operator ofCa has to satisfy the requirement

80

C̃n+1/2
ai (Tn+1

i −Tni ) = h(Tn+1
i )−h(Tni ) , (9)

ensuring preservation of the chain rule at the discrete level. In
Eq. (9) i refers to the spatial discretization index and n to the
time discretization index. Approximating the time derivative
in Eq. (2) using a backward Euler scheme we obtain 85

C̃n+1/2
ai

Tn+1
i −Tni

∆t
, (10)

and substituting the condition Eq. (9)

h(Tn+1
i )−h(Tni )

Tn+1
i −Tni

Tn+1
i −Tni

∆t
=
hn+1
i −hni

∆t
(11)
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This shows that solving Eq. (2) with a conservative numerical
method, i.e. by making use of Eq. (9), is equivalent to solving
the enthalpy formulation, Eq. (1). Roe’s condition, however,
is often not checked in numerical models.

The source-term approach presents problems analogous5

to those of the apparent heat-capacity formulation. Specif-
ically, Eq. (4) is derived from Eq. (2) by moving the la-
tent heat term to the right-hand-side of the equation. Equa-
tion (4) can be solved numerically using an iterative proce-
dure (Voller et al., 1990) or the Decoupled Energy Conserva-10

tion Parametrization method (DECP) (Zhang et al., 2008).
As pointed out by Voller et al. 1990, the numerical solu-
tions based on an iterative procedure may suffer from non-
convergence problem unless under-relaxation is wisely ap-
plied, and additionally, it necessary to guarantee that the liq-15

uid fraction is in the range (0,1). With DECP, the energy
equation is first solved without latent heat. Then, soil temper-
ature and the liquid and solid fractions are readjusted to en-
sure energy conservation during phase change. This method
is mainly used in land-surface models (LSMs) (Dai et al.,20

2003; Foley et al., 1996; Verseghy, 1991). In this case, Nicol-
sky et al. (2007a) showed that it results in an artificial stretch
of the phase change region, with consequent inaccuracies in
the simulation of active-layer thickness. For comparison, Ta-
ble 1 shows the diversity of formulations and solvers used in25

current models representing heat transfer and phase change
in the cryosphere.

In summary, the governing equation can be written us-
ing three different approaches that are equivalent analyti-
cally, but not in their discrete formulation. Of the three,30

the enthalpy approach remains conservative, even when dis-
cretized, and should be preferred. An additional fundamental
problem is the solution of the nonlinear system of equations.
Current algorithms either require time step adaptation or may
fail to converge, leading to unstable simulations and reduced35

computational efficiency (Casulli and Zanolli, 2010). Here
we address this fundamental challenge by using the NCZ al-
gorithm to solve the nonlinear system of equations. Com-
pared to other algorithms, it guarantees convergence of the
solution for any integration time step. When the time step is40

not constrained by numerical issues, it can be chosen to bet-
ter match the time scale of the process under investigation.

3 A soil heat-transfer model using the NCZ algorithm

Frozen soil models are typically solved with time steps be-
tween seconds and hours. This may be motivated by the de-45

sire to resolve diurnal phenomena near the ground surface,
and also, this often arises from limitations of the numeri-
cal schemes used. Many applications related to permafrost
(Erum et al., 2019), on the other hand, only require the rep-
resentation of seasonal and multi-annual variation, which can50

be accomplished using time steps of one or more days if per-
mitted by the numerical schemes employed. In order to have

a numerical scheme that does not suffer from time step re-
striction due to a stability condition, an implicit time inte-
gration is required. An implicit formulation includes the ne- 55

cessity of solving a nonlinear system of equations and the
algorithm used for this is of great importance. Existing lin-
earization algorithms such as the Picard or the Newton, re-
quire a sufficiently accurate initial guess. As reported by Ca-
sulli and Zanolli (2010, 2012) this can be obtained by us- 60

ing small time steps, often requiring an empirical criterion
for time-step adaptation. Therefore, even if the numerical
scheme does not require a time step restriction, one may still
be required to solve the nonlinear system of equations. Be-
cause of this the convergence of Newton-type method is often 65

problematic (Casulli and Zanolli, 2012). Instead, the NCZ al-
gorithm always converge in any situation, even under the use
of large time steps and grid sizes when the initial guess is
chosen as suggested Casulli and Zanolli (2010, 2012). This
is an important feature of the nonlinear solver, because an 70

inexact solution of the nonlinear system is not conservative
(Casulli and Zanolli, 2010).

3.1 Discretization of the domain

The domain is partitioned using an unstructured orthogo-
nal grid (Casulli and Walters, 2000), consisting of a set 75

of nonoverlapping convex volumes Ωi, i= 1,2, ..,Nv , sep-
arated by M internal faces Γj , j = 1,2, ...,M . LetAj denote
the nonzero jth face area. Within each control volume a cen-
tre must be identified in such a way that the segment joining
the centres of two adjacent volumes and the face shared by 80

the two volumes have a nonempty intersection, are orthogo-
nal to each other and have distance δj . Each control volume
Ωi may have an arbitrary number of faces. Let Fi denote the
nonempty set of faces of the ith volume, with the exclusion
of boundary faces. Moreover, let P(i, j) be the neighbour of 85

volume i that shares face j with the ith control volume so
that 1≤ P(i, j)≤Nv for all j ∈ Fi. The discrete variables
hi and Ti are located at centre of each element Ωi. Using an
implicit finite volume method, the discretization of Eq. (1)
reads as 90

hi(T
n+1
i ) = hi(T

n
i )+∆t

∑
j∈Fi

Λn+1
j

Tn+1
P(i,j)−T

n+1
i

δj
+Sni


(12)

where ∆t is the time step size,

Λn+1
j :=Ajmax

[
λi(T

n+1
i ),λP(i,j)(T

n+1
P(i,j)

)
]

(13)

and

Si =

∫
Ωi

SdΩ (14) 95
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Table 1. Diversity of formulations and solvers in current models of heat transfer and phase change in the cryosphere. Theoretical limitations
do not necessarily affect the usability of models for their intended purpose. More details are in Appendix A.

Model Form Time discretization Nonlinear solver Theoretical limitations

CLM N. L. Ha Crank-Nicolson DECPf Artificial stretch of phase change regionh

and non-convergencei.
Monotonicity time step restriction.

CoupModel A. H. Cb. Explicit Not required Stability time step restriction.
CryoGrid A. H. Cb. Implicit Newton based

algorithm
Nonlinear solverg.

GEOtop A. H. Cb. Implicit Globally convergent
Newton algorithm

Nonlinear solverg.

GIPL-2.0 E. F.c Implicit Newton algorithm with
Godunov splitting

Nonlinear solverg.

Goodrich N. L. H.a Implicit Front tacking method Computationally expensive.
Problems arise when the phase
change occurs over a range of
temperatures.

Hydrus 1D A. H. Cb. Implicit Picard iteration Nonlinear solverg.
MarsFlow E. F.c Implicit Newton-Raphson algorithm Nonlinear solverg.
NEST S. T.d Explicit Not required Stability time step restriction.
SoilVision A. H. Cb. Explicit and implicit Newton-Raphson algorithm Nonlinear solverg.
SUTRA A. H. Cb. Implicit Picard iteration Nonlinear solverg.
Crocus E. F.c Implicit DECPf Artificial stretch of phase change

region due to the DECPh

and non-convergencei.
SNOWPACK S. T Implicit DECPf Artificial stretch of phase change regionh

and non-convergencei.
ORCHIDEE N. L. Ha Explicit DECPf Artificial stretch of phase change regionh

and non-convergencei.
JSBACH S. T.d Implicit DECPf Artificial stretch of phase change regionh

and non-convergencei.
Aschwanden
Blatter

E. G. M.c Implicit Newton based algorithm Nonlinear solverg.

SICOPOLIS N. L. H.a Implicit Front tracking method with a
transformed coordinate system

Computationally expensive.

Schoof Hewitt E. F.e Implicit and explicit Not required Requires the partition of the domain
in cold and temperate regions.

aThe governing equation is written in only in terms of temperature and the latent heat is not included. bApparent heat capacity
formulation. cEnthalpy formulation. dSource term formulation. eThe heat flux is written in terms of enthalpy and not of temperature
as in the enthalpy formulation. f Decoupled Energy Conservation Parametrization. gConvergence of the nonlinear solver can be
problematic (Casulli and Zanolli, 2010, 2012). h (Nicolsky et al., 2007b). i (Voller et al., 1990).
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is an optional source/sink term in volume, and hi(T ) is the
ith enthalpy given by

hi(T ) =

∫
Ωi

h(T )dΩ. (15)

Eq. (12) can be written in matrix form as

h(T ) +AT = b (16)5

where T = {Ti} is the vector of unknowns, h(T ) = hi(Ti)
is a vectorial function representing the discrete enthalpy, A is
the energy flux matrix, and b is the right-hand-side vector of
Eq. (12), which is properly augmented by the known Dirich-
let boundary condition when necessary. For a given initial10

condition T 0
i , at any time step n= 1,2, . . . Eq. (12) consti-

tutes a nonlinear system for Tn+1
i , with the nonlinearity af-

fecting only the diagonal of the system and being represented
by the enthalpy hi(Tn+1

i ). This set of equations is a consis-
tent and conservative discretization of Eq. (1). Therefore, re-15

gardless of the chosen spatial and temporal resolution, Tn+1
i

is a conservative approximation of the new temperature.

