
AC1 

Dear Dr. Matthieu Lafaysse, 

Thank you very much for your review and constructive comments. The entire text of your referee comment 

is shown (ML) together with our authors’ responses (AR). 

Kind regards, Niccolò Tubini – on behalf of all authors 

Main comments 

1. ML: My main concern is the fact that it is rather difficult to understand the algorithm only with the 

material provided in this paper. The introduction of Section 3.2 and the sentences Lines 220-221 

remained really obscure to me even after checking Appendix B. Combining the reading with an 

attentive analysis of Casulli and Zanolli, 2010 finally allowed me to perfectly understand the 

process, but it asked me significant efforts because (1) the notations differ between both papers, (2) 

I could not understand why Fig. 1 and Fig. D1 looked inconsistent with the formulations of enthalpy 

in Eq. 8 and Eq. D1, and (3) there is room for improvement in the presentation of the algorithm in 

Appendix B. 

• Therefore, I would first strongly suggest to reproduce Eq. 13-19 of Casulli and Zanolli 

after Eq. 20 of this paper by using the own notations of this paper. Even if the details 

of the linearization of the two functions in this 

iterative procedure is already published, I think it would really help the cryosphere 

modellers to provide again the detailed equations for their understanding of the 

numerical approach. I actually had to write all the equations myself to finally 

understand. 

 

AR: In the resubmitted manuscript we have reproduced Eq. 13-19 of Casulli and Zanolli, 2010 as 

you suggested. The notation is slightly different since the quantities in the Richards’ equation are 

different from those of the heat equation. But we tried try to keep the same notation when it was 

possible. 

• ML: Then, I think that Fig. 1 and D1 should be modified (either the curves, either the 

axis legends) because H cannot be constant with temperature. Ideally, the plots could 

also be a bit larger with some trick to better distinguish overlapping curves. 

 

AR: About Fig. D1 the problem is that the temperature range is too small to appreciate the variation 

of h(T) with T because of the magnitude of latent heat. To help the understanding we modified the 

Fig. D1 as follows: in (a) we have the enthalpy function, and (b) is a detail on the linearization for 

the latent heat. 



                                                          

As regards Fig. 1, we have reduced the temperature range and increased the size, it is now a two-columns 

figure. However, the variation of h with T for T > 0 [°C] is not evident because of the magnitude of latent 

heat and the small temperature range for T > 0 [°C] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• ML: Then, I am sorry to say that Algorithm 1 in Appendix B is really confusing and 

that the version detailed by Casulli and Zanolli was much clearer for me. First, a key 

point is missing i.e. the initialization of the guess of the 

inner iteration (Ti,0k). The comments "linearize h1" and "linearize h2" are ambiguous 

because they would suggest that some code instruction is required here whereas it is 

not the case. rhs is not defined. Is it the b vector of Eq. 20 ? The use of the layer index 

i in superscript next to the inner iteration index is confusing and putting both iteration 

indexes at the same level as in Casulli and Zanolli seems a better choice. Furthermore, 

the layer index i is in subscript in the main text. The meaning of superscript n (previous 

time step ?) might also be remind. I am not sure if dk is equivalent 

to fn,m−1 combined with dn−1 in Casulli and Zanolli ? If yes (I guess so), I think that 

separating the terms which do not depend on iteration m would help understand the 



role of both iterations. Furthermore, it is cheaper to compute them outside the inner 

loop. Therefore, why not keeping the presentation of Casulli and Zanolli on that point 

with the computation of d in the outer loop and f in in the inner loop ? Finally, it’s a 

detail but the condition on the residuals to exit the loops is not explicitly formalized: 

is the threshold applied on each element of the vector or on a norm of the vector? 

 

AR: About the Algorithm 1 in Appendix B, I will report the version by Casulli and Zanolli 

specifying the index and apex. The threshold is applied on the norm of the vector of the residuals.  

