
Dear Anonymous Referee #2, 

Thank you very much for your review and your constructive comments. The entire text of your comment 

is shown (RC) together with our authors’ responses (AR).  

Kind regards, Niccolò Tubini – on behalf of all authors  

Remarks 

1. RC: In the abstract, the authors state that “the nonlinear behaviour of enthalpy as function of 

temperature can prevent thermal models of snow, ice and frozen soil from converging to the correct 

solution” but do not provide a description or citation for this claim. Reading further into the paper, 

this claim is based on a survey of experts, cited as personal communications. I appreciate the point 

that the authors are trying to make and it is indeed an important advance of the NCZ method, but 

the phrasing could be improved throughout for clarity. 

 

AR: The description and citation is contained in the introduction and in lines 115-128 of the 

discussion manuscript. Later, in lines 126-148 we discuss the three forms of the governing equation 

and the numerical drawbacks that arise when they are solved. 

 

2. RC: The main advance that this paper reports is the implementation of a novel algorithm for solving 

phase change problems. However, the pseudocode included in the paper is not very useful as 

opposed to a well-documented version of the code that is easy to run. While the code is released 

publicly, the github documentation is unclear, written in java (for good reason), and not 

approachable. I was hopeful that I could run the code but that did not seem feasible. 

 

AR: The pseudocode has been rewritten in a clearer way. We also increased the documentation of 

the code which is provided on Github in the Jupyter_Notebook directory, 00_FreezeThaw.ipynb. 

Our code must be run inside the OMS3 Console (David et al. 2012) or using the Dockerized version. 

OMS3 was chosen because it allows to use ancillary components for radiation, calibration and other 

components. For setting up the environment there are a certain number of steps to be performed 

which are described on the first Github page. 

The code is written in a clear Java where classes have an extensive name which refers to what the 

classes do, but we are aware that it could not be so easy to understand the runtime combination in 

which the classes are used. 

The executable of the version used in the paper are available under Zenodo. For executing them 

once installed OMS3 please follow the instructions contained in the Jupyter_Notebook 

/_README.ipynb and Jupyter_Notebook /00_FreezeThaw1D.ipynb for all the details about the 

simulation input and parameters. 

We added these details also in the revised manuscript in Section Code availability 

  

3. RC: This paper neglects to cite or engage with Schoof and Hewitt (2016), who derive a general 

enthalpy model for phase change. Schoof and Hewitt (2016) follows on from Aschwanden and 

Blatter (2009) and Aschwanden et al. (2012), where only the first paper is referenced in the 

manuscript. Beyond the numerical implementation of the NCZ method, it is not clear what this 

paper adds beyond Schoof and Hewitt (2016) in terms of physical understanding and the role of 

enthalpy in phase change. 

 



AR: We inserted citations to the above papers and also Hewitt and Schoof 2017, where the authors 

present the numerics of their algorithm for the first time. The mathematical description of glaciers 

using enthalpy has enthalpy in common with our permafrost model, but the other aspects of the 

physical problem differ. For example, heating is generated by internal friction of the flowing ice. 

We have only external forcing driving our physics and, at present, no fluid flow. What we improved 

with respect to the shared challenge of enthalpy is the treatment of its nonlinear dependencies on 

temperature. Specifically, the derivative of enthalpy is non monotonic and cannot be integrated by 

a traditional Newton algorithm and a globally convergent Newton method has to be used instead. 

Many of these methods were implemented in the past by using “tricks” (Paniconi et al., 1994, 

Dall’Amico et al. 2011,) because a safely convergent method was unavailable. The more evident 

result is that we do not need to track where the front between ice and water (cold and temperate 

ice) is. With NCZ, we do not need a section like the Section 3 in Schoof and Hewitt 2016, which 

is required to preserve properly the mass in absence of an appropriately convergent algorithm, and 

we do not need to use an algorithm to solve the energy equation like that one presented in Appendix 

A. 