3.2 Solution of the nonlinear system

Difficulties in solving the nonlinear system of Eq. (16) arise
from the non-monotonic behaviour of the derivative of the20

enthalpy, h(T ), with respect to temperature, and because in
some parametrizations used for substances such as water, the
derivative of the enthalpy is not correctly defined. The NCZ
algorithm used here was discovered by Casulli and Zanolli
(2010) and overcomes these difficulties with a nested New-25

ton algorithm, two subsequent Newton-type iterations. NCZ
is based on Jordan decomposition (Chistyakov, 1997) of the
enthalpy function, rewriting it as the difference of two mono-
tonic functions on which the Newton algorithm can be ap-
plied separately in a nested iteration, as explained below. A30

mathematical proof of convergence exists for NCZ (Brug-
nano and Casulli, 2008, 2009; Casulli and Zanolli, 2010,
2012).

For each control volume the enthalpy function hi(T ) can
be defined as35

hi(T ) =

T∫
Tref

Ca,i(ξ)dξ (17)

where Ca,i(T ) is is defined as Ca,i(T ) =
∫

Ωi
Ca,i(T )dΩ.

Ca,i(T ) has to fulfil two requirements. The first one, C1, is
that Ca,i(T ) is defined for every T and that it is a nonneg-
ative function function with bounded variations. The second40

one, C2, is that there exist a T ∗i such that Ca,i(T ) is strictly
positive and non decreasing in (0,T ∗i ) and nonincreasing in
(T ∗i ,+∞).

Since Ca,i(T ) are nonnegative functions with bounded
variations, they are almost everywhere differentiable, admit45

only discontinuities of the first kind, and can be expressed by
using the Jordan decomposition (Fig.1) as the difference of
two nonnegative, nondecreasing, and bounded functions:

pi(T ) = Ca,i(T ) qi(T ) = 0 if T ≤ T ∗i
(18)

pi(T ) = Ca,i(T
∗
i ) qi(T ) = pi(T )−Ca,i(T ) if T > T ∗i 50

Using Eq. (18) the enthalpy hi(T ) can be written as hi(T ) =
h1,i(T )−h2,i(T ) where:

h1,i(T ) = hi(T ) if T ≤ T ∗i
h1,i(T ) = hi(T

∗
i ) +Ca,i(T

∗
i )(T −T ∗i ) if T > T ∗i

(19) 55

h2,i(T ) = 0 if T ≤ T ∗i
h2,i(T ) = h1,i(T )−hi(T ) if T > T ∗i

By making use of Eq. (19) the algebraic system, Eq. (16),
can be written as

h1(T )−h2(T ) +AT = b (20) 60

The NCZ algorithm requires first the linearization of h2 and
then the linearization of h1. By choosing the initial guess for
the NCZ algorithm such that T 0 ≤ T ∗, a sequence of outer
iterates {T k} is obtained from Eq. (20) by linearizing h2 as
follows: 65

h1(T k)− [h2(T k−1)+Q(T k−1)(T k−T k−1)]+AT k = b

(21)

so that the outer iterates are solutions of the following non-
linear system:

h1(T k) + (A+Qk−1)T k = dk−1, k = 1,2, . . . (22)

where Qk−1 = Q(T k−1) and dk−1 = b+h2(T k−1)− 70

Qk−1T k−1. The resulting kth (outer) residual is derived
form Eq. 20 and reads as follow

rk = h1(T k)−h2(T k) +AT k − b (23)

For all k = 1,2, . . ., by setting T k,0 = T k−1, a sequence of
inner iterates {T k,l} is derived from Eq. (22) by linearizing 75

h1(T ) as follows

[h1(T k,l−1)+P (T k,l−1)(T k,l−T k,l−1)]+(A+Qk−1)T k,l = dk−1, l = 1,2, . . .

(24)

so that the inner iterates are determined from the following
linear systems

(P k,l−1 +A+Qk−1)T k,l = fk,l−1, l = 1,2, . . . (25) 80

where P k,l−1 = P (T k,l−1) and fk,l−1 = dk−1−
h1(T k,l−1) +P k,l−1T k,l−1. The resulting (k, l)th (in-
ner) residual is derived form Eq. 22 and reads as follow

rk,l = h1(T k,l) + (A+Qk−1)T k,l−dk−1. (26) 85
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Figure 1. Graphical representation of the Jordan decomposition
for the enthalpy of soil using the SFCC model for a silty soil
(Dall’Amico, 2010). (a) shows the Jordan decomposition ofCa(T ),
Eq. (18). For T = T ∗, Ca(T ) presents a maximum: for T < T ∗ it
is increasing, and for T > T ∗ it is decreasing. This non monothonic
behaviour causes problems when solving the nonlinear system.
Ca(T ) is thus replaced by p(T ) and q(T ), two monotonic func-
tions. Consequently, (b), h(T ) is replaced by h1(T ) and h2(T ),
Eq. (19)

The inner and the outer iterations are terminated when
‖rk,l‖< ε, and ‖rk‖< ε, respectively, with ε being a suf-
ficiently small prefixed tolerance.

The most commonly used constitutive SFCCs (McKen-
zie et al., 2007; Kozlowski, 2007; Dall’Amico et al., 2011;5

Sheshukov and Nieber, 2011; Watanabe et al., 2011), used to
define the enthalpy of frozen soil, satisfy the assumptions C1
and C2. In particular, the NCZ approach can be successfully
applied to SFCCs models derived from the combination of
existing SWRC models and the Clapeyron equation that in10

general are difficult to implement in numerical models based
on the apparent heat capacity (Kurylyk and Watanabe, 2013).
Functions describing the internal energy of other substances,
for instance pure water (Andreas et al., 2005), satisfy the as-
sumptions C1 and C2 and, therefore, the NCZ method can be15

successfully used to model phase change problems as it will
be shown for the original Stefan problem, Sections (4.1).

4 Analytical Benchmarks

The numerical model is compared for the problem of a col-
umn of freezing water, i.e. the Stefan problem, with the an-20

alytical solution presented by Neumann (cited in Kurylyk

Ice

Liquid water

0

ζ(t)

z

T = Ts

z → ∞ : T = T0

Figure 2. Scheme showing the setting of the Neumann solution for
the freezing case. Initially all water is liquid, T0 > Tm. Because
of the surface boundary condition, Ts < Tm, a freezing front, ζ,
propagates downward.

et al. (2014b)), and for the problem of a column of soil with
the three-zone with the analytical solution presented by Lu-
nardini (1988).

4.1 Neumann analytical solution 25

The Neumann analytical solution gives the solution of unilat-
eral freezing of a semi-infinite domain for both the tempera-
ture profile and the position of the moving boundary. Kury-
lyk et al. (2014b) recommended the Neumann solution due to
its ability to represent differences between the thermal diffu- 30

sivities of the thawed and frozen zones. Here we consider
the freezing of pure water instead of soil since it is more
numerically demanding. Consider a semi-infinite domain of
pure water at temperature T (z,0) = T0 where T0 > Tm, Fig.
(2). At the surface a Dirichlet boundary condition is imposed 35

T (z = 0, t) = Ts, with Ts < Tm. As a consequence a freez-
ing front ζ propagates downward separating the solid and the
liquid phase. The governing equations are

∂h

∂t
= λ

∂2T

∂z2
(27)

T (ζ, t) = Tm (28) 40

λi
∂T

∂z

∣∣∣∣∣
z=ζ−

dt= λw
∂T

∂z

∣∣∣∣∣
z=ζ+

dt+ lfρdζ (29)

At the moving boundary ζ(t), the temperature is equal to the
melting temperature of water, and the time evolution of ζ(t)
is described by the third equation, the Stefan condition. This
condition states that the difference of the heat fluxes at the 45

interface of the two substances is consumed for the phase
change. The parameters used in the comparison are given in
Table E1. The numerical model is able to simulate the freez-
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Table 2. Maximum error m of the freezing front position from the
numerical solution with the NCZ algorithm for different space and
time discretizations relative to the Neumann analytical solution.For
the numerical solution the position of the freezing front has been re-
constructed from the linear interpolation of the temperature profile.

∆t= 60 s ∆t= 300 s ∆t= 3600 s

∆z = 0.001 m 0.00737 0.00153 0.00739
∆z = 0.005 m 0.00271 0.00302 0.00714
∆z = 0.01 m 0.00536 0.00553 0.00905

0 50 100

Time [days]

0.0

0.2

0.4

0.6

ζ
[m

]

0 50 100

Time [days]

(a) (b)

Analytical sol. Numerical sol.

