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Abstract 

The European Alps stretch over a range of climate zones, which affect the spatial distribution of snow. Previous analyses of 

station observations of snow were confined to regional analyses. Here, we present an Alpine wide analysis of snow depth from 

six Alpine countries: Austria, France, Germany, Italy, Slovenia, and Switzerland; including altogether more than 2000 stations, 

of which more than 800 were used for the trend assessment. Using a principal component analysis and k-means clustering, we 45 

identified five main modes of variability and five regions, which match the climatic forcing zones: north & high Alpine, 

northeast, northwest, southeast, and south & high Alpine. Linear trends of monthly mean snow depth between 1971 and 2019 

showed decreases in snow depth for most stations for November to May. The average trend among all stations for seasonal 

(November to May) mean snow depth was -8.4 % per decade, for seasonal maximum snow depth -5.6 % per decade, and for 

seasonal snow cover duration -5.6 % per decade. Stronger and more significant trends were observed at periods and elevations 50 

where the transition from snow to snow-free occurs, consistent with an enhanced albedo feedback. Additionally, regional 

trends differed substantially at the same elevation, which challenges the notion of generalizing results from one region to 

another or to the whole Alps. This study presents an analysis of station snow depth series with the most comprehensive spatial 

coverage in the European Alps to date.  

1 Introduction 55 

In the European Alps, snow is pervasive throughout nature and human society. Snow is a major driver of Alpine hydrology by 

storing water during the winter season, which gets released in spring and summer and which is used for water supply, 

agriculture, and hydropower generation. Water stored in the snow cover also feeds alpine aquifers through the network of fault 

and fracture systems. Ecologically, the mountain flora and fauna depend on the timing and abundance of snow cover (Esposito 

et al., 2016; Keller et al., 2005; Lencioni et al., 2011). Snow is tightly linked to human culture in the European Alps and has 60 

brought economic wealth to previously remote regions through tourism (Beniston, 2012a; Steiger and Stötter, 2013). Since 

snow cover depends on temperature and precipitation, ongoing climate change in the Alps and especially rising temperatures 

and changing precipitation patterns affect the abundance of snow (Beniston and Stoffel, 2014; Gobiet et al., 2014; Steger et 

al., 2013). Snow cover extent decreased globally, while for snow mass some regions experienced increases (Pulliainen et al., 

2020). Decreases are expected for the future, especially at low elevations, with more uncertain trends in observations and 65 

future projections at higher elevation (Beniston et al., 2018; Hock et al., 2019; IPCC, 2019).  

Observations are needed to assess ongoing changes in snow cover. The most widespread snow cover measurements are snow 

depth (HS), depth of snowfall (HN, also denoted fresh snow or snowfall), snow water equivalent (SWE), snow cover area 

(SCA), and snow cover duration (SCD). Snow depth and depth of snowfall measurements have been scientifically documented 

in the European Alps since the late 18th century (Leporati and Mercalli, 1994). Such measurements indicate the height of the 70 

snow cover relative to the ground (snow depth) or a reference surface, usually a board (depth of snowfall), are performed each 

morning by observers, and only require a graduated stake or rod and a meter stick . While automatic sensors have been 
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developed in the recent decades, most European weather and hydrological services continue with manual observations. 

Although there is a trend towards automatization, missing standards on the processing of the data (even at national level) 

impedes their uptake (Haberkorn, 2019; Nitu et al., 2018). The main limitation of snow depth and depth of snowfall 75 

measurements is that their number decreases sharply with elevation, with few stations available above 3000 m in the European 

Alps. SWE is the mass of snow per unit surface area, which corresponds to the amount of water stored in the snow cover and 

thus is a hydrological key variable. However, its measurement is far more complicated and available with lower temporal 

frequency than snow depth, and thus not as widely observed. SCA and SCD identify the spatial extent and temporal duration 

of snow on the ground. SCD can be inferred from snow depth measurements using a threshold, or more recently from satellite 80 

observations, which also allow SCA retrieval at different spatial scales from tens of metres to several kilometres. The main 

benefit of satellite observations is that they cover the whole elevational gradient and are also available in data-scarcer regions. 

Satellite observations can identify SCA and SCD at high spatial resolutions (1 to 5 km for decadal length time periods), and 

less accurately SWE at coarser resolution (~25km) (Schwaizer et al., 2020). However, they typically cover a relatively short 

time period and are hampered by cloud cover and rugged topography (Bormann et al., 2018), and the satellite orbit might not 85 

provide a worldwide cover. An application of global satellite imagery for 2000-2018 has shown SCD declines for 78% of 

global mountain areas and only a few regions with increasing SCD (Notarnicola, 2020), although the short time span of 19 

years is a limiting factor in interpreting these trends. 

The European Alps are densely populated and have a long history of manual snow depth and depth of snowfall observations, 

which makes them ideal to study long-term trends over a large spatial domain with complex topography and strong climate 90 

gradients. Not surprisingly, much literature on the topic exists (see Table B1 in Appendix B for an overview). However, most 

studies are limited in their spatial extent to regions or nations, restricted by a lack of data sharing, harmonized data portals, 

and joint projects or initiatives fostering such analyses (Beniston et al., 2018).  

The most relevant findings of the latest literature on snow cover trends (Table B1) can be summarized as follows. Snow 

variables exhibited a strong temporal and spatial variability (e.g. Beniston, 2012b; Schöner et al., 2019). Long-term analyses 95 

identified periods of high snow cover in the 1940s/50s, as well as in the 1960s/70s, followed by absolute minima in the 1980s 

and early 1990s, with some recovery afterwards, but not to the pre-1980s values (Marty, 2008; Micheletti, 2008; Scherrer et 

al., 2013; Schöner et al., 2009; Valt and Cianfarra, 2010). Trends were strongly related to elevation (Laternser and Schneebeli, 

2003; Marcolini et al., 2017b; Valt et al., 2008) and were mostly negative at low elevations (Bach et al., 2018), while higher 

elevations showed no change or even increases (Marty et al., 2017; Terzago et al., 2010). Snow melt was identified as the main 100 

contribution to the decreasing trends (Klein et al., 2016), which explains the pronounced trends at low elevations and in spring 

(Marty et al., 2017). Finally, after accounting for elevation, regional differences between trends were observed (Beniston, 

2012b; Laternser and Schneebeli, 2003; Schöner et al., 2019; Terzago et al., 2013).  

Quantitatively synthesizing all these studies into a common Alpine view is challenging and thus the provision of quality-

ensured information on snow cover climatology and trends at larger extents, such as the whole Alpine mountain range, is 105 

hampered (Hock et al., 2019). The challenge starts from the different definitions of the studied seasons, which range from 
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December–February to October–May, and thus sometimes include start, middle, and end of the season. Difficulties also arise 

in the selection of existing snow variables and indices, such as mean snow depth, maximum snow depth, snow days (based on 

thresholds from 1 to 50 cm), 3-day cumulative values, etc. Naturally, the station series are of different lengths, and the studied 

periods get longer for the more recent studies. And finally, the statistical methods differ from one study to another: linear 110 

regressions, Mann-Kendall tests, Sen slopes, moving window approaches (windows ranging from 5 to 20 years), breakpoint 

analysis, principal component analysis / empirical orthogonal function analysis (PCA / EOF) and more. 

To overcome these limitations, we embarked on the effort to collect and analyse an Alpine wide data set of snow measurements 

from stations covering Austria, France, Germany, Italy, Slovenia, and Switzerland. The main aim is to understand how changes 

in snow cover vary over space and time by applying the same methods to an as homogenous as possible Alpine wide data set. 115 

This approach avoids sub-regional perspectives, inconsistencies from single data sources and different methods, and influences 

of artificial boundaries such as national borders. Since we wanted the data collection effort to be of use for the scientific 

community, we provide as much as possible of the data openly accessible (as far as data policies allow us to). The remainder 

of the paper is structured as follows: Section 2 introduces the data and the statistical methods, Section 3 presents results and 

discusses them, while Section 4 provides conclusions. 120 

2 Data and methods 

2.1 Study region 

The European Alps extend with their arc-shaped structure over more than 1000 km from the French and Italian Mediterranean 

coasts to the lowlands east of Vienna, covering south-eastern France, Switzerland, northern Italy, southern Germany, Austria, 

and Slovenia (see Fig. 1 (a)). The Alpine region is characterized by a very complex orography with large elevation gradients 125 

and deep valleys of different orientation intersecting the ridge and shaping numerous mountain massifs. 

Regarding their climatic setting, the European Alps are located in a transitional area influenced by the intersection of three 

main climates: The zone impacted by the Atlantic Ocean with moderate wet climate, the zone linked to the Mediterranean Sea 

characterized by dry summers and wet and mild winters, and the zone characterized by European continental climate with dry 

and cold winters and warm summers. Elevational effects and very small-scale climatic features originating from the complex 130 

Alpine topography are superimposed on this large-scale climatic setting (Auer et al., 2005; Isotta et al., 2014). 

The interaction of the three climate forcing zones together with the topography of the Alps results in climatic gradients along 

the north-south and west-east directions. The intersection of these two gradients can be characterized by four main climate 

regions, as shown by Auer et al. (2007). The first and sharpest climatic border is along the central main ridge, separating the 

temperate westerly from the Mediterranean subtropical climate. The second climatic border separates the western oceanic form 135 

the eastern continental influences. 
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Figure 1: Topography of the European Alps (a) and overview of station locations (b-d). (a) shows the SRTM30 DEM (Shuttle Radar 

Topography Mission Digital Elevation Model) with ~1 km resolution. (b) shows the location of snow depth measurement locations 

that were available (provided). (c) shows the locations of stations used in the regionalization analysis. (d) shows the stations used for 

the long-term trend analysis. The station density for a 0.5x0.25 degree grid is shown underneath the points in (b)-(d). The main 145 
climatic divides from Auer et al. (2007) are shown as dashed lines in (a)-(d). See also Appendix A, Sec. 2.4 and Sec 2.5 for selection 

criteria.  

 

2.2 Data sources 

Acquisition of snow observation data was performed by using open data portals and by directly contacting data providers (see 150 

Table 1 for an overview). For Austria, the Austrian Hydrographical Service (HZB, Hydrographisches Zentralbüro) offers free 

download of their data for the recent decades, and additional historical data at the seasonal scale was kindly provided by the 

HZB. For France, data was kindly provided by the national weather service Météo-France. This includes data collected as part 

of the collaborative network (réseau nivo-météorologique) between Météo-France and mountain stakeholders (in particular 
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Domaines Skiables de France, Association Nationale des Maires de Stations de Montagne, Association Nationale des 155 

Directeurs de Pistes et de la Sécurité de Stations de Sports d'Hiver). For Germany, data was downloaded from the national 

weather service’s (DWD, Deutscher Wetterdienst) open data portal using the R-package rdwd. For Germany, only stations 

below 49° N were downloaded. For Italy the data was kindly provided by many regional authorities:  

● for the province of Bolzano from the hydrographical office of Bolzano (BZ) 

● for Friuli Venezia Giulia (FVG) from the regional weather observatory (OSMER, Osservatorio meteorologico 160 

regionale), which is part of the ARPA (Agenzia regionale per la protezione dell’ambiente) FVG, and where the data 

was collected and cleaned by the Servizio foreste e corpo forestale struttura stabile centrale per l'attivita' di 

prevenzione del rischio da valanga 

● for Lombardy from the ARPA Lombardia 

● for Piedmont from the ARPA Piemonte 165 

● for the province of Trento from Meteotrentino (TN), with some additional long-term series previously analysed 

(TN_TUM, Marcolini et al., 2017a) 

● for the Aosta Valley (VDA) from the civil protection office (CF: Centro funzionale, Regione Valle d’Aosta) and from 

the avalanche office (AIBM: Assetto idrogeologico dei bacini montani, Regione Valle d’Aosta) 

● for Veneto from the avalanche office (Centro valanghe di Arabba), which is part of the ARPA Veneto 170 

● finally, additional data for Piedmont and Aosta Valley was provided by the Italian meteorological society (SMI, 

Società Meteorologica Italiana) 

For Slovenia, data was kindly provided by the Slovenian Environmental Agency (ARSO, Agencija Republike Slovenije za 

okolje). For Switzerland, data was downloaded from the IDAWEB portal of the national weather service MeteoSwiss, and 

additional data was kindly provided by the WSL Institute for Snow and Avalanche Research SLF. This dataset comprises the 175 

entire geographical range of the European Alps, yet we are aware of the existence of additional data sets (such as in the private 

sector, or public but not yet digitized), which unfortunately were not included in this analysis, and whose inclusion would be 

beneficial for even more robust results. 