 

Specific comments 

1. RC: I suggest replacing the title with: “An undated numerical method for solving the heat equation 

with phase change". 

 

AR: We thank the reviewer, but we prefer to stick with our original title. It is long but, in our 

opinion, clearer in conveying the usefulness of out method. 

 

2. RC: line 105: is theta_s defined anywhere? 

AR: We have added the definition of theta_s 

 

3. RC: line 115: the kink in the sfcc only matters if the authors take the derivative, which is not 

required! I am not sure about the value of this `straw-man' argument about the three 'identical yet 

different' representations of the heat equation. First off, the language is unclear, so it is opaque as 

to what method the authors will actually use. 

 

AR: To solve a nonlinear system it is necessary to use the derivative to linearize the function, as 

required by Newton type algorithms. This is a general comment meant to say that the treatment of 

this nonlinear relationship between temperature and enthalpy is challenging independently of the 

numerical scheme (finite differences, finite volumes or finite element) one would adopt. The 

equation form we are going to solve is stated at lines 69-73 of the submitted manuscript. 

 

4. RC: line 163: semi-implicit is not required, implicit is required. semi-implicit is a convenient 

method of mixing explicit and implicit methods to decrease time step restrictions. 

 

AR: The thermal conductivity is a function of the solution and therefore, by using a full implicit 

discretization one obtains a fully nonlinear system of equation. To solve it, it is possible to use a 



Picard iteration (Casulli and Zanolli, 2010). In this case we adopted only one Picard iteration 

obtaining a semi-implicit discretization, but yes, this is just a legitimate option and we added in the 

Appendix C of the revised manuscript. 

 

5. RC: line 169: ok, let me get this straight: the authors asked their colleagues if there is guaranteed 

convergence for nonlinear problems using the `currently used algorithms' and they said no? Tell 

me more. Tell me why convergence is not guaranteed and how NCZ guarantees it - don't refer me 

to their paper. That is not the point. All the authors need to say is that NCZ offers advantages. 

Instead the authors generate an entire table showing that all of the methods they can think of have 

drawbacks, based on the word of their colleagues? The articulation of this argument needs 

substantial bolstering. 

 

AR: The convergence, assured by the NCZ algorithm, is only fully realized with a numerical 

scheme formulated to be conservative. Given the number of established models representing 

temperature and phase change, and how central the issue is for cryosphere research, some readers 

may be left with the impression that there must be a model that is conservative and guaranteed to 

converge. Appendix A and its summary in Table 1 shows that this is not the case based on: (1) the 

form of the initial equations and (2), when available, statements by the authors of the algorithms. 

Actually, we cannot determine here where the theoretical limitations might translate into relevant 

practical consequences, and, besides we show that the problem we solve is shared across differing 

fields of cryospheric modelling.     

In order to be clearer, we have updated the table adding the references to papers and added a 

reference to Appendix A in the caption. For clarity, we will also change line 148 (discussion 

manuscript) to “A summary of relevant models is given in Table 1 and more details in Appendix 

A”. 

As we discuss more deeply in the revised manuscript, the rational of (1) is discussed in Casulli and 

Zanolli, 2010; Nicolski et al., 2007; Voller, 1990. Moreover, the work by Roe states that the only 

way to preserve the chain rule at the discrete level is to respect Eq. 9 (of our manuscript) that leads 

to solve the so-called enthalpy form of the equation. Richards’ equation presents the same 

numerical issues, convergence problems arise when solving the so-called psi-based equation, i.e., 

the form in which the time derivative is expressed in the form of  
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This shortcoming it is not only stated in Casulli and Zanolli 2010, but also in D’Amboise et al. 

2017 where they solve the Richards equation to simulate water flow in the snowpack.  

About the DECP approach, Nicolsky et al. 2007, Section 2.3 “One of the consequences of this two-

step procedure is that the region where the phase change occurs can be artificially stretched, leading 

to inaccuracies in the simulation of active layer depth”.  