 

2. ML: The comparison of numerical results with analytical results is very convincing (Section 4). 

However, I believe that the comparisons with other numerical approaches is essential if the authors 

want to convince the cryosphere modelers to change their algorithms. Therefore, I think that the 

comparison with other numerical models might have found its place in the main text rather than in 

Appendix G. In the same idea, the comparison presented by the authors with the Newton-Raphson 

algorithm is not fully representative of the shortcomings of the existing models as the literature 

review presented by the authors show that a number of models use even worse representations 

(DECP is the standard for snow models). Of course, I understand that DECP can not be seen as a 

state-of-the-art reference for the authors, but would it be possible to include it in the comparisons 

so that modelers using this approach feel more concerned? 

 

AR: Appendix G has been moved in Section 4.1.   

We understand that a comparison with other model would be of interest. However, running other 

models over long periods as the one we used in this paper would tremendously delay our paper 

resubmission. For our assessment we rely on literature and communications with the Authors of 

some of the paper we cite. Besides a comparison is always tricky because of the insufficient 

knowledge one researcher has of codes of others. This task is better left to some intercomparison 

effort where every Author run their code on a common set of benchmarks.  

 

 

 

3. ML: Finally, my last main remark is that modelling in geoscience is often a compromise between 

physical accuracy and numerical cost. This paper pays attention to the accuracy and stability of the 

solution. The numerical cost is considered through the possibility to extend the time step (section 

5). However, in a number of surface models, the time step is often constrained by the need to 

represent the diurnal cycle and the time resolution necessary for the other processes. 

Therefore, I would be interested by a discussion about the numerical cost of the different 

approaches for a fixed time step (typically 10 to 60 minutes for soil or snow models resolving the 

diurnal cycle). Indeed, the algorithm proposed by the authors requires to solve k × m linear systems. 

It means that the improved accuracy (guaranteed convergence and stability) comes with a 

potentially much more expensive cost than the approaches published by Voller for ice (iterative but 

without any linear system to solve), or than the DECP approach commonly used in snow models 

and requiring the solving of only one linear system. In particular, would it be possible to estimate 

the number of iterations required in the examples provided in the two test cases? How fast is the 

convergence in the simple case of heat diffusion without any phase change? Is it possible to estimate 

an average number of iterations in long simulations based on real forcing conditions? 

 

AR:  The numerics we use is robust, reliable, and realistic (Prentice et al. 2015). It never breaks 

and it give the required results. In our opinion when using linear methods for the problems under 

scrutiny, solutions do not match with what is expected for known solutions and mass error are 



amplified. But obviously we cannot say for sure of models by other Authors, for the same reasons 

we have written in the previous answer.  For what regards the number of operations performed by 

the non-linear we did some computation to assess this and our result is reported in the table below. 

We performed a simulation of 1 year with an hourly time step for the numerical test case reported 

in Section 5, with different spatial discretizations. The tolerance 10e-11 has been rescaled with the 

water latent heat of fusion and the water density. The maximum number of iterations for each time 

step is 40.  

 

# control volumes 500 1000 2000 5000 10000 

mean number of 

iterations NCZ 
12 13 14 16 18 

mean number of 

iterations N. R. 
40 40 40 40 40 

mean number of 

iterations g. c. N 
40 40 40 40 40 

 

As you can see the mean number of iterations is higher compared to the results reported in Casulli 

and Zanolli 2010 and this is because the derivative of the internal energy function is steeper that 

that the derivative of the water content function that appears in the Richards equation. 

 

 

 We have compared the performance of our code with a simple Newton-Raphson method (N. R., 

in the second row) and the so called globally convergent Newton (g. c. N., third row). The problem 

is that they are not faster, simple Newton does not converge so it always reaches the maximum 

number of iterations allowed, and the solution as presented in Fig. G2 does not reproduce the 

analytical solution. If it fails to converge, no time saving is obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Minor comments 

1. ML: Lines 49-55: It might also be interesting to mention that the notion of interface is also often 

meaningless in ice and snow where thick isotherm layers of a mixed solid-liquid medium are very 

common. 