The data consists of daily measurements of snow depth (HS) and depth of snowfall (HN). The largest part of the data are 

manual measurements. Some automatic measurements were included in the dataset provided for France. For a few sites in the 180 

Aosta Valley in Italy, manual series were merged with automatic series. This was done in order to extend up to the present 

some records that were dismissed at the beginning of the last decade, and this was performed in close communication with the 

operating office. While the observers follow slightly different guidelines in each country or network, the observation modalities 

are remarkably similar, thus allowing a combination of the different sources. For more detailed information on the measuring 

modalities, we refer to the European Snow Booklet (Haberkorn, 2019). Values of HS and HN were rounded to full centimetres. 185 

The further processing, quality checking, and gap filling are described in Appendix A. For all the following statistical analyses 

the quality checked and gap filled data were used. 



7 

 

The fraction of stations used from the MeteoSwiss data is very low compared to the other networks. The MeteoSwiss data 

contains a large number of stations from the manual precipitation network which is not dedicated to snow. Many stations 

contain an important data gap for the 1981–1997 period that rendered a large fraction of the stations unusable for this study. 190 

The homogenization of series, which is the removal of non-climatic parts in the time series, such as e.g. caused by 

instrumentation changes or station relocations, is a standard practice in long-term temperature and precipitation records (Auer 

et al., 2007). Applying the same tools to snow depth is not straightforward. There is discussion ongoing on the appropriate 

homogeneity tests and suitable observation frequency, such as daily, monthly, or seasonal (Marcolini et al., 2017a, 2019; 

Schöner et al., 2019). An analysis of a data set with parallel snow measurements indicates that snow cover duration and 195 

maximum snow depth are amongst indicators least affected by inhomogeneities (Buchmann et al., 2021). Current research 

tries extending existing approaches with new innovations (Resch et al., 2020). Homogenization could improve the robustness 

of estimated trends, and be especially useful for areas with sparse observations, such as for elevations above 2000 m. Given 

the large extent of our dataset, it was not possible to apply a common homogenization framework for our study and we leave 

this for future studies.  200 

 

Table 1: Overview of the number of stations with daily data provided by the different data sources. The data source consists of a 

country abbreviation, followed by the data source. Country abbreviations are AT for Austria, CH for Switzerland, DE for Germany, 

FR for France, IT for Italy, and SI for Slovenia, respectively. For source abbreviations, please see Sec. 2.2. Station numbers are 

shown for depth of snowfall (HN) and snow depth (HS) time series. See Appendix A, Sec 2.4 and Sec 2.5 for more details on station 205 
selection procedures associated with the different types of analyses. HN was not analysed but used for checking HS. 

 

Data source HN HS HS used (regionalization) HS used (trend analysis) 

AT_HZB 653 652 588 335 

CH_METEOSWISS 505 501 142 79 

CH_SLF 96 96 94 84 

DE_DWD 956 964 830 104 

FR_METEOFRANCE 239 286 145 45 

IT_BZ 60 64 48 0  

IT_FVG 30 30 18 8 

IT_LOMBARDIA 11 11 11 0  

IT_PIEMONTE 34 34 24 15 

IT_SMI 6 8 8 7 

IT_TN 52 52 29 8 
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IT_TN_TUM 0  5 1 0  

IT_VDA_AIBM 57 57 17 5 

IT_VDA_CF 0  17 11 3 

IT_VENETO 10 11 11 9 

SI_ARSO 130 172 172 152 

Total sum 2,839 2,960 2,149 854 

 

 

2.3 Data overview 210 

The locations of the stations are shown in Fig. 1 (b-d), the availability of stations in time in Fig. 2 (a), the elevational distribution 

in absolute terms in Fig. 2 (b) and in relative terms in Fig. 2 (c). The stations cover the whole Alpine arc, but they are distributed 

with different station densities arising from the different national and regional networks. As expected, most stations were found 

at lower elevations, the maximum number was at ~500 m, and sharply declining for higher elevations. Above 2000 m, the 

number was low, and no stations above 3200 m were available for this study. The longest series dates back to the late 19th 215 

century for HS (Passau_Maierhof in Germany, starting 1879). The total number of available HS stations depended on the 

availability of digitized data. It slowly started increasing around ~1900, with significant jumps in the 1960s and 1970s, when 

the French, Slovenian and Austrian series started, and in the 1980s, when Germany had a large network increase. The highest 

number of stations was available after the 1980s, with approximately 2000 stations. The total number of stations dropped 

significantly after 2017, because the data for Austria was only available until 2016, due to the delays induced from performing 220 

quality checks by the data provider. Moreover, the data collection was performed between 2019 and 2020, thus some sources 

ended in between. We used two different periods for the two analyses that we performed. For the regionalization we aimed to 

have the largest possible spatial extent and density of the stations, so the period 1981 to 2010 was chosen, because it is the 

period with the highest number of stations. For the trend analysis, we aimed to have as long as possible trends that sample the 

whole region, so the period 1971 to 2019 was chosen, because it offered the best tradeoff between station coverage and period 225 

length.  
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Figure 2: Overview of temporal data availability and station elevation. (a) The number of stations with daily data (before gap filling) 

is shown per year and country, and a total sum for the whole Alpine region. Stations are included in the count, if they have at least 230 
one non-missing observation in the respective calendar year. This simple threshold was chosen, because the aim of this figure is to 

show the availability and network abundance. Country abbreviations are as in Table 1. (b) The elevational distribution of snow 

depth (HS) stations in absolute numbers. For the histogram 50 m bins were used.  (c) Comparison of the relative elevational 

distribution of the station locations versus a digital elevation model (DEM). The distribution of the stations is shown in relative 

terms, using the same bin width (50m) as in the histogram in (b), but normalized to show the relative frequency instead of absolute 235 
numbers, and displayed as lines instead of bars. This is compared to the elevation for the whole area spanned by the stations (see 

polygon in inset map; area was outlined manually along the stations), which is extracted from the SRTM30 DEM (Shuttle Radar 

Topography Mission, ~1 km resolution).  

 



10 

 

2.4 Regionalization 240 

An empirical orthogonal function (EOF) analysis, also called principal component analysis (PCA), was conducted to determine 

the common modes of spatial variability. PCAs are widely employed in climatological studies to evaluate spatial modes of 

variability (Storch and Zwiers, 1999). They have been employed for meteorological records in the European Alps (Auer et al., 

2007) and also for snow variables (López‐Moreno et al., 2020; Scherrer and Appenzeller, 2006; Schöner et al., 2019; Valt and 

Cianfarra, 2010). For the PCA we used daily quality checked and gap filled data. However, the gap filling was only employed, 245 

when enough confidence in the filled value could be expected (see Appendix A for a detailed description). So some of the 

series still had gaps. Because the aim of this regionalization was to have a large spatial coverage, we did not want to exclude 

series with only few missing values. Consequently, we used a modification of the PCA algorithm that allows using data with 

gaps to estimate the principal components (Taylor et al., 2013). 

The PCA was applied to the daily data from December to April for the hydrological years 1981 to 2010. The period was 250 

chosen, because it is long enough to provide a climatological reference (30 years), and it is the period that has the largest 

number of stations available. A hydrological year is defined here as starting in October, and it is designated as the calendar 

year of the ending month (e.g. December 1998 to April 1999 belong to the hydrological year 1999). Only those stations were 

selected that had at least 70% of daily data available in this period. Each series was scaled to zero mean and unit variance 

before applying the PCA.  255 

In order to identify spatially homogeneous regions within the Alpine domain, we performed a k-means clustering on the 

estimated PCA matrix. We tested configurations with 2 to 8 clusters with the PCA matrix and with 2 to 8 PCs as input. We 

also applied k-means clustering directly on scaled daily observations of snow depth for comparison. To identify the best 

number of clusters, we used the “elbow-method”, average silhouette coefficients, and visual interpretation. For the “elbow-

method”, the fraction of explained variance is plotted against the number of clusters, and the “elbow” of this curve is the point 260 

where the increase in explained variance becomes marginal. This is a semi-objective method, because an elbow cannot always 

be clearly identified. The silhouette is a measure of how well an observation fits into its own cluster versus the others. For an 

observation 𝑖 in cluster 𝐶𝑖, the silhouette coefficient is 1 − 𝑎(𝑖)/𝑏(𝑖) if 𝑎(𝑖) < 𝑏(𝑖), 𝑏(𝑖)/𝑎(𝑖) − 1 if 𝑎(𝑖) > 𝑏(𝑖), and 0 if 

𝑎(𝑖) = 𝑏(𝑖), where 𝑎(𝑖) is the mean distance between 𝑖 and all other points in the same cluster, and 𝑏(𝑖)is the smallest mean 

distance of observation 𝑖 to all other clusters. Specifically, 𝑎(𝑖) =
1

|𝐶𝑖|−1
∑ 𝑑(𝑖, 𝑗)𝑗𝜖𝐶𝑖,𝑖≠𝑗  and 𝑏(𝑖) = 𝑚𝑖𝑛𝑘≠𝑖

1

|𝐶𝑘|
∑ 𝑑(𝑖, 𝑗)𝑗𝜖𝐶𝑘

, 265 

where 𝑑(𝑖, 𝑗) is the Euclidean distance between observations. 

The optimal number of clusters varied between 2 and 5 depending on the input (observations or PCA matrix) and depending 

on the metric (elbow in variance explained or average silhouette coefficients). Additional PCs explained only less than 2.6% 

of variance. After looking at the clustering results on maps (see Fig. S1), all 2 to 5 clusters are meaningful. They simply 

highlight different aspects of the snow depth spatial variability, such as the gradients along elevation, north-south and west-270 

east. Finally, five clusters based on the PCA matrix were chosen, because they provide the best trade-off between the semi-

objective metrics and the patterns expected from the climatic drivers. 
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2.5 Trend analysis 

For the trend analysis monthly and seasonal indices were used, which are indicative for different aspects and times of the snow 275 

season: monthly mean HS for November to May, mean winter HS (December to February, DJF), mean spring HS (March to 

May, MAM), mean seasonal HS (November to May), maximum HS from November to May (maxHS), early season snow 

cover duration (SCD, November to February), late season SCD (March to May), and full season SCD (November to May). 

SCD was the number of days with HS above 1 cm (Brown and Petkova, 2007). Indices were calculated from the quality 

checked and gap filled daily snow depth observations, if more than 90% of the daily values in the respective period were 280 

available. Trends of all indices were calculated for the period 1971 to 2019 for stations with complete data in the period. For 

the monthly mean HS analysis only, April and May series displaying mean HS less than 1 cm in all years were discarded, 

because these are insignificant snow amounts and divert attention from the other sites; series of the other months at the site 

were still included. The number of series available for each snow variable differs: the largest number of series is available for 

the monthly mean HS, less for the half-seasonal (three to four months) and the fewest number for the full-season indices. 285 

Trend analysis was performed using two generalized least squares (GLS) regression. GLS was used because it allows 

accounting for changes in the variance (Pinheiro and Bates, 2000). This was employed because the monthly snow depth series 

exhibited a change in the inter-annual variability, especially at the end of the season, where monthly snow depths approached 

zero. The regression formula was 𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜖𝑡, where 𝑦𝑡  is the value of the respective snow variable in year 𝑡 (centred 

such that year 1971 becomes year 0), 𝛽0 and 𝛽1 are the estimated regression coefficients and 𝜖𝑡 are the normally distributed 290 

errors with mean zero. GLS allows the variance to depend on the year 𝑡 with 𝑉𝑎𝑟(𝜖𝑡) = 𝜎2 ∗ 𝑒𝑥𝑝(2 ∗ 𝛾 ∗ 𝑡), where 𝛾 is a 

coefficient to be estimated in the inference procedure that indicates the change in variance associated to 𝑡. The GLS regressions 

for monthly mean HS showed a significantly improved goodness-of-fit (p<0.05, likelihood ratio test) for 40% of all cases, and, 

specifically for November, April and May, even for more than 60% when compared to ordinary least squares (OLS) that 

assumes a constant error variance. The significance of trends was assessed using a 95% confidence level. For the fraction of 295 

variance explained by the trend, we used the R squared statistic. To determine the magnitude of the interannual variability 

after accounting for the trend, we used the standard deviation of the model residuals. 