Figure 3. Propagation of the freezing front compared between the
Neumann analytical and the numerical solution with the NCZ algo-
rithm. Two space discretizations are used: (a) ∆z = 0.005 m, and
(b) ∆z = 0.001 m. The integration time step is ∆t= 3600 s.

ing problem of water well as seen in Fig. (3) and Fig. (4).

For comparison, Kurylyk et al. 2014b tested the numeri-
cal model SUTRA against the Neumann analytical solution
considering a soil porosity of 0.50 m3m−3. For their test the5

time step was of 0.04− 0.4 s, the vertical spatial discretiza-
tion 0.001 m, and the parameter ε was increased to −0.01
°C to match the analytical solution. The maximum absolute
error of the freezing front position was 0.00099 m.

In our model, the choice of a small melting temperature10

range ε= 0.0001 °C does not affect the quality of the nu-
merical solution even at a large time step of 3600 s. Looking
at Table 2 it is clear that the choice of the time step size is
somehow related to the choice of the spatial discretization:
using a small time step with a coarse grid does not necessar-15

ily improve the accuracy of the position of the freezing front.

We use the Neumann analytical solution to asses the the
robustness of the NCZ algorithm in comparison with the
Newton-Raphson and globally-convergent Newton methods.20

As reported by Dall’Amico et al. (2011), Figure (5) repre-

0

5

T
[◦

C
]

0.0

0.1

A
E

[◦
C

]

0 50 100

Time [days]

0

5

T
[◦

C
]

0 50 100

Time [days]

0.00

0.05

A
E

[◦
C

]

(a)

(b)

(c)

(d)

Analytical sol.

Numerical sol.

0.25 [m]

0.5 [m]

1.0 [m]

2.0 [m]

Figure 4. Panels (a) and (c) show the temperature evolution for the
Neumann analytical and the numerical solution with the NCZ al-
gorithm at various depths for a spatial discretization ∆z = 0.005
m and ∆z = 0.001 m respectively. The integration time step is
∆t= 3600 s. Panels (b) and (d) show the absolute error.

TTk−1 Tk

Figure 5. A scheme of problem which illustrates how the Newton-
Raphson method can not converge towards T (Dall’Amico, 2010).
In this case, the Newton-Raphson method fails to converge to T
since it cycles between T k and T k+1 values.

sents a well known case for which the Newton-Raphson al-
gorithm can not converge. Instead, the solution continuously
cycles between the iterates T k−1 and T k. While the Newton-
Raphson algorithm converges to the exact solution if a good 25

initial guess for T k exists, this represents a severe constraint
for the reliable application for an iterative algorithm in a nu-
merical model. An improvement of the Newton-Raphson al-
gorithm can be obtained using the globally convergent New-
ton scheme (Dall’Amico et al., 2011). It uses the Newton- 30

Raphson algorithm to provide the right search direction and,
in order to avoid overshooting, a reduction factor δ is used to
find the new estimate. This represents an improvement over
the Newton-Raphson method, but its ability to converge de-
pends on the choice of the parameter δ and on the treatment 35

of the apparent heat capacity (Hansson et al., 2004; Nicolsky
et al., 2007b; Dall’Amico et al., 2011). As such, this algo-
rithm does not guarantees to converge for any time step size
and the requirements for small time steps can become a lim-
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0 20 40 60 80 100

Time [days]

0.0

0.2

0.4

0.6

ζ
[m

]

Analytical sol.

NCZ ∆t = 3600 [s]

N. R. ∆t = 10 [s]

N. R. ∆t = 3600 [s]

g. c. N. ∆t = 10 [s]

g. c. N. ∆t = 3600 [s]

Figure 6. Comparison between the Neumann analytical solution
and the numerical solution obtained with Newton-Raphson (N.
R.), globally convergent Newton (g. c. N.), and NCZ algorithms.
All the numerical simulations use the same spatial discretization
∆z = 0.005 m.

iting factor. For example, in (Dall’Amico et al., 2011) the
comparison between the Neumann solution and GEOtop has
been done with a time step of 10 s.

A comparison of the numerical solutions obtained with
the Newton-Raphson algorithm, globally convergent Newton5

algorithm, and the NCZ algorithm shows significant differ-
ences (Fig. 6). Newton-Raphson cannot reproduce the ana-
lytical solution even if a time step of ∆t= 10 s is used. The
globally convergent Newton is in good agreement with the
analytical solution if ∆t= 10 s. With an hourly time step,10

however, the example with the globally convergent Newton
method is not able to reproduce the position of the freezing
front over longer periods of time. By contrast, the NCZ al-
gorithm reproduces the analytical solution well using ∆t=
3600 s. The quality of the solution obtained with the glob-15

ally convergent Newton algorithm depends not only on the
time step duration but also on the definition of the parameter
δ (Fig. 7). The additional necessity for an arbitrarily chosen
parameter in the globally convergent Newton algorithm fur-
ther underscores the robustness of the NCZ algorithm, for20

which convergence only depends on the right definition of
Eq. (18) and Eq. (19).

4.2 Lunardini analytical solution

Lunardini (1988) derived an analytical solution (Appendix F)
for the temporal evolution of temperature during the freezing25

of a semi-infinite and initially unfrozen soil column. In con-
trast to the Neumann analytical solution, in the Lunardini an-
alytical solution the domain is divided into three regions (Fig.
8) on the basis of temperature: unfrozen, T < Tm, partially
frozen, Tm < T < Tf , and fully frozen, T > Tf . The domain30

0 20 40 60 80 100

Time [days]

0.0

0.2

0.4

0.6

ζ
[m

]

Analytical sol.

δ = 0.1

δ = 0.02

δ = 0.01

δ = 0.001

Figure 7. Comparison between the Neumann analytical solution
and the numerical solution obtained with globally convergent New-
ton algorithm (g. c. N.). All the numerical simulations use the
same spatial discretization ∆z = 0.005 m and a time step size of
∆t= 3600 s. This figure shows as the numerical solution depends
on the choice of the parameter δ.

is initially unfrozen with T = T0 = 4 °C. At the left bound-
ary condition a Dirichlet boundary condition is imposed with
T (x= 0, t) = Ts =−6 °C, and the right boundary tempera-
ture is kept equal to the initial condition, T (z→∞, t) = T0.
Because the left boundary condition, Ts < 0 °C, a freezing 35

front propagates from left to right.
We computed benchmark T1 proposed by the InterFrost

project (InterFrost Project), parameters are given in Table
(F1). The model agrees well with the analytical solution for
all the three cases of Tm in terms of both the temperature 40

profile, Fig. (9) and Tab. (3), and the freezing front position,
Fig. (E1) and Tab. (4), even with an hourly time step.

For comparison, McKenzie et al. (2007) compared the nu-
merical model SUTRA against the Lunardini analytical solu-
tion for the cases Tm =−4 °C and Tm =−1 °C using a time 45

step size of 900 s and a space resolution of 0.01 m. For the
first test case the maximum absolute error was 0.01 °C, and
for the second 0.1 °C. Their parameters, however, differ from
those suggested by the InterFrost consortium, making per-
formance comparisons difficult. In particular, their porosity 50

was 0.05 m3m−3, whereas InterFrost uses 0.336 m3m−3. As
this determines the amount of latent heat involved in phase
change, smaller errors are to be suspected to occur with the
parameters used by McKenzie et al. (2007).

5 Numerical test 55

In the previous sections, we have demonstrated that the pro-
posed method can reproduce the Neumann analytical solu-
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T [◦C]

x

Tf = 0

Tm

Ts = −6

T∞ = T0

X(t)

X1(t)

Freezing front

Frozen Partially
frozen

Unfrozen

Figure 8. Scheme showing the setting of Lunardini problem
(Ruhaak et al., 2015). Initially the domain is unfrozen with T = T0.
Because of Ts < 0 on the left boundary, a freezing front propagates
from left to right.X1(t) andX(t) identify respectively the isotherm
corresponding to Tm, and Tf .

0 0.5 1

x [m]

−6
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−2

0

2

4

T
[◦

C
]

Analytical sol.

Numerical sol.

24 h

48 h

72 h

0 0.5 1

x [m]

0 0.5 1

x [m]

(a) (b) (c)

Figure 9. Comparison between the Lunardini solution and the nu-
merical solution with the NCZ algorithm for the three cases of T1
benchmark: (a) Tm =−4 °C, (b) Tm =−1 °C, (c) Tm =−0.1 °C.
The colours represent different times frame. The integration time
step is ∆t= 3600 s, and the space resolution is ∆x= 0.01 m.

tion, as well as the Lunardini analytical solution, even when
using larger time steps than other numerical models.