 

6. RC: line 195: it looks like it comes down to the fact that the enthalpy is, for some reason, not 

monotonic with temperature, but isn't that the reason to use the enthalpy: because it is monotonic? 



I agree that at the melting temperature there is a jump in enthalpy governed by the latent heat, but 

does that mean that it is not monotonic? 

AR: The enthalpy function is monotonic sure, but what we need is that its derivative be monotonic 

within any neighbourhood of the root for any Newton type algorithm to converge. This in principle 

is not a problem if the initial guess is carefully chosen to be sufficiently close the solution and, in 

an interval where the derivative is monotonic. However, the drawback of an unhappy choice of the 

initial guess is shown in Figure G1: the algorithm enters in a loop without reaching the convergence. 

Therefore, the so-called globally convergent Newton methods rely on a trick that consists in 

reducing with a damping factor the increment to calculate the new approximation, but this search 

is not guaranteed to succeed in advance and in the favorable situations implies many trial and 

search. The advantage on the NCZ algorithm is that it guarantees convergence of the solution for 

any choice of the initial guess. Figure G2 shows the numerical solution obtained with the Newton 

algorithm, the Newton algorithm with a dampening factor and the NCZ. Figure G3 shows that the 

choice of the dampening factor affects the numerical solution, and it is a source of uncertainty.  

 

We tried to make it clear in the text as we added at the beginning of section 3.2 

“Difficulties in solving the nonlinear system of Eq. (16) arise from the non-monotonic behaviour 

of the derivative of the enthalpy, h(T), with respect to temperature, and because for some 

parametrizations used for substances - like water - the derivative of the enthalpy is not correctly 

defined.” 
 

 

7. RC: line 202: I must be very confused, why don't you just solve for the enthalpy and use the jump 

conditions to determine the temperature (Schoof and Hewitt, 2016, SH2016)? 

 

AR: When following the approach of SH2016, we need to capture the moving boundary separating 

the two domains (liquid water and ice), an operation that is computationally expensive and difficult 

to implement, as stated in lines 44-69 of our submitted manuscript. Another reason is that in the 

SH2016 algorithm: (a) temperature cannot be larger than 𝑇𝑚. This is not acceptable in models 

where soil and soil moisture can experience temperatures larger than 𝑇𝑚. This means that Eq. (19) 

cannot be used since in case of ℎ𝑛−1 ≥ ρ𝑐(𝑇𝑚 − 𝑇𝑟𝑒𝑓), 𝑇 cannot be assigned a priori. (b) T is 

defined accordingly to the value of h at the previous time step (Hewitt and Schoof, 2017, HS2017 

Eq. 19) 

Moreover, in HS2017 Eq. 19 Section 3 “All the terms in ∇ ⋅ 𝑄 are discretized explicitly”, a 

procedure which causes restriction in choosing the time step which must be controlled. 

Furthermore, we like to point out that in SH2016 and HS2017, the numerical test is performed for 

a steady state problem, where the time derivative is 0. Our cases are non-stationary and the NCZ 

algorithm is used because of the nonlinear behaviour of the terms that comes from the discretization 

of the time derivative. These terms in a steady state problem do not exist. 

 

8. RC: section 4: I have no idea what the Neumann and Lunardini solutions are: describe the problems 

physically? I can certainly look in the appendix (and did) to find the mathematics, but until I saw 

Figure 2, I was totally confused at what problem you were trying to solve. 

 

AR: We added a description of the problem in the text for both the problems. 