An alternative for dealing with such heteroscedastic data is to use the robust nonparametric Theil-Sen trend estimator with the 

Mann-Kendall test for significance assessment. We systematically evaluated the differences in the estimated trend magnitudes 

and trend significances of the Theil-Sen approach versus the GLS model, and found only negligible differences (Fig. S13 and 300 

Table S10): The mean difference between trend estimates was 0.02 cm per decade, the correlation between trend estimates 

was 0.96, and the agreement of significance based on a p-value threshold of 0.05 was 86%.  

The SCD variables are bounded counts, which can pose problems to the assumption of standard linear regression with normally 

distributed errors. This was only problematic for very low and very high elevation sites, which display many SCD values at 

the minimum or maximum. For MAM this concerns series below 500 m and above 2000 m, while for NDJF and NDJFMAM 305 



12 

 

this is problematic below 250 m and above 2500 m. Instead, for such count data a probability distribution such as Negative 

Binomial would be more appropriate (Venables and Ripley, 2002). Compared to the Poisson distribution, the Negative 

Binomial family accounts for overdispersion. We evaluated the differences in trend estimates and trend significance between 

the Negative Binomial linear model and the GLS model. Since the Negative Binomial linear model gives relative estimates of 

trends, these were transformed to absolute decadal trends for comparison. Again, differences were negligible on average (Fig. 310 

S13 and Table S10). Consequently, we applied the GLS model for all snow variables. 

 

2.6 Air temperature and precipitation data 

In order to study the relationship of snow depth with temperature and precipitation, we extracted temperature and precipitation 

series for each station from available gridded products. While gridded data sets clearly have some shortcomings, e.g. 315 

comparisons to point observations need a cautious interpretation (Salzmann and Mearns, 2011), their strength is the spatial 

and temporal coverage. 

Two types of products were considered, the first is a reanalysis and the second is an observation-based spatial analysis. For 

the reanalysis, we used temperature and precipitation from the MESCAN-SURFEX data set (Bazile et al., 2017), which was 

produced during the UERRA (Uncertainties in ensembles of regional reanalyses) project and which is available via the 320 

Copernicus data store (CDS). It covers the period from January 1961 to July 2019 on a 5.5 km grid. Precipitation is available 

as total daily sum and temperature at 6-hour intervals (00, 06, 12, 18 UTC).  For the observational based data, we chose E-

OBS v20.0e for mean daily temperature (Cornes et al., 2018), and the Alpine precipitation grid dataset (EURO4M-APGD) for 

total daily precipitation (Isotta et al., 2014; Isotta and Frei, 2013). E-OBS v20.0e spans the period from January 1950 to July 

2019 on a 0.1° grid. APGD covers the period January 1971 to December 2008 on a 5 km grid. It should be noted that the 325 

observation-based precipitation grids do not account for undercatch, which can lead to uncertainties at high elevations and in 

winter (Prein and Gobiet, 2017). 

In order to assign grid cells to stations for temperature and precipitation, we selected those grid cells which contain the stations. 

Consequently, some nearby stations could have the same series of temperature and precipitation. The daily (or 6-hour for 

temperature MESCAN-SURFEX) series were aggregated to monthly means for temperature and monthly sums for 330 

precipitation.  

The gridded products have a reference orography that, in complex mountain terrain, can differ significantly from the elevation 

of the point observation, thus e.g. introducing biases in temperature. Thus, temperatures were adjusted using a constant lapse 

rate of 6.5 °C km-1.  

Monthly temperature and precipitation can be considered largely independent from one month to the next, while snow cover 335 

is a cumulative process across the snow season. Because of this, seasonal comparisons were performed with average seasonal 

temperature and precipitation for winter (December to February), spring (March to May), or the whole snow season (November 

to May). The time period 1981 to 2010 was used, which had the densest station coverage. Climatological averages were 
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computed for all seasons using the quality-checked and gap filled snow depth data. Since EURO4M-APGD ends in 2008, the 

time period 1981 to 2008 was used for the observation-based products. The manuscript contains results from the comparison 340 

with the reanalysis product (MESCAN-SURFEX), and the results from the observation-based products are shown in the 

supplementary material as sensitivity analysis. 

3 Results and discussion 

3.1 Regionalization of daily snow depths 1981 to 2010 

The PCA of daily snow depth series yielded five main modes of spatial variability, which explained in total 84% of the variance 345 

in the period December to April from 1981 to 2010 (Fig. 3). The first PC explained 54.3% of variance and distinguished 

between high to middle and low elevation stations (approximate threshold 500–1000 m, Fig. 4). It explained the variability in 

snow depth for stations above 1000 m, and was probably also partly linked to the permanence (or permanent absence) of snow 

cover, which is why also some low elevation sites presented similar loading to the high sites (a PC loading can be considered 

the correlation of the original series with the principal component). The second PC explained 11.9% of variance and was also 350 

linked to elevation, but captured the variability below 1000–1500 m (Fig. 4). Consequently, PC1 and PC2 together captured 

the variability across the whole elevation range. The third PC explained 8.1% of variance and separated the stations into north 

and south of the main ridge. The fourth PC explained 6.0% of variance and separated east from west. The fifth PC explained 

3.7% of variance and separated the south–eastern and north–western stations from the rest.  

Some gradients in the PC loadings map (Fig. 3) could give the impression that data artefacts between the different data 355 

providers exist, such as at the Austrian-German border in PC2 and PC5, or at the French-Italian border for PC3-5. However, 

this is caused by the fact that the administrative borders in the Alps are tied to topography, and thus closely located near 

elevational borders (Fig. 1(a)). A version of Fig. 3 subdivided by data provider highlights clearly that the gradients were not 

associated with the administrative borders (Fig. S2 in the supplementary material).  

 360 
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Figure 3: Main modes of variability in daily snow depth series. The plots show scaled loadings for the first five principal components 

(PCs), which can be considered the correlation of the original series with the respective PC. The title in each panel contains the 

amount of variance explained by the respective PC. The principal component analysis was applied on daily snow depth data from 

December to April for the hydrological years 1981 to 2010, for stations that had at least 70% of available data. 365 
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Figure 4: Scatterplots of principal component (PC) loading versus elevation and region. The PC loading can be considered the 

correlation of the original series with the respective PC. See Fig. 3 for a map of the PC loadings, and Fig. 5 for a map of the regions.  370 

 

The PCA loadings from the five PCs were used as input for a clustering algorithm (k-means), which divided the stations into 

five clusters or regions (Fig. 5). This yielded three regions in the north: northwest (NW) with a median elevation of 472 m 

(min–max: 30–1510 m), which contained stations from southwest Germany, northwest Switzerland, few from France, and a 

few from eastern Austria; northeast (NE) with a median elevation of 515 m (215–1188 m), which contained stations from 375 

southeast Germany and north Austria; North & high Alpine with a median elevation of 1050 m (482–2970 m), which contained 

stations mainly located in France, Switzerland, and Austria, but also includes the high-elevation sites in Germany, such as in 

the Black forest and Bavarian forest. Two regions emerged south of the main ridge: South & high Alpine with a median 

elevation of 1530 m (588–2735 m), which contained stations from the southern French Alps, almost all of Italy, few of southern 

Switzerland, and some of south Austria and east Slovenia; and finally southeast (SE) with a median elevation of 420 m (55–380 

1300 m), which contained almost all stations from Slovenia and parts of eastern Austria.  

Consequently, clusters NW, NE, and SE contained lower elevation sites, while North & high Alpine and South & high Alpine 

contained the higher elevations. The spatial coverage of the stations in this study included low elevations sites for Switzerland, 

Germany, Austria, and Slovenia, but not in France and Italy, where the available stations were mostly high elevation sites. For 

a future analysis, it would be interesting to include more low elevation sites from France and Italy, and see whether a third 385 
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cluster would emerge (as in the north), because the division into South & high Alpine and SE is surely also caused by the 

different station elevations.   

 

 

Figure 5: Clustering of stations based on daily snow depth data. Map of regions from applying a k-means clustering on the first five 390 
principal components. Underlaid are the HISTALP coarse resolution subregions (Auer et al., 2007), which were derived using a 

semi–automatic principal component analysis of climate variables (temperature, precipitation, air pressure, sunshine, and 

cloudiness). 

 

The results from the clustering were obtained automatically and no manual post-processing or modification of the cluster 395 

assignments was performed. Additionally, the only input into the clustering algorithm was daily snow depth series and no 

information on location or elevation was included. Given this absence of location information in the clustering process, the 

estimated modes of variability and the resulting regions were very homogenous in space. However, in the clustering, some 

stations seemed off, such as the few “northwest” stations around Lugano in Switzerland, northern Italy, and at the Adriatic 

coast in Slovenia, as well as the SE stations in France, Switzerland, and northern Italy. This was not related to the used PCA 400 

algorithm that allowed gaps in data, since the results looked almost identical to a standard PCA (see Fig. S3 and S4), where 

the clustering agreed in 98.5% of the stations, and the same stations seemed mis-clustered. Instead, this might be related to 

special local climatic conditions affecting snow cover or to the fact that these stations did not have any similar neighbours in 

the estimated clusters. For example, the five stations in Ticino, located in Switzerland south of the main ridge, are low elevation 
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stations, which had no correspondence in the South & high Alpine cluster, which contained middle to high elevations. Thus, 405 

the next best clusters were SE and NW, which, however, did not fit well: these sites and all other seemingly mis-clustered 

stations had low silhouette values (Fig. B1), which is a measure of how well a point matches its cluster compared to the others. 

Low silhouette values were also found along the borders of the different clusters, especially between NW and NE, which 

implies a smoother transition between NW and NE compared to the north–south boundary. 

The estimated modes of variability of snow are similar to previous estimates on climatic subregions in the Alps, as identified 410 

in the HISTALP project (Auer et al., 2007), and which are underlaid in Figure 5. The HISTALP regions were based on 

temperature, precipitation, air pressure, sunshine and cloudiness, and the division into north, south, east and west matches what 

we found for snow depth. Since the four regions were a compromise between all variables, they do not match perfectly to what 

we found for snow depth, because the individual atmospheric variables exert different controls on surface snow cover. While 

the north–south boundary is almost identical in the central–western part, the eastern part has large mismatches. However, if 415 

the single element boundary for precipitation were considered as main factor (cf. Fig. 8 from Auer et al., 2007), then the 

agreement with snow depth would be almost perfect. This finding confirms a consistent picture of the Alpine climate, in which 

snow depth is strongly related to precipitation and air temperature patterns.  

The amount of variance explained in the PCA with five PCs (84%) might seem surprisingly high, given that snow cover is 

hypothesized to have a high spatial and temporal variability. The value is higher than recent estimates for the Swiss Alps, 420 

where the first three PCs explained 78% (Scherrer and Appenzeller, 2006), or for Austria and Switzerland, where the first three 

PCs explained 70% (Schöner et al., 2019). However, since here we included more stations and also stations from regions with 

different climatic influences, such as south of the main ridge, an increase in the amount of explained variance could be 

expected.  

3.2 Snow depth climatology 1981 to 2010 and links to temperature and precipitation  425 

Besides differences in the patterns of daily variability of the snow depth series, the regions also demonstrated different snow 

depth climatologies (Fig. 6). Looking at average winter (December to February) snow depth 1981–2010, the northern regions 

had higher snow depths than their southern counterparts. These differences became larger with increasing elevation: While 

below 750 m no substantial differences were observed, southern stations had ≈30% less snow than northern stations until 1750 

m, and ≈20% less until 2250 m; above the number of stations is too low to obtain robust results (Table S1).  430 

Average winter temperatures were higher in NW compared to NE and SE, and the latter two were similar. In North & high 

Alpine and South & high Alpine temperatures were also comparable, although northern sites were colder at 1500–2000 m. 