After comparing simulation results with analytical solu-
tions, we now analyse the difference between solutions using
hourly, daily, and 10-day time steps. The domain is a soil5

column of 20 m depth that is uniformly at T =−3 °C, ini-
tially. The bottom boundary condition is adiabatic and at the
surface, we use a Dirichlet boundary condition. The origi-
nal forcing has hourly resolution and for longer time steps,
corresponding averages are computed. As temperature gra-10

dients and the influence of phase change are usually greatest
near the soil surface, the thickness ∆z is parameterized with

0 5 10

Time [days]

0.0

0.2

0.4

0.6

0.8

1.0

X
[m

]

Analytical sol. Numerical sol.

0 5 10

Time [days]

0 5 10

Time [days]

(a) (b) (c)

Figure 10. Propagation of the zero-isotherm for the Lunardini so-
lution and the numerical solution with the NCZ algorithm for the
three cases of T1 benchmark: (a) Tm =−4 °C, (b) Tm =−1 °C,
(c) Tm =−0.1 °C. The integration time step is ∆t= 3600 s, and
the space resolution is ∆x= 0.01 m.

Table 3. Maximum absolute error °C of the temperature after 24 h
from the numerical solution with the NCZ algorithm relative to the
Lunardini analytical solution. The space resolution is ∆x= 0.01
m.

Tm =−4 °C Tm =−1 °C Tm =−0.1 °C

∆t= 300 s 0.00683 0.01419 0.11436
∆t= 900 s 0.01496 0.02448 0.11565
∆t= 3600 s 0.05115 0.08286 0.12116

an exponential function (Gubler et al., 2013)

∆zi = ∆zmin(1 + b)i−1 (30)

where ∆zmin is the thickness of the first layer, b is the growth 15

rate and i is the layer index, being one at the ground surface
and increasing downward. The parameters used are reported
in Table G1. All three simulations were spun-up for a period
of 1400 years to reach a stable thermal regime. After spin-up,
we performed a simulation of 100 years. 20

Figure (11) compares the zero-isotherm position com-
puted after 100 years for the three different time steps. In-
terestingly, there are no significant deviations in the results.
The larger deviations occur when the zero-isotherm is shal-
low: at the beginning of the thawing season as well as the 25

freezing one, Fig. (G1, G2). This can be attributed on one
side to the diurnal cycles of surface boundary condition, and
on the other side that using a larger time step we lose accu-
racy in capturing the timing of thawing/freezing even if we
use the same boundary condition. 30

With larger time steps, we lose some of the information
of the boundary conditions and the accuracy of the numeri-
cal model decreases because it is first-order accurate in time.
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Table 4. Maximum error m of the freezing front position from the
numerical solution with the NCZ algorithm relative to the Lunardini
analytical solution. The space resolution is ∆x= 0.01 m.

Tm =−4 °C Tm =−1 °C Tm =−0.1 °C

∆t= 300 s 0.00032 0.00051 0.00001
∆t= 900 s 0.00043 0.00027 0.00016
∆t= 3600 s 0.00062 0.00057 0.00047

The overall performance relative to simulations with smaller
time steps, however, is largely preserved. While the order of
accuracy can be increased to second order in time using the
Crank-Nicholson method, this would incur a time step re-
striction to guarantee the monotonicity of the solution. As5

this restriction is proportional to the square of the space dis-
cretization, ∆z2, the Crank-Nicholson method would repre-
sent a severe constrain whenever high spatial resolution is
required.

Figure (12) compares the minimum, mean, and maximum10

temperature profile respectively for the three simulations. (a)
shows the ground temperature envelope for the hourly simu-
lation. The maximum envelop presents an ’elbow’ that is due
to the zero-curtain effect Fig. (G3). As can be seen in (b) and
(d), close to the soil surface the hourly simulation presents15

larger values for both the minimum and maximum tempera-
ture due the fact that the hourly boundary condition presents
a greater amplitude that is smoothed computing the daily and
10-day average.

In the mean temperature profile, the 10-day simulation20

presents a larger deviation from the hourly simulation than
the daily simulation. The large deviation can be explained
with the interaction of the time-step size with the thermal
offset effect (Fig. G4). If the thermal conductivity of water is
set equal to that of ice, the maximum difference between the25

three profiles is reduced to 0.003 °C with a maximum devia-
tion of 0.003 °C from the initial condition, that is also equal
to the mean of the forcing boundary condition.

Regarding the spatial discretization Fig. (G5) reports a
comparison of the zero-isotherm position obtained using an30

hourly time step, a daily time step, and a 10 day time step.
The results are still in good agreement, but is it interest-
ing to note that the zero-isotherm presents some steps, in-
dependently on the size of the time step, and some details
are missed, such as the joining of the downward and upward35

freezing fronts captured with the finer grid. These steps are
caused by the greater thickness of the grid elements. Because
temperature is computed in the middle of each control vol-
ume, more time is required to achieve complete phase change
of water, resulting in slower variation of the zero-isotherm40

position.
These synthetic experiments demonstrate that spatial and

temporal discretization can be chosen accordingly to the aim

the study without any constrains due to the convergence and
stability issues of the numerical scheme. 45

Moreover, we checked the mean number of iterations re-
quired to solve the nonlinear system for a simulation lasting
1 year with a time step ∆t= 1 h and for different spatial
discretizations. We compared the NCZ against the Newton-
Raphson algorithm and the globally convergent Newton. Re- 50

sults are reported in Table G2.

6 Conclusions

We have presented a new model for simulating the ground
thermal regime in the presence of freezing and thawing
based on the heat-transfer equation and the application of the 55

NCZ algorithm. To our knowledge, this is the only method
that guarantees convergence while also permitting large time
steps. The numerical model was implemented and verified
against the Neumann and Lunardini analytical solutions. In
both cases, the results were in good agreement even with 60

an hourly integration time step. For the Neumann solution,
we considered pure water instead of saturated soil since it
is more numerically demanding, and no convergence prob-
lems were encountered despite choosing a narrow tempera-
ture range (0.0001 °C) over which phase change occurs. 65

Numerical experiments demonstrated the robustness of the
model by comparing results at differing temporal and spatial
resolutions. Results obtained with time steps of 1 h, 1 day,
and 10 days are consistent. The robustness of the numerics
allows the user to choose both the space and time discretiza- 70

tion without any restriction due to stability and convergence
issues. As a consequence, this method is effective for simu-
lating permafrost thaw, a phenomenon that occurs at depth,
in response to seasonal and multi-annual cycles, and often
over tens, hundreds or even thousands of years. Furthermore, 75

phenomena like hysteresis or the variation of solute concen-
tration upon freezing (Clow, 2018) can be included in the
numerical model if the enthalpy function (i.e. its parameters)
does not change within the current time step of integration.

While we presented a finite volume method, the NCZ al- 80

gorithm can be also used with finite difference and finite
element method. Beyond applications to frozen soil, it can
be used to study other geophysical phenomena that involve
phase change of a substance simply by changing the defi-
nition of the enthalpy function and the thermal conductivity 85

function. Examples include, glacier dynamics (Aschwanden
et al., 2012), snow pack evolution (Brun et al., 1992; Lehning
et al., 1999), and magma bodies (De Lorenzo et al., 2006).
This may be even further expanded to industrial problems
involving phase change materials used in energy recovery 90

systems (Mongibello et al., 2018; Nazzi Ehms et al., 2019)
or casting problems of pure metals and alloys (Lewis and
Ravindran, 2000).
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Figure 11. Comparison of the position of the zero-isotherm, panel (c), after 100 years of three simulations: using an hourly boundary
condition with time step of ∆t= 1 h, using a daily boundary condition with a time step of ∆t= 1 day, and a 10-day boundary condition
with a time step of ∆t= 10 day. Panel (a) shows the surface temperature for the hourly, the daily and the 10-days simulations. Panel (b)
shows the deviation of the position of the zero-isotherm after 100 years between the hourly and the 10-days simulation, and between the
daily and the 10-days simulation.
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Figure 12. (a) The minimum, mean, and maximum temperature
profile for the hourly simulation. (b), (c), (d) show the compari-
son of the minimum, mean, and maximum temperature profile re-
spectively for the three simulations: with an hourly air tempera-
ture boundary condition and ∆t= 1 h, with a daily air temperature
boundary condition and ∆t= 1 day, with a ten day air temperature
boundary condition and ∆t= 10 day. All three simulations last
100 years. The maximum difference of Tmean between the hourly,
and daily simulation is of 0.04 °C, while between the hourly, and
ten-days simulation is of 0.3 °C.

codeavailability

The source code is written in Java using the object-
oriented programming paradigm. It can be found at

https://github.com/geoframecomponents/FreeThaw1D
(Tubini, c). The OMS3 project can be found at https: 5

//github.com/GEOframeOMSProjects/OMS_FreeThaw1D
(Tubini, b). FreeThaw1D is deployed as an open source
code to work alone or inside the Object Modelling System
version 3 framework (David et al., 2013). In the latter
case it can be connected at run time with the many other 10

components developed along with the GEOframe system
(Formetta et al., 2014; Bancheri, 2017) for providing
hydrometeorological forcings and other fluxes, like the
evapotranspiration. The simulations presented here can
be found at http://dx.doi.org/10.5281/zenodo.4017668 15