 

AR: Thank you, we have added it in line 55 of the revised manuscript. 

 

2. ML: Line 74: Applications with long time steps also include the surface components of climate 

models and Numerical Weather Prediction models, and also models dedicated to avalanche hazard 

forecasting. 

 

AR: Thank you, added in the revised manuscript in line 75. 

 

3. ML: Line 115: "SFCC have an inflection point". With just a quick look at Bao et al., 2016, I could 

not find to which figure or comment this statement refers. Could you provide the details? 

 

AR: From Bao et al 2016, Section 1, paragraph 3 “Currently, the most common problems in frozen 

soil modeling are unstable simulation and heavy computational cost due to the highly nonlinear 

relationship in soil temperature, soil moisture, and ice content caused by the substantial latent heat 

associated with the phase change. Thus, how to deal with this highly nonlinear relationship between 

these three variables in frozen soil is the key focus of frozen soil model development.”  They use 

the term nonlinear relationship.  

We have also added a reference to Hansonn et al. (2004), where Figure 1 shows the apparent heat 

capacity function with a maximum that correspond to an inflection point in the SFCC function.  

 

4. ML: Section 2 is really nice and interesting to read, but a number of symbols definitions come a 

bit too late after their first use in an equation. For instance, enthalpy already appears in Eq. 1 but is 

only defined from Eq. 5 to Eq.8. Similarly, latent heat of fusion and liquid water fraction are used 

in Eq. 3 but are only defined after Eq . 7. It is not critical for the understanding but maybe some 

reordering could manage to avoid these late definitions. 

 

AR: Eq. 1 – 4 hold in general, independent of the material considered. This part is meant to present 

the three different formulations and to highlight that Eq.1 best represents the physical system 

because it expresses the conservation of enthalpy. By contrast, Eq.2 and Eq.3 are derived from Eq.1 

by just applying the chain rule of derivatives. The enthalpy for the soil, as well as the liquid water 

content are presented later since in our opinion it is not necessary to know how the enthalpy 

function is defined. Proof of this is that the mathematical model, Eq.1,2,3,4, can be applied also for 

the Neumann problem and the Lunardini one. 

 

 

 



 

5. ML: Eq. 9: Although their meaning is relatively obvious, please do not forget to define indexes i 

and n. 

 

AR: Done 

 

6. ML: Line 179: I think Eq. 12 corresponds to the implicit case, not semi-implicit, am I wrong? 

 

AR: No, you are not. There is an error in the apex. It is not n+1 but n and the same applies to Eq. 

13. 

 

 

7. ML: Eq. 12: Source terms seem to be expressed at the beginning of the time step in this formalism. 

In surface models, I think that it is relatively common to express the source terms which depend on 

temperature at the end of the time step in order to improve the stability especially because of the 

longwave surface radiation function of surface temperature. I think this does not affect the 

possibility to apply this algorithm because when these terms are linearized, it just adds terms in the 

coefficients of the A tridiagonal matrix and in the b vector without changing the formalism. But 

maybe the authors could just mention that source terms do not necessarily have to be expressed at 

the beginning of the time step to allow this algorithm to be applied. 

 

AR: As regards the up-welling longwave surface radiation, does it not enter in the governing 

equation since it represents the boundary condition of the problem (the surface energy budget). In 

this case it enters in the discretized equation for the uppermost control volume in the numerical 

flux through the upper boundary representing the soil surface.  

The source/sink term S could be expressed in an implicit manner if the matrix A remains at least 

positive semidefinite and symmetric matrix. Thus, it is necessary to pay attention that the implicit 

discretization of S does not affect the feature of A: entries on the main diagonal should be positive, 

off diagonal should be negative and symmetric. If the requirements on A are fulfilled, then the NCZ 

algorithm can be used. 