However, precipitation amounts were significantly lower south than north, and South & high Alpine sites received ≈100 mm 

less winter precipitation than North & high Alpine sites up to 2000 m, which amounts to ~1/3 of the precipitation north. These 

results suggest that the difference in December to February snow amounts north versus south are predominantly driven by 435 

precipitation differences and not temperature. 
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Figure 6: Climatology of (a) snow depth, (b) temperature, and (c) precipitation across regions and elevations for the winter season 

(December to February, DJF) and spring season (March to May, MAM). Average values are for the period 1981–2010. Each point 440 
represents one station. The temperature and precipitation values were extracted from MESCAN–SURFEX reanalysis, while the 

snow depths are based on station data. See also Table S1 and S2 for summary values. 

Seasonal snow depth was correlated to temperature and precipitation extracted from a gridded reanalysis (MESCAN–

SURFEX). Results indicated negative correlations with temperature, decreasing strongly with elevation, and positive 

correlations with precipitation, mildly increasing with elevation (Fig. S5). The magnitude of temperature correlations was 445 

between -0.8 and -0.5 below 1000 m, and the correlation decreased to about -0.2 up to 2000 m. For precipitation, correlations 

were between -0.2 and 0.7, with much higher variability than temperature. Correlations of snow depth with temperature did 

not differ by region. However, the stations in SE exhibited stronger (more positive) correlations with precipitation than the NE 

and NW regions.   
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The findings on the correlations agree with previous estimates for Swiss and Austrian stations (Schöner et al., 2019) in terms 450 

of signs and elevation patterns. However, our estimates are of higher magnitude for both temperature and precipitation. As 

sensitivity analysis, we repeated the climatology and correlational analysis using observation based spatial analyses instead of 

reanalysis for extracting temperature and precipitation (Fig. S6, Fig. S7, Table S3, Table S4), but results did not differ 

substantially from above.  

 455 

3.3 Long-term trends for the period 1971 to 2019 

Trends of monthly mean snow depth from November to May were mainly negative with some exceptions (Fig. 7 and Table 

2). Over all stations and all months, 85% of the trends were negative and 15% positive; 23% significantly negative and 0% 

(only 4 station month combinations) significantly positive (for significance, p-values had to be less than 0.05). The percentage 

of significant negative trends was substantially higher in the spring months (March to May) and at lower elevations, irrespective 460 

of region, and it could reach 40–70% (see also Table 2).  

In the low elevation regions (NE, NW, SE), snow depth was decreasing much stronger in SE than in NE or NW across all 

months. The mean trend of December snow depth below 1000 m in NE was -0.7 cm per decade (all further trends in the same 

unit) and -0.8 in SE, while in January it was -0.5 in NW, -0.6 in NE, but -1.6 in SE (Table 2). In February, NE stations even 

had increasing snow depth with +0.8, while NW and SE decreased. In the middle elevation (1000 to 2000 m), differences 465 

between north and south were even stronger and variable in amplitude during the snow season: in December the mean trend 

in North & high Alpine (N&hA) stations was stronger negative (-1.9) than compared to South & high Alpine (S&hA) stations 

(-0.8), but for January and February we observe the opposite behaviour, with a less pronounced negative trend in N&hA (-1.6 

and -2.2) compared to S&hA (-3.9 and -5.1). 

In the spring months March and April, trends in snow depth were again more negative south than north. For example, in the 470 

middle elevations (1000 to 2000 m), the mean March snow depth trend was -3.9 in N&hA compared to -7.0 in S&hA, in April 

-5.7 compared to -6.6, and in May -1.4 compared to -2.7. Notably, stations in S&hA above 2000 m exhibited strong variability 

in trends, and there were stations with increasing snow depth in all months (November to May). While mean trends were 

positive until January (November 2.7, December 4.0, January 0.0), mean trends were negative otherwise (February -1.9, March 

-2.6, April -8.3, May -9.5). 475 
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Figure 7: Long-term (1971 to 2019) linear trends in mean monthly snow depth (HS). Trends are shown separately by month 480 
(columns) and region (rows). Each point is one station. The points indicate the trend and the lines the associated 95% confidence 

interval. 

 

 

 485 

Table 2: Overview of long-term (1971 to 2019) trends in mean monthly snow depth. Summaries are shown by month, region, and 

1000 m elevation bands (0 to 1000, 1000 to 2000, and 2000 to 3000 m). Cell values are the number of stations (#), the mean trend 

(mean, in cm per decade), and percentages of significant negative (sig-) and positive (sig+) trends; the remaining percentage (not 

shown) corresponds to the total of non-significant negative and positive trends. Empty cells denote no station available (for # and 

mean), and no stations with significant negative or positive trends (sig- and sig+). Trends were considered significant if p < 0.05. See 490 
also Fig. 7. A version of the table with 500 m bands instead of 1000 m is available in the supplementary material (Table S5). 

Month Region Elevation: (0,1000] m Elevation: (1000,2000] m Elevation: (2000,3000] m 

 # mean sig- sig+ # mean sig- sig+ # mean sig- sig+ 

Nov NW 2 -0.01 50.0%          

NE 34 -0.32 41.2%          

N&hA 4 -0.93 50.0%  9 -0.31       

S&hA 7 -1.02 71.4%  23 -0.22   12 2.68   

SE 218 -0.50 52.3%  8 -1.21 50.0%      

Dec NW 2 -0.01           

NE 24 -0.68 29.2%          

N&hA 3 -1.72 33.3%  67 -1.91 1.5%  1 -2.02   

S&hA 17 -1.34 5.9%  67 -0.89 1.5% 1.5% 17 3.98   

SE 221 -0.77 24.9%  9 -2.38 44.4%      

Jan NW 81 -0.51 12.3%          

NE 32 -0.55 3.1%  2 0.23       

N&hA 83 -1.59 3.6%  154 -1.59 4.5%  4 -2.02   

S&hA 19 -4.91 73.7%  76 -3.94 21.1%  17 0.50   

SE 243 -1.59 29.6%  10 -4.32 70.0%      

Feb NW 78 -0.09 11.5%          

NE 24 0.75   1 2.44       

N&hA 84 -1.36 4.8%  153 -2.24 7.2%  4 -3.56   

S&hA 19 -4.10 10.5%  78 -5.09 15.4%  17 -1.91 5.9%  

SE 228 -0.63 4.4%  12 -2.50       
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Mar NW 65 -0.33 4.6%          

NE 20 -0.93 10.0%  1 0.10       

N&hA 75 -3.10 30.7%  151 -3.94 21.9%  4 -1.91   

S&hA 18 -3.52 33.3%  73 -7.00 46.6%  17 -2.55 11.8% 5.9% 

SE 212 -0.65 5.2%  12 -3.22 16.7%      

Apr NW 34 -0.08 23.5%          

NE 18 -0.33 38.9%  1 -0.73       

N&hA 69 -1.48 68.1%  133 -5.70 65.4%  4 -7.07 25.0%  

S&hA 14 -0.92 50.0%  65 -6.63 56.9%  17 -8.28 41.2%  

SE 136 -0.13 38.2% 0.7% 7 -1.42 14.3%      

May NE 7 -0.01           

N&hA 36 -0.03 5.6%  114 -1.42 28.1%  3 -5.69   

S&hA 9 -0.01 11.1%  41 -2.68 39.0%  15 -9.46 40.0%  

SE 52 -0.02  1.9% 7 -0.02       

 

 

3.4 Interannual variability from 1971 to 2019  

Complementing the trend analysis, this section presents an evaluation of the interannual variability of snow depth series. Figure 495 

8 highlights that mean snow depth exhibited a strong interannual variability in the analysed period. Because of the large number 

of stations, only time series that average over all stations in 500 m elevation bands are shown; however, individual station 

behaviour was well represented by the 500 m averages, see also auxiliary plots at the repository (Matiu et al., 2020).  In the 

1970s and 1980s high snow depths were observed, followed by a period of extreme low snow depth in the 1990s. Since the 

1990s, snow depths in winter have partly recovered, while in spring snow depths have continued to decline. At the end of the 500 

snow season and for lower elevations, average snow depths approached zero, such as in April for 500 to 1000 m or in May for 

1000 to 1500 m. The different regions showed similar large-scale patterns, and, for example, the 1990s drop can be seen across 

the whole Alps. Particular years, especially extreme ones, show concurrent behaviour, for example February 1986 or 2009. 

Otherwise, there is mixed coherence across regions, as can be also seen from looking at standardized anomalies (Fig. B2) 

instead of raw snow depth.  505 

These patterns are generally in line with those presented in previous studies, which showed high snow amounts in the 1960s 

and 1980s and negative anomalies in the 1970s and 1990s, i.e. snow scarce winters, regime shifts or breakpoints in that period 

in France, Switzerland, Italy, and the western and southern part of Austria, and a recovery afterwards (Durand et al., 2009; 
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Laternser and Schneebeli, 2003; Mallucci et al., 2019, 2019; Marcolini et al., 2017b; Marty, 2008; Micheletti, 2008; Scherrer 

et al., 2013; Schöner et al., 2019; Valt and Cianfarra, 2010). In an Alpine wide view, this temporal variability is also 510 

accompanied by a strong regional variability. 

 

 

Figure 8: Time series of mean monthly snow depth averaged by 500 m elevation bands. The rows indicate elevation band and the 

columns the months. The small numbers at the top of each panel denote the number of stations included in the average. Lines are 515 
only shown if more than 5 stations were available. Time series of all single stations are available at the repository (Matiu et al., 2020). 

 

In order to put the trends from Sec. 3.3 into context of interannual variability, we examined their relationship by looking at the 

ratio between the 1971 to 2019 trend and the standard deviation of residuals (Fig. B3(a)). This gives an indication of the relative 

contribution of the trend to interannual variability. The highest ratios were observed in November to January below 1000 m, 520 

in March between 500 and 2000 m, in April between 0 and 2500 m, and in May between 1500 and 2500 m.  

As expected from the high temporal variability of the snow depth series, the fraction of explained variance from the linear 

trends was low. The average R² over models with significant trends (p<0.05) was 10%. However, R² increased with elevation 

and in the last months of the snow season, reaching up to 32%.    

From Figure 8 a decrease in the variability of the snow depth series can be observed, especially at the end of the season and 525 

for lower elevations. This is confirmed by the large fraction of negative time coefficients for the error variance in April and 

May (Table B2), where approximately 40-80% of the stations presented significantly decreasing variability, depending on the 

region. Notable decreases in variability were also observed in November and in January for NE, NW, and SE. Considerable 
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significant increases of variability, on the other hand, were only observed in December for 27% of the South & high Alpine 

series.   530 

 

 

3.5 Seasonal snow indices of snow depth and snow cover duration 

In addition to the analysis of monthly mean snow depth from Sec. 3.3 and 3.4, this section gives a summary of trends in 

seasonal indices of mean and maximum snow depth as well as snow cover duration (Table 3, Appendix C).  The results of 535 

seasonal mean HS agree with the monthly analysis and show generally decreasing snow depths in winter up to 2000 m and in 

spring for all elevations. Maximum snow depth across the whole season (November to May) decreased stronger than mean 

snow depth, e.g. the average trend of mean HS for stations in the north (N&hA, NE, NW) between 1000 and 2000 m was -2.8 

cm per decade and -5.2 cm per decade for maximum HS, which corresponds to -6.2 and -4.2 % per decade, respectively. Again, 

stations south (S&hA, SE) had more negative trends: e.g. -4.1 cm per decade for mean HS and -9.8 cm per decade for maximum 540 

HS for the same elevations (1000 to 2000 m), which corresponds to -8.9 and -7.1 % per decade, respectively. Average relative 

trends below 1000 m were more negative than average trends between 1000 and 2000 m for meanHS (DJF and NDJFMAM) 

and all SCD indices, but not that obviously for meanHS in MAM and maxHS.   

Seasonal SCD also decreased for almost all stations below 2000 m, while above no consistent or significant changes were 

observed. The average trend in November to May SCD over all stations below 1000 m was -4.5 days per decade in the north 545 

and -4.8 in the south, and over all stations between 1000 and 2000 m, -5.3 in the north and -7.0 in the south, respectively. The 

fact that above 2000 m no changes in SCD were observed might also be caused by our season definition (November to May), 

which is not always enough to capture the full season above 2000 m. In terms of relative changes, mean HS decreased stronger 

than maximum HS in our study, which is consistent with previous findings (Bach et al., 2018). However, in terms of absolute 

trends, the opposite was true for our study: mean HS decreased less than maximum HS. Another potential explanation for these 550 

differences might be the fact that the study period in Bach et al. (2018) starts 20 years earlier than in our study and their maxHS 

trends are influences by some extreme events at the start of their study period.  