(Tubini, a). The code must be run inside the OMS3 Console
or using the Dockerized version of OMS3. For setting
up the environment please follow the steps described in
the README file present it he Github repository https:
//github.com/GEOframeOMSProjects/OMS_FreeThaw1D 20

and in the GEOframe pages at https://geoframe.blogspot.
com/2020/12/installations-of-2021-geoframe.html
(last access 28 January 2021). Once you have in-
stalled OMS3, please follow the instructions con-
tained in Jupyter_Notebook\_README.ipynb and 25

Jupyter_Notebook\00_FreeThaw1D.ipynb. They contain all
the details about the simulations inputs and parameters.

https://github.com/geoframecomponents/FreeThaw1D
https://github.com/GEOframeOMSProjects/OMS_FreeThaw1D
https://github.com/GEOframeOMSProjects/OMS_FreeThaw1D
https://github.com/GEOframeOMSProjects/OMS_FreeThaw1D
http://dx.doi.org/10.5281/zenodo.4017668
https://github.com/GEOframeOMSProjects/OMS_FreeThaw1D
https://github.com/GEOframeOMSProjects/OMS_FreeThaw1D
https://github.com/GEOframeOMSProjects/OMS_FreeThaw1D
https://geoframe.blogspot.com/2020/12/installations-of-2021-geoframe.html
https://geoframe.blogspot.com/2020/12/installations-of-2021-geoframe.html
https://geoframe.blogspot.com/2020/12/installations-of-2021-geoframe.html
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Appendix A: Commonly used simulation software

The heat equation can be written in different forms that are
analytically equivalent, but subject to differing numerical ad-
vantages and disadvantages. In the scientific literature, sev-
eral simulators, i.e. software that implements a particular5

model (set of equations), for solving the heat equation with
freezing and thawing have been presented. Here we review
commonly used frozen soil models in terms of their govern-
ing equations and methods of finding numerical solutions.

Heat transfer with phase change of water is a cross-cutting10

problem existing in many geophysical phenomena other than
frozen soil. This includes, for example, the seasonal snow
pack, glaciers, and ice-sheets. Our contribution does not seek
to present an improvement in the description of these prob-
lems and we ignore typical processes such as metamorphism15

and settling in seasonal snow or strain heating and deforma-
tion in glaciers and ice sheets. Nevertheless, corresponding
models may benefit from the NCZ algorithm in the treatment
of the nonlinearity arising from phase change and, further-
more, broadening our review to also include some snow and20

glacier models supports the generalisation of our findings.

A1 CLM

The Community Land Model (CLM) is the LSM for the
Community Earth System Model (Oleson et al., 2004). It
includes a module to simulate the ground temperature con-25

sidering freezing and thawing. The governing equation is
written in the non-conservative form and does not include
the latent heat term (Oleson et al., 2004) (Lawrence et al.,
2019). The heat conduction equation is solved using a Crank-
Nicholson method. The temperature profile is calculated30

adopting the DECP approach. This approach does not require
to solve a nonlinear system, since the latent heat is treated
in an explicit way, but Nicolsky et al. (2007a) have pointed
out that this two-step procedure can overestimate the region
where the phase change occurs, resulting in inaccuracies in35

the simulation of active-layer thickness.

A2 CoupModel

The CoupModel (Jansson and Karlberg, 2011) is a one-
dimensional numerical model to simulate the heat and water
flow as well as carbon and nitrogen budgets in a soil-plant-40

atmosphere system (Hollesen et al., 2011). The governing
equation for heat flow in the soil is defined using the apparent
heat capacity, and solved with an explicit numerical method.
This does not require to solve a non-linear system but sets a
time step restriction to avoid numerical oscillation.45

A3 CryoGrid

CryoGrid 2 simulates the ground thermal regime based on
conductive heat transfer in the soil and in the snowpack
(Westermann et al., 2013). The heat equation is written using

the apparent heat capacity and solved using the method of 50

lines (Westermann et al., 2013). The resulting system of or-
dinary differential equations is solved numerically with the
package CVODE of Sundials that implements a modified
Newton method, and Inexact Newton method, or a fixed-
point solver to linearize the algebraic system resulting from 55

the discretization of the heat transfer equation. The conver-
gence of the Newton-type methods can be problematic (Ca-
sulli and Zanolli, 2012).

A4 GEOtop

GEOtop (Rigon et al., 2006; Endrizzi et al., 2014) is a phys- 60

ically based distributed model of the mass and energy bal-
ance of the hydrological cycle. It includes a module for solv-
ing the energy equation in freezing soil (Dall’Amico et al.,
2011); this module can also be linked with the solver for the
Richards equation. The governing equation for heat transfer 65

is written in conservative form, but when solving the equa-
tion the apparent heat capacity formulation is used. A glob-
ally convergent Newton algorithm is used to deal with the
non-linearities arising from phase change (Dall’Amico et al.,
2011). The globally convergent Newton algorithm represents 70

an improvement over the Newton-Rapshon algorithm, how-
ever, as shown in Section (4.1) it does not perform as well
as the NCZ algorithm, and additionally, the choice of the pa-
rameter δ is non trivial.

A5 GIPL-2.0 75

GIPL-2.0 simulates the ground thermal regime by solving the
heat equation with phase change numerically (Marchenko
et al., 2008). The governing equation is written in the con-
servative form and Newton’s method is used to linearize the
energy equation. To overcome convergence problems when 80

solving the non-linear system, GIPL-2.0 implements a frac-
tional time step approach, Godunov splitting. The key point
of the solution regards the treatment of the enthalpy time
derivative: in case of a non zero gradient of temperature ex-
ists the time derivative is approximated with a difference 85

derivative, otherwise using the analytical representation.

A6 Goodrich

Goodrich (1982) presented a one-dimensional model to
simulate the ground thermal regime considering the phase
change of water. The governing equation is written in the 90

non conservative form and does not include the latent heat
of fusion. Phase change is treated with the front tracking
method, which offers good accuracy for problems in which
phase change occurs at a fixed temperature (Goodrich, 1982).
This model does not use a SFCC, and instead, the soil is 95

represented as homogeneous layers with distinct frozen and
thawed thermal properties.
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A7 Hydrus 1D

Hydrus 1D includes a module to simulate water flow and heat
transport in frozen soil. The governing equation is written
using the apparent heat capacity formulation and Picard it-
eration is used to linearize the algebraic nonlinear system.5

In their paper, Hansson et al. (2004) explain that during the
Picard iteration the solution can easily oscillate whenever
the temperature decrease below the melting temperature. To
avoid these oscillation the temperature is reset to the criti-
cal value and iteration restarted. Hydrus 1D adopts an em-10

pirical time-step adaptation criterion. It is worthwhile to no-
tice that the modified Picard iteration was proposed by Celia
et al. (1990) to solve the Richards equation – problem for
which the NCZ algorithm was originally proposed (Casulli
and Zanolli, 2010).15

A8 MarsFlo

MarsFlo is a three-phase numerical model to simulate the
heat transfer and water flow in partially frozen, partially satu-
rated porous media (Painter, 2011). The heat equation is writ-
ten in the conservative form. The equation is solved using an20

implicit finite difference method, and the resulting nonlin-
ear system is solved using a Newton-Raphson method. To
overcome convergence and stability problems, three mod-
ification were introduced (Painter, 2011). The convergence
of the Newton-Raphson method can be problematic (Casulli25

and Zanolli, 2012).

A9 NEST

Zhang et al. (2003) developed a one-dimensional physi-
cally based model of Northern Ecosystem Soil Temperature
(NEST). The heat equation is written in the source term for-30

mulation and solved with the DECP approach. The numerical
method is explicit in time, thus the maximum time step is of
30 minutes to prevent oscillations in the solution.

A10 Sergueev et al.

This is a two dimensional model and the governing equation35

is written in the enthaply form (Sergueev et al., 2003). This
model implements a fractional time step approach (Godunov
splitting): each time step is divided into two steps and at each
step, a different dimension is treated implicitly. The system
of finite difference equations is non-linear and is solved with40

the Newton’s method. As in GIPL-2.0, the time derivative of
enthalpy is computed either using the difference derivative
or the analytical derivative according with the gradient of the
temperature field.

A11 SoilVision45

The heat equation is written using the apparent heat capac-
ity. The equation are solved using a finite element solver,

FlexPDE suite, both explicit and implicit in time. In case of
implicit methods, the resulting non-linear system is solved
using the Newton-Raphson method. The convergence of the 50

Newton-Raphson method can be problematic (Casulli and
Zanolli, 2012).

A12 SUTRA

SUTRA is an established USGS groundwater flow and cou-
pled transport model (Voss and Provost, 2002). McKenzie 55

et al. (2007) and McKenzie and Voss (2013) have extended
the model to simulate freezing and thawing processes in the
soil. The heat equation is written using the apparent heat ca-
pacity formulation and nonlinearities are solved using Picard
iteration. The convergence of the Newton-type method can 60

be problematic (Casulli and Zanolli, 2012).