 

8. ML: Line 432 It was solved 

AR: Done 

 

9. ML: Lines 436-438 This is true, but this development has not really been finalized until now and 

all recent works using Crocus are still based on a simple bucket approach for liquid water 

percolation. 

 

AR: We have reformulated as “Even though all recent works using Crocus are still based on a 

simple bucket approach for liquid water percolation (Morin et al., 2012; Lafaysse et al.,2017), 

D’Amboise et al. (2017) implemented a routine for water flow in the snowpack based on the 

Richards equation, which is characterized by nonlinear behaviour like the enthalpy equation. To 



solve it, they adopted an approach based on Picard iteration with variable time steps (as in Paniconi 

and Putti, 1994).” 

 

10. ML: Table 1 and Appendix A14: I don’t really see what is the difference between Crocus and 

SNOWPACK. I do not understand what means "phase change are accounted for as volumetric heat 

sinks (melting) and sources (refreezing)" and why a nonlinear solver would be "not required". Is 

SNOWPACK algorithm really different from the DECP approach? Is it possible to better explain 

the difference if any? 

 

AR: Also SNOWPACK uses the DECP approach and the manuscript has been changed, 

accordingly. 

 

 

11. ML: General comment about Appendix A13 and A14: I also think that most multilayer snow 

schemes simpler than Crocus and SNOWPACK and typically used in climate or hydrology models 

are also based on this DECP approach. Maybe it could be mentioned somewhere. 

 

AR: We have included in the model review also the snow routine of the ORCHIDEE model (A15) 

and that of the JSBACH model (A16) 

 

Typos 

1. ML: Line 22 these models, 

AR: Thank you, we have corrected it. 

2. ML: Line 175 orthogonal 

AR: Thank you, we have corrected it. 

3. ML: Line 312 to match the aim 

AR: Thank you, we have corrected it. 
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AC2 

Dear Anonymous Referee #2, 

Thank you very much for your review and your constructive comments. The entire text of your comment 

is shown (RC) together with our authors’ responses (AR).  

Kind regards, Niccolò Tubini – on behalf of all authors  

Remarks 

1. RC: In the abstract, the authors state that “the nonlinear behaviour of enthalpy as function of 

temperature can prevent thermal models of snow, ice and frozen soil from converging to the correct 

solution” but do not provide a description or citation for this claim. Reading further into the paper, 

this claim is based on a survey of experts, cited as personal communications. I appreciate the point 

that the authors are trying to make and it is indeed an important advance of the NCZ method, but 

the phrasing could be improved throughout for clarity. 

 

AR: The description and citation is contained in the introduction and in lines 115-128 of the 

discussion manuscript. Later, in lines 126-148 we discuss the three forms of the governing equation 

and the numerical drawbacks that arise when they are solved. 

 

2. RC: The main advance that this paper reports is the implementation of a novel algorithm for solving 

phase change problems. However, the pseudocode included in the paper is not very useful as 

opposed to a well-documented version of the code that is easy to run. While the code is released 

publicly, the github documentation is unclear, written in java (for good reason), and not 

approachable. I was hopeful that I could run the code but that did not seem feasible. 

 

AR: The pseudocode has been rewritten in a clearer way. We also increased the documentation of 

the code which is provided on Github in the Jupyter_Notebook directory, 00_FreezeThaw.ipynb. 

Our code must be run inside the OMS3 Console (David et al. 2012) or using the Dockerized version. 

OMS3 was chosen because it allows to use ancillary components for radiation, calibration and other 

components. For setting up the environment there are a certain number of steps to be performed 

which are described on the first Github page. 

The code is written in a clear Java where classes have an extensive name which refers to what the 

classes do, but we are aware that it could not be so easy to understand the runtime combination in 

which the classes are used. 

The executable of the version used in the paper are available under Zenodo. For executing them 

once installed OMS3 please follow the instructions contained in the Jupyter_Notebook 

/_README.ipynb and Jupyter_Notebook /00_FreezeThaw1D.ipynb for all the details about the 

simulation input and parameters. 