In addition, our changes per decade for maximum HS and SCD are clearly smaller than the ones found by Klein et al. (2016) 

for a similar time period but a small number of stations in Switzerland. We were able to reproduce the exact estimates from 

Klein et al. (2016) for the same sites, and hereby found that the differences were caused mostly by the different period (1970-555 

2015 versus 1971-2019). Which makes sense, since 1970 was a snow abundant year, as were the years after 2015 compared 

to before 2015. In the case of SCD, the different season length (Klein et al. used the whole year, and we only November to 

May) also had an impact, especially for the higher elevation sites. This supports our introductory statement on the challenge 

of synthesizing different studies and on the requirement of a unified analysis.           

 560 
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Table 3: Summary of 1971 to 2019 trends in seasonal snow indices. The five regions were collapsed into two (north and south). The 

number of stations differs by season and the range of available series is indicated in the third column. Average trends (with 

minimum, maximum in parentheses) are given for seasonal indices of mean snow depth (meanHS), maximum snow depth (maxHS), 

and snow cover duration (SCD). The season is indicated in the second row with the first letter of the included months (e.g. NDFJ is 565 
November, December, January, and February). Absolute trends are in cm per decade for meanHS and maxHS, and in days decade-

1 for SCD. Relative trends are expressed as % per decade (a few stations south below 1000m were removed, because their low and 

insignificant snow amounts caused unlikely high relative trends).     

Elevation [m] Region # series meanHS meanHS meanHS maxHS SCD SCD SCD 

  (range) DJF MAM NDJFMAM NDJFMAM NDJF MAM NDJFMAM 

Absolute changes  cm per decade    days per decade   

(0,1000] North 141-190 -0.9 (-5.3, 1.0) -0.8 (-6.4, 0.1) -0.8 (-4.7, 0.4) -2.4 (-11.2, 3.1) -2.8 (-11.5, 2.7) -1.7 (-5.6, 0.1) -4.5 (-13.6, 2.9) 

South 224-241 -1.2 (-6.0, 0.9) -0.3 (-3.2, 0.3) -0.7 (-3.6, 0.2) -3.2 (-15.3, 3.1) -3.7 (-10.7, 1.4) -1.1 (-5.5, 1.2) -4.8 (-14.6, 0.6) 

(1000,2000] North 122-155 -2.1 (-11.0, 3.1) -3.7 (-21.9, 0.8) -2.8 (-15.6, 1.6) -5.2 (-19.9, 3.0) -2.1 (-8.0, 5.0) -3.0 (-7.5, 0.7) -5.3 (-13.9, 0.7) 

South 61-84 -3.5 (-12.6, 2.3) -4.9 (-18.7, -0.3) -4.1 (-14.0, 1.6) -9.8 (-29.2, 2.6) -2.5 (-7.3, 1.7) -4.1 (-8.3, 1.2) -7.0 (-13.9, -0.2) 

(2000,3000] North 3-4 -4.3 (-9.9, -2.2) -4.5 (-5.2, -4.1) -5.0 (-8.2, -3.3) -8.1 (-15.8, -4.2) 0.1 (-0.1, 0.2)  0.1 (-0.1, 0.2) 

South 16-17 -0.1 (-9.2, 11.3) -6.7 (-18.2, 6.6) -2.9 (-11.5, 6.8) -9.4 (-29.2, 6.1) -0.2 (-2.1, 1.8) -0.6 (-4.5, 1.9) -1.0 (-4.7, 1.7) 

Relative changes   % per decade       

(0,1000] 
North 141-190 -7.2 (-20.4, 12.1) -11.2 (-20.6, 18.0) -8.7 (-20.4, 10.0) -4.7 (-19.4, 8.6) -5.2 (-18.1, 7.8) -9.7 (-28.5, 9.7) -6.1 (-16.6, 6.9) 

 South 220-238 -8.7 (-18.6, 22.7) -7.5 (-21.7, 28.0) -10.0 (-19.0, 10.6) -6.8 (-16.7, 10.4) -6.8 (-14.7, 8.2) -8.0 (-19.5, 15.0) -7.3 (-14.3, 4.4) 

(1000,2000] North 122-155 -3.6 (-17.6, 23.3) -9.5 (-20.0, 3.1) -6.2 (-18.3, 5.1) -4.2 (-13.8, 3.9) -2.0 (-8.5, 10.6) -6.0 (-18.3, 4.0) -3.5 (-11.8, 0.7) 

 South 61-84 -6.5 (-14.1, 5.1) -11.4 (-17.2, -1.0) -8.9 (-14.8, 4.9) -7.1 (-12.0, 3.0) -2.6 (-8.8, 1.9) -7.8 (-16.8, 4.2) -4.7 (-10.7, -0.1) 

(2000,3000] North 3-4 -2.5 (-4.0, -1.5) -1.8 (-2.0, -1.4) -2.4 (-2.9, -2.1) -2.1 (-3.1, -1.6) 0.1 (-0.1, 0.1)  0.0 (-0.0, 0.1) 

 South 16-17 0.2 (-8.0, 11.7) -4.2 (-11.9, 13.2) -2.4 (-10.1, 6.7) -3.4 (-9.1, 4.6) -0.2 (-1.8, 1.6) -0.7 (-5.3, 2.4) -0.6 (-2.4, 0.8) 

 

 570 

3.6 Representativeness of the stations in an Alpine wide context 

Since we aimed to give an Alpine wide assessment, the horizontal and elevational coverage of the station observations is 

crucial in determining the confidence in the results. For this, we compared the elevation distribution of our station set with a 

digital elevation model (DEM) at 1 km resolution for the area spanned by the stations (Fig. 2(c)). In relative terms, the 

elevations of the stations used in this study oversampled the elevations up to 1000 m, were similar from 1000 to 2000 m, 575 

significantly underrepresented 2000 to 3000 m, and did not cover elevations above 3000 m.  

If the absolute number of stations used in this study is deemed sufficient to describe the spatial coverage, then the confidence 

of statements would be high for elevations up to 2000 m, while between 2000 and 3000 m, the results should be taken more 

cautiously. While the elevations above 3000 m only cover a minimal area (0.7% of the area studied here, see Fig. 2(c)), they 

store large amounts of snow: Figure 6(a) gives an indication of the expected increase in HS with elevation. Long-term 580 

monitoring is extremely challenging at elevations above 3000 m, and the snow cover at these elevations is relevant for 

hydrology, mountain ecosystems, glacier dynamics and mountain (ski) tourism.  
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Spatial variability of snow increases with elevation (see also Fig. 6), and thus the absolute number of stations required for 

comparative assessments would be even higher for high elevations compared to low elevations. This limitation could be tackled 

with automatic snow depth sensors, which better sample high elevations; however, their historical time series are yet too short 585 

for assessing long-term trends, besides their issue of harmonized data processing (see also Sec. 1). 

An alternative method to derive spatially representative results is to transform the station point observations into a gridded 

product, by e.g. deterministic or geostatistical interpolation (i.e., kriging). However, in the complex topography of the 

European Alps with strong elevation gradients, it is challenging to determine an appropriate horizontal resolution that 

represents elevation well. Moreover, a high enough station density would be needed to perform interpolation. An observation-590 

based grid of snow depth for the Alps would have many potential use cases, from hydrological applications to evaluation of 

remote sensing and climate models, but it is beyond the scope of this study.  

3.7 Outlook 

The scope of this study was primarily the detection of snow depth trends, thereby contributing to better understanding and 

quantification of the state and evolution of the mountain cryosphere in the European Alps (Beniston et al., 2018; Hock et al., 595 

2019). The formal attribution of the trends to climatic drivers, such as temperature and precipitation, as well as the influence 

of anthropogenic climate change on snow trends (Najafi et al., 2017; Pierce et al., 2008) is not explicitly addressed, although 

the collation of this unique dataset allows the scientific community developing such studies in the future. The correlational 

analysis from Sec. 3.2 suggests that temperature and precipitation are important drivers of temporal and spatial variability of 

snow depth across the whole Alps.  600 

Besides snow depth, also observations of the depth of snowfall (HN) were collected for this study, which were used partly for 

quality checking the snow depth series. However, analysing the HN series and comparing results to those obtained for snow 

depth would have exceeded the scope of this study. In the future, we plan to continue with the analysis of HN series, for which 

we are also aware of other data sources, in particular for low elevation sites in Italy (Pifferetti et al., 2017). 

4 Conclusions 605 

We presented the first Alpine wide assessment of snow depth trends based on in-situ measurements in the European Alps. This 

enabled the identification of five distinct snow regions, whose spatial gradients are related to the known diverse climatic 

influences for the Alps.  

The trend analysis, based on measurements from 1971 to 2019, highlighted the overall reduction in snow cover. Decreases in 

monthly mean snow depth from November to May were observed for 85% of the station-month combinations (of which 26% 610 

significant, p < 0.05), while only 15% showed increases (of which <1% significant). Stronger negative trends with higher 

significance were observed in spring, and in the case of low elevations during the whole season (Table 2). These are the times 

and elevations, where the transition from snow to snow-free occurs. The observed changes are thus consistent with the 



27 

 

expectations from the snow-albedo-feedback (Thackeray et al., 2019) and highlight its importance for mountain climates 

(Pepin et al., 2015). Seasonal maximum snow depth decreased stronger than seasonal mean snow depth in absolute terms, 615 

while in relative terms the opposite was true (Table 3). Snow cover duration decreased below 2000 m, while above no 

consistent change was observed, partly due to our choice of snow season (November to May).  

The different regions showed good agreement of the inter-annual variability for snow cover duration indices (Fig. C6) and less 

for snow depth variables (Fig. C4). The magnitude of trends differed by region and the decreases in the south were on average 

stronger than in the north (Table 2, Table 3). Combined with the lower snow depths south than north (Fig. 6, Table S1 and 620 

S2), this resulted in an even stronger relative decrease south than north. The number of stations analysed here gives high 

confidence to the changes up to 2000 m, while above this elevation the changes have to be interpreted more carefully, especially 

in the north, where only few stations were available.  

The orography of the Alps clearly manifests as the main impact on the snow climatology. It defines boundaries for subregions 

in north versus south, followed by west versus east. The location of a station with respect to the climatic forcing zones defines 625 

the snow depth climatology and impacts the variability of snow depth at a daily scale. Additionally, it can result in different 

trend magnitudes and also trend signs. Besides these larger scale features, substantial variability exists at higher elevations 

within the estimated snow depth regions. In summary, the assumption that results from one region are valid in another or for 

the whole European Alps needs to be evaluated cautiously. 

This study provides a clear and harmonized picture for the detection of observed snow depth trends across the European Alps. 630 

Thereby it contributes to bridge a scientific gap, which exists for many mountain areas in the world (Hock et al., 2019). We 

anticipate that the dataset developed for this study, from which a large part is made available to the broader scientific 

community, will provide support for further studies. In particular to formal attribution studies, which quantify the 

anthropogenic component in the physical drivers of change, and which remain extremely limited regarding snow cover trends 

(Najafi et al., 2017; Pierce et al., 2008).  635 

A large community effort and open data sharing for research purposes has made this study possible. We have shown the 

benefits of a data set that spans many nations and institutions. We expect this dataset to be used for further studies addressing 

various sectoral applications or for the evaluation of remote sensing or reanalysis products. Perhaps it might be expanded in 

the future thanks to additional contributing organizations. However, we currently lack the opportunity to have a continuously 

updated version. With ECA&D (European Climate Assessment & Dataset), a harmonized station data collection portal exists 640 

at the European scale for many meteorological variables. But while the coverage of e.g. temperature and precipitation is 

balanced across Europe, snow depth is only limited or not at all available for many European mountain regions, such as the 

European Alps, Carpathians, Balkan Mountains, or Dinaric Alps. It would be desirable to have an updated harmonized station 

dataset for snow cover, given its importance in mountains and further downstream. This would enable a better monitoring of 

the changes, their consequences and impacts, and contribute more quantitatively to climate change, ecosystems and 645 

environmental assessments than is possible at the moment. However, such an endeavour requires a more formal umbrella and 

long-term commitment, e.g. in the framework of the Copernicus Earth monitoring programme of the European Commission.  
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Appendices 

Appendix A: Data Processing 

After collecting the data, the series from different data providers were harmonized and put into a common data format. This 655 

included converting all station coordinates into latitude and longitude. In a few cases, where only station name and elevation 

were available but no coordinates, the missing coordinates were extracted from Google Maps using the approximate location 

(with correct elevation) based on the station name. Most data providers used station identifiers along with station names. We 

chose to have unique identifiers for all stations based on the station name. Station names were standardized by replacing blanks 

and apostrophes with underscores, and by removing accents. If multiple stations had the same name within one data source i.e. 660 

by data provider, the names were suffixed with the station identifier from the data provider. If multiple stations had the same 

name across data providers, the names were suffixed with the data provider identifier. 