A13 Crocus

Crocus is a one-dimensional finite difference model that
solves the mass and energy balance within the snowpack tak-
ing into account metamorphism and settling. The first ver- 65

sions of Crocus (Brun et al., 1989, 1992) were not enthalpy-
based. The governing equation was written in terms of tem-
perature and water content. It was solved by using the Crank-
Nicholson method, and the phase change is treated by us-
ing the DECP approach (Brun et al., 1992). After the in- 70

tegration within SURFEX (Vionnet et al., 2012), Crocus
uses the enthalpy formulation and the numerical scheme is
fully implicit, based on the numerics of ISBA-ES (Boone
and Etchevers, 2001). Similarly to the previous version, the
heat balance equation is solved adopting the DECP approach 75

(Boone and Etchevers, 2001). Even though recent work Cro-
cus is based on a simple bucket approach for liquid wa-
ter percolation (Morin et al., 2012; Lafaysse et al., 2017),
D’Amboise et al. (2017) implemented a routine for water
flow in the snowpack based on the Richards equation, which 80

is characterized by nonlinear behaviour like the enthalpy
equation. To solve it, they adopted an approach based on Pi-
card iteration with variable time steps (Paniconi and Putti,
1994).

A14 SNOWPACK 85

SNOWPACK (Lehning et al., 1999) solves the heat transfer
and creep/settlement equations using a Lagrangian finite el-
ement method. The governing equation is written using the
source/sink formulation and it is solved using the DECP ap-
proach (Bartelt and Lehning, 2002; Lehning et al., 1999). Re- 90

garding the water flow, SNOWPACK implements three dif-
ferent schemes: a simple bucket-type approach, an approxi-
mation of Richards equation, and the full Richards equation
(Wever et al., 2014). The full Richards equation is solved us-
ing Picard iteration with variable time steps (Paniconi and 95

Putti, 1994).
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A15 ORCHIDEE

ORCHIDEE is terrestrial biosphere model and it is part of
the IPSL-CM4 Earth system model developed by the Insti-
tute Pierre Simon Laplace (IPLS) (Krinner et al., 2005). In
the version 1.9.6 the snow is described with a single layer of5

constant density (Wang et al., 2013). Because of the limita-
tions of the this approach, Wang et al. introduce a three-layer
snow model, ORCHIDEE-ES, largely inspired from ISBA-
ES (Boone and Etchevers, 2001) to consider snow settling,
water percolation, and water refreezing. The governing equa-10

tion is written in the non-conservative form and does not in-
clude the latent heat term. The temperature profile is calcu-
lated adopting the DECP approach.

A16 JSBACH

JSBACH is the land surface model developed by the Max15

Plank Institute (Ekici et al., 2014). It is a component of the
Earth System Model (MPI-ESM) that also include ECHAM6
for the atmosphere and MPI-OM for the ocean. JSBACH
simulates both the frozen soil and the snowpack. In both
cases the heat conduction is assumed to be the dominant20

method of heat transfer. The governing equation is written
in the source term formulation and solved with the DECP
approach (Ekici et al., 2014).

A17 Ice-sheet models

For glacier and ice-sheet models it is necessary to distinguish25

between cold and temperate ice. Following Aschwanden and
Blatter (2005), “ice is treated as temperate if a change in heat
content leads to a change in liquid water content alone, and is
considered cold if a change in heat content leads to a temper-
ature change alone.” This means that cold ice is always below30

the melting temperature and thus the phase change does not
occur. As result, present-day ice sheet models can be classi-
fied into: ’cold-ice method’ models and polythermal models.

’Cold-ice method’ does not consider the phase change of
ice. Because of this the heat capacity can be assumed to be35

constant and therefore the governing equation can be written
in terms of only temperature. These models are easy to im-
plement, but their applicability is restricted since in general
temperate zones can be present (Aschwanden and Blatter,
2009). In fact, since the phase change of ice is overlooked,40

locally, the ’cold-ice method’ violates the energy conserva-
tion, overestimates the temperate region (Aschwanden and
Blatter, 2009), and can not quantify the liquid water content
that affects viscosity in temperate ice (Lliboutry and Duval,
1985).45

By contrast, polythermal ice-sheet models consider the
phase change of ice. Similar to freezing soil models, the poly-
thermal ice-sheet models can be classified in two groups on
the base of the treatment of the phase change: front tracking
method and enthalpy method (Nedjar, 2002). SICOPLOIS50

(Greve, 1997a, b; Greve and Blatter, 2016) is the only ’truly’
polythermal ice sheet model. It employs the polythermal
two-layer scheme (Greve, 1997b): the temperature field and
the water content field are computed separately for the ice
and temperate domain and a Stefan-type condition is applied 55

at the cold-temperate surface (CTS). This model defines the
CTS for both energy flux and mass flux. The drawback of
this method relate to the implementation and restriction on
the geometry and topology of the CTS (Aschwanden et al.,
2012). 60

Aschwanden and Blatter (2009) presented an enthalpy gra-
dient method. This is a fixed-grid method that differs from
the enthalpy method commonly used for freezing soil in its
definition of the energy flux. In the enthalpy method, the
heat flux is expressed in terms of the temperature gradient, 65

whereas in the enthalpy gradient method it is expressed in
terms of enthalpy, assuming that the heat capacity is constant
(Aschwanden and Blatter, 2009). The enthalpy approach
combines the advantage of solving one equation for the en-
tire domain, cold-ice models, and the correct description of 70

the thermodynamics of temperate ice (front tracking model).
This model is implemented in COMSOL Multiphysics (As-
chwanden and Blatter, 2009), where nonlinear problems are
solved using either a Newton algorithm or a damped New-
ton algorithm. Also in this case the NCZ may represent a 75

valid option to solve the nonlinear system. To the authors’
knowledge, the enthalpy gradient method has not be used in
freezing soil models.

Hewitt and Schoof (2016) presented an enthalpy-based fi-
nite volume method for polythermal ice. To solve the equa- 80

tion at each time step the computational domain is explic-
itly divided in the cold and temperate regions, and the energy
equation is solved adopting a combination of implicit and ex-
plicit methods (Hewitt and Schoof, 2016). It is worth to note
that in the temperate region, temperature is set equal to the 85

melting temperature of the ice. This limits the application of
this model to simulate freezing soil, where temperature can
be larger than the melting temperature of water.

Appendix B: Pseudocode

We present the pseudocode for a one-dimensional implemen- 90

tation of the NCZ algorithm. Since the matrix A in Eq. (16) is
tri-diagonal we can efficiently compute only the non-zero di-
agonal: the upper diagonal, the main diagonal, and the lower
diagonal. We use the generic expression Discretize the gov-
erning equation since here, we can choose to adopt either 95

a finite volume method, as presented in this paper, a finite
element method, or a finite difference method. Moreover,
the matrix A is symmetric and positive definite thus within
the nested Newton algorithm the linearized algebraic system
can be easily solved with the Thomas algorithm. Here, it 100

is worthwhile to point out that when we move to the two-
dimensional or three-dimensional problem, the linearized al-
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gebraic system cannot be solved with the Thomas algorithm
as the matrix is no longer tri-diagonal. In these cases, itera-
tive schemes such as the Conjugate Gradient Method need to
be used (Shewchuk, 1994).

Algorithm 1 Program flow

1: Read inputs
2: for time= 1,2, . . . do
3: read boundary conditions
4: compute enthalpy and thermal conductivity at time level

time
5: Discretize the governing equation
6: for i= 1,2, . . . ,Nv do
7: Compute A and b of the system applying the boundary

condition when i== 1 and i==Nv

8: end for
9:

10: Solve the non-linear system: nested Newton algorithm
11: Set T 0 < T ∗

12: for k = 1,2, . . ., outer iteration do
13: for l = 1,2, . . ., inner iteration do
14: Solve (P k,l−1 +A+Qk−1)T k,l = fk,l−1

15: if ‖rk,l‖< ε then
16: Set T k = T k,l and exit
17: end if
18: end for
19: if ‖rk‖< ε then
20: Set T = T k and exit
21: end if
22: end for
23: end for

Appendix C: Fully implicit formulation and the5

problem of the thermal conductivity

Using a fully implicit formulation, the discretization of Eq.
(1) reads as

hi(T
n+1
i ) = hi(T

n
i )+∆t

∑
j∈Fi

Λn+1
j

Tn+1
P(i,j)−T

n+1
i

δj
+Sn+1

i


(C1)

where Ti is the temperature of the ith control volume, P(i, j)10

is the neighbour of volume i that shares face j with the ith
control volume, δj is the nonzero distance between the cen-
ters of two adjacent volumes which share the jth internal
face, ∆t is the time step size,

Λn+1
j =Ajmax

[
λi(T

n+1
i ),λP(i,j)(T

n+1
P(i,j)

)
]

(C2)15

and

Sn+1
i =

∫
Ωi

SdΩ (C3)

is an optional source/sink term in volume, and hi(T ) is the
ith enthalpy given by

hi(T ) =

∫
Ωi

h(T )dΩ (C4) 20

For given initial condition T 0
i , at every time step n= 1,2, . . . ,

Eq. (C1) constitutes a fully nonlinear system of equation to
be solved for Tn+1

i . To solve Eq. (C1), one sets Tn+1,0
i =

Tni . Then the Picard iterations are taken to be

hi(T
n+1,m+1
i ) = hi(T

n
i )+∆t

∑
j∈Fi

Λn+1,m
j

Tn+1,m+1
P(i,j) −Tn+1,m+1

i

δj
+Sn+1,m

i


(C5) 25

where the index m refers to the Picard iteration. By using
the NCZ algorithm local and global energy conservation is
enforced at each Picard iteration. However, convergence of
the Picard iterations is not essential to get a conservative so-
lution for Eq. (1), but some iterations can be used to update 30

the thermal conductivity to the n+1th time level Casulli and
Zanolli (2010).