We added these details also in the revised manuscript in Section Code availability 

  

3. RC: This paper neglects to cite or engage with Schoof and Hewitt (2016), who derive a general 

enthalpy model for phase change. Schoof and Hewitt (2016) follows on from Aschwanden and 

Blatter (2009) and Aschwanden et al. (2012), where only the first paper is referenced in the 

manuscript. Beyond the numerical implementation of the NCZ method, it is not clear what this 

paper adds beyond Schoof and Hewitt (2016) in terms of physical understanding and the role of 

enthalpy in phase change. 



 

AR: We inserted citations to the above papers and also Hewitt and Schoof 2017, where the authors 

present the numerics of their algorithm for the first time. The mathematical description of glaciers 

using enthalpy has enthalpy in common with our permafrost model, but the other aspects of the 

physical problem differ. For example, heating is generated by internal friction of the flowing ice. 

We have only external forcing driving our physics and, at present, no fluid flow. What we improved 

with respect to the shared challenge of enthalpy is the treatment of its nonlinear dependencies on 

temperature. Specifically, the derivative of enthalpy is non monotonic and cannot be integrated by 

a traditional Newton algorithm and a globally convergent Newton method has to be used instead. 

Many of these methods were implemented in the past by using “tricks” (Paniconi et al., 1994, 

Dall’Amico et al. 2011,) because a safely convergent method was unavailable. The more evident 

result is that we do not need to track where the front between ice and water (cold and temperate 

ice) is. With NCZ, we do not need a section like the Section 3 in Schoof and Hewitt 2016, which 

is required to preserve properly the mass in absence of an appropriately convergent algorithm, and 

we do not need to use an algorithm to solve the energy equation like that one presented in Appendix 

A. 

 

Specific comments 

1. RC: I suggest replacing the title with: “An undated numerical method for solving the heat equation 

with phase change". 

AR: We thank the reviewer, but we prefer to stick with our original title. It is long but, in our 

opinion, clearer in conveying the usefulness of out method. 

 

2. RC: line 105: is theta_s defined anywhere? 

AR: We have added the definition of theta_s 

 

3. RC: line 115: the kink in the sfcc only matters if the authors take the derivative, which is not 

required! I am not sure about the value of this `straw-man' argument about the three 'identical yet 

different' representations of the heat equation. First off, the language is unclear, so it is opaque as 

to what method the authors will actually use. 

 

AR: To solve a nonlinear system it is necessary to use the derivative to linearize the function, as 

required by Newton type algorithms. This is a general comment meant to say that the treatment of 

this nonlinear relationship between temperature and enthalpy is challenging independently of the 

numerical scheme (finite differences, finite volumes or finite element) one would adopt. The 

equation form we are going to solve is stated at lines 69-73 of the submitted manuscript. 

 

4. RC: line 163: semi-implicit is not required, implicit is required. semi-implicit is a convenient 

method of mixing explicit and implicit methods to decrease time step restrictions. 

 

AR: The thermal conductivity is a function of the solution and therefore, by using a full implicit 

discretization one obtains a fully nonlinear system of equation. To solve it, it is possible to use a 



Picard iteration (Casulli and Zanolli, 2010). In this case we adopted only one Picard iteration 

obtaining a semi-implicit discretization, but yes, this is just a legitimate option and we added in the 

Appendix C of the revised manuscript. 

 

5. RC: line 169: ok, let me get this straight: the authors asked their colleagues if there is guaranteed 

convergence for nonlinear problems using the `currently used algorithms' and they said no? Tell 

me more. Tell me why convergence is not guaranteed and how NCZ guarantees it - don't refer me 

to their paper. That is not the point. All the authors need to say is that NCZ offers advantages. 

Instead the authors generate an entire table showing that all of the methods they can think of have 

drawbacks, based on the word of their colleagues? The articulation of this argument needs 

substantial bolstering. 