9. RC: line 288: SUTRA uses an ε in the enthalpy function as well? 

AR: As reported in Kurylyk, et al., 2014, Section 3 

“Hence, SUTRA and other cold region thermohydraulic models generally utilize some form of a 

soil freezing curve that considers freezing over a range of temperatures less than 0°C. However, 

the previously detailed analytical solutions employ the crude assumption that the soil freezing curve 

is represented as a step function. It is difficult to employ a step function soil freezing curve in a 

numerical model because the apparent heat capacity in the zone of freezing or thawing is dependent 

on the slope of the soil freezing curve[4,5], which would be infinite for a step function. A very steep 

piecewise linear soil freezing curve was employed in SUTRA to approximate a saturated step 

function soil freezing curve.” 

 

 

10. RC: table 2: there does not seem to be monotonic convergence. given that this paper is claiming 

guaranteed convergence, I would have liked to see a convergence plot showing that the solution 

does converge at the power of the discretization, both in space and time. Also, it is worth 

mentioning the error order for both, especially since the method is first-order in time! predictor-

corrector methods (or Heun's method) could be used instead of Crank-Nicholson to increase the 

resolution without the same time step restrictions. 

 

AR: Actually, Table 2 is not referring to the convergence of the algorithm. Instead, the convergence 

rate is for the errors in the NCZ algorithm. Moreover, the solution of the zero-isotherm is obtained 

by interpolation of the numerical solution. To make it clearer, we added to the text: “For the 

numerical solution the position of the thawing front has been reconstructed from the linear 

interpolation of the temperature profile. Table 2 reports the deviations of the reconstructed position 

of the zero-isotherm from the analytical solution.” 

 

 

 

11. RC: figure 4: if the point is to show that the left and right panels are the same, then I suggest, 

plotting them on one panel and using the other panel to show the difference. 

 

AR: In the resubmitted manuscript we now show the difference between the numerical and 

analytical solutions.  

 

12. RC: section 4.2: what defines the mushy zone in the Lunardini analytical solution? and 

how is this different than Katz (2008)? 

AR: Oeterling and Watts (2004, in Katz, 2008) discuss the mushy region referring to the 

development of the ice sheet. The mushy zone is characterized by an increase of solutes 

concentration, primarily salt but also anthropogenic pollutants, with a consequent variation of the 

density. This gradient density ‘provide the potential energy to drive convection within the 

interstices of the ice matrix and the water below the ice’.  

Referring to the Lunardini analytical solution, the mushy zone is used to indicate the transition zone 

between where ice and liquid water coexist in varying proportions in the soil. In the Lunardini 

problem neither the water flow nor solutes concentration are considered. Thus, the variation of 



water density due to the expulsion of solutes, and the consequent convection flow is not considered. 

To avoid possible misunderstanding, we changed ‘mushy zone’ to ‘partially frozen zone’. 

 

13. RC: line 329: is this a paragraph fragment? 

 

AR: We have corrected it. 

 

 

14. RC: Most figures: the axis labels as well as figure text are missing letters and difficult to read.  

 

AR: Sorry for this inconvenient. We have corrected the Figures. 

 

 

15. RC: line 510: why ε is required? It seems that the value of the enthalpy is that there is a smooth 

transition across the phase change - adding ε negates the authors' claim that they are `guaranteeing 

energy conservation', because they have added a fictious mushy zone. 

 

AR: There is no way to avoid the introduction of ε since the enthalpy function needs to be 

continuously differentiable and enthalpy function with a step change at the melting temperature is 

not. See assumption C1 on the apparent heat capacity function, lines 204-206 of the submitted 

manuscript. 

However, the temperature range ε can be chosen sufficiently small in order to make this 

approximation negligible when compared to the physical behaviour of water, considering that: (a) 

The melting of water in temperate ice is known to actually occur progressively below 0ºC along 

grain boundaries (Langham 1974; Nye and Frank 1973). (b) Freezing often occurs below the 

melting point. (c) In porous media such as soil, ice melts across a range of temperatures due to the 

Gibbs-Thompson effect in pores and surface affects at the interfaces between ice and particles 

(Rempel et al., 2004; Watanabe and Mizoguchi 2002).   
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