Appendix D: Enthalpy and internal energy

Following the work by Dall’Amico (2010), the internal en-
ergy in its canonical form, Uc, can be written as 35

Uc = Uc(S,V,M) (D1)

where S is the entropy, V is the volume, and M the mass of
the constituents. These are the independent variables and are
called extensive variables since they depend linearly on the
mass of the substance. The first differential of Eq. (D1) is 40

dUc =

(
∂Uc
∂S

)
dS+

(
∂Uc
∂V

)
dV +

(
∂Uc
∂M

)
dM (D2)

According to Callen (1985) it is possible to define(
∂Uc
∂S

)
≡ T , the temperature (D3)

−
(
∂Uc
∂V

)
≡ p , the pressure (D4) 45

(
∂Uc
∂M

)
≡ µ , the chemical potential (D5)

With this notation, Eq. (D2) becomes

dUc = TdS− pdV +µdM (D6)
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By making use of the Legendre transformation it is possi-
ble to define the enthalpy potential Hc as

Hc(S,p,M) = Uc(S,V,M) + pV (S,p,M) (D7)

The differential of the enthalpy is

dHc = d[Uc+pV ] = TdS−pdV+µdM+V dp+pdV = TdS+µdM+V dp

(D8)5

If we assume that the transformation occurs at constant pres-
sure and volume then Eq. (D6) becomes

dUc = TdS+µdM (D9)

and Eq. (D8)

dHc = TdS+µdM (D10)10

Hence, from Eq. (D9) and Eq. (D10) the differential of the
internal energy and the differential of enthalpy are equal.
Therefore the governing equation, Eq. (1), can be equiva-
lently written in term of either the specific enthalpy or the
specific internal energy.15

Appendix E: Neumann analytical derivation

In this section we report the derivation of the Neumann ana-
lytical. The enthalpy is defined as

h(T ) =


ρwcw(T −Tref ) + ρwlf if T ≥ Tm
ρici(T −Tref ) if T < Tm− ε
ρici(T − ε−Tref ) +h

′
(T − (Tm− ε)) otherwise

(E1)

where the singularity of the enthalpy function at T = Tm has20

been linearized with

h
′
=
ρwcw(Tm−Tref ) + ρwlf − ρici(Tm− ε−Tref )

ε
(E2)

and ε is a parameter defining the temperature range over
which the phase change of water occurs, Fig. (E1). In the
following tests ε is set to be equal to 0.0001 °C. The intro-25

duction of this linearization is necessary since the enthalpy
function needs to be continuously differentiable according to
assumption C1 in Section 3.2. It is worth to underline that
the temperature range ε can be chosen sufficiently small in
order to make this approximation negligible when compared30

to the physical behaviour of water, considering that: (a) The
melting of water in temperate ice is known to actually oc-
cur progressively below 0 °C along grain boundaries (Lang-
ham, 1974; Nye and Frank, 1973). (b) Freezing often occurs
below the melting point when nucleation is relevant. (c) In35
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Figure E1. (a) Comparison between the enthalpy function of pure
water and the enthalpy function used in the numerical model. (b)
Note that the energy jump due to the latent heat at Tm = 0 °C has
been linearized and the steepness is controlled by the parameter ε.

porous media such as soil, ice melts across a range of temper-
atures due to the Gibbs-Thompson effect in pores and surface
affects at the interfaces between ice and particles (Rempel
et al., 2004; Watanabe and Mizoguchi, 2002).

Even though the internal energy function is very steep, the 40

code used does not suffer of convergence problem with a time
step of 3600 s. The thermal conductivity is defined as:

λ(T ) =

{
λw if T ≥ Tm
λi if T < Tm

(E3)

Defining the following constant:

αw =
λw
ρwcw

αi =
λi
ρici

(E4) 45

A=
Tm−Ts
erf(γ)

B =
Tm−T0

erf

(
γ

√
αi
αw

) (E5)

the moving boundary function is

ζ(t) = 2γ
√
αit for t > 0 (E6)

where the coefficient γ can be found solving the following 50

equation

γ
√
αilfρ−

λi√
παi

Ae−γ
2

− αw√
παw

Be
γ2
αi
αw = 0 (E7)

Finally the analytical solution for problem with Dirichlet
boundary condition for the thawed and frozen zones are:
T (z, t) = Ts +

Tm−Ts
erf(γ)

erf

(
z

2
√
αi t

)
0< z < ζ(t)

T (z, t) = T0 +
Tm−T0

erfc

(
γ

√
αi
αw

) erfc

(
z

2
√
αw t

)
z > ζ(t)
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(E8)

Appendix F: Lunardini analytical derivation

The solution fo the Lunardini problem (i.e. the Lunardini so-
lution) as described by McKenzie (McKenzie et al., 2007) is5

given by the following set of equations:

T1 = (Tm−Ts)
erf

(
x

2
√
α1t

)
erf(ψ)

+Ts (F1)

T2 = (Tm−Tf )

erf

(
x

2
√
α4t

)
− erf(γ)

erf(γ)− erf

(
ψ

√
α1

α4

) +Tf (F2)

10

T3 = (T0−Tf )

−erfc

(
x

2
√
α3t

)
erfc

(
ψ

√
α4

α3

) +T0 (F3)

where T1, T2, and T3 are the temperatures at distance,
x, from the temperature boundary for the frozen, partially
frozen, and unfrozen zone respectively; erf and erfc are the
error function, and the complementary error function respec-15

tively; T0, Tm, Tf , and Ts are the temperatures of the initial
condition; the solidus, the liquidus, and the boundary temper-
ature, respectively; α1 and α3 are the thermal diffusivities for
the frozen, and unfrozen zone respectively, defined as λ1/C1

and λ3/C3 where C1 and C3 are the volumetric bulk-heat20

capacities of the frozen and unfrozen zones. The thermal dif-
fusivity of the partially frozen zone is assumed to be constant
across the transition region, and the thermal diffusivity with
latent heat term included, α4, is defined as:

α4 =
λ2

C2 +
γdlf∆ξ

(Tf −Tm)

(F4)25

where γd is the dry unit of soil solids, and ∆ξ = ξ0− ξf
where ξ0 and ξf are the ratio of unfrozen water to soil solids
for the fully thawed and frozen conditions respectively. For
a time, t, in the region 0≤ x≤X1(t) the temperature is T1

and X1(t) is given by30

X1(t) = 2ψ
√
α1t (F5)

and from X1(t)≤ x≤X(t) the temperature is T2, where
X(t) is given by

X(t) = 2γ
√
α4t (F6)

and for x≥X(t) the temperature is T3. The unknowns, ψ 35

and γ, are solving the set of these two equations:

Tm−Ts
Tm−Tf

exp−ψ
2(1−α1/α4) =

λ2

λ1

√
α1

α4
erf(ψ)

erf(γ)− erf

(
ψ

√
α1

α4

) (F7)

(Tm−Tf )
λ2

λ3

Tm−Tf
α3

α4
exp−γ

2(1−α4/α3) =

erf(γ)− erf

(√
α1

α4
ψ

)
erf

(
γ

√
α4

α3

)
(F8)

40

Appendix G: Numerical test

As explained in Section 5, comparing the position of the
zero-isotherm after 100 years using three different time step,
hourly, daily and 10-days, there are no significant deviation
in the results. The larger deviation occur when the zero- 45

isotherm is shallow: at the beginning of the thawing season
as well as the freezing one.