 

AR: The convergence, assured by the NCZ algorithm, is only fully realized with a numerical 

scheme formulated to be conservative. Given the number of established models representing 

temperature and phase change, and how central the issue is for cryosphere research, some readers 

may be left with the impression that there must be a model that is conservative and guaranteed to 

converge. Appendix A and its summary in Table 1 shows that this is not the case based on: (1) the 

form of the initial equations and (2), when available, statements by the authors of the algorithms. 

Actually, we cannot determine here where the theoretical limitations might translate into relevant 

practical consequences, and, besides we show that the problem we solve is shared across differing 

fields of cryospheric modelling.     

In order to be clearer, we have updated the table adding the references to papers and added a 

reference to Appendix A in the caption. For clarity, we will also change line 148 (discussion 

manuscript) to “A summary of relevant models is given in Table 1 and more details in Appendix 

A”. 

As we discuss more deeply in the revised manuscript, the rational of (1) is discussed in Casulli and 

Zanolli, 2010; Nicolski et al., 2007; Voller, 1990. Moreover, the work by Roe states that the only 

way to preserve the chain rule at the discrete level is to respect Eq. 9 (of our manuscript) that leads 

to solve the so-called enthalpy form of the equation. Richards’ equation presents the same 

numerical issues, convergence problems arise when solving the so-called psi-based equation, i.e., 

the form in which the time derivative is expressed in the form of  

𝜕 𝜃

𝜕 𝑡
=
𝜕 𝜃

𝜕 𝜓

𝜕 𝜓

𝜕 𝑡
 

This shortcoming it is not only stated in Casulli and Zanolli 2010, but also in D’Amboise et al. 

2017 where they solve the Richards equation to simulate water flow in the snowpack.  

About the DECP approach, Nicolsky et al. 2007, Section 2.3 “One of the consequences of this two-

step procedure is that the region where the phase change occurs can be artificially stretched, leading 

to inaccuracies in the simulation of active layer depth”.  

 

RC: line 195: it looks like it comes down to the fact that the enthalpy is, for some reason, not 

monotonic with temperature, but isn't that the reason to use the enthalpy: because it is monotonic? 



I agree that at the melting temperature there is a jump in enthalpy governed by the latent heat, but 

does that mean that it is not monotonic? 

AR: The enthalpy function is monotonic sure, but what we need is that its derivative be monotonic 

within any neighbourhood of the root for any Newton type algorithm to converge. This in principle 

is not a problem if the initial guess is carefully chosen to be sufficiently close the solution and, in 

an interval where the derivative is monotonic. However, the drawback of an unhappy choice of the 

initial guess is shown in Figure G1: the algorithm enters in a loop without reaching the convergence. 

Therefore, the so-called globally convergent Newton methods rely on a trick that consists in 

reducing with a damping factor the increment to calculate the new approximation, but this search 

is not guaranteed to succeed in advance and in the favorable situations implies many trial and 

search. The advantage on the NCZ algorithm is that it guarantees convergence of the solution for 

any choice of the initial guess. Figure G2 shows the numerical solution obtained with the Newton 

algorithm, the Newton algorithm with a dampening factor and the NCZ. Figure G3 shows that the 

choice of the dampening factor affects the numerical solution, and it is a source of uncertainty.  

 

We tried to make it clear in the text as we added at the beginning of section 3.2 

“Difficulties in solving the nonlinear system of Eq. (16) arise from the non-monotonic behaviour 

of the derivative of the enthalpy, h(T), with respect to temperature, and because for some 

parametrizations used for substances - like water - the derivative of the enthalpy is not correctly 

defined.” 
 

6. RC: line 202: I must be very confused, why don't you just solve for the enthalpy and use the jump 

conditions to determine the temperature (Schoof and Hewitt, 2016, SH2016)? 