A.1 Merging of records 

The final database included several cases in which snow measurements for the same location were stored as separate records 

since they covered different periods and/or a slight relocation of the same station site occurred. In some cases, different records 665 

were available at very close locations where snow data were collected at the same time or over partially overlapping periods 

for different operative or research purposes. In order to maximize the temporal continuity and extent of available HS and HN 

series, the records referring to the same site or to very close locations were merged: one series was created from the multiple 

series by replacing missing values or missing periods. In particular, the merging was performed only if the sites were closer 

than 3 km and their vertical distance was less than 200 m. In the case of overlapping periods, the data from the series with the 670 

fewest gaps was retained. The merging was evaluated and performed on HS series first. In the case that HN series for the same 

sites were also available, the data were merged by following the same criteria used for HS, in order to preserve consistency 

between HS and HN measurements. The metadata of the most recent series included in the merging was assigned to the 

resulting record. About 60 merged series were obtained in total and the duplicated records for the same site were discarded. 

 675 

A.2 Quality control 

The series were quality checked in order to remove recording errors. First, below zero HS or HN values were replaced with 

missing values. Then a temporal consistency check was applied to HS to identify recording errors. Series were screened for 

jumps larger than 50 cm (up and down in two consecutive days; or vice versa). This criterion identified 680 values from the 

daily observations from all series, which were checked manually, and recording errors were replaced with missing values. 680 

Another issue with HS series is that missing observations might falsely be recorded as 0 cm. To identify suspicious series, 

mean winter (December to February) HS and the fraction of 0 cm values were calculated per station. Then, looking at a 

surrounding elevation band per station (200 to 500 m, depending on the elevation and station availability), series were marked 
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if the mean HS was less than the 5th percentile or the fraction of 0 cm values was higher than the 95th percentile of all stations 

in the elevation band. Given the climatological nature of this pre-screening and the stronger dependence on elevation, we did 685 

not consider horizontal distance for this step. This resulted in 181 suspicious series, which were checked manually. For 32 

stations, there were periods where 0 cm were obviously missing values, and in these periods the 0 cm values were replaced 

with missing values; the remaining 149 stations had no missing values denoted as 0 cm. Finally, during all previous manual 

checks, series that showed “dubious” behaviour were marked, which were in total 48 series. Dubious behaviour was e.g. 

inconsistency between HN and HS, unlikely values, improbable temporal variability, multiple seasons with no snow, or 690 

excessive gaps. From these 48 series, 29 were considered usable, 11 had some periods removed, and 8 were completely 

removed. 

These procedures could identify some errors, but definitely not all. Because of the large number of series, it was not feasible 

to manually quality check all of them, and fully automatic checks are often not feasible. Instead a spatial consistency check 

was applied (see Appendix A.4), and the rest of remaining errors could be considered noise given the large amount of data. 695 

 

A.3 Gap filling 

Most series contained gaps ranging from some days up to whole seasons. In order to conduct climatological or trend analyses, 

gaps in the series needed to be filled. For this we employed a spatial interpolation approach, similar to the one used for 

temperature and precipitation records (see e.g. Brunetti et al., 2006; Crespi et al., 2018; Golzio et al., 2018). The approach is 700 

based on correlations between the series, and because snow strongly depends on elevation, we first performed a spatial analysis 

to identify which correlations can be expected depending on horizontal and vertical distances between stations. For this, 

pairwise correlations (Pearson) between the daily HS series were performed for December to April from 1981 to 2010, only if 

the series had at least 70% valid data, and only if each pair had at least 50% of data in common. As expected, correlations 

decreased with both horizontal and vertical distance (Fig. A1). But correlations remained high even for large distances, e.g. 705 

correlations higher than 0.7 were found up to vertical distances of 500 m (with less than 100 km horizontal distance) or up to 

horizontal distances of 200 km (with less than 250 m vertical distance). It should be noted that correlations can be high even 

if there are large differences in amounts or ratios between the series, as long as the differences and ratios are constant across 

the range of values. 

 710 
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Figure A1: Summary of pairwise correlations between HS series for December to April, 1981 to 2010. Shown is the average (median, 

left) and 90th percentile (right) of all pairwise correlations in bins of 20 km horizontal distance by bins of 50 m vertical distance. The 

correlations were only calculated if each series had at least 70% valid data in the period and if each pair had at least 50% of data in 

common. 715 

 

The chosen approach fills a gap based on finding highly correlated neighbouring series to the one with gaps. The gap filling 

algorithm works as follows. For each gap: 

1. Find temporally surrounding non-missing values in the gap series around the gap date (“window data”), see also Fig 

A2 (a).  720 

1.1. Take 15 days before and after the gap. This results in 31 days of the year: e.g. for Jan 15, this would be Jan 

01 to Jan 31; for Jan 01, this would be Dec 16 to Jan 16. 

1.2. Repeat step 1.1. for 10 years before and after the gap. This results in 21 years. E.g. for 1996, this would be 

1986 to 2006. 

1.3. This window data potentially contains 651 values (21*31), but likely has missing values.  If there are more 725 

than 150 non-missing values continue to step 2. If there are less than 150 non-missing values, increase the 

day window by 5 days in both directions, and repeat from 1.1. If the day window has reached 45 in one 

direction (i.e. total 91 days), and still there are less than 150 non-missing dates, stop. Note: only the day 

window is increased, the year window from 1.2. stays constant at 10 years before and after. 

2. Pre-select potential reference series (Fig. A2 (b)) based on the following criteria: vertical distance to gap series below 730 

500 m, horizontal distance below 200 km, and the value at the date of the gap is not missing. 
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3. For each potential reference series: 

3.1. Identify dates with values available for both gap and reference series in the window identified in step 1. (Fig. 

A2 (c)). Continue only if more than 80% of the minimum 150 non-missing values (i.e. 120) are available in 

common. 735 

3.2. For the common dates: calculate mean of gap series and mean of reference series; calculate correlation 

between gap series and reference series. If all values of gap and reference series are zero, set the correlation 

to the minimum threshold (see step 4.) plus 0.001 (in order to be able to fill also zero periods). If only one 

of the series has all zero values, i.e. either gap or reference but not both, set the correlation to zero. 

3.3. Calculate ratio between mean of gap series divided by mean of reference series. If the mean of the reference 740 

series (divisor) is zero, set the ratio to zero (in order to be able to fill also zero periods).  

4. Sort potential reference series by correlation with gap series (from step 3.1.). Remove all candidates with a correlation 

below 0.7. This threshold was chosen as it is used e.g. in the homogenization of snow depth (Marcolini et al., 2017a). 

5. Select the first 5 best correlated reference series, or up to 5, depending on how many available. 

6. Calculate weights based on vertical distance. The weights are based on exponential decay with a halving distance of 745 

250 m (“half-time” transformation of decay constant). This implies that the weights are halved every 250 m. 

7. Fill the gap value with a weighted (step 6.) average of the reference series values adjusted by the ratios between gap 

and reference series (step 3.3.): 𝐻𝑆𝑡
𝑔𝑎𝑝

=
1

𝑛
∑ 𝑤𝑖  ∗ 𝐻𝑆𝑡

𝑟𝑒𝑓𝑖 ∗
𝐻𝑆𝑚𝑒𝑎𝑛

𝑔𝑎𝑝

𝐻𝑆𝑚𝑒𝑎𝑛
𝑟𝑒𝑓𝑖

𝑛
𝑖=1 , where t is the date of gap, i is the index of 

reference series, n is the number of reference series 1...5, and 𝑤𝑖  are the weights with ∑ 𝑤𝑖𝑖 = 1. 

 750 

The filled value was rounded to the nearest integer value in cm. Since the method requires finding suitable reference stations, 

it was only performed for the period 1961 to 2020, because the station density was too low before. The gap filling was applied 

to all gaps in all series considering all available data; afterwards thresholds were applied to select usable series (see end of this 

section). 

 755 



33 

 

 

Figure A2: Visualization of some steps of the gap filling algorithm. (a) shows how the window data in the gap series around the gap 

is determined (step 1.); doy is day-of-the-year. (b) shows the selection of potential reference series by horizontal and vertical distance 

(step 2.). (c) shows how common dates for gap and reference series are identified (step 3.); the dates come from the window in (a).   

 760 

The chosen limits of 200 km horizontal distance and 500 m vertical distance might seem very high in the Alpine context with 

the complex topography. Since we were interested in larger scale snow patterns and not local snow peculiarities, such large 

distances are justified. Moreover, the correlation threshold should exert control on selecting only stations that share the same 

snow cover evolution, and high correlations were found up to these horizontal and vertical limits (Fig. A1). On the other hand, 

a nearby station might also be a worse predictor than a more distant one, if, e.g., it differs in its local climate.  765 

Since this gap filling approach has not yet been used for snow depth, we performed a cross-validation analysis to identify the 

gap filling errors. For this, we used data from November to May in the period 1981 to 2010. For each station and each year, 

one month at a time was held out, but only if at least 10 days were available. Thus, for each month, a maximum potential of 

~900 values were cross-validated; however, the effective number was lower, because of missing values, and because not all 

gaps could be filled, if no suitable reference stations were available. In order to test the effect of shorter period gaps, we also 770 

applied the cross-validation on subsets (to reduce computation time): 1) 100 random samples of 1 day and 2) 20 random 

samples of 5 consecutive days. Then, the held-out values were filled using the above approach, and metrics calculated based 

on the filled and held-out values. Metrics include the bias, the MAE (mean absolute error), the MAE for non-zero held-out 

values only, and a modified version of relative MAE. The relative MAE is based on the MAE for non-zero values only, and 

this non-zero MAE is divided by the average of the held-out non-zero values. This is then not a “true” relative error, which 775 

would divide each error by the true value, i.e. 
1

𝑛
∑ |

𝑦𝑖−𝑥𝑖

𝑥𝑖
|𝑛

𝑖=1 , but our modification is 
1

𝑛
∑

|𝑦𝑖−𝑥𝑖|

|𝑥|

𝑛
𝑖=1  , where 𝑥 is the average of all 

𝑥𝑖. This was done to remove the large influence of errors close to zero, which are not that relevant in this case. The metrics 

were only calculated if more than 50 values were available per month and station (out of potentially ~900 for the month-long 

gaps, and 100 for the 1 and 5 day gaps), in order to provide robust estimates.  
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The cross-validation showed that the gap filling has extremely little bias (Table A1) with the overall average daily bias for the 780 

month long gaps being -0.04 cm. Average daily MAE for filling whole months was 1.6 cm (averaged over stations located in 

0–1000 m), 7.7 cm (1000–2000 m), and 22.0 cm (2000–3000 m). MAE was lower for 1 and 5 day long gaps compared to 

month long gaps, but almost no differences were observed comparing 1 day or 5 days, e.g. for the 1000–2000 m band, MAE 

for 1 day gaps was 6.2 cm, for 5 day gaps 6.4 cm, compared to 7.7 cm for 1 month gaps. The relative MAE of month-long 

gaps decreased with elevation from 39.4% (0–1000 m) to 32.7% (1000–2000 m) to 22.8% (2000–3000 m). Additionally, there 785 

was also a seasonal dependence of MAE, while bias remained largely constant across the season (Fig. A3). MAE below 2000 

m peaked in February, while above 2000 m MAE increased throughout the season. Relative MAE decreased with higher snow 

depths, both temporally and with elevation, that is, relative MAE was lowest in February and at high elevations. It is to be 

expected that errors at the end of the season are related to the ablation scheme (i.e. local climatic and topographic characteristics 

that influence ablation) of the different stations; however, at this stage we did not check this issue further. 790 