At the beginning of the thawing season, Fig. (G1), there
is a time lag of about one month between the beginning of
the thawing season for the hourly simulation and the 10-days 50

simulation. This can be attributed to different surface temper-
ature used to drive the simulations. In particular, in the case
of the hourly simulation it is possible to see the oscillations
of the position of the zero-isotherm, panel (c), related to the
oscillation of the surface temperature around 0 °C, panel (a). 55

Figure (G2) shows the detail of the freezing season. In
panel (c) it is possible to note that when the zero-isotherm
is deep there is a good agreement between the three simula-
tions. The main differences occurs at the soil surface since 60

with larger time steps the signal of the surface boundary
condition is smoothed and does not oscillates around 0 °C.
Moreover, by using an hourly time step and a daily time step
it is possible to capture the joining of the downward and up-
ward freezing front, while this is not possible with the 10- 65

days time step since the joining occurs in-between of two
consecutive time step.

As explained in Section 5, the maximum temperature pro-
file, Fig. (12) panel (d), presents an ’elbow’ due to the so-
called zero-curtain effect. The zero curtain effect, Fig. (G3), 70

is the period of time during which the temperature remains
nearly constant and very close to the freezing point because
of the latent heat released during the phase change of water.

Figure (G4) shows the temperature envelopes for the
hourly, the daily, and the 10-days simulations setting the ther- 75

mal conductivity of water equal to the thermal conductivity
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Table E1. Input parameters for the comparison between Neumann analytical solution and the numerical solution with the NCZ algorithm.

Symbol Parameter Value Unit

∆t time step 60, 300, 3600 s
∆z control volume size 0.001, 0.005, 0.01 m
lf latent heat of fusion 333700 J kg−1

cw specific heat capacity of water 4187 J m−3 °C−1

ci specific heat capacity of ice 2108 J m−3 °C−1

ρw water density 1000 kg m−3

ρi ice density 970 kg m−3

λw thermal conductivity of water 0.6 W m−1 °C−1

λi thermal conductivity of ice 2.09 W m−1 °C−1

ε melting temperature range 0.0001 °C
T0 initial temperature +5 °C
Ts surface temperature −5 °C

Table F1. Input parameters for the comparison between Lunardini analytical solution and the numerical solution with the NCZ algorithm.

Symbol Parameter Value Unit

∆t time step 300, 900, 3600 s
∆x control volume size 0.01 m
Lf latent heat of fusion 334560 J kg−1

C1 volumetric heat capacity, frozen 690030 J m−3 °C−1

C2 volumetric heat capacity, partially frozen 690030 J m−3 °C−1

C3 volumetric heat capacity, unfrozen 690030 J m−3 °C−1

γd dry unit density of soil solids 1680 kg m−3

ξ0 ratio of liq. water to soil solids, unfrozen 0.2 -
ξf ratio of liq. water to soil solids, frozen 0.0782 -
λ1 thermal conductivity, frozen 3.462696 W m−1 °C−1

λ2 thermal conductivity, partially frozen 2.939946 W m−1 °C−1

λ3 thermal conductivity, unfrozen 2.417196 W m−1 °C−1

γ solution parameter for Eq. (F7) and Eq. (F8) 5.616, 2.060, 1.397 a -
ψ solution parameter for Eq. (F7) and Eq. (F8) 0.158, 0.137, 0.061 a -
T0 initial temperature +4 °C
Ts boundary temperature −6 °C
Tf liquidus temperature 0 °C
Tf solidus temperature −0.1, −1, −4 °C

a The first value refers to Tm =−0.1 °C the second value to Tm =−1 °C, and the third value to
Tm =−4 °C.

of ice, λw = λi. It is interesting to note that mean tempera-
ture, panel (c), is constant throughout the soil column. The
mean temperature is very close to the initial temperature pro-
file that is also equal to the mean surface boundary condition.

5

Figure (G5) shows a comparison of the the zero-isotherm
position by using a coarser space discretization. Again, the
three simulation with the hourly time step, the daily time
step, and the 10-days time step are still in good agreement.
By using a coarser spatial discretization, the zero-isotherm,10

panel (c), presents some ’steps’ that are not present when us-
ing a finer grid, Fig. (11). Moreover, the joining of the down-
ward and upward freezing front is not captured neither by the
hourly nor by the daily simulations.

For this numerical test we checked the mean number of it- 15

erations required to solve the nonlinear system with the NCZ
algorithm, the Newton-Raphson algorithm, and the globally
convergent Newton algorithm. We performed a simulation
lasting 1 year with a time step ∆t= 1 h and for different
spatial discretizations. As can be seen in Table G2, neither 20

the Newton-Raphson nor the globally convergent Newton
converge: they always reach the maximum number of iter-
ations allowed with a consequent increase of the computa-
tional cost.
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Figure G1. Detail of the beginning of the thawing season for the year 1999. Panel (a) shows the surface temperature for the hourly, the daily
and the 10-days simulations. Panel (b) shows the deviation of the position of the zero-isotherm after 100 years between the hourly and the
10-days simulation, and between the daily and the 10-days simulation. Panel (c) shows the position of the zero-isotherm after 100 years for
the three simulations. In (b) there is a time lag of about one month between the beginning of thawing season for the hourly simulation and
the 10-days one, dashed grey line. This can be attributed to the different surface temperature used to drive the simulations.
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Figure G2. Detail of the beginning of the freezing season for the year 1999. Panel (a) shows the surface temperature for the hourly, the daily
and the 10-days simulations. Panel (b) shows the deviation of the position of the zero-isotherm after 100 years between the hourly and the
10-days simulation, and between the daily and the 10-days simulation. Panel (c) shows the position of the zero-isotherm after 100 years for
the three simulations. The joining of the downward and upward freezing front is captured by the hourly and the daily simulations, (c). It is
interesting to note that for the 10 days simulation the joining occurs in-between of two consecutive time step.
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Table G1. Input parameters for the numerical tests.

Symbol Parameter Value Units

∆t time step 3600, 86400, 864000 s
∆za

min thickness of the first control volume 0.002, 0.005 m
ba growth rate ground depth 0.01, 0.1 −
zmax maximal ground depth 20 m
lf latent heat of fusion 333700 J kg−1

cw specific heat of water 4188 J m−3 °C−1

ci specific heat of ice 2117 J m−3 °C−1

csp specific heat of soil particles 1000 J m−3 °C−1

ρw water density 1000 kg m−3

ρi ice density 1000 kg m−3

ρsp soil particles density 2700 kg m−3

λw thermal conductivity of water 0.6 W m−1 °C−1

λi thermal conductivity of ice 2.09 W m−1 °C−1

λsp thermal conductivity of soil particles 3.0 W m−1 °C−1

θs saturation water content 0.46 −
θr residual water content 0.1 −
α Van Genuchten parameter 1.5 m−1

n Van Genuchten parameter 1.2 −
T0 initial temperature −3 °C

SFCC Dall’Amico
Thermal conductivity model Johansen

a We used two different space discretizations. The thickness of the ground layer is
parametrized as dzi = dzmin(1 + b)(i−1) (Gubler et al., 2013).

Table G2. Summary of the mean number of iterations for the NCZ algorithm, the Newton-Raphson algorithm (N. R.), and the globally
convergent Newton algorithm (g. c. N.). The simulation lasts 1 year with a time step ∆t= 1 h. We considered different spatial discretizations.
The tolerance ε= 10e− 11 has been rescaled with the water latent heat of fusion and the water density. The maximum number of iteration
for each time step is 40. As can be seen the Newton-Rapshon and the globally convergent Newton does not converge so it always reaches the
maximum number of iteration allowed.

# control
volumes 500

# control
volumes 1000

# control
volumes 2000

# control
volumes 5000

# control
volumes 10000

Mean number of
iterations NCZ

12 13 14 16 18

Mean number of
iterations N. R.

40 40 40 40 40

Mean number of
iterations g. c. N.

40 40 40 40 40
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Figure G4. Temperature profile envelope considering λw = λi. (a)
The minimum, mean, and maximum temperature profile for the
hourly simulation. (b), (c), (d) show the comparison of the min-
imum, mean, and maximum temperature profile respectively for
the three simulations: with an hourly surface temperature boundary
condition and ∆t= 1 h, with a daily surface temperature bound-
ary condition and ∆t= 1 day, with a ten day surface temperature
boundary condition and ∆t= 10 day. All three simulations last
100 years. Because λw = λi the mean temperature, panel (c), is
constant throughout the soil column and it is not possible to appre-
ciate the thermal offset. The mean temperature is very close to the
initial temperature profile, the maximum error is of 0.003 °C.
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Figure G5. Comparison of the position of the zero-isotherm, panel (c), after 100 years of three simulations: using an hourly boundary
condition with time step of ∆t= 1 h, using a daily boundary condition with a time step of ∆t= 1 day, and a 10-day boundary condition
with a time step of ∆t= 10 day. Panel (a) shows the surface temperature for the hourly, the daily and the 10-days simulations. Panel (b)
shows the deviation of the position of the zero-isotherm after 100 years between the hourly and the 10-days simulation, and between the
daily and the 10-days simulation. By using a coarser spatial discretization, the zero-isotherm presents some ’steps’, panel (c), independently
on the size of the time step. Another consequence of this is that the joining of the downward and upward freezing front is not captured neither
by the hourly nor by the daily simulations.
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