 

AR: When following the approach of SH2016, we need to capture the moving boundary separating 

the two domains (liquid water and ice), an operation that is computationally expensive and difficult 

to implement, as stated in lines 44-69 of our submitted manuscript. Another reason is that in the 

SH2016 algorithm: (a) temperature cannot be larger than 𝑇𝑚. This is not acceptable in models 

where soil and soil moisture can experience temperatures larger than 𝑇𝑚. This means that Eq. (19) 

cannot be used since in case of ℎ𝑛−1 ≥ ρ𝑐(𝑇𝑚 − 𝑇𝑟𝑒𝑓), 𝑇 cannot be assigned a priori. (b) T is 

defined accordingly to the value of h at the previous time step (Hewitt and Schoof, 2017, HS2017 

Eq. 19) 

Moreover, in HS2017 Eq. 19 Section 3 “All the terms in ∇ ⋅ 𝑄 are discretized explicitly”, a 

procedure which causes restriction in choosing the time step which must be controlled. 

Furthermore, we like to point out that in SH2016 and HS2017, the numerical test is performed for 

a steady state problem, where the time derivative is 0. Our cases are non-stationary and the NCZ 

algorithm is used because of the nonlinear behaviour of the terms that comes from the discretization 

of the time derivative. These terms in a steady state problem do not exist. 

 

7. RC: section 4: I have no idea what the Neumann and Lunardini solutions are: describe the problems 

physically? I can certainly look in the appendix (and did) to find the mathematics, but until I saw 

Figure 2, I was totally confused at what problem you were trying to solve. 

 

AR: We added a description of the problem in the text for both the problems. 



 

 

 

8. RC: line 288: SUTRA uses an ε in the enthalpy function as well? 

AR: As reported in Kurylyk, et al., 2014, Section 3 

“Hence, SUTRA and other cold region thermohydraulic models generally utilize some form of a 

soil freezing curve that considers freezing over a range of temperatures less than 0°C. However, 

the previously detailed analytical solutions employ the crude assumption that the soil freezing curve 

is represented as a step function. It is difficult to employ a step function soil freezing curve in a 

numerical model because the apparent heat capacity in the zone of freezing or thawing is dependent 

on the slope of the soil freezing curve[4,5], which would be infinite for a step function. A very steep 

piecewise linear soil freezing curve was employed in SUTRA to approximate a saturated step 

function soil freezing curve.” 

 

9. RC: table 2: there does not seem to be monotonic convergence. given that this paper is claiming 

guaranteed convergence, I would have liked to see a convergence plot showing that the solution 

does converge at the power of the discretization, both in space and time. Also, it is worth 

mentioning the error order for both, especially since the method is first-order in time! predictor-

corrector methods (or Heun's method) could be used instead of Crank-Nicholson to increase the 

resolution without the same time step restrictions. 

 

AR: Actually, Table 2 is not referring to the convergence of the algorithm. Instead, the convergence 

rate is for the errors in the NCZ algorithm. Moreover, the solution of the zero-isotherm is obtained 

by interpolation of the numerical solution. To make it clearer, we added to the text: “For the 

numerical solution the position of the thawing front has been reconstructed from the linear 

interpolation of the temperature profile. Table 2 reports the deviations of the reconstructed position 

of the zero-isotherm from the analytical solution.” 

 

 

 

10. RC: figure 4: if the point is to show that the left and right panels are the same, then I suggest, 

plotting them on one panel and using the other panel to show the difference. 

 

AR: In the resubmitted manuscript we now show the difference between the numerical and 

analytical solutions.  

11. RC: section 4.2: what defines the mushy zone in the Lunardini analytical solution? and 

how is this different than Katz (2008)? 

AR: Oeterling and Watts (2004, in Katz, 2008) discuss the mushy region referring to the 

development of the ice sheet. The mushy zone is characterized by an increase of solutes 

concentration, primarily salt but also anthropogenic pollutants, with a consequent variation of the 

density. This gradient density ‘provide the potential energy to drive convection within the 

interstices of the ice matrix and the water below the ice’.  