 

 

Table A1: Cross-validation (CV) metrics for the gap filling approach: Bias (the difference between gap filled and observed values), 

the mean absolute error (MAE), mean absolute error only for non–zero observed values (MAE no zero), and MAE no zero divided 

by the average of all true non–zero values (Rel. MAE no zero). 795 

Elevation band [m] CV period Bias [cm] MAE [cm] MAE no zero [cm] Rel. MAE no zero 

(0,1000] 1 day -0.0 1.3 3.1 30.1% 

5 days -0.0 1.4 3.3 34.0% 

1 month -0.0 1.6 3.9 39.4% 

(1000,2000] 1 day -0.1 6.2 7.9 26.1% 

5 days -0.1 6.4 8.2 28.5% 

1 month -0.1 7.7 9.7 32.7% 

(2000,3000] 1 day -0.6 18.2 18.6 18.9% 

5 days -0.8 18.3 18.7 19.2% 

1 month -0.4 22.0 22.5 22.8% 
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Figure A3: Cross-validation metrics for the gap filling approach: (a) bias, (b) mean absolute error (MAE), (c) mean absolute error 800 
for non-zero values (MAE no zero), (d) non-zero MAE divided by the true non-zero mean (relative MAE no zero). Panels show the 

1000 m elevation bands indicated in the title. The boxplots represent statistical quantities: the box indicates the first and third 

quartile; the bold line inside the box is the median; the vertical lines outside the box extend up to the most extreme point but at most 
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1.5 times the interquartile-range (IQR; height of the box); finally, points below/above 1.5*IQR of the first/third quartile are shown 

as separate points. 805 

 

Moreover, we compared our proposed gap filling approach to results from gap filling snow depth series using simulations of 

the Crocus snow model for the French Alps. The Crocus simulations with meteorological forcing were performed 

independently of this study, but we found it useful to compare the two approaches - albeit only exploratively. The observed 

snow depths with gaps were assimilated into the Crocus modelling scheme, using SAFRAN reanalysis data as forcing (López‐810 

Moreno et al., 2020). The two gap filling approaches were compared only for existing gaps in the French Alps. This was 

intended as a preliminary companion evaluation, and no cross-validation was performed. Thus, there was no ground truth to 

evaluate the two gap filling approaches with formal metrics, and we only performed a visual assessment (figures for 

comparison available at Matiu et al., 2020). Time series of both gap filling procedures looked remarkably similar, even for 

reconstructions of complete missing seasons: the different snowfall events were visible in both and snow depths averaged over 815 

multiple days were comparable. Differences emerged in the snow settling behaviour and for the spring snow melting periods. 

More information on this exercise is available from the authors on request. 

For Switzerland, a comparison of gap filling methods for HS was performed, which aimed at reconstructing complete missing 

seasons, and which included regression based methods and snow models (Aschauer et al., 2020). While our proposed method 

was not explicitly used in that comparison, it can be assumed to be similar to the regression-based and distance weighted 820 

methods used there. The errors reported in their study (root mean squared error less than 20 cm) are in the same order of 

magnitude as those found in our cross-validation. 

Altogether, the abovementioned (the cross-validation results, the comparison to Crocus, and the preliminary findings of the 

Swiss study) convinced us that the gap filling procedure is also suitable for reconstructing whole seasons, and not only some 

intermediate gaps, considering the fact that we only used it to derive monthly means (see below) and did not use the daily 825 

values directly. Further research would be required to check the suitability of the daily reconstructions, in our opinion, also 

considering the temporal distance to the last existing observations. For the final analysis, all gap filled data within the recording 

period was used, and we also allowed extending the period up to five years before the start or after the end of the recordings – 

but only if the total number of gap filled observations was less than the number of observations without gap filling. The main 

reason for this extension was to have series covering the complete period until 2019, because some series stopped just a few 830 

years earlier. As sensitivity analysis, we repeated most of the statistical analysis also for the original data without gap filling 

and provided results in the supplementary material: the estimated modes of variability matched (Fig. S12); the magnitude and 

variability of monthly trends was similar, although a lot less stations were available (Fig. S10); and finally the time series of 

500 m average HS also showed similar behaviour (Fig. S11). The gap filling was able to significantly increase the temporal 

availability, but its aim was not to fill all gaps. Gaps were not filled, for example, if no suitable reference station was found or 835 

if not enough common data was available.  
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A.4 Aggregation and spatial consistency  

The daily snow depth (HS) values were aggregated to mean monthly HS, if at least 90% of the daily values were available in 

the respective months after the gap filling (monthly time series plots available at Matiu et al., 2020).  

Based on the monthly series, a consistency check was performed (Crespi et al., 2018), which identifies dubious values/series, 840 

(but can also identify series with strong local influences on snow depth). Each monthly HS series of the tested station was 

reconstructed from up to five reference stations by a spatial interpolation approach. The reference series were selected if the 

monthly record was available and if at least 10 monthly records were in common with the tested station. If more than five 

neighbours were available, the ones with the highest weights were selected with weights being derived from the horizontal 

distance and elevation difference, similar to the gap filling procedure described above. Each reference station value was 845 

rescaled by the ratio between tested and reference mean HS for the month under reconstruction. Finally, the monthly simulation 

of the tested series was defined as the median of the up to five rescaled neighbouring values. The comparison between 

simulated and observed monthly HS series for each station was evaluated by computing bias, MAE, and R2 (squared 

correlation) from December to February, in order to avoid unreliable low error values due to zeros in HS records outside of 

winter.  850 

The mean bias over all stations was -0.3 (min, max: -8.0, 10.9) cm, average MAE was 4.8 (0.1, 61.3) cm, and average R2 was 

0.83 (0.0, 0.98). However, there was a strong elevational dependency, and station metrics deteriorated with elevation (Fig. 

A4). A semi-automatic approach was considered to look for suspicious series. The following criteria were used to screen 

stations: bias outside the 95% confidence interval per elevation bands (250 m bands up to 1500 m, then 1500 to 2000 m, and 

2000 to 3000 m) or MAE above a manually defined threshold line (see Fig. A4 (b)) or R2 below 0.5 or simulation not successful 855 

because of too many gaps. This yielded 225 stations, which were checked manually by looking at monthly simulated and 

observed series, and daily series. Only 14 stations were found suspicious and 18 partly suspicious; all 32 series were removed 

from the statistical analyses. More detailed results and time series comparing simulated with observed snow depths are 

available as auxiliary material (Matiu et al., 2020). 
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Figure A4: Metrics for spatial consistency: (a) bias, (b) mean absolute error (MAE), and (c) R squared (squared correlation). Metrics 

were derived from statistical simulations of the monthly series from December to February using spatial neighbours. Black points 

indicate stations which were further analysed with manual checks. 

  865 
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Appendix B: Additional figures and tables 

 

 

Figure B1: Silhouette values of the stations, which show consistency of clustering. The silhouette is a measure of how similar the 

station is to its own cluster compared to the other clusters (see methods for formula). High values indicate a good match, while low 870 
and negative values indicate a poor match. 
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 875 

Figure B2: Same as Figure 8, but using standardized anomalies. 
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Figure B3: Ratio between the trend over the full period (1971 to 2019) and interannual variability (standard deviation of the 

residuals). (a) shows the values for monthly mean HS (snow depth), (b) for seasonal indices of HS, and (c) for seasonal indices of 

SCD (snow cover duration). The boxplots represent statistical quantities: the box indicates the first and third quartile; the bold line 880 
inside the box is the median; the vertical lines outside the box extend up to the most extreme point but at most 1.5 times the 

interquartile-range (IQR; width of the box); finally, points below/above 1.5*IQR of the first/third quartile are shown as separate 

points. The height of the box is proportional to the number of observations in each group. 

 

 885 



42 

 

Table B1: Overview of literature on snow cover trends in the European Alps.  

 Area Number stations Time period Season Snow variable Methods 

(Bach et al., 2018) 

Mean HS -12.2%/10y (40% stn p<0.05); max HS -11.4%/10y (36% stn p<0.05); except coldest climates. 

 

 

pan-Europe: mostly Germany, Benelux, AT-

Tirol, Czech Republic, Slovakia, Finland; partly 

UK, Balkan, part E of Baltic Sea 

(not specified) 1951-2017 
DJF  

 
Mean HS; Max HS (95pctl) 

OLS if trend pos.; 

OLS (exp) if trend 

neg.; Significance: 

Mann-Kendall 

(Beniston, 2012b) 

10-50% decline in DJF HS (less decline moist north vs. dry south) 

 

 Switzerland 10 1930-2010 DJF; NDJFMA 
mean HS, snow days 

(10cm) 

visual; 5yr moving 

window 

(Durand et al., 2009) 

HS no trend at 2700m, decreases below; n0 negative trends 

 

 French Alps 

Modelling: ERA-40, 

SAFRAN,   

Crocus  

 

1959-2005 DJF 

Mean HS 

n0 (Number of days with 

snow) 

HS100d (minimum 100day 

snow depth) 

300m elevation steps 

(1500-2700); 

Spearman correlation 

(year-n0); Step-year 

(n0); Linear trend 

(n0) 

(Klein et al., 2016) 

SCD shorter 8.9days/decade; more because of earlier snow melt (5.8days/decade); decrease in maxHS, and earlier date of maxHS 

 

 Switzerland 11 1970-2015 Sep-Aug 

maxHS; date of snow onset, 

snowmelt, maxHS; SCD; 

snow days (1,20,50,100)  

Theil-Sen, Mann-

Kendall; stepwise 

regression 

(Kreyling and Henry, 2011) 

150 stations showed decrease (p<0.05 for 69), 22 positive (p<0.05 for 1); decrease accelerated over the last 15yr, -0.48 to -0.89d/yr 

 

 Germany 177 1950-2000 Aug-July SD (1cm) 
OLS; random effects 

with stations 

(Laternser and Schneebeli, 2003) 

All variables show increase until 1980, followed by significant decrease. Trends more pronounced at mid and low elevation. South != North. Shorter SCD because earlier melt in 

spring. 

 

 Swiss alps 
140 (HS) 

120 (HN) 

1931-1999 

 

NDJFMA; two-

month splits 

Mean seasonal HS; SCD 

(start, end, length); Days 

with HN > 0, 10, …; 

HN3max (max 3 day HN) 

 

Trend analysis; 

relative to long-term 

mean; Trend short 

period equal long 

period 

(Lejeune et al., 2019) 

39cm less 1990-2017 vs. 1960-1990 
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 France 1 (Col de Porte) 1960-2017 DJFMA mean HS 

moving window 

(15yr) and 

comparison 30yr  

(Marcolini et al., 2017b) 

different dynamics above and below 1650m; larger reductions at lower elevation; strong change late 1980s 

 

 Italy (BZ+TN) 37 1980-2009 NDJFMA 
SCD (>30cm); seasonal HS 

 

homogenization; 

hovmöller plots; 

wavelet analysis 

 

(Marty, 2008) 

Regime shift at end of 1980s, no clear trend since then. 

 

 Switzerland 34 ~1931-2008 DJFM Snow days (5, 30, 50cm) 
Mann-Kendall; shift 

detection 

(Marty and Blanchet, 2012) 

44% of stations show sig decrease in HSmax, 32% for HN3max; decrease in spread of HSmax 

 

 Switzerland 
18 (HSmax) 25 

(HN3max) 
1931-2010 annual  

HSmax (annual max HS); 

HN3max (annual max sum 

HN 3day) 

GEV with time-

dependent location 

and shape 

(Marty et al., 2017) 

SWE decline (independent of lat or long); stronger and more significant decrease in spring (-80% to -10% low to high elevation / 60 years) than winter; winter: some pos non-

significant at high elevation. 

 

 alpine wide (AT, FR, DE, IT, CH) 54 1968-2012 
index values (spring 

and winter) 

SWE (not continuously 

measured) 

Mann-Kendall; 

Theil-Sen 

(Micheletti, 2008) 

pos anomalies until end 80s, then shift to low snow amounts until beginning 2000; some recovery, but still below level of 80s 

 

 Italy (FVG) 8 1972-2007 seasonal 
sumHN, max of monthly 

meanHS 

timeseries (only 

descriptive); % 

anomalies w.r.t. 