Referring to the Lunardini analytical solution, the mushy zone is used to indicate the transition zone 

between where ice and liquid water coexist in varying proportions in the soil. In the Lunardini 

problem neither the water flow nor solutes concentration are considered. Thus, the variation of 

water density due to the expulsion of solutes, and the consequent convection flow is not considered. 

To avoid possible misunderstanding, we changed ‘mushy zone’ to ‘partially frozen zone’. 

 

12. RC: line 329: is this a paragraph fragment? 

 

AR: We have corrected it. 

 

13. RC: Most figures: the axis labels as well as figure text are missing letters and difficult to read.  

 

AR: Sorry for this inconvenient. We have corrected the Figures. 

 

14. RC: line 510: why ε is required? It seems that the value of the enthalpy is that there is a smooth 

transition across the phase change - adding ε negates the authors' claim that they are `guaranteeing 

energy conservation', because they have added a fictious mushy zone. 

 

AR: There is no way to avoid the introduction of ε since the enthalpy function needs to be 

continuously differentiable and enthalpy function with a step change at the melting temperature is 

not. See assumption C1 on the apparent heat capacity function, lines 204-206 of the submitted 

manuscript. 

However, the temperature range ε can be chosen sufficiently small in order to make this 

approximation negligible when compared to the physical behaviour of water, considering that: (a) 

The melting of water in temperate ice is known to actually occur progressively below 0ºC along 

grain boundaries (Langham 1974; Nye and Frank 1973). (b) Freezing often occurs below the 

melting point. (c) In porous media such as soil, ice melts across a range of temperatures due to the 

Gibbs-Thompson effect in pores and surface affects at the interfaces between ice and particles 

(Rempel et al., 2004; Watanabe and Mizoguchi 2002).   
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List of relevant changes 

• Line 22 corrected a typo error. 

• Added line 55. 

• Line 75 we reformulated the sentence. 

• Line 117 added the reference to (Hansson et al. 2004). 

• Line 134 added definition of apex i and n. 

• Line 150 added ‘more details’. 

• Line 174 corrected a typo error. 

• Table 1 we added three models: ORCHIDEE, JSBACH, and Schoof and Hewitt. In the table notes 

we added references to papers. 

• Line 184 we corrected the apex n. 

• Line 220 we clarified the text. 

• Lines 224-240 we added the details of the linearization of the NCZ algorithm (Eq. 13-19 of Casulli 

and Zanolli 2012). 

• We changed Figure 1. 

• Section 4.1 we added the description of the Neumann problem. 

• Section 4.1, lines 279-299, we added the comparison between the NCZ algorithm, the Newton-

Raphson algorithm, the globally convergent Newton algorithm. In the previous version this part 

was in Appendix G. 

• We changed figure 4. 

• Section 4.2 we added the description of the Lunardini problem. 

• Section 4.2 we changed mushy with partially frozen. 

• Figure 11 we revised the caption. 

• Lines 360 we corrected a typo error. 

• Lines 362-364 we added a comment on the mean number of iterations for the NCZ algorithm, the 

Newton-Raphson algorithm, the globally convergent Newton algorithm. 

• Line 380 we corrected a typo error. 

• Line 394-399 we added more information on the code. 

• Appendix A13 revised. 

• Appendix A14 revised. 

• Appendix A15 added the review for the model ORCHIDEE. 

• Appendix A16 added the review for the model JSBACH. 

• Appendix A17 added the review for the model (Schoof and Hewitt, 2016). 

• Appendix B we revised the pseudocode as in (Casulli and Zanolli 2012). 

• Appendix C we added a comment on the Picard iteration. 

• Appendix Neumann solution for melting ice, presented in the previous version, has been removed. 

• Appendix E we added a comment on the linearization of the enthalpy function of water. 

• Figure E1 modified. 

• Appendix G we added some comments to introduce figures. We changed the captions. 
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