1972-2007 

(Scherrer et al., 2013) 

strong decadal variability; high values 1900-1920 and 1960-1970/80; lowest values end 1980/1990; increases/plateau 2000s linked to temperature evolution 

 

 Switzerland 9 1864-2009 annual 

MAXNS (max annual HN); 

NSS (sum annual HN); 

DWSF (days with snowfall) 

plots; 20yr smooth; 

comparison to 71 

other stations 

(Schöner et al., 2009) 

largest HS in 1940s/50s; summer snow decreasing; interannual variability of winter precipitation closely related to HS (highest in 40s50s, strong decreases since -> less extremes) 

 

 Austria 1 (Sonnblick) 1928-2005 monthly HS (visual) 

(Schöner et al., 2019) 

EOF groups AT-CH in 7 regions; trend analysis based on first PC; strong trends south ~2000m: up to -12cm/10y; strongest trends at highest elevations; regional dependence of 

trends 
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 Switzerland and Austria 196 (139 passed QC) 1961-2012 NDJFMA  seasonal HS and HN 

MK-test with lag1 

pre-whitening; 

running trend 

approach; Sen slope; 

EOF for 

regionalization 

(Terzago et al., 2010) 

more snow Nov-Dec, less Jan-Apr, disappeared in May 

 

 Italy (Piemonte) 3 1971-2009 monthly 
HN, HS, snowy days 

(HN>=1cm) 

1971-2000 vs 2000-

2009 

(Terzago et al., 2013) 

some maxima 1940,50,60, absolute 1970, absolute minima 1990, then recovery; significant decrease seasonal HS 2-14cm/decade; stronger decreases in North (considering 

elevation); changes not driven by precip changes; snowfall anticorrelated to NAO 

 

 Italy (West) 6 
1926/1951 - 

2010 

DJF, MAM, 

NDJFMAM 

precip, days with precip, 

solid precip fraction, HN, 

snowy days (HN>0), HS 

trend analysis; Mann-

kendall; spectral 

analysis 

(Valt et al., 2008) 

snow cover decreased 14 days (1991-2007 vs 1960-1990), stronger <1600m (16d) vs >1600m (11d); fresh snow decreased 1990-2000, then stationary (for all altitudes and months) 

 

 Italy (east and west) 5 (west); 6 (east) 
~1920/1960-

2007 
Oct-May 

snow days (>=1cm); 

sumHN 
(visual) 

(Valt and Cianfarra, 2010) 

NDJFMA CSF shows -3 to -40 cm/10yr for all 18 stations 1960-2009, SCD also all negative; breakpoint ~ 1990, before decrease, after increase; strongest negative trend in spring 

and below 1500m; neg trend related to precipitation decrease; PCA shows long-term negative trend 

 

 Italy (east and west) 18 1950-2009 DJFMA; DJF; MA 
SCD (>1cm); CSF (sum of 

new snow) 

split by 1500m alt; 

OLS, Mann-Kendall; 

changepoint; PCA 
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Table B2: Fraction of models with significantly positive or negative changes in the error variance by time. The remaining percentage 

(not shown) corresponds to the total of non-significant negative and positive changes. Empty cells indicate no stations with significant 890 
negative or positive trends (sig- and sig+). Changes were considered significant if the GLS model with a time coefficient for the error 

variance showed significantly improved goodness-of-fit compared to the OLS model with constant error variance (p < 0.05).  

Region Nov Dec Jan Feb Mar Apr May 

 sig- sig+ sig- sig+ sig- sig+ sig- sig+ sig- sig+ sig- sig+ sig- sig+ 

NW     86.4%  24.4% 5.1% 30.8% 3.1% 76.5% 11.8%   

NE 47.1% 2.9% 16.7%  47.1% 2.9% 4.0% 8.0% 28.6% 4.8% 78.9%  80.0%  

N&hA 53.8%  4.3%  28.9% 0.4% 5.5% 0.4% 22.4%  72.8%  75.3% 4.7% 

S&hA 43.9% 4.9%  26.7% 8.0% 8.0% 9.1% 6.4% 14.0% 6.5% 41.1% 1.1% 76.6% 1.6% 

SE 72.4% 0.4% 22.6% 2.2% 40.5% 2.4% 18.4% 2.9% 29.1% 2.7% 55.2% 6.3% 100.0%  

 

 

Table B3: Overview of shareable data. Column daily indicates if the original daily data can be shared, and monthly if the derived 895 
monthly data can be shared.  

Code Country Data provider Daily Monthly 

AT_HZB Austria HZB no yes 

CH_METEOSWISS Switzerland MeteoSwiss no yes 

CH_SLF Switzerland SLF no yes 

DE_DWD Germany DWD yes yes 

FR_METEOFRANCE France MeteoFrance yes yes 

IT_BZ Italy Bolzano yes yes 

IT_FVG Italy Friuli Venezia Giulia yes yes 

IT_LOMBARDIA Italy Lombardia yes yes 

IT_PIEMONTE Italy Piemonte no no 

IT_SMI Italy SMI no no 

IT_TN Italy Trentino yes yes 

IT_TN_TUM Italy Trentino (TUM) no no 

IT_VDA_AIBM Italy Valle D'Aosta (AIBM) no no 

IT_VDA_CF Italy Valle D'Aosta (CF) yes yes 

IT_VENETO Italy Veneto no yes 

SI_ARSO Slovenia ARSO no yes 
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Appendix C: Seasonal snow indices 

 
Figure C1: Long-term (1971 to 2019) linear trends in seasonal snow depth (HS) indices. Trends are shown separately by index 900 
(columns) and region (rows). The season is indicated in the columns with the first letter of the included months (e.g. DFJ is December, 

January, and February). Each point is one station. The points indicate the trend and the lines the associated 95% confidence interval. 
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Figure C2: Long-term (1971 to 2019) linear trends in seasonal snow cover duration (SCD) indices. Trends are shown separately by 

index (columns) and region (rows). The season is indicated in the columns with the first letter of the included months (e.g. NDFJ is 905 
November, December, January, and February). Each point is one station. The points indicate the trend and the lines the associated 

95% confidence interval. 
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Figure C3: Time series of mean seasonal snow depth (HS) indices averaged by 500 m elevation bands. The rows indicate elevation 

band and the columns the index. The season is indicated in the columns with the first letter of the included months (e.g. DFJ is 910 
December, January, and February). The small numbers at the top of each panel denote the number of stations included in the 

average. Lines are only shown if more than 5 stations were available.  

 

 

Figure C4: Same as Figure C3 but for standardized anomalies. 915 
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Figure C5: Time series of mean seasonal snow cover duration (SCD) indices averaged by 500 m elevation bands. The rows indicate 

elevation band and the columns the index. The season is indicated in the columns with the first letter of the included months (e.g. 

NDFJ is November, December, January, and February). The small numbers at the top of each panel denote the number of stations 

included in the average. Lines are only shown if more than 5 stations were available.  920 



50 

 

 

Figure C6: Same as Figure C5 but for standardized anomalies. 
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Table C1: Overview of long-term (1971 to 2019) trends in mean seasonal snow depth indices. Summaries are shown by index, region, 

and 1000 m elevation bands (0 to 1000, 1000 to 2000, and 2000 to 3000 m). Cell values are the number of stations (#), the mean trend 925 
(mean, in cm decade-1), and percentages of significant negative (sig-) and positive (sig+) trends; the remaining percentage (not shown) 

corresponds to the total of non-significant negative and positive trends. Empty cells denote no station available (for # and mean), 

and no stations with significant negative or positive trends (sig- and sig+). Trends were considered significant if p < 0.05. See also 

Fig. C1. A version of the table with 500 m bands instead of 1000 m is available in the supplementary material (Table S6). 

Index Region Elevation: (0,1000] m Elevation: (1000,2000] m Elevation: (2000,3000] m 

 # mean sig- sig+ # mean sig- sig+ # mean sig- sig+ 

meanHS_DJF NW 78 -0.38 26.9%          

NE 25 -0.26 8.0%  1 1.36       

N&hA 87 -1.64 14.9%  154 -2.09 7.8%  4 -4.28   

S&hA 19 -3.57 42.1%  74 -3.56 17.6%  17 -0.07 5.9%  

SE 222 -0.95 22.1%  10 -2.94 50.0%      

meanHS_MAM NW 62 -0.12 9.7%          

NE 18 -0.45 11.1%          

N&hA 61 -1.56 47.5%  122 -3.74 42.6%  3 -4.45   

S&hA 16 -1.34 43.8%  52 -5.38 69.2%  16 -6.73 31.2%  

SE 209 -0.24 7.2% 0.5% 9 -1.82 33.3%      

meanHS_NDJFMAM NW 65 -0.23 41.5%          

NE 21 -0.31 9.5%          

N&hA 76 -1.44 32.9%  133 -2.77 27.1%  3 -4.96   

S&hA 16 -2.15 56.2%  55 -4.38 50.9%  17 -2.91 23.5%  

SE 211 -0.60 27.0%  9 -2.13 55.6%      

maxHS_NDJFMAM NW 65 -1.15 16.9%          

NE 21 -0.82 4.8%          

N&hA 76 -3.99 19.7%  133 -5.19 20.3%  3 -8.11   

S&hA 16 -8.87 75.0%  55 -10.33 56.4%  17 -9.37 41.2%  

SE 211 -2.78 27.0%  9 -6.59 55.6%      

 930 
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Table C2: Overview of long-term (1971 to 2019) trends in mean seasonal snow cover duration indices. Summaries are shown by 

index, region, and 1000 m elevation bands (0 to 1000, 1000 to 2000, and 2000 to 3000 m). Cell values are the number of stations (#), 935 
the mean trend (mean, in days decade-1), and percentages of significant negative (sig-) and positive (sig+) trends; the remaining 

percentage (not shown) corresponds to the total of non-significant negative and positive trends. Empty cells denote no station 

available (for # and mean), and no stations with significant negative or positive trends (sig- and sig+). Trends were considered 

significant if p < 0.05. See also Fig. C2. A version of the table with 500 m bands instead of 1000 m is available in the supplementary 

material (Table S7). 940 

Index Region Elevation: (0,1000] m Elevation: (1000,2000] m Elevation: (2000,3000] m 

 # mean sig- sig+ # mean sig- sig+ # mean sig- sig+ 

SCD_NDJF NW 79 -2.47 30.4%          

NE 25 -1.92 16.0%  1 4.96  100.0%     

N&hA 85 -3.33 38.8%  144 -2.14 36.1%  3 0.09   

S&hA 16 -3.79 6.2%  63 -2.08 28.6%  17 -0.20  5.9% 

SE 216 -3.67 28.2%  9 -5.26 66.7%      

SCD_MAM NW 62 -0.82 22.6%          

NE 18 -2.05 66.7%          

N&hA 61 -2.56 59.0%  122 -3.03 66.4%      

S&hA 16 -3.06 75.0%  52 -4.16 78.8%  16 -0.60 18.8% 6.2% 

SE 208 -0.99 20.7%  9 -3.58 66.7%      

SCD_NDJFMAM NW 65 -3.33 40.0%          

NE 21 -3.86 33.3%          

N&hA 76 -5.58 57.9%  133 -5.28 73.7%  3 0.09   

S&hA 16 -6.66 50.0%  55 -6.67 80.0%  17 -1.01 17.6%  

SE 211 -4.70 34.6%  9 -8.84 88.9%      

 

 

 

 

  945 
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Code and data availability 

All computations were performed with R statistical software version 4.0.2 (RCoreTeam, 2008). Colors for the figures were 

taken from scientific color scales (Crameri, 2019) and colorbrewer. Code is available at a repository (Matiu et al., 2020), which 

includes scripts for the following tasks: reading in the different data sources, performing all data pre-processing, quality 950 

checking, gap filling, and statistical analyses. 

Most data providers agreed to share their data: see Table B3 for the availability of daily and monthly values. For the full data 

set, please contact the main authors (MM or AC); the usage is generally free for research purposes, though explicit consent is 

required from some data providers, which want to keep track of the usage of the data. The shareable data is available at an 

open repository (Matiu et al., 2020). 955